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SOME COMBINATORIAL ASPECTS OF REDUCED WORDS

IN FINITE COXETER GROUPS

JOHN R. STEMBRIDGE

Abstract. We analyze the structure of reduced expressions in the Coxeter
groups An, Bn and Dn. Several special classes of elements are singled out
for their connections with symmetric functions or the theory of P -partitions.
Membership in these special classes is characterized in a variety of ways, in-
cluding forbidden patterns, forbidden subwords, and by the form of canonically
chosen reduced words.

0. Introduction

This paper is the third in a series on P -partitions, symmetric functions, commu-
tation monoids, pattern avoidance, and reduced words in Coxeter groups.

Previously, in [Ste1] we introduced the notion of enriched P -partitions. These
are related to Schur’s Q-functions in the same way that Stanley’s P -partitions
(see [St2, §4.5]) are related to Schur’s S-functions. For example, the generating
function ∆(P ) for the set of enriched P -partitions of a (labeled) poset P is a quasi-
symmetric formal series in a set of variables z1, z2, . . . ; in case P is a shifted Young
diagram, ∆(P ) is a Schur Q-function.

In [Ste2], we analyzed the fully commutative elements of Coxeter groups. These
are elements w with the property that any reduced expression for w can be obtained
from any other by transposing adjacent pairs of commuting generators. One of the
characterizing properties of full commutativity is that the reduced words for such an
element can be viewed as the linear extensions of a “heap”—a poset whose vertices
are labeled by generators of the Coxeter group.

In the present paper, we show that enriched P -partitions are closely related
to the symmetric functions associated with elements of the Coxeter groups Bn

and Dn (known elsewhere as “stable Schubert polynomials” or “Stanley symmetric
functions”—see [BH], [FK1, FK2], [L]). In fact each of these symmetric functions is
a linear combination of the generating functions ∆(P ) for certain labeled posets P .
(See Propositions 6.5 and 8.1.)

This connection has interesting implications for an open problem identified in
[Ste1]: the classification of labeled posets P such that ∆(P ) is a symmetric function.
There is exactly one term in the ∆-expansion for the symmetric function indexed
by a given w ∈ Bn or Dn if and only if w is fully commutative. Furthermore,
the one labeled poset P that appears in the expansion is the heap. Thus as a
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1286 JOHN R. STEMBRIDGE

corollary, we obtain that the heap of any fully commutative member of Bn or Dn

is ∆-symmetric.
We analyze in detail the structure of the fully commutative members of Bn and

Dn and their heaps in Sections 5, 6, and 10. It turns out that for both groups,
the fully commutative elements can be naturally partitioned into two families. In
one family, the heaps are merely shifted (skew) diagrams, and the corresponding
generating functions are (skew) Schur Q-functions. On the other hand, although
the members of the second family are indexed in a natural way by skew shapes, the
corresponding heaps are not Young diagrams. (See Propositions 6.4 and 10.6, and
the examples in Figures 2 and 4.)

We also introduce here two additional families of symmetric functions associated
with Coxeter groups, one indexed by members of An and depending on a free
parameter t, and the second being indexed by a subset of Dn and depending on
two free parameters. The first family is related to, but not a specialization of,
the symmetric functions indexed by An defined by Stanley in [St1]. Stanley’s
symmetric functions encode information about the number of reduced words for
each w ∈ An, whereas these new symmetric functions carry information about a
generating function for such words in which the number of occurrences of an “end-
node” generator is marked. We prove that these new symmetric functions are sums
of the symmetric functions associated with Bn (see Theorem 3.4). It follows that
the number of reduced words for any w ∈ An in which an end-node generator occurs
k times can be expressed in terms of the number of standard shifted tableaux of
certain shapes.

There are four special subsets of Bn, and six subsets of Dn, that occur naturally
in the course of this work (e.g., the sets of fully commutative members of both Bn

and Dn). In each of these ten cases, we provide (typically) three characterizations
for membership of an element w in the set: a collection of subwords that cannot ap-
pear in any reduced word for w, a set of “patterns” that must be avoided in a vector
representation of w, and a set of properties that a canonically chosen reduced word
for w must possess. (The latter facilitates enumeration of the members of the set.)
The existence of pattern avoidance characterizations for these sets is not surprising,
since there are numerous instances of pattern-avoidance arising naturally in pre-
vious work on reduced words in An. For example, the 321-avoiding permutations
of n objects are known to be the fully commutative members of An−1 (see [BJS,
§2]). On the other hand, two of our ten subsets cannot be given pattern-avoidance
characterizations.

1. Preliminaries

Let W be a Coxeter group with generating set S = {si : i ∈ I}, where I is any
suitable (finite, totally ordered) index set. For i, j ∈ I, define m(i, j) to be the
order of sisj in W , so that M = [m(i, j)]i,j∈I is the Coxeter matrix. One allows
m(i, j) = ∞.

1.1 Reduced words. Let I∗ denote the free monoid consisting of all words that
can be formed from the alphabet I. By a subword of i = i1· · · il ∈ I∗, we shall mean
a subsequence of i occupying consecutive positions.

For w ∈ W , let `(w) denote the common length of every reduced (i.e., minimal)
expression w = si1 · · · sil with i1, . . . , il ∈ I. The corresponding index sequence
i = i1· · · il ∈ I∗ is called a reduced word. We use the notation R(w) for the set of
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reduced words for w, and R(W ) =
⋃
w∈W R(w) for the set of reduced words for all

members of W .
For integers m ≥ 0 and i, j ∈ I, define

〈i, j〉m := ijiji · · ·︸ ︷︷ ︸
m

∈ I∗,

and let ≈ denote the congruence on I∗ generated by the braid relations

〈i, j〉m(i,j) ≈ 〈j, i〉m(i,j)

for all i, j ∈ I such that m(i, j) < ∞. It is well known that R(w) constitutes a
single braid equivalence class; i.e., any reduced word for w can be obtained from
any other by means of the braid relations [B, §IV.1.5].

1.2 Heaps and commutativity classes. Let ∼ denote the congruence on I∗

generated by the braid relations corresponding to pairs of commuting generators
of W ; i.e., ij ∼ ji for all i, j ∈ I such that m(i, j) = 2. The equivalence class of
a word i ∈ I∗ with respect to ∼ is called the commutativity class of i. Since ∼ is
consistent with ≈, it follows that for each w ∈ W , there is a decomposition

R(w) = C1 ∪̇ · · · ∪̇ Cl,
where each Ci is a commutativity class. In case R(w) consists of a single commu-
tativity class, we say that w is fully commutative. It is not hard to show that w is
fully commutative if and only if 〈i, j〉m is not a subword of any i ∈ R(w) whenever
m = m(i, j) ≥ 3.

Given a word i = i1· · · il ∈ I∗, the heap of i is defined to be the partial ordering
P = P i of {1, . . . , l} generated by the transitive closure of the relations

r <P s for r < s such that iris 6∼ isir or ir = is.

Let L(P i) ⊂ I∗ denote the set of (labeled) linear extensions of P i. By this we mean
the set of words iπ(1)· · · iπ(l), where π ranges over all permutations of {1, . . . , l}
consistent with P i (i.e., π(r) <P π(s) ⇒ r < s).

The following result is a standard part of the Cartier-Foata theory of commuta-
tion monoids. For a proof, see [Ste2, §1.2] or Exercise 3.48(b) of [St2].

Proposition 1.1. L(P i) is the commutativity class of i.

It follows that if w is fully commutative, then R(w) consists of the linear exten-
sions of some labeled poset, namely, the heap of any member of R(w).

1.3 Canonical factorizations. For J ⊆ I, let WJ denote the parabolic subgroup
of W generated by {sj : j ∈ J}, and define

W J := {w ∈ W : j ∈ J ⇒ `(wsj) > `(w)}.
It is well-known that W J is a set of (shortest) left coset representatives for W/WJ .
Furthermore, one has `(xy) = `(x) + `(y) for all x ∈ W J and y ∈ WJ (e.g., [H,
§1.10]).

Assuming W has rank n, let us fix a chain {1} = W0 ⊂ W1 ⊂ · · · ⊂ Wn = W
of Coxeter groups in which Wi−1 is a maximal (proper) parabolic subgroup of Wi.
Let W 〈i〉 denote the set of shortest coset representatives for Wi/Wi−1. In these
terms, every w ∈W has a unique factorization

w = wnwn−1 · · ·w1
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with wi ∈ W 〈i〉. Moreover, `(w) = `(w1) + · · ·+ `(wn). We call this the canonical
factorization of w.

For the classical Weyl groups An, Bn and Dn, it is possible to choose the sub-
group chain so that every member of W 〈i〉 has a unique reduced word (with mild
exceptions in the case of Dn—see the beginning of Part II). Thus in these cases, we
have not only the notion of a canonical factorization, but also a canonical reduced
word for each w ∈W .

For example, consider W = An with the index set I = {1, . . . , n} arranged in the
usual way so that m(i, i+ 1) = 3. Using the subgroup chain Wi = Ai, we obtain

W 〈i〉 = {1, si, si−1si, . . . , s1· · · si}.
Using [i, j] (for i ≤ j) as an abbreviation for the word i · (i+ 1) · · · j ∈ I∗, it follows
that the canonical reduced words for the members of An are of the form

[m1, n1] · [m2, n2] · · · [mr, nr],

where n ≥ n1 > · · · > nr ≥ 1 and ni ≥ mi ≥ 1. It can be shown that the canonical
reduced word for each w ∈ An is also the first in reverse (i.e., from the right)
lexicographic order among the members of R(w) (see Theorem 2.3 of [E]).

1.4 One-line forms. Consider a geometric representation of W as a group gen-
erated by reflections acting on Rn, with 〈· , ·〉 denoting the associated W -invariant
symmetric bilinear form. Let αi ∈ Rn denote the simple root corresponding to si,
and fix a vector δ ∈ Rn in the interior of the fundamental chamber (i.e., 〈δ, αi〉 > 0
for all i ∈ I). The stabilizer of such a vector is trivial, so one can label the members
of W by the vectors in the W -orbit of δ.

In these terms, if γ is the “label” of w ∈W (i.e., γ = wδ), then (cf. [H, §5.4])

`(siw) > `(w) ⇔ 〈γ, αi〉 > 0.

For example, consider W = An−1. We can represent W acting on Rn with
a Euclidean inner product. Using ε1, . . . , εn to denote the standard orthonormal
basis of Rn, we can choose the simple roots to be αi = εi+1 − εi (1 ≤ i < n),
and take δ := (1, 2, . . . , n) = ε1 + 2ε2 + · · · + nεn. The orbit of δ consists of all
permutations of (1, 2, . . . , n). Thus our convention of using vectors to label Coxeter
group elements amounts to a generalization of the usual one-line description of
a permutation. However, there is one significant difference. By our convention,
(2, 3, 1) labels the (unique) permutation that maps ε1 + 2ε2 + 3ε3 to 2ε1 + 3ε2 + ε3
(i.e., ε1 7→ ε3, ε2 7→ ε1, ε3 7→ ε2), whereas the more common convention is to use
the inverse; i.e., (2, 3, 1) labels the permutation ε1 7→ ε2, ε2 7→ ε3, ε3 7→ ε1. Thus
if (w1, . . . , wn) is the vector label of w ∈ An−1, then by our convention, the vector
label of siw is obtained by interchanging wi and wi+1. Those using the inverse
convention would interchange the occurrences of i and i+ 1.

Given that δ and the choice of basis is understood, we will refer to the coordinate
sequence for the vector label of a given w ∈W as the one-line form of w.

1.5 Dominance. Suppose that W ′ is a second Coxeter group, with generating set
S′ = {s′i : i ∈ I} and Coxeter matrix M ′ = [m′(i, j)]i,j∈I . Note that by using I
as the index set for S and S′, we are presupposing that W and W ′ have the same
rank. Under these conditions, we say that W dominates W ′ if m(i, j) ≥ m′(i, j) for
all i, j ∈ I.

For example, Bn dominates An and Am+n dominates Am ×An.
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Proposition 1.2. If W dominates W ′, then R(W ′) ⊆ R(W ). Furthermore, if
w ∈ W and R(w) ∩R(W ′) 6= ∅, then

(a) Any i ∈ R(w) can be transformed into any j ∈ R(w) via braid relations
involving only those pairs i, j ∈ I such that m(i, j) = m′(i, j).

(b) R(w) ⊆ R(w′) for some w′ ∈W ′.

Proof. To prove R(W ′) ⊆ R(W ), suppose i = i1· · · il 6∈ R(W ). Then there must
exist some k > 1 such that i1· · · ik−1 is W -reduced and i1· · · ik is not. Hence some
member of the W -braid equivalence class of i1· · · ik−1 ends with ik, and thus some
word j with two equal consecutive letters (both equal to ik) is W -braid equivalent
to i.

Now consider any sequence of W -braid relations that transform i into j. If
these relations only involve pairs i, j ∈ I such that m(i, j) = m′(i, j), then this
sequence is equally valid as a series of W ′-braid relations, thus proving i 6∈ R(W ′).
Otherwise, immediately prior to the first time a W -braid relation is applied in which
m(i, j) > m′(i, j), we will have a word that is W ′-braid equivalent to i containing
〈i, j〉m as a subword for some m > m′ = m′(i, j). However, if the W ′-braid relation
〈i, j〉m′ ≈ 〈j, i〉m′ is applied at the beginning of 〈i, j〉m, one obtains two equal
consecutive letters, thereby proving i 6∈ R(W ′).

To prove (a) and (b), suppose that i ∈ R(w) is W ′-reduced. Any W -braid
transformations of i involving pairs i, j ∈ I such that m(i, j) = m′(i, j) are also
valid in W ′ and hence generate words that are also W ′-reduced. In particular, none
of these words can contain 〈i, j〉m as a subword for any i, j ∈ I and m > m′(i, j).
And hence they constitute the full W -braid equivalence class of i, since there are
no opportunities among these words to apply any of the other W -braid relations.
Since these words are also W ′-equivalent, they must belong to R(w′) for some
w′ ∈W ′.

Remark 1.3. (a) For specific dominating pairs W and W ′, it is an interesting prob-
lem to explicitly determine the set X = {w ∈ W : R(w) ⊂ R(W ′)} of W ′-reduced
members of W and the (unique) partition of X into subsets X(w′) indexed by
w′ ∈W ′ such that

R(w′) =
⋃

w∈X(w′)

R(w).

In Section 2 we will treat the case (W,W ′) = (Bn, An) in detail.
(b) It is tempting to guess that w ∈ W is W ′-reduced if and only if for all

m > m′(i, j), 〈i, j〉m does not occur as a subword of any i ∈ R(w). Although
this condition is clearly necessary, it is not sufficient in general. For example, see
Theorem 2.3.

1.6 Quasi-symmetric functions. Following the notation of [Ste1], let Σ =⊕
l≥0 Σl denote the graded ring of quasi-symmetric functions in the variables

z1, z2, . . . , with integer coefficients. Given any twin-free word i = i1· · · il ∈ I∗

(i.e., distinct adjacent letters), we define

Li :=
∑

j1≤···≤jl
jk=jk+1⇒ik<ik+1

zj1 · · · zjl ∈ Σl,

bearing in mind that I is assumed to be totally ordered. Clearly Li depends only
on l and the descent set D(i) := {1 ≤ k < l : ik > ik+1}; thus we may write
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LD for Li whenever D = D(i). It is not hard to show that the set of LD’s for

D ⊆ {1, . . . , l − 1} freely generate Σl as a Z-module.
We will also be making use of a second family of quasi-symmetric functions

indexed by twin-free words. For this family, totally order the nonzero integers so
that

−1 ≺ +1 ≺ −2 ≺ +2 ≺ −3 ≺ +3 ≺ · · · .
Letting the indices j1, . . . , jl range over nonzero integers, we define

Ki :=
∑

j14···4jl
jk=jk+1>0⇒ik<ik+1

jk=jk+1<0⇒ik>ik+1

z|j1|· · · z|jl|(1.1)

for any twin-free i = i1· · · il. Again it is clear that Ki depends only on l and the
descent set D(i). Less clear, but true (see Proposition 2.2 of [Ste1]), is the fact that
Ki depends only on l and the peak set

Λ(i) := {1 < k < l : ik−1 < ik > ik+1}.(1.2)

Thus we may write KΛ for Ki whenever Λ = Λ(i). The KΛ’s freely generate

a Z-submodule Πl of Σl; in fact, Π =
⊕

l≥0 Πl is a graded subring of Σ (see

Theorem 3.1 of [Ste1]).
Now let U be any ring with unity. Adjoining central indeterminates z, z1, z2, . . . ,

if F (z) ∈ U [z] satisfies F (0) = 1, then F (z1)F (z2) · · · is quasi-symmetric. More
precisely, working in the ring Z[[z1, z2, . . . ]] ⊗ U , it is clear that F (z1)F (z2) · · · ∈
Σ⊗U . We will be concerned with expansions of F (z1)F (z2) · · · in some particular
cases; namely,

F+
n (z) : = (1 + zu1)(1 + zu2) · · · (1 + zun),

F−
n (z) : = (1 + zun) · · · (1 + zu2)(1 + zu1),

Gn(z) : = F−
n (z)F+

n (z),

where u1, . . . , un ∈ U satisfy u2
1 = · · · = u2

n = 0.

Proposition 1.4. Let I = {1, 2, . . . , n}. We have

(a) F+
n (z1)F

+
n (z2) · · · =

∑
i∈I∗

LD(i)ui,

(b) Gn(z1)Gn(z2) · · · =
∑
i∈I∗

KΛ(i)ui,

where ui := ui1 · · ·uil if i = i1· · · il.
Proof. We prove (b), leaving (a) to the reader.

For (b), selecting a term from the expansion of Gn(z1)Gn(z2) · · · can be encoded
by an ordered sequence of the form (i1, j1), . . . , (il, jl); the presence of (i,−j) (resp.,
(i,+j)) indicates selection of the term zjui from the first (resp., second) of the two
occurrences of the binomial (1 + zjui). We may assume that i = i1· · · il is twin-
free; otherwise ui = 0. The possible selection sequences are characterized by the
properties

j1 4 · · · 4 jl, jk = jk+1 > 0 ⇒ ik < ik+1, jk = jk+1 < 0 ⇒ ik > ik+1,

so for a fixed choice of i, the net contribution of these selections is Kiui.
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1.7 Nil Coxeter rings. Specializing the setting of the previous subsection, let U
be the nil Coxeter ring associated with W . That is, let U be the free associative
ring with unity generated by ui : i ∈ I, modulo the relations

u2
i = 0, 〈ui, uj〉m(i,j) = 〈uj, ui〉m(i,j) (m(i, j) <∞).

For w ∈ W , define uw = ui for any i ∈ R(w); the result is clearly independent
of the choice of i, and it is not hard to show that {uw : w ∈W} is a free Z-basis of
U .

Nil Coxeter rings have been used to great advantage by Fomin-Stanley [FS] and
Fomin-Kirillov [FK1, FK2] in analyzing various symmetric functions associated
with Coxeter groups. For example, consider W = An. In [St1], Stanley defined
quasi-symmetric functions for each w ∈ An by setting

FA(w) :=
∑

i∈R(w)

LD(i),

and used these to derive numerous combinatorial properties of reduced words in
An. A crucial feature of these formal series, not obvious from their definition, is
the fact that they are symmetric in the variables z1, z2, . . . .

By Proposition 1.4(a), we see that

F+
n (z1)F

+
n (z2) · · · =

∑
w∈An

FA(w)uw .

That is, FA(w) is the coefficient of uw in F+
n (z1)F

+
n (z2) · · · . The symmetry of

FA(w) is therefore a corollary of the following lemma due to Fomin-Stanley [FS].
(We include below a slightly different proof.)

Lemma 1.5. We have

(a) F+
n (x)F+

n (y) = F+
n (y)F+

n (x).
(b) F−

n (x)F+
n (y) = F+

n (y)F−
n (x).

Proof. Since F+
n (−x)F−

n (x) = 1, it suffices to prove (b). Proceeding by induction
on n, leaving the basis of the induction (n ≤ 2) to the reader, we find

F+
n (y)F−

n (x) = F+
n−2(y)(1 + yun−1)(1 + yun) · (1 + xun)(1 + xun−1)F

−
n−2(x)

= F+
n−2(y)(1 + xun)(1 + xun−1) · (1 + yun−1)(1 + yun)F

−
n−2(x)

= (1 + xun)F+
n−2(y)(1 + (x + y)un−1)F

−
n−2(x)(1 + yun)

= (1 + xun)F+
n−1(y)F

−
n−1(x)(1 + yun)

= (1 + xun)F−
n−1(x)F+

n−1(y)(1 + yun) = F−
n (x)F+

n (y).

The second and fifth equalities are instances of the induction hypothesis.

Remark 1.6. A second corollary of Lemma 1.5 is that Gn(x) commutes with Gn(y),
so the coefficient of uw in Gn(z1)Gn(z2) · · · is a symmetric function GA(w). Fur-
thermore, by Proposition 1.4(b), we have

GA(w) =
∑

i∈R(w)

KΛ(i).

However, one can show that GA(w) is merely a “diagonal superfication” of FA(w)
(i.e., the image of FA(w) under the map θ that kills even power sums and doubles
odd power sums—see [Ste1, §3]). Hence GA(w) does not carry more information
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than FA(w) itself. However in Section 3, we will consider a one-parameter refine-
ment of GA(w) that encodes combinatorial information about R(w) not carried by
FA(w).

Part I. Bn

Let s0, s1, . . . , sn−1 denote generators for the Coxeter group Bn, arranging the
indices so that m(0, 1) = 4 and m(i − 1, i) = 3 for 1 < i < n. For w ∈ Bn, the
number of occurrences of 0 in any reduced word for w will be denoted `0(w); it is
independent of the choice of reduced word since this quantity is preserved by the
braid relations.

The shortest left coset representatives for Bn/Bn−1 consist of

{1, sn−1, sn−2sn−1, . . . , s0s1 · · · sn−1, s1s0s1 · · · sn−1,

. . . , sn−1 · · · s1s0s1 · · · sn−1}.
There is only one reduced word for each of these coset representatives, so every
w ∈ Bn has a canonical reduced word, as explained in Section 1.3. Extending the
notation of Section 1.3 slightly, for integers i, j such that 0 ≤ i ≤ j we define [i, j]
and [−i, j] to be the words i · (i+ 1) · · · j and i · (i− 1) · · · 101 · · · j, respectively. In
these terms, the canonical reduced words for the members of Bn are the expressions

[m1, n1] · [m2, n2] · · · [mr, nr],

where n > n1 > · · · > nr ≥ 0 and |mi| ≤ ni.
With ε1, . . . , εn as the standard orthonormal basis of Rn, we take εi+1 − εi

(resp., ε1) as the simple root corresponding to si for i ≥ 1 (resp., i = 0). The
vector

δ = ε1 + 2ε2 + · · ·+ nεn = (1, 2, . . . , n)

belongs to the interior of the fundamental chamber defined by these simple roots,
and its orbit consists of all signed permutations of (1, 2, . . . , n). These constitute
the one-line forms of the members of Bn, as explained in Section 1.4.

In the following, we will derive numerous pattern-avoidance characterizations of
various subsets of Bn. While it is possible (however complicated) to give a general
definition of pattern avoidance, it is best explained by special cases. For example,
an element w ∈ Bn is said to avoid the pattern (2,−1,−3) if in the one-line form of
w, say (w1, . . . , wn), there is no triple i < j < k such that −wk > wi > −wj > 0.

2. The A-reduced members of Bn

As we noted in Section 1.5, Bn dominates An. The following result is a first step
towards characterizing when w ∈ Bn is A-reduced (i.e., R(w) ⊂ R(An)).

Lemma 2.1. For w ∈ Bn, 0101 is a subword of some i ∈ R(w) if and only if the
pattern (−1,−2) occurs in the one-line form of w.

Proof. Let (w1, . . . , wn) be the one-line form of w, and suppose that the pattern
(−1,−2) occurs in positions i and j, so that i < j and −wj > −wi > 0. Among
all such choices for i and j, we can choose one that minimizes j − i. If there is a
positive entry in any position prior to j, then we would have wk > 0 > wk+1 for
some k (1 ≤ k < j). However in that case, `(skw) < `(w) and skw still contains
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the pattern (−1,−2), so by induction on length, skw (and hence w) has a reduced
word containing 0101.

Otherwise, every entry prior to wj is negative. In particular, i and j must be
consecutive; otherwise, j − i would not be minimal. We also have `(s0w) < `(w)
since w1 < 0. If i > 1, then s0w still contains the pattern (−1,−2), so again by
induction, s0w (and hence w) has a reduced word containing 0101.

The only remaining possibility is that i = 1 and j = 2. However since 0101 is a
reduced word for the member of B2 whose one-line form is (−1,−2), it follows that
w has a reduced word that begins with 0101.

For the converse, it suffices to prove the following.

(i) If w has a reduced word that begins 0101 . . . , then w contains the pattern
(−1,−2).

(ii) If w contains the pattern (−1,−2) and `(sjw) > `(w), then sjw also contains
the pattern (−1,−2).

For (i), recall that 0101 ≈ 1010. Thus if w has a reduced word that begins with
0101, then it has reduced words that begin with 0 and 1; i.e., `(s0w) < `(w) and
`(s1w) < `(w). Hence w1 < 0 and w1 > w2, so w contains the pattern (−1,−2).

For (ii), suppose that (−1,−2) occurs in w and `(sjw) > `(w). If j = 0, then
w1 > 0 and sjw has one-line form (−w1, w2, . . . , wn). Clearly this can only increase
the number of occurrences of (−1,−2). If j > 0, then wj < wj+1, and the one-form
of w is obtained by interchanging wj and wj+1. If wj and wj+1 are both nega-
tive, this increases the number of occurrences of (−1,−2); otherwise, the relative
positions of the negative entries are unchanged.

Let s′0, s
′
1, . . . , s

′
n−1 denote a set of generators for An. We are deliberately using

the index set {0, 1, . . . , n− 1} here so that the dominance relationship between Bn

and An remains conspicuous. Since 0101 ≈ 1010 is the only Bn-braid relation that
is not also valid for An, it follows that for the (−1,−2)-avoiding elements w ∈ Bn,
the mapping si 7→ s′i is well-defined in the sense that

w′ = s′i1· · · s′il ∈ An

is independent of the choice of i = i1· · · il ∈ R(w).
To describe this mapping more explicitly, we need to choose coordinates for An.

For this we pass to Rn+1 and use ε0 as the name for the new coordinate. By
convention, we will write (a0, a1, . . . , an) for the vector a0ε0 + · · · + anεn. For the
simple root corresponding to s′i, we choose εi+1 − εi. The vector δ belongs to the
fundamental chamber defined by these roots, so we can use its An-orbit (namely,
all permutations of (0, 1, . . . , n)) as the one-line forms for the members of An.

We now define a “bumping” map b : Bn → An as follows. Let (w1, . . . , wn) be
the one-line form of some w ∈ Bn, and suppose that i1 < · · · < ik are the positions
i such that wi < 0. Define b(w) to be the member of An whose one-line form is
(x0, . . . , xn), where

x0 = −wi1 , xi1 = −wi2 , . . . , xik−1
= −wik , xik = 0,

and xj = wj for wj > 0. In other words, we insert 0 into w from the right, where
it bumps out and changes the sign of the first encountered negative entry, which in
turn bumps out and changes the sign of the next negative entry, and so on. The
algorithm terminates with the last bumped element stopping at the 0th position.
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For example,

if w = (3,−6, 1,−4,−2, 5, 7) ∈ B7,

then b(w) = (6, 3, 4, 1, 2, 0, 5, 7) ∈ A7.

Lemma 2.2. If w ∈ Bn avoids (−1,−2) and i = i1· · · il ∈ R(w), then

b(w) = w′ = s′i1· · · s′il .
Furthermore, if there is some index j such that `(sjw) < `(w) and `(s′jw

′) > `(w′),
then w contains the pattern (1,−3,−2).

Proof. We prove both assertions by induction on `(w). If `(w) = 0 the claims are
trivial, so assume `(w) > 0 and choose an index j such that `(sjw) < `(w). If w
avoids (−1,−2), then 0101 cannot occur in any i = i1· · · il ∈ R(w) (Lemma 2.1). It
follows that w′ = s′i1· · · s′il does not depend on the choice of i, and (by the induction
hypothesis) b(sjw) = s′jw

′. Thus for the first assertion, it suffices to prove that

b(w) = s′jb(sjw).

Case 1: j = 0. Let −a < 0 be the first entry in the one-line form of w (this entry
is negative since `(s0w) < `(w)), and let −b ≤ 0 be the entry that bumps −a when
0 is inserted into w. The first two entries in the one-line form of b(w) must be
(a, b). On the other hand, in s0w the first entry is a > 0 and −b is the leftmost
negative entry (or there are no negative entries, if b = 0). The first two entries
of b(s0w) are therefore (b, a), and the remaining entries agree with b(w). Hence
b(w) = s′0b(s0w) = w′, as desired. Also, regarding the second assertion, note that
`(s′0w

′) > `(w′) occurs only if a < b, in which case the pattern (−1,−2) occurs in
w, a contradiction.

Case 2: j ≥ 1. Let a, b be the entries in positions j, j+1 of the one-line form of w;
the one-line form of sjw is obtained by interchanging a and b. Since `(sjw) < `(w),
we must have a > b, and since w avoids (−1,−2), a and b cannot both be negative.
It follows that b commutes with permuting a and b, and hence b(w) = s′jb(sjw) =

w′, as desired.
Regarding the second assertion, suppose that `(s′jw

′) > `(w′). Since the positive
entries of w remain stationary, this can occur only if one of a or b is negative. Since
a > b, this requires a > 0 > b. If c ≤ 0 is the entry that bumps b when 0 is
inserted into w, then we must have b < c; otherwise w would contain the pattern
(−1,−2). Furthermore, since we then have a and −c in positions j and j + 1 of
w′ = b(w) (respectively), the fact that `(s′jw

′) > `(w′) implies a < −c. Thus we

have b < c < −a < 0, and the w-subsequence (a, b, c) fits the pattern (1,−3,−2).

Theorem 2.3. For w ∈ Bn, the following are equivalent.

(a) w is A-reduced (i.e., R(w) ⊂ R(An)).
(b) Neither 0101 nor 1012101 occur as subwords of any i ∈ R(w).
(c) w avoids the patterns (−1,−2) and (1,−3,−2).

Proof. (a)⇒(b) is immediate since 0101 and 1012101 are not reduced words for An.
(b)⇒(c). If the one-line form of w, say (w1, . . . , wn), contains the pattern

(−1,−2), then 0101 must occur as a subword of some i ∈ R(w) (Lemma 2.1).
Hence we may assume towards a contradiction that w avoids (−1,−2) but contains
an occurrence of (1,−3,−2), in positions i < j < k. Among all such occurrences
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of this pattern, choose one that minimizes i + j + k. Since 1012101 is a reduced
word for the member of B3 whose one-line form is (1,−3,−2), it follows that if
(i, j, k) = (1, 2, 3), then w has a reduced word that begins with 1012101, contra-
dicting (b). In the remaining cases, it suffices to prove that there is an index l with
`(slw) < `(w) such that the pattern (1,−3,−2) also occurs in slw. Indeed, we may
then argue by induction on length that there is a reduced word for slw (and hence
w) that contains 1012101 as a subword, contradicting (b).

To prove the claim, note first that if a positive entry occurs in any position
between i and k then we would have wl > 0 > wl+1 for some l such that i < l < k.
However in that case, `(slw) < `(w) and the pattern (1,−3,−2) still occurs in
slw. Otherwise, every entry between i and k is negative. Since w avoids (−1,−2),
minimality of i + j + k forces i, j, k to be consecutive. Hence the only remaining
possibility is i > 1.

Suppose that a positive entry occurs prior to wi. This entry must be greater
than wi, by minimality of i + j + k. Hence there must be some index l such that
1 ≤ l < i and wl > wl+1. However in that case, `(slw) < `(w) and the pattern
(1,−3,−2) still occurs in slw. Thus all entries prior to wi, including w1, must be
negative. But then `(s0w) < `(w) and the pattern (1,−3,−2) still occurs in s0w.

(c)⇒(a). Proceeding by induction on `(w), assume `(w) > 0 and that w avoids
the pattern (−1,−2). Let j be an index such that `(sjw) < `(w), and let w′ = b(w),
as in Lemma 2.2. If sjw is A-reduced but w is not, then we have `(s′jw

′) = `(sjw) =
`(w)− 1 > `(w′)− 1, so `(s′jw

′) > `(w′). However in that case, Lemma 2.2 implies

that (1,−3,−2) occurs in w, contradicting (c).
Otherwise, sjw is not A-reduced, so by induction sjw must contain the pattern

(−1,−2) or (1,−3,−2). If the pattern (−1,−2) occurs, then it must also occur in w
(Lemma 2.1), contradicting (c). Thus we may assume there is a subsequence (a, b, c)
of the one-line form of sjw fitting the pattern (1,−3,−2); i.e., −b > −c > a > 0.
The action of sj cannot change the relative position of a and b since a > b and
`(sjw) < `(w); it also cannot change the relative position of b and c, since otherwise
the pattern (−1,−2) would occur in w. And finally, if j = 0 and s0 replaces a with
−a, then the pattern (−1,−2) would occur in w. Hence (a, b, c) is also a subsequence
of w, contradicting (c).

Suppose that the one-line form of some w ∈ An is (w0, . . . , wn), and that m is
the index such that wm = 0. Given any set of indices J such that {0,m} ⊆ J ⊆
{0, 1, . . . ,m}, let wJ ∈ Bn denote the result of “unbumping” the entries of w in
the positions indexed by J . More precisely, if 0 = j0 < j1 < · · · < jl = m are
the members of J , then define wJ to be the member of Bn whose one-line form is
(x1, . . . , xn), where

xj1 = −wj0 , xj2 = −wj1 , . . . , xjl = −wjl−1
,

and xj = wj for j 6∈ J .
It is not hard to see that b(x) = w if and only if x = wJ for some J , but it is

not necessarily the case that wJ is A-reduced. To characterize when this occurs,
let us first introduce the notation

L(w) := {i : j < i⇒ wj > wi}
for the set of positions where left-minima occur in the one-line form of w ∈ An.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1296 JOHN R. STEMBRIDGE

Theorem 2.4. If w ∈ An and wm = 0 (i.e., m is the position where 0 occurs in
the one-line form of w), then x ∈ Bn is A-reduced and b(x) = w if and only if
x = wJ with {0,m} ⊆ J ⊆ L(w). In other words,

{x ∈ Bn : R(x) ⊆ R(w)} = {wJ : {0,m} ⊆ J ⊆ L(w)}.
Proof. Choose J so that {0,m} ⊆ J ⊆ L(w), and let 0 = j0 < j1 < · · · < jl = m be
the members of J . If x = wJ , it is clear from the definitions that b(x) = w. Further-
more, since each member of J indexes a left-minimum of w, we havewj0 > · · · > wjl ,
and the negative entries in the one-line form of x (namely, −wj0 , . . . ,−wjl−1

) ap-
pear in increasing order. That is, x avoids the pattern (−1,−2). If the pattern
(1,−3,−2) occurred in positions i < j < k of x, then we would have j, k ∈ J
and wi < wj , contradicting the fact that j indexes a left-minimum. Thus x avoids
(1,−3,−2), so by Theorem 2.3 it is A-reduced.

Conversely, if b(x) = w, then x = wJ where J = {0} ∪ {j : xj < 0}. Clearly
m ∈ J ; in fact, m is the largest member of J . We also claim that if x is A-reduced,
then J ⊆ L(w). Otherwise, there would be some j ∈ J such that 0 < j < m and
j 6∈ L(w). In that case, let k be the smallest member of J greater than j (it is
clear that k exists, since m ∈ J). In the one-line form (x1, . . . , xn) of x we must
have xj < xk, since otherwise the pattern (−1,−2) would appear, contrary to the
assumption that x is A-reduced. When b is applied to x, −xk replaces the entry in
position j. However j 6∈ L(w), so there is an index i < j such that wi < wj = −xk.
It is necessarily the case that i 6∈ J , since otherwise the pattern (−1,−2) would
have appeared in x. However if i 6∈ J , then the entries in positions i, j, k of x fit
the pattern (1,−3,−2). By Theorem 2.3, this contradicts the assumption that x is
A-reduced.

As a consequence of Theorem 2.4 and Proposition 1.2, we obtain the following.

Corollary 2.5. If w ∈ An and m are as above, then

R(w) =
⋃

{0,m}⊆J⊆L(w)

R(wJ ).

To count the A-reduced members of Bn, we use the following.

Lemma 2.6. We have
∑

w∈An
q#L(w) = q(q + 1) · · · (q + n).

Proof. Let Ln(q) =
∑

w∈An
q#L(w). We have Ln(q) = (q+n)Ln−1(q), since among

the n+1 positions where ‘n’ can be inserted into the one-line form of some w ∈ An−1,
the number of left-minima changes only when ‘n’ is inserted at the beginning.

Proposition 2.7. There are 1
4 (n+ 2)! + 1

2n! A-reduced members of Bn.

Proof. By Theorem 2.4, there are 2#L(w)−2 A-reduced members of Bn correspond-
ing to each w ∈ An unless #L(w) = 1, in which case there is just one. The latter
occurs when w0 = 0 (i.e., when w belongs to the parabolic subgroup ofAn generated
by s′1, . . . , s

′
n−1). Hence the number of A-reduced elements is

1

4

∑
w∈An

2#L(w) +
1

2

∑
w∈An−1

1.

Apply Lemma 2.6.
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3. The symmetric functions GB and GA(t)

Let u0, u1, . . . , un−1 denote generators for the nil Coxeter ring U associated
with Bn. Shifting the notation of Section 1.6 slightly, let

F+
n (z) = (1 + zu0)(1 + zu1) · · · (1 + zun−1),

F−
n (z) = (1 + zun−1) · · · (1 + zu1)(1 + zu0),

and Gn(z) = F−
n (z)F+

n (z). It was first noted by Fomin and Kirillov [FK1] that
Gn(x) and Gn(y) commute; this observation allows one to define a family of sym-
metric functions indexed by w ∈ Bn via the method explained in Section 1.7.

To minimize notation in the following, we adopt the convention that if u is
a nilpotent element of a ring with unity and x is a central indeterminate, then
ux := exp(xu). In all cases of interest u will be nilpotent of index 2, so in fact
ux = 1 + xu.

Proposition 3.1. Let u, v, a, b be elements of a ring with unity such that u2 =
v2 = 0, v commutes with a and b, and uxaux commutes with uybuy.

(a) If (uv)2 = (vu)2, then vxu2xvx commutes with vyu2yvy.
(b) If uvu = vuv, then vxuxauxvx commutes with vyuybuyvy.

Proof. (a) is a straightforward computation. For (b), note first that uxvx and vxux

commute with uyvy and vyuy, by the n = 2 cases of Lemma 1.5 (with u = u1,
v = u2). We therefore have

(vxuxauxvx)(vyuybuyvy) = vxuxa(vyuy)(uxvx)buyvy = vxuxvyaux+ybvxuyvy

= (vxux)(vyuy)u−yaux+ybu−x(uxvx)(uyvy)

= (vyuy)(vxux)u−yaux+ybu−x(uyvy)(uxvx)

= (vyuy)vxu−y(uxaux)(uybuy)u−xvy(uxvx)

= vyuyvxu−y(uybuy)(uxaux)u−xvyuxvx

= vyuyvxbux+yavyuxvx = vyuyb(vxux)(uyvy)auxvx

= (vyuybuyvy)(vxuxauxvx).

Corollary 3.2 (Fomin-Kirillov). We have Gn(x)Gn(y) = Gn(y)Gn(x).

Proof. Proceed by induction on n. The basis of the induction (n = 2) is a
consequence of Proposition 3.1(a) and the identifications u = u0, v = u1. For
n > 2, apply Proposition 3.1(b) with a = Gn−2(x), b = Gn−2(y), u = un−2 and
v = un−1.

It follows that for w ∈ Bn, the coefficients GB(w) appearing in the expansion

Gn(z1)Gn(z2) · · · =
∑
w∈Bn

GB(w)(z1, z2, . . . )uw(3.1)

are symmetric functions of z1, z2, . . . , and by Proposition 1.4(b) we have the ex-
pansion

GB(w) =
∑

i∈R(w)

KΛ(i).(3.2)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1298 JOHN R. STEMBRIDGE

By Theorem 3.8 of [Ste1], it follows immediately that GB(w) is Q-integral, i.e., an
integer linear combination of Schur Q-functions.

Remark 3.3. These symmetric functions have been studied previously by Fomin-
Kirillov [FK1], T.-K. Lam [L], and Billey and Haiman [BH], although in some cases
using the normalization 2−`0(w)GB(w). For example, Lam and Billey-Haiman both
prove that GB(w) is a positive integer linear combination of Schur Q-functions.
Although it is immediate that 2−`0(w)GB(w) is an integer linear combination of
Schur P -functions, for combinatorial purposes, it is preferable to use the Q-function
expansion of GB(w). (E.g., see the proof of Theorem 2.13 in [L].) The Q-integrality
of GB(w) is also a stronger assertion than the P -integrality of 2−`0(w)GB(w).

Now let u′0, u
′
1, . . . , u

′
n−1 denote generators for the nil Coxeter ring U ′ of An.

The only braid relation of Bn that is not also a braid relation of An is 1010 ≈ 0101.
However the corresponding relation in U (namely, u0u1u0u1 = u1u0u1u0) is also
valid in U ′, since u′0u

′
1u

′
0u

′
1 = 0 = u′1u

′
0u

′
1u

′
0. That is, U ′ is a quotient of U .

(More generally, this applies to the nil Coxeter rings of any pair (W,W ′) such that
W dominates W ′.) Thus Corollary 3.2 is also valid in U ′, and this permits the
construction of a family of symmetric functions GA(w) for w ∈ An as in (3.1). But
as we noted previously in Remark 1.6, GA(w) is merely a homomorphic image of
FA(w), and thus carries no new combinatorial information.

However, consider the following refinement.
If t is any central indeterminate, the map u0 7→ tu0, ui 7→ ui (1 ≤ i < n) defines

a (unique) ring endomorphism of U (or rather, U [t]). Note that for w ∈ Bn, this
map has the property that uw 7→ t`0(w)uw. As an endomorphism, it of course
preserves the commuting relationship of Corollary 3.2, but its effect on (3.1) is
rather trivial—replacing GB(w) with t`0(w)GB(w). However, if we combine this
with the homomorphism U 7→ U ′ (i.e., u0 7→ tu′0, otherwise ui 7→ u′i), we obtain
from Corollary 3.2 a genuinely new commuting relationship in U ′ with an associated
family of symmetric functions indexed by w ∈ An and depending on a parameter t;
namely,

GA(w; t) :=
∑

i∈R(w)

t`0(i)KΛ(i).(3.3)

Here we are committing a minor abuse of notation—using `0(i) to denote the num-
ber of occurrences of 0 in the reduced word i.

Comparing (3.2) and (3.3), the following is a consequence of Corollary 2.5.

Theorem 3.4. If w ∈ An and wm = 0 (i.e., m is the position where 0 occurs in
the one-line form of w), then

GA(w; t) =
∑

{0,m}⊆J⊆L(w)

t#J−1GB(wJ ).

Remark 3.5. It follows that for all w ∈ An, GA(w; t) is a Z[t]-linear combination
of Schur Q-functions. More specifically, let Qλ = Qλ(z1, z2, . . . ) denote the Schur
Q-function indexed by the strict partition λ (e.g., see Appendix A of [Ste1]). If
l = `(w), then GA(w; t) is homogeneous of degree l and it is clear from (1.1) that
the coefficient of z1· · · zl in KΛ is 2l. On the other hand, Qλ is homogeneous of
degree equal to the size of λ, and the coefficient of z1· · · zl in Qλ is 2lgλ, where
gλ denotes the number of shifted standard tableaux of shape λ (e.g., [M, p. 135]).
Thus for every w ∈ An there exist polynomials Cw,λ(t) ∈ Z[t] indexed by strict
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partitions λ of size `(w) (and having nonnegative coefficients, by the work of Lam
and Billey-Haiman) such that∑

i∈R(w)

t`0(i) =
∑
λ

Cw,λ(t)g
λ.

For example, consider w = w0, the longest element ofAn. We havew0 = (n, . . . , 1, 0)
in one-line form, and there are 2n−1 terms in the expansion of Theorem 3.4. There
is a unique term in this expansion of degree n with respect to t (the maximum
possible), corresponding to the choice J = L(w0) = {0, 1, . . . , n}. In this case
wJ0 is the member of Bn whose one line-form is (−n, . . . ,−2,−1). By Corol-
lary 6.6 below (or Proposition 3.14 of [BH], or Corollary 3.5 of [L]), one knows
that GB(wJ0 ) = Q(n,...,2,1). Thus we conclude that the number of reduced words for
w0 in which 0 occurs n times is the number of shifted standard tableaux of shape
(n, . . . , 2, 1).1 By the shifted hook length formula for gλ (e.g., [M, p. 135]), this
quantity is (

n+ 1

2

)
! ·

n−1∏
i=0

(2i)!

(n+ i)!
.

4. The top and bottom classes

For w ∈ An, recall that any x ∈ Bn such that b(x) = w can be obtained by
unbumping the elements in some set of positions J in the one-line form of w; i.e.,
x = wJ for some J . In that case, x has #J − 1 negative entries, and therefore
`0(x) = #J − 1. By Theorem 2.4, it follows that for every w ∈ An, there is a
unique x ∈ Bn that maximizes `0(x) among all x′ ∈ Bn such that R(x′) ⊆ R(w).
In fact, x = wL(w). In other words, the set of reduced words for w in which 0
appears the maximum number of times is itself the set of reduced words for some
x ∈ Bn, and this maximum number is #L(w) − 1. Whenever x and w are related
in this way, we write x = top(w) and refer to x as the top element of w.

Theorem 4.1. For w ∈ Bn, the following are equivalent.

(a) w is the top element of some w′ ∈ An.
(b) 101 is not a subword of any i ∈ R(w).
(c) The canonical reduced word [m1, n1] · · · [mr, nr] for w satisfies m1, . . . ,mr ≥

0.
(d) w avoids the patterns (±1,−2).

Proof. (a)⇒(b). If w is the top element for w′, then w is A-reduced and every
i ∈ R(w) is also a reduced word for w′. However, if 101 occurred as a subword
of i, then `0(w) could not have been maximal since 101 ≈ 010 is a valid An-braid
relation.

(b)⇒(c) is immediate, since 101 is a subword of [−i, j] whenever 0 < i ≤ j.
(d)⇒(a). If w avoids the pattern (1,−2), then it also avoids the pattern

(1,−3,−2). Hence Theorem 2.3 implies that w is A-reduced. Now let w′ = b(w) ∈
An, and let (w1, . . . , wn) denote the one-line form of w. To prove w = top(w′), we
must argue that J = L(w′), where J = {0} ∪ {j : wj < 0}. Certainly J ⊆ L(w′),
by Theorem 2.4. Now if there were some i ∈ L(w′) such that i 6∈ J , then there
would be some j > i such that j ∈ J . (Indeed, the rightmost left-minimum of w′

1This is closely related to Theorem 4.5 of [E]—see Remark 6.3(c) below.
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is always a member of J .) If j is the least such index, then when 0 is inserted into
w, wj will be bumped and −wj will appear to the left of wi in the one-line form of
w′. However, i indexes a left-minimum of w′, so −wj > wi > 0. Hence the entries
in positions i and j of w fit the pattern (1,−2), contradicting (d).

To complete the proof, note that the canonical reduced words appearing in (c)
are the canonical reduced words for the members of An, so there are exactly (n+1)!
members of Bn that satisfy (c). Therefore, having proved (d)⇒(a)⇒(b)⇒(c), it suf-
fices to prove that there are exactly (n+1)! members of Bn that satisfy (d). For this,
suppose that w ∈ Bn has one-line form (w1, . . . , wn), and let |w| = (|w1|, . . . , |wn|),
a permutation of (1, . . . , n). For w to avoid the patterns (±1,−2) it is necessary
and sufficient to have j index a left-minimum of |w| whenever wj < 0. Thus for a

fixed choice of |w|, there are 2#L(|w|) ways to choose sign patterns for w that avoid
(±1,−2). Apply Lemma 2.6.

Similarly, for each w ∈ An, Theorem 2.4 implies that there is a unique x ∈ Bn

that minimizes `0(x) among all x′ ∈ Bn such that R(x′) ⊆ R(w). In other words,
the set of reduced words for w in which 0 appears the minimum number of times
is the set of reduced words for x. In fact, x is obtained by unbumping the 0 and
the entry in position 0 from the one-line form of w. In this situation, we write
x = bot(w) and refer to x as the bottom element of w.

It is easy to show directly (or one may use Theorem 2.4 to see) that the minimum
number of occurrences of 0 in any reduced word for w ∈ An is either 0 or 1 according
to whether or not 0 is the entry in position 0 of w. In the former case, 0 cannot
appear in any reduced word for w, so we conclude that x is a bottom element
for some w ∈ An if and only if `0(x) ≤ 1. Also, since `0(x) is the number of
negative entries in the one-line form of x, this condition can also be characterized
by avoidance of the patterns (−1,−2) and (−2,−1). We summarize these remarks
with the following.

Proposition 4.2. For w ∈ Bn, the following are equivalent.

(a) w is the bottom element of some w′ ∈ An.
(b) 010 is not a subword of any i ∈ R(w).
(c) `0(w) ≤ 1.
(d) w avoids the patterns (−1,−2) and (−2,−1).

Of course there are (n + 1)! bottom elements, one for each member of An.
Those x ∈ Bn that are simultaneously top and bottom elements, so that top(w) =

bot(w) = x for some w ∈ An, are distinguished by the fact that there is exactly one
term in the decompositions of Corollary 2.5 and Theorem 3.4; i.e., R(x) = R(w)
and

GA(w; t) = t`0(x)GB(x).

By Theorem 4.1 and Proposition 4.2, one sees that this class can by characterized
by forbidden patterns, forbidden subwords, or by the structure of the canonical
reduced word.

Define H(n) =
∑n

i=1 1/i.

Proposition 4.3. There are n! (1 + H(n)) elements w ∈ Bn such that R(w) =
R(w′) for some w′ ∈ An (i.e., elements that are both the top and bottom of some
w′).
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Proof. Let w ∈ Bn be a top-and-bottom element. By Theorem 4.1 and Propo-
sition 4.2, either w is one of the n! elements with `0(w) = 0, or else `0(w) = 1
and w avoids the pattern (1,−2). In the latter case, if −j is the unique negative
entry in the one-line form of w, it is necessary and sufficient that all entries in
positions to the left of −j are > j. If −j occurs in position i, this can be done in(
n−j
i−1

)
(i − 1)! (n− i)! ways, for a total of

n∑
i=1

n∑
j=1

(
n− j

i− 1

)
(i− 1)! (n− i)! =

n∑
i=1

(
n

i

)
(i − 1)! (n− i)! = n!H(n).

5. Full commutativity

Recall that w is fully commutative if R(w) consists of a single commutativity
class, or equivalently, if 1010, 212, 323, . . . do not occur as subwords of any i ∈ R(w).

Theorem 5.1. For w ∈ Bn, the following are equivalent.

(a) w is fully commutative.
(b) In the canonical reduced word [m1, n1] · · · [mr, nr] for w, we have either

(1) m1 > · · · > ms > ms+1 = · · · = mr = 0 for some s ≤ r, or
(2) m1 > · · · > mr−1 > −mr > 0.

(c) w avoids the pattern (−1,−2) and all patterns (a, b, c) such that |a| > b > c
or −b > |a| > c.

Proof. (a)⇒(b). Assume that [m1, n1] · · · [mr, nr] is the canonical reduced word
for some fully commutative w ∈ Bn. We must have n > n1 > · · · > nr ≥ 0 and
|mi| ≤ ni, since every canonical reduced word for Bn has this property.

For i > 0, the word [−1, i]0 is braid-equivalent to 1010[2, i], and for i > j > 0
the word [−1, i] j is braid-equivalent to [−1, j − 1]j(j + 1)j[j + 2, i]. Hence neither
word can occur as a subword of any i ∈ R(w). Since subwords of this type occur in
[mi, ni][mi+1, ni+1] whenever mi < 0, we must therefore have m1, . . . ,mr−1 ≥ 0.

If j > k ≥ i ≥ 0, then the word [i, j] k is equivalent to [i, k− 1]k(k+ 1)k[k+ 2, j]
and hence cannot occur as a subword of any i ∈ R(w) unless k = i = 0. Since
subwords of this type occur in [mi, ni][mi+1, ni+1] whenever |mi+1| ≥ |mi|, we must
therefore have |mi| > |mi+1| or mi = mi+1 = 0 for 1 ≤ i < r, and hence (b) follows.

(c)⇒(a). If w ∈ Bn is not fully commutative, then there must be some i ∈ R(w)
containing one or more of 1010, 212, 323, . . . as subwords. If 1010 occurs, then w
contains the pattern (−1,−2) (Lemma 2.1), contradicting (c). For the remaining
possibilities, it suffices to prove the following.

(i) If w has a reduced word that begins with i(i − 1)i for some i > 1, then w
contains one of the patterns forbidden by (c).

(ii) If `(sjw) > `(w) and w contains a pattern forbidden by (c), then so does sjw.

Given the hypothesis of (i), w has reduced words that begin with i − 1 and i;
i.e., `(si−1w) < `(w) and `(siw) < `(w). Thus in the one-line form (w1, . . . , wn) of
w, we have wi−1 > wi > wi+1, a pattern that is forbidden by (c).

For (ii), suppose that `(sjw) > `(w) and that (a, b, c) is a subsequence of w
such that |a| > b > c or −b > |a| > c. If j = 0, then sjw contains one of the
subsequences (±a, b, c), both of which are forbidden by (c). If j > 0, then sjw will
also contain the subsequence (a, b, c) unless a and b, or b and c, occur in positions
j and j + 1.
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If b and c occur in positions j and j+1, then `(sjw) > `(w) implies b < c. Hence
(a, b, c) must satisfy −b > |a| > c, and sjw contains the subsequence (a′, b′, c′) =
(a, c, b). However this yields |a′| > b′ > c′, a pattern forbidden by (c).

If a and b occur in positions j and j + 1, then `(sjw) > `(w) implies a < b.
Hence (a, b, c) must satisfy −a > b > c or −b > a > c, and sjw contains the
subsequence (a′, b′, c′) = (b, a, c). If −b > a > c, then |a′| ≥ −a′ > b′ > c′, and
hence |a′| > b′ > c′. If −a > b > c, then (using also the fact that a < b implies
−b′ > −a′) we must have −b′ > max(a′,−a′) ≥ a′ > c′, and hence −b′ > |a′| > c′.
In either case, (a′, b′, c′) fits a pattern forbidden by (c).

To prove (b)⇒(c), we use the following pair of lemmas.

Lemma 5.2. If the canonical reduced word [m1, n1] · · · [mr, nr] for some w ∈ Bn

satisfies (1), then in the one-line form of w we have the following.

(a) The entries n1 + 1, . . . , ns + 1 occur in positions m1, . . . ,ms, respectively.
(b) The negative entries are −(ns+1 + 1), . . . ,−(nr + 1).
(c) The subsequence formed by the entries not specified in (a) is increasing.

Proof. Proceed by induction on r. If r = 1, one can check that

(1, 2, . . . ,m1 − 1, n1 + 1,m1, . . . , n1, n1 + 2, . . . , n) (if m1 > 0),

(−(n1 + 1), 1, 2, . . . , n1, n1 + 2, . . . , n) (if m1 = 0),

is the one-line form of w, and it is clear that properties (a)–(c) hold. For r ≥ 2, let
(w′1, . . . , w

′
n) denote the one-line form of the element w′ ∈ Bn whose canonical re-

duced word is [m2, n2] · · · [mr, nr]. Every entry > n1 appears in its natural position
in w′.

If m1 = 0 then m2 = · · · = mr = 0. Hence by the induction hypothesis, the
negative entries of w′ are −(n2 +1), . . . ,−(nr+1) and we have w′1 < · · · < w′n. The
entry n1 +1 appears in its natural position in w′, so the effect of passing from w′ to
w is to delete n1 + 1 and insert −(n1 + 1) into the first position. Thus the one-line
form of w is increasing and the negative entries are −(n1 + 1), . . . ,−(nr + 1), in
agreement with (a)–(c).

If m1 > 0, then the one-line form of w is

(w′1, . . . , w
′
m1−1, n1 + 1, w′m1

, . . . , w′n1
, n1 + 2, . . . , n).(5.1)

Since m1 > m2 > · · · > ms > 0, it follows that w′ and w agree at positions
m2, . . . ,ms, which by the induction hypothesis are occupied by n2 + 1, . . . , ns + 1.
Also, we see that w and w′ have the same negative entries, and deletion of n1 + 1
from w and w′ yields the same sequence, in agreement with (a)–(c).

Lemma 5.3. If the canonical reduced word [m1, n1] · · · [mr, nr] for some w ∈ Bn

satisfies (2), then in the one-line form of w we have the following.

(a) The entries n1 +1, . . . , nr−1 +1 occur in positions m1, . . . ,mr−1, respectively.
(b) The entry −(nr+1) occurs in the first position > |mr| not in {m1, . . . ,mr−1}.
(c) The subsequence of entries not specified in (a) and (b) is positive and increas-

ing.

Proof. Again by induction on r. If r = 1 then the one-line form of w is

(1, 2, . . . , |m1|,−(n1 + 1), |m1|+ 1, . . . , n1, n1 + 2, . . . , n),

and it is clear that properties (a)–(c) hold.
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For r ≥ 2, let (w′1, . . . , w
′
n) denote the one-line form of the element w′ ∈ Bn

whose canonical reduced word is [m2, n2] · · · [mr, nr]. Every entry > n1 appears
in its natural position in w′, and the one-line form of w is given by (5.1). Since
m1 > · · · > mr−1 > 0, it follows that w′ and w agree at positions m2, . . . ,mr−1,
which by the induction hypothesis are occupied by n2 + 1, . . . , nr−1 + 1. Thus (a)
holds. For (b), let m be the position where −(nr+1) occurs in w′. By the induction
hypothesis, m is the least integer > |mr| not in {m2, . . . ,mr−1}, so in particular
m ≤ m1. On the other hand, in passing from w to w′, the position of the entry
−(nr + 1) will change only if m ≥ m1 (and hence m = m1), in which case it moves
to position m1 + 1. Either way, the new position is the least integer > |mr| not in
{m1, . . . ,mr−1}, proving (b). Finally, note that deletion of n1 + 1 from w and w′

yields the same sequence, so (c) holds as well.

Lemmas 5.2 and 5.3 each uniquely determine the one-line form of any member
of Bn whose canonical reduced word satisfies the stated hypotheses.

To complete the proof of Theorem 5.1, let w ∈ Bn be such that the canonical
reduced word fits either of the two specifications in (b).

If w is of the first type, then the negative entries of w appear in increasing order
(Lemma 5.2), so w avoids (−1,−2). Therefore consider an arbitrary 3-element sub-
sequence (a, b, c) taken from the one-line form of w. Parts (a) and (c) of Lemma 5.2
show that w can be partitioned into two increasing subsequences, so a > b > c
is impossible. If −a > b > c were to occur with a < 0, Lemma 5.2 shows that
−a = nj + 1 for some j > s, and since b > c, either b or c must be ni + 1 for some
i ≤ s. However in that case, we have i ≤ s < j and ni > nj , so −a < b or −a < c,
a contradiction.

If −b > |a| > c, then −b = nj + 1 for some j > s and a > 0. (If a < 0 then
the pattern (−1,−2) would appear.) Since a precedes b and a > b, we must have
a = ni + 1 for some i ≤ s, otherwise we would contradict Lemma 5.2(c). But then
i ≤ s < j, ni > nj and a > −b, a contradiction.

If w is of the second type, then `0(w) = 1. Hence w has one negative entry, and in
particular, avoids (−1,−2). So consider an arbitrary 3-element subsequence (a, b, c)
taken from the one-line form of w. By Lemma 5.3, w can be partitioned into three
increasing subsequences, two of which are (−(nr + 1)) and (nr−1 + 1, . . . , n1 + 1).
Thus a > b > c can occur only if −c = nr+1. However by Lemma 5.3(b), if−(nr+1)
occurs in position m, then the entries ni + 1 that appear prior to −(nr + 1) occur
in a contiguous block from |mr| + 1 to m − 1. Also by Lemma 5.3, the entries
in positions prior to this block are smaller and in increasing order. That is, the
subsequence of entries prior to −(nr + 1) is increasing, so a > b > c is impossible.

If −a > b > c were to occur, then −a = nr + 1, and neither b nor c can be of
the form ni + 1 for i < r since ni + 1 > −a. However b and c appear in decreasing
order, contradicting Lemma 5.3(c). Finally, if −b > |a| > c, then we would have
−b = nr + 1 and a > c > 0. Hence, a or c must be ni + 1 for some i < r. However
ni > nr, so a > −b or c > −b, a contradiction.

Corollary 5.4. Every fully commutative w ∈ Bn is either a top or bottom element.
In particular, every fully commutative element is A-reduced.

Proof. Suppose that w ∈ Bn is fully commutative. If the canonical reduced word
for w belongs to the first of the two types listed in Theorem 5.1(b), then w is a top
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element, by Theorem 4.1. The only other possibility is `0(w) = 1, in which case w
is a bottom element by Proposition 4.2.

Remark 5.5. For “most” pairs of Coxeter groups (W,W ′) such that W dominates
W ′, it is not true that the fully commutative members of W are W ′-reduced. For
example, using the most obvious labeling of the generators for the pair (F4, A4), it
is not hard to show that 4323412321 is a reduced word for some fully commutative
w ∈ F4. However, it is not A4-reduced.

If we specialize to either the top or bottom classes of fully commutative elements,
the forbidden patterns of Theorem 5.1 can be simplified. For example, the patterns
(a, b, c) such that |a| > b > c are

(±3, 2,±1), (±3,±1,−2), (±2,±1,−3), (±1,−2,−3).(5.2)

However w is a top element if and only if w avoids (±1,−2) (Theorem 4.1), and the
only patterns in this list that manage to avoid (±1,−2) belong to the first group.
Note also that (a, b) fits the pattern (±1,−2) whenever −b > |a| > c. Summarizing,
we have

Corollary 5.6. For w ∈ Bn, the following are equivalent.

(a) w is a fully commutative top element.
(b) The canonical reduced word [m1, n1] · · · [mr, nr] for w satisfies

m1 > · · · > ms > ms+1 = · · · = mr = 0 for some s ≤ r.
(c) w avoids the patterns (±1,−2) and (±3, 2,±1).

Similarly, w is a bottom element if and only if `0(w) ≤ 1 (Proposition 4.2), so the
forbidden patterns for fully commutative bottom elements are (−1,−2), (−2,−1),
and the patterns (a, b, c) of Theorem 5.1(c) with at most one negative member.
Thus we have

Corollary 5.7. For w ∈ Bn, the following are equivalent.

(a) w is a fully commutative bottom element.
(b) The canonical reduced word [m1, n1] · · · [mr, nr] for w satisfies

m1 > · · · > mr−1 > |mr|.
(c) w avoids the patterns (−1,−2), (−2,−1), (−3, 2, 1), (2,−3, 1), and all pat-

terns (a, b, c) such that a > b > c.

Aside from a change of coordinates, the (a)⇔(c) parts of Corollaries 5.6 and 5.7
are implicit in the remarks of C. K. Fan in [F, §11].

If we restrict Theorem 5.1 to the subgroup of type An−1 generated by s1, . . . ,
sn−1, we obtain the following. (The (a)⇔(c) part of this result is due to Billey-
Jockusch-Stanley. See Theorem 2.1 of [BJS].)

Corollary 5.8. For w ∈ An−1, the following are equivalent.

(a) w is fully commutative.
(b) The canonical reduced word [m1, n1] · · · [mr, nr] for w satisfies m1 > · · · > mr.
(c) w avoids the pattern (3, 2, 1).

Let C(n) = 1
n+1

(
2n
n

)
denote the nth Catalan number. Results equivalent to

parts (b) and (c) of the following have also been obtained by Fan [private commu-
nication] (but stated only as a conjecture in [F]).

Proposition 5.9. In Bn, there are
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(a) (n + 2)C(n)− 1 fully commutative elements.

(b)
(
2n
n

)
fully commutative top elements.

(c) C(n + 1) + C(n) − 1 fully commutative bottom elements.
(d) C(n + 1) fully commutative top-and-bottom elements.

Proof. By Corollary 5.6, the fully commutative top elements are encoded by pairs
of integer sequences n1 > · · · > nr ≥ 0 and m1 > · · · > ms > 0 such that
r ≥ s ≥ 0, n > n1, and ni > mi. If nr = 0 then r > s, so we can create a new valid
“code” by deleting nr from the first sequence. Conversely, if nr > 0, then adding
nr+1 = 0 to the first sequence also creates a valid code. Hence, the number of fully
commutative top elements is twice the number of codes such that nr > 0. However,
the codes with this property are in one-to-one correspondence with column-strict
plane partitions having at most two columns and entries taken from {1, . . . , n− 1}.

Via the rule for the Schur function expansion of products of elementary sym-

metric functions (e.g., [M, I.(5.17)]), it follows that
(
n−1
k

)2
(resp.,

(
n−1
k

)(
n−1
k+1

)
) is

the number of plane partitions of the desired type with a total of 2k (resp., 2k+ 1)
entries. Hence, the total number of these plane partitions is

∑
k≥0

(
n− 1

k

)2

+

(
n− 1

k

)(
n− 1

k + 1

)
=
∑
k≥0

(
n− 1

k

)(
n

k + 1

)
=

(
2n− 1

n− 1

)
=

1

2

(
2n

n

)
,

and thus (b) follows.
By Corollary 5.8, the fully commutative members of An−1 are encoded by pairs

of integer sequences n > n1 > · · · > nr > 0 and m1 > · · · > mr > 0 such that r ≥ 0
and mi < ni. The fact that there are exactly C(n) such codes can be shown in
several ways: e.g., by using Schur functions to count the appropriate set of plane
partitions, or by recognizing that (mr, nr), . . . , (m1, n1) can be viewed as the north-
to-east turning points of an increasing lattice path from (0, 0) to (n, n) confined to
the region {(i, j) : i ≤ j} (a well-known interpretation of C(n)), or by appealing
to the fact C(n) is known to be the number of (3, 2, 1)-avoiding permutations of n
objects (see the discussion in [BJS, §2]).

By Corollary 5.7, the codes of this type such that r > 0 are in one-to-one
correspondence with the fully commutative bottom elements of Bn that are not
also top elements. Since there is just one code with r = 0, it follows that there are
C(n) − 1 such elements. Hence there are

(
2n
n

)
+ C(n) − 1 = (n + 2)C(n) − 1 fully

commutative elements, in agreement with (a).
The fully commutative bottom elements that we have not yet accounted for are

those that are also top elements. However any such w ∈ Bn has the property that
R(w) = R(w′) for some fully commutative w′ ∈ An, and conversely. Hence there
are C(n + 1) such elements (this can also be seen by examining the codes of the
corresponding canonical reduced words), yielding (c) and (d).

6. Heaps and heap expansions

6.1 Heaps of fully commutative elements. Suppose that [m1, n1] · · · [mr, nr]
is the canonical reduced word for some fully commutative top element w ∈ Bn.
By Corollary 5.6, we know that n > n1 > · · · > nr ≥ 0, m1 > · · · > ms >
ms+1 = · · · = mr = 0 (for some s ≤ r) and mi ≤ ni for 1 ≤ i ≤ r. Under these
circumstances, we will say that w is of shape λ/µ, where λ := (n1 + 1, . . . , nr + 1)
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and µ := (m1, . . . ,ms). This terminology reflects the fact that λ and µ are a pair
of strict partitions with the (shifted) diagram of µ being contained in the (shifted)
diagram of λ; thus λ/µ may (and shall) be regarded as a shifted skew shape. Every
shifted skew shape without empty rows is the shape of some fully commutative top
element of Bn, provided that n is sufficiently large.

More explicitly, given a strict partition ν1 > · · · > νl > 0, the shifted diagram of
ν is defined to be

D′
ν := {(i, j) ∈ Z2 : 1 ≤ i ≤ l, i ≤ j < νi + i},

partially ordered so that (i, j) ≤ (i′, j′) for i ≤ i′ and j ≤ j′. Whenever D′
µ ⊆ D′

λ,
we write D′

λ/µ as an abbreviation for the shifted skew diagram D′
λ−D′

µ, a subposet

of D′
λ. We prefer to regard each shifted skew diagram as a labeled poset (in the

sense of [Ste1]), with the labeling of the cell (i, j) ∈ D′
λ/µ defined to be j − i.

For example, using matrix-style coordinates (so that poset gravity points in the
northwest direction), the labeling of the cells of λ/µ = 7542/42 is

4 5 6
2 3 4

0 1 2 3
0 1.

If w is a fully commutative top element of shape λ/µ, then the canonical reduced
word for w is obtained by reading the labels of the diagram of λ/µ in (English)
reading order (i.e., by rows, left-to-right, starting with the highest row).

Recall from Section 1.2 that if w is fully commutative, then R(w) consists of the
set L(P ) of (labeled) linear extensions of a labeled poset P , namely, the heap of any
i ∈ R(w). Since all heaps belonging to a given commutativity class are isomorphic
as labeled posets, we may thus refer to the heap of w without ambiguity.

Proposition 6.1. If w ∈ Bn is a fully commutative top element of shape λ/µ, then
the heap of w is isomorphic to D′

λ/µ (as a labeled poset).

Proof. Let i = i1· · · il denote the canonical reduced word for w and P the cor-
responding heap ordering of {1, . . . , l}, as in Section 1.2. For 1 ≤ k ≤ l, define
ck ∈ D = D′

λ/µ to be the kth cell of D in reading order. We claim that the map

k 7→ ck is a labeled poset isomorphism P → D. Since the canonical reduced word
is obtained by reading the labels of D in (English) order, it is clear that the map is
bijective and label-preserving. Now if r < s is a covering relation of the heap, then
i = ir and j = is are indices of noncommuting generators of Bn; i.e., j = i ± 1.
However, the cells of D with label i ± 1 that appear later (in reading order) than
the cell cr are all greater than cr in the partial order of D. Conversely, a cell c ∈ D
with label i is covered in the partial order only by cells with labels i ± 1, so these
covering relations correspond to relations of the heap.

A (shifted) standard tableau of shape λ/µ is by definition an order-preserving bi-
jection T : D′

λ/µ → {1, . . . , l}. The number of such tableaux is denoted gλ/µ. Since

there is an obvious equivalence between standard tableaux and linear extensions of
the underlying diagram poset, we obtain the following.

Corollary 6.2. If w ∈ Bn is a fully commutative top element of shape λ/µ, then
we have #R(w) = gλ/µ.
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Remark 6.3. (a) If we specialize Proposition 6.1 and its corollary to the parabolic
subgroup An−1, we obtain Proposition 2.1 and Corollary 2.1 of [BJS].

(b) In case µ = ∅, there is a well-known hook length formula for gλ/µ—see [M,
p. 135]. The fully commutative top elements whose shapes have this property are
distinguished among all members of Bn by the fact that their one-line forms are
increasing (Lemma 5.2). Furthermore, for such elements the negative entries of the
one-line form are (in absolute value) the parts of λ.

(c) The special case µ = ∅ of Corollary 6.2 is closely related to Theorem 4.5
of [E]. In this paper, Edelman identifies a set of elements wλ ∈ An indexed by
strict partitions λ, and proves that the number of i ∈ R(w) that satisfy the lattice
property is gλ. Although the definition of wλ is complicated, it can be shown that
x = top(w−1

λ ) ∈ Bn is the fully commutative top element of shape λ/∅ and R(x−1)
is the set of reduced words for wλ satisfying the lattice property.

The heaps of the fully commutative members of Bn that are not top elements
are more complicated to describe. By Corollaries 5.6 and 5.7, the canonical reduced
words for such elements are of the form

i = [m1, n1] · · · [mr−1, nr−1][−mr, nr],(6.1)

where m1 > · · · > mr > 0. If we delete the subword [−mr,mr−1] from i, we obtain
a canonical reduced word j = [m1, n1] · · · [mr, nr] for some fully commutative top
element. The heap of this top element is by Proposition 6.1 a shifted skew diagram
of some shape, say λ/µ. Furthermore, this diagram has the property that the
smallest label is m = mr, and there is exactly one cell with this property. In
fact, in any shifted skew diagram with no cells labeled 0 (i.e., no cells on the main
diagonal) the smallest label appears only once.

Since i can be obtained from j by replacing the unique occurrence of the smallest
term m with the word m · · · 101 · · ·m, it follows that the heap of i can be obtained
from the heap of j by replacing the cell labeled m with a chain of 2m+ 1 elements
labeled m, . . . , 1, 0, 1, . . . ,m.

More formally, given a labeled poset P with a unique vertex x having label
m > 0, define Im(P ) to be the labeled poset obtained from P by replacing x with
the chain

x−m < · · · < x−1 < x0 < x1 < · · · < xm.

The label of xi is defined to be | i |, and for each relation x < y (resp., x > y) of P ,
we now have xi < y (resp., xi > y) for all | i | ≤ m.

In summary, we have the following.

Proposition 6.4. If w ∈ Bn is fully commutative, with a canonical reduced word
of the form (6.1), then the heap of w is isomorphic to Im(D′

λ/µ) (as a labeled poset),

where λ = (n1 + 1, . . . , nr + 1), µ = (m1, . . . ,mr), and m = mr.

For example, consider the fully commutative w ∈ B8 whose canonical reduced
word is [5, 7][3, 5][−2, 4]. The shape of [5, 7][3, 5][2, 4] is λ/µ = 865/532 (see Fig-
ure 1) and the heap of w is obtained by replacing the cell of λ/µ labeled 2 with a
5-element chain. See Figure 2. As this example plainly shows, the heap of a fully
commutative member of Bn need not be isomorphic to a shifted skew diagram, or
even ranked.
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Figure 1

Figure 2

Figure 3

On the other hand, it is possible for the heaps of words of the form (6.1) to be
isomorphic to shifted skew diagrams as unlabeled posets. For example, it is clear
from Figure 3 that, after deleting the labels, the heap of [4, 5][3, 4][−1, 2] is isomor-
phic to D′

764/54. Hence the number of reduced words for the corresponding element

of Bn is the number of standard shifted tableaux of shape 764/54. In general, it
is not hard to show that the (unlabeled) heap of any word of the form (6.1) is
isomorphic to an (unlabeled) shifted skew diagram if and only if mr + 1 occurs at
most once, or equivalently, nr = mr or mr−1 > mr + 1.

6.2 Heap expansions. There is a close connection between the symmetric func-
tionsGB(w) and the theory of enriched P -partitions developed in [Ste1]. To explain,
let P be a partial ordering of a finite set X , and let γ : X → {0, 1, 2, . . .} be a la-
beling of its elements. An enriched P -partition is a mapping f : P → {±1,±2, . . .}
such that the following properties hold for all x < y in P : (1) f(x) 4 f(y) (where 4
denotes the total ordering of Section 1.6), (2) f(x) = f(y) > 0 implies γ(x) < γ(y),
and (3) f(x) = f(y) < 0 implies γ(x) > γ(y).

The primary object of study in [Ste1] is the generating function

∆(P )(z1, z2, . . . ) =
∑
f

∏
x∈X

z|f(x)|,

summed over all enriched P -partitions f .
It should be noted that, in [Ste1], the labeling map of the poset P is required

to be injective; however the labeled posets we have in mind here (namely, heaps
of reduced words) tend to have multiple uses of the same label. Nevertheless, it is
easy to check that the theory of enriched P -partitions remains valid for non-injective
labelings, provided that each element is comparable to, but does not cover, every
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other element of the same label. This is equivalent to requiring every labeled linear
extensions of P to be twin-free. (Hence the theory does apply to heaps of reduced
words.)

Among the motivating examples of enriched P -partitions are the tableaux associ-
ated with Schur Q-functions. Indeed the Schur Q-function indexed by the (shifted)
skew shape λ/µ is the generating function for enriched D′

λ/µ-partitions. That is,

Qλ/µ = ∆(D′
λ/µ).

See [Ste1, §2.4] for more details.

Proposition 6.5. If P1, . . . , Pk are the heaps of the commutativity classes of R(w)
for some w ∈ Bn, then we have

GB(w) = ∆(P1) + · · ·+ ∆(Pk).

Proof. If P is the heap of any reduced word i, then by the fundamental lemma of
enriched P -partitions (Lemma 2.1 of [Ste1]), we have

∆(P ) =
∑

j∈L(P )

KΛ(j).(6.2)

However L(P ) is the commutativity class of i (Proposition 1.1), so the result follows
from (3.2).

Results equivalent to (in some instances special cases of) the following have
been independently obtained by others. For example, Lam (Corollary 3.5 of [L])
and Billey-Haiman (Proposition 3.14 of [BH]) both prove the case µ = ∅, and
Fomin-Kirillov [FK1, §8] state the result without proof.

Corollary 6.6. If w ∈ Bn is a fully commutative top element of shape λ/µ, then
we have GB(w) = ∆(D′

λ/µ) = Qλ/µ.

An interesting open problem (see [Ste1, §5]) is the classification of labeled posets
P such that ∆(P ) is a symmetric function. An obvious conjecture to propose is
that shifted skew diagrams are the only ∆-symmetric posets. However, even after
accounting for the “correct” notion of isomorphism for labeled posets (namely, the
weak isomorphism of [Ste1, §2.3]), the fully commutative members of Bn (and as
we shall see, also Dn) provide examples of ∆-symmetric posets that are not of this
type.

To be explicit, first note that by Proposition 6.5 we have the following.

Corollary 6.7. If P is the heap of any fully commutative w ∈ Bn, then we have
∆(P ) = GB(w). In particular, ∆(P ) is symmetric.

Hence by Proposition 6.4, we obtain a ∆-symmetric poset by taking any skew
diagram whose smallest label is m > 0, and replacing the (necessarily unique) cell
with this label by a (2m + 1)-element chain. If the resulting labeled poset P has
more than one vertex labeled m+1 (as in, for example, the heap of Figure 2), then
it is not isomorphic, even in the weak sense, to any shifted skew diagram.

Part II. Dn

Let s1̄, s1, . . . , sn−1 denote generators for the Coxeter group Dn, arranging the
indices so that m(1̄, 2) = m(1, 2) = 3 and m(i − 1, i) = 3 for 2 < i < n. For
any word i ∈ R(Dn), we let `1(i) (resp., `1̄(i)) denote the number of occurrences
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of 1 (resp., 1̄), and define `±1(i) = `1(i) + `1̄(i). In some circumstances, it will
be necessary to have a total ordering of the indices; for these purposes, we choose
1̄ < 1 < 2 < · · · < n− 1.

Interchanging s1 and s1̄ extends to an automorphism of Dn, denoted w 7→ w̄. We
adopt the convention that An−1 refers specifically to the parabolic subgroup of Dn

generated by s1, . . . , sn−1; thus to be consistent, Ān−1 must denote the subgroup
generated by s1̄, s2, . . . , sn−1.

The shortest left coset representatives for Dn/Dn−1 consist of

{1, sn−1, sn−2sn−1, . . . , s1s2 · · · sn−1, s1̄s2 · · · sn−1,

s1s1̄s2 · · · sn−1, s2s1s1̄s2 · · · sn−1, . . . , sn−1 · · · s2s1s1̄s2 · · · sn−1}.
These coset representatives each have either one or two reduced expressions, ac-
cording to whether the factor s1s1̄ occurs. By consistently choosing representative
reduced words in which the subword 1̄1 does not appear, we thus obtain a canonical
reduced word for every w ∈ Dn, following the conventions of Section 1.3.

For integers j ≥ i ≥ 2, we define 〈i, j] and 〈−i, j] to be the words i · (i + 1) · · · j
and i · (i− 1) · · · 211̄2 · · · j (respectively), and for j ≥ 1 we define

〈1, j] = 12 · · · j, 〈−1, j] = 1̄2 · · · j, 〈0, j] = 11̄2 · · · j.
In particular, 〈−1, 1] = 1̄ and 〈0, 1] = 11̄. In these terms, the canonical reduced
words for the members of Dn are the expressions

〈m1, n1] · 〈m2, n2] · · · 〈mr, nr],

where n > n1 > · · · > nr ≥ 1 and |mi| ≤ ni.
With ε1, . . . , εn as the standard orthonormal basis of Rn, we take εi+1 − εi

(resp., ε1 + ε2) as the simple root corresponding to si for i ≥ 1 (resp., i = 1̄). In
these terms, the vector δ = ε1+2ε2+ · · ·+nεn = (1, 2, . . . , n) belongs to the interior
of the fundamental chamber defined by this choice of simple roots, and its orbit
consists of all signed permutations of (1, 2, . . . , n) with an even number of negative
entries. These constitute the one-line forms of the members of Dn.

7. The A-stable members of Dn

The map s1̄ 7→ s1, si 7→ si (i ≥ 1) extends to a group homomorphism Dn →
An−1, denoted w 7→ |w|. In terms of one-line forms, the effect of this homomorphism
is the same as taking the absolute values of the coordinates; i.e., (w1, . . . , wn) 7→
(|w1|, . . . , |wn|).

If the length of w ∈ Dn is the same as the length of |w| ∈ An−1, we will say that
w is A-stable. As we shall see, the A-stable members of Dn are closely related to
the A-reduced members of Bn−1.

Theorem 7.1. For w ∈ Dn, the following are equivalent.

(a) w is A-stable.
(b) 11̄ is not a subword of any i ∈ R(w).
(c) 11̄ does not occur in the canonical reduced word for w.
(d) w avoids the patterns (±1,−2).

Proof. Since |s1s1̄| = 1, it is clear that (a)⇒(b). Also, (b)⇒(c) is immediate.
(c)⇒(d). Proceed by induction on n. If n = 2, the possibilities for w are 1, s1,

and s1̄, for which the corresponding one-line forms are (1, 2), (2, 1), and (−2,−1).
Otherwise, if n > 2, consider the canonical factorization xn· · ·x2 of w. By the
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induction hypothesis, w′ = xn−1 · · ·x2 ∈ Dn−1 has a one-line form (w′1, . . . , w
′
n−1)

that avoids the patterns (±1,−2). In passing from w′ to w = xnw
′, the entry ±n

is inserted into some position of the one-line form depending on xn. Since n cannot
participate in an occurrence of either of the patterns (±1,−2), suppose that −n
is the inserted entry. This can happen only if 1̄ occurs in the canonical reduced
word for xn. However, the only coset representative for Dn/Dn−1 whose canonical
reduced word contains 1̄ but not 11̄ is xn = s1̄s2 · · · sn−1. In that case, the one-
line form of w is (−n,−w′1, w′2, . . . , w′n−1) and there is no way for −n (or −w′1) to
participate in an occurrence of the patterns (±1,−2).

(d)⇒(a). If w contains one of the patterns (±1,−2) and `(sjw) > `(w), then
we claim that sjw also contains one of these patterns. To see this, suppose that
(a, b) is a subsequence of the one-line form of w that fits (±1,−2); i.e., −b > |a|.
If j ≥ 1 then (a, b) will also be a subsequence of sjw unless sj interchanges a and
b. However since `(sjw) > `(w), this would require a < b, contrary to the fact that
−b > |a|. In the remaining case, namely j = 1̄, we cannot have a and b in the first
two positions of w, since otherwise `(sjw) > `(w) would require that a + b > 0.
Hence either (a, b) or (−a, b) occurs as a subsequence of sjw, both of which fit
(±1,−2).

Given the claim, it suffices to show that if w is A-stable but sjw is not, then
sjw contains one of the patterns (±1,−2). For this, note first that `(sjw) > `(w)
(otherwise sjw would be A-stable) and `(|sjw|) < `(sjw) = `(w) + 1 = `(|w|) + 1,
so `(|sjw|) < `(|w|). If j ≥ 1, let a and b denote the entries of the one-line form
of w in positions j and j + 1. Since `(sjw) > `(w), we have a < b, and since
`(|sjw|) < `(|w|), we have |a| > |b|. Hence −a > |b| and the subsequence (b, a) of
sjw fits one of the patterns (±1,−2). Otherwise, if j = 1̄, let a and b denote the
entries in positions 1 and 2 of the one-line form of w. We have a + b > 0 since
`(sjw) > `(w), and |a| > |b| since `(|sjw|) < `(|w|). Therefore a > |b| and the
subsequence (−b,−a) of sjw fits one of the patterns (±1,−2).

For any even J ⊆ {1, . . . , n}, let t(J) ∈ Dn denote the member of Dn whose
action on Rn is to change the sign of the coordinates indexed by J . The elements
t(J) form the kernel of the homomorphism w 7→ |w|.
Corollary 7.2. If w ∈ An−1, then w′ ∈ Dn is A-stable and |w′| = w if and only if
w′ = t(J)w for some even J ⊆ L(w).

Proof. By the criterion of Theorem 7.1(d), w′ ∈ Dn is A-stable if and only if the
positions where negative entries occur are left-minima of |w′|.
Corollary 7.3. There are 1

2 (n + 1)! A-stable members of Dn.

Proof. By Corollary 7.2, there are 2#L(w)−1 A-stable members of Dn correspond-
ing to each w ∈ An−1. Apply Lemma 2.6. (Alternatively, there are n + 1 coset
representatives of Dn/Dn−1 whose canonical reduced words do not contain 11̄, so
the result follows by induction and the criterion of Theorem 7.1(c).)

Define a map σ : {1̄, 1, . . . , n− 1} → {0, 1, . . . , n− 2} by setting σ(i) = i− 1 for
1 < i < n and σ(1) = σ(1̄) = 0. Extending σ to the corresponding free monoid,
we will write σ(i) for σ(i1) · · ·σ(il) whenever i = i1· · · il. Note that if w ∈ Dn

is A-stable, then any i ∈ R(w) remains reduced under the identification 1 = 1̄.
Therefore σ(i), regarded as a word formed out of labels for the generators of Bn−1,
is A-reduced. In particular, σ(i) ∈ R(Bn−1).
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If j ∈ R(Bn−1) is obtained from σ(i) by the application of a single Bn−1-braid
relation, then j = σ(i′) for some word i′ that is Dn-braid equivalent to i, except for
cases involving the relation 1010 ≈ 0101. In such cases, i must contain one of the
subwords 2121̄, 21̄21, 121̄2, or 1̄212. However, none of these subwords can occur if
w is A-stable. (For example, if 2121̄ occurs, then the relation 2121̄ ≈ 1211̄ shows
that 11̄ would appear in some reduced word for w.) Therefore if w is A-stable, then

σR(w) =
⋃

x∈X(w)

RB(x)(7.1)

for some X(w) ⊆ Bn−1. (We use the notation RB(x) here, rather than R(x), to
emphasize that x ∈ Bn−1.) Although it is not clear a priori, we will see that σ is
injective on R(w).

In order to describe the set X(w) appearing in (7.1), let us define

N(w) = {1} ∪ {j : wj < 0 or |wj | = 1},
where (w1, . . . , wn) denotes the one-line form of some w ∈ Dn. Also, for any set of
positions J = {j1 < · · · < jm}, we define

ξ+(w, J) = #{1 ≤ k < m : ξ1· · · ξk = +1},
ξ−(w, J) = #{1 ≤ k < m : ξ1· · · ξk = −1},(7.2)

where ξk denotes the sign of the jkth entry of w.
Recall from Section 2 that b : Bn−1 → An−1 denotes the map in which 0 is

inserted into the one-line form of x ∈ Bn−1 from the right, and then successive
negative entries are bumped. In the present context, the one-line forms for w ∈
An−1 are permutations of (1, . . . , n). Thus to produce the correct one-line form of
b(x), we must now supplement the procedure of Section 2 by adding (1, . . . , 1) to
the result. For example, if x ∈ B5 has one-line form (3,−4, 5,−2, 1), then b(x) ∈ A5

(now) has one-line form (5, 4, 3, 6, 1, 2).
Let us also recall from Section 2 the description of the b-preimages of w ∈ An−1.

Taking into account the shift of entries, if k is the position where 1 occurs in w,
the preimages of w are the elements wJ ∈ Bn−1 obtained by unbumping the entries
of w at the positions indexed by J , for all J such that {1, k} ⊆ J ⊆ {1, . . . , k}.
Theorem 7.4. If w ∈ Dn is A-stable, then we have the following.

(a) The restriction of σ to R(w) is injective.

(b) σR(w) =
⋃

N(w)⊆K⊆L(|w|)
RB(|w|K).

(c) If N(w) ⊆ K ⊆ L(|w|), then for every i ∈ R(w) such that σ(i) ∈ RB(|w|K),
we have `1(i) = ξ+(w,K) and `1̄(i) = ξ−(w,K).

For example, if w = (6, 7,−4, 2, 3,−1, 5) ∈ D7 then w is A-stable, N(w) =
{1, 3, 6}, L(|w|) = {1, 3, 4, 6}, and there are two elements |w|K ∈ B6 that appear in
the decomposition of part (b), namely, (6,−5, 1, 2,−3, 4) and (6,−5,−3, 2,−1, 4).

Corollary 7.5. If w ∈ Dn is A-stable, then #R(w) =
∑

N(w)⊆K⊆L(|w|)
#RB(|w|K).

For example, if w has one-line form (−n, . . . ,−2,±1) (the sign of the last en-
try being determined by parity considerations), then w is A-stable and N(w) =
L(|w|) = {1, . . . , n}. Hence there is exactly one term in the expansion of
Corollary 7.5, corresponding to the element x ∈ Bn−1 whose one-line form is
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(−(n− 1), . . . ,−1). As noted in Section 3, the number of reduced words for x (and
therefore also w) is the number of shifted standard tableaux of shape (n−1, . . . , 1).

If x ∈ Bn−1 has one-line form (x1, . . . , xn−1), set M(x) := {1}∪{j+1 : xj < 0}.
Our proof of Theorem 7.4 relies on the following.

Lemma 7.6. For x ∈ Bn−1 and w ∈ Dn, the following are equivalent.

(a) w is A-stable and R(x) ⊆ σR(w).
(b) x is A-reduced and w = t(J)b(x) for some even J ⊆M(x).
(c) x = |w|K for some K such that N(w) ⊆ K ⊆ L(|w|).

Furthermore, if w and x are related as in (c), then for some i ∈ R(w) such that
σ(i) ∈ R(x), we have `1(i) = ξ+(w,K) and `1̄(i) = ξ−(w,K).

Proof. (b)⇒(c). If w = t(J)b(x) for some even J ⊆ M(x), then |w| = b(x). By
Theorem 2.4, it follows that if x is A-reduced, then we must have x = |w|K for
some K satisfying {1, k} ⊆ K ⊆ L(|w|), where k is the position where 1 occurs
in |w|. Thus to satisfy (c), it remains only to check that N(w) ⊆ K. Since J is
the set of indices where negative entries occur in w, it suffices to show that J ⊆ K.
However J ⊆M(x), so j ∈ J implies j = 1 or xj−1 < 0. In either case, j indexes a
position that must be unbumped in order to obtain x from |w|; i.e., j ∈ K.

(c)⇒(a). Suppose that x = |w|K for some K such that N(w) ⊆ K ⊆ L(|w|).
Under these circumstances, we must have K = M(x) and |w| = b(x). We prove by
induction on `(x) that there exists some i ∈ R(w) such that σ(i) ∈ R(x), `1(i) =
ξ+(w,K), and `1̄(i) = ξ−(w,K). For the base of the induction, suppose `0(x) = 0.
In that case, x has no negative entries, so K = M(x) = {1} and 1 is the first entry
in the one-line form of |w| = b(x). Hence w belongs to the subgroup generated by
s2, . . . , sn−1 and R(x) = σR(w). We also have `1(i) = `1̄(i) = ξ±(w,K) = 0 for
every i ∈ R(w).

For the remainder of the proof, let (w1, . . . , wn) and (x1, . . . , xn−1) denote the
respective one-line forms of w and x. Also, to distinguish the generators of Dn from
those Bn−1, we use s∗0, . . . , s

∗
n−2 to denote the latter.

In the case `0(x) > 0, x has at least one negative entry; assume that the leftmost
one is xj = −a. Let −b ≤ 0 be the entry that bumps −a when 0 is inserted from
the right. In |w| = b(x), we therefore have |w1| = a + 1 and |wj+1| = b + 1. Since
j + 1 ∈M(x) = K ⊆ L(|w|), b+ 1 must be a left-minimum of |w|.
Case 1: j ≥ 2. Since N(w) ⊆ K and j + 1 is the smallest member of M(x) = K
greater than 1, we have wj > 0. Therefore wj > wj+1 and `(sjw) < `(w), since
|wj+1| = b+1 is a left-minimum of |w|. We also have xj−1 > xj and `(s∗j−1x) < `(x),
since every entry of x prior to j is positive. Using sjw and s∗j−1x in place of w and
x, the hypotheses of (c) are satisfied (the only effects on the values of N(w), K, and
L(|w|) are that the occurrences of j + 1 are replaced with j), so by the induction
hypothesis we can find some i′ ∈ R(sjw) such that σ(i′) ∈ R(s∗j−1x), with the

values of `1(i
′), `1̄(i′) as desired. By inserting j at the beginning of i′, we obtain

a word i ∈ R(w) such that σ(i) ∈ R(x). For this word, we have `1(i) = ξ+(w,K)
and `1̄(i) = ξ−(w,K), since the values of `1(·), `1̄(·) and ξ±(·) do not change.

Case 2: j = 1. In this case, (a+ 1, b+ 1) are the first two entries of |w|, and a > b
since b+ 1 is a left-minimum. Hence `(w′) < `(w), where w′ = s1w (if w1 = a+ 1)
or w′ = s1̄w (if w1 = −(a+ 1)). We also have `(s∗0x) < `(x), since x1 = −a < 0. If
we replace w with w′ and x with s∗0x, the hypotheses of (c) are still satisfied—the
effects on N(w), K, and L(|w|) are such that j + 1 = 2 is deleted from K, L(|w|),
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and (if it occurs there) N(w). Hence by the induction hypothesis we can find some
i′ ∈ R(w′) such that σ(i′) ∈ R(s∗0x), `1(i

′) = ξ+(w′, K ′), and `1̄(i
′) = ξ−(w′, K ′),

where K ′ = K − {2}. By inserting 1 or 1̄ at the beginning of i′ according to
the sign of w1, we thus obtain a reduced word i ∈ R(w) such that σ(i) ∈ R(x).
Furthermore, if ξ1, . . . , ξm (resp., ξ′1, . . . , ξ′m−1) denote the signs used to compute
ξ±(w,K) (resp., ξ±(w′, K ′)) in (7.2), then ξ1 is the sign of w1, and

(ξ2, . . . , ξm) = (ξ1ξ
′
1, ξ

′
2, . . . , ξ

′
m−1).

It follows that ξ1 · · · ξk+1 = ξ′1 · · · ξ′k for k ≥ 1, so we have ξ+(w,K)−ξ+(w′, K ′) = 1
and ξ−(w,K) − ξ−(w′, K ′) = 0 or vice-versa, according to whether the first term
of i is 1 or 1̄. Hence `1(i) = ξ+(w,K) and `1̄(i) = ξ−(w,K), so the induction is
complete.

Since one of the hypotheses of (c) is N(w) ⊆ L(|w|), it follows that w is A-stable,
by Corollary 7.2. Having already shown R(x)∩ σR(w) is nonempty, it now follows
that R(x) ⊆ σR(w), by (7.1).

(a)⇒(b). Given that w is A-stable, every x ∈ Bn−1 such that R(x) ⊆ σR(w) is
A-reduced. Thus the implication (a)⇒(b) is trivial if x is not A-reduced. Otherwise,
there are exactly 2#M(x)−1 = 2`0(x) distinct elements w ∈ Dn that satisfy (b).
Having proved (b)⇒(c)⇒(a), it follows that each of these elements also satisfy (a).
On the other hand, for any j ∈ R(x), there are only 2`0(x) possible words i such
that σ(i) = j. Since we have already identified 2`0(x) distinct members of Dn that
satisfy (a), this can only be reconciled if these are the only members of Dn that
satisfy (a).

Proof of Theorem 7.4. For (a), suppose that σ(i) = σ(i′) = j for some pair i, i′ ∈
R(w). It follows that j ∈ R(x) for some A-reduced x ∈ Bn−1. However, by the
equivalence of parts (a) and (b) of Lemma 7.6, there are 2`0(x) distinct A-stable
w′ ∈ Dn such that j ∈ σR(w′). Since there are only 2`0(x) words i′′ such that
σ(i′′) = j, it follows that they must be reduced words for distinct members of Dn.
Hence i = i′.

Part (b) is a corollary of (7.1) and the equivalence of parts (a) and (c) of
Lemma 7.6.

For (c), we already know by Lemma 7.6 that there exists at least one i ∈ R(w)
such that σ(i) ∈ R(|w|K) for which `1(i) = ξ+(w,K) and `1̄(i) = ξ−(w,K). Given
another i′ ∈ R(w) such that σ(i′) ∈ R(x), σ(i′) can be transformed into σ(i) by
means of a series of Bn−1-braid relations. Furthermore, the relation 1010 ≈ 0101
can never arise, since otherwise w would not be A-stable. Hence the only relations
involved are σ-images of Dn-braid relations that preserve the number of occurrences
of both 1 and 1̄. It follows that there must exist i′′ ∈ R(w) such that `1(i

′) = `1(i
′′),

`1̄(i
′) = `1̄(i

′′), and σ(i′′) = σ(i). However σ is injective on R(w), so i = i′′.

Remark 7.7. (a) If w ∈ Dn is A-stable, Theorem 7.4 implies that the maximum
value of `±1(i) for i ∈ R(w) is #L(|w|)− 1, and the set of reduced words with this
property is in one-to-one correspondence (via σ) with the set of reduced words for
some x ∈ Bn−1 (namely, x = top(|w|)).

(b) Similarly, the minimum value of `±1(i) for i ∈ R(w) is #N(w) − 1, and the
set of reduced words with this property is in one-to-one correspondence (via σ)
with the set of reduced words for some x ∈ Bn−1. For a fixed choice of |w|, we
can select an A-stable preimage w so that N(w) takes on any value in the interval
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{1, k} ⊆ N ⊆ L(|w|), where k denotes the position where 1 occurs in |w|. Thus
every A-reduced x ∈ Bn−1 occurs as the `±1-minimizer of some A-stable w ∈ Dn.

8. The symmetric functions GD and GD(s, t)

Let u1̄, u1, . . . , un−1 denote generators for the nil Coxeter ring of Dn, and define

Ḡn(z; s, t)

= (1 + zun−1) · · · (1 + zu2)(1 + 2szu1)(1 + 2tzu1̄)(1 + zu2) · · · (1 + zun−1),

where z, s, t are central indeterminates. For each w ∈ Dn, we define GD(w; s, t) to
be the quasi-symmetric function appearing as the coefficient of uw in the expansion

Ḡn(z1; s, t)Ḡn(z2; s, t) · · · =
∑
w∈Dn

GD(w; s, t)(z1, z2, . . . )uw.

Considering the relation

(1 + 2szu1)(1 + 2tzu1̄) = (1 + su1)(1 + tu1̄)(1 + tu1̄)(1 + su1),

one sees that Ḡn(z; s, t) is the image of Gn(z) (see Section 1.6) under the substi-
tutions u1̄ 7→ tu1, u1 7→ su2, ui 7→ ui+1 (i ≥ 2). Thus by Proposition 1.4(b), we
have

GD(w; s, t) =
∑

i∈R(w)

s`1(i)t`1̄(i)KΛ(i).(8.1)

Note that GD(w̄; s, t) = GD(w; t, s) and

GD(w−1; s, t)(z1, . . . , zm) = GD(w; s, t)(zm, . . . , z1).

Also, if w ∈ An−1, then GA(w; t) = GD(w; t, s) = GD(w; t, 0).
An immediate consequence of (8.1) and the fundamental lemma of enriched P -

partitions (see (6.2)) is the following heap expansion for GD(w; s, t) (cf. Proposition
6.5).

Proposition 8.1. If P1, . . . , Pk are the heaps of the commutativity classes of R(w)
for some w ∈ Dn, then we have

GD(w; s, t) =
k∑
i=1

s`1(Pi)t`1̄(Pi)∆(Pi),

where `1(P ) and `1̄(P ) denote the number 1’s and 1̄’s in the labeled poset P .

The formal series GD(w; s, t) need not be symmetric in the variables z1, z2, . . . ;
for example, one may check that

GD(s1s2s1̄s2; s, t)(z1, z2) = 4stz1z2(z1 + z2)(2tz1 + z2).

On the other hand, it is known (e.g., Lemma 4.24 of [L]) that in the special case
s = t = 1/2, Ḡn(x; s, t) does commute with Ḡn(y; s, t), and thus

GD(w) := GD(w; 1/2, 1/2)

is a symmetric function of z1, z2, . . . .

Corollary 8.2. If P is the heap of any fully commutative w ∈ Dn, then we have
∆(P ) = 2lGD(w), where l denotes the number of occurrences of 1 and 1̄ in any
reduced word for w. In particular, ∆(P ) is symmetric.
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We claim that there is also a special class of elements w ∈ Dn for which
GD(w; s, t) remains symmetric without specializing s and t. To explain, let I de-
note the two-sided ideal of the nil Coxeter ring generated by u1u2u1̄u2, u1̄u2u1u2,
u2u1̄u2u1, and u2u1u2u1̄.

Proposition 8.3. We have Ḡn(x; s, t)Ḡn(y; s, t) = Ḡn(y; s, t)Ḡn(x; s, t) mod I.

Proof. Applying Proposition 3.1(b) with a = Ḡn−2(x; s, t), b = Ḡn−2(y; s, t), u =
un−2, and v = un−1, we see that the assertion follows by induction, once the cases
n = 2 and 3 have been established. However the case n = 2 is trivial, and n = 3 is
equivalent to showing that for every w ∈ D3, either GD(w; s, t)(x, y) is symmetric
in x and y, or else some i ∈ R(w) contains the subword 121̄2, 1̄212, 21̄21, or 2121̄.
Now if w belongs to a proper parabolic subgroup of D3 (i.e., A2, Ā2, or D2), then
the symmetry of GD(w; s, t)(x, y) is either trivial or a consequence of the symmetry
of the GA(t)-family of quasi-symmetric functions. Retaining only one member from
each quadruple (w, w̄, w−1, w̄−1), there remain only three elements with no reduced
word containing 121̄2, 1̄212, 21̄21, or 2121̄ as a subword; namely, s1s2s1̄, s1s1̄s2,
and s2s1s1̄s2. For these one obtains

GD(s1s2s1̄; s, t)(x, y) = 4stxy(x+ y),

GD(s1s1̄s2; s, t)(x, y) = 4st(x+ y)(x2 + xy + y2),

GD(s2s1s1̄s2; s, t)(x, y) = 4st(x+ y)2(x2 + y2),

each of which is visibly symmetric.

Define w ∈ Dn to be finely symmetric if there is no member of R(w) containing
any of the subwords 121̄2, 1̄212, 21̄21, or 2121̄.

Corollary 8.4. If w is finely symmetric, then GD(w; s, t) is a symmetric function.

Remark 8.5. (a) Proposition 3.1(b) also provides an easy inductive proof of the fact
that Ḡn(x; 1/2, 1/2) commutes with Ḡn(y; 1/2, 1/2) (or equivalently, that GD(w) =
GD(w; 1/2, 1/2) is symmetric for all w ∈ Dn). One needs only to check the case
n = 3, a routine calculation.

(b) Since Ḡ(z; s, t)Ḡ(−z; s, t) = 1, it follows that GD(w; s, t) satisfies the Pragacz
cancellation law (e.g., see [Ste1, §A.3]), and thus is a Q[s, t]-linear combination of
Schur Q-functions or P -functions whenever it is symmetric. In particular, since
the definition of Ḡ(z; s, t) shows that GD(w) has integer coefficients relative to
monomials in the variables z1, z2, . . . , it follows that GD(w) is P -integral. (However,
GD(w) need not be Q-integral.) Also, since GD(w; s, t) is a Z-linear combination of
the quasi-symmetric functions KΛ (see (8.1)), it follows from Theorem 3.8 of [Ste1]
that if GD(w; s, t) is symmetric, it must be a Z[s, t]-linear combination of Schur
Q-functions.

(c) The symmetric functions GD(w) have been studied by both Lam [L] and
Billey and Haiman [BH]. For example, Lam and Billey-Haiman both prove that
GD(w) is a nonnegative Z-linear combination of Schur P -functions.

It is clear that every A-stable w ∈ Dn is finely symmetric, since each of the
forbidden subwords 121̄2, 1̄212, 21̄21, and 2121̄ is braid-equivalent to a word that
contains 11̄. In fact, comparing (3.2) and (8.1), the following is an immediate
consequence of Theorem 7.4.
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Theorem 8.6. If w ∈ Dn is A-stable, then we have

GD(w; s, t) =
∑

N(w)⊆K⊆L(|w|)
sξ+(w,K)tξ−(w,K)GB(|w|K).

In particular, given the Q-positivity of the symmetric functions GB(w), we see
that for the A-stable w ∈ Dn, the Q-function coefficients of GD(w; s, t) are polyno-
mials with nonnegative coefficients. In fact, as we will shall see below, this holds
for every finely symmetric w ∈ Dn.

9. Finely symmetric elements

In the following, we reserve the notation An−2 specifically for the parabolic
subgroup of Dn generated by s2, . . . , sn−1.

Lemma 9.1. We have An−1 = An−2 ∪̇ An−2s1An−2.

Proof. In the canonical reduced word for any w ∈ An−1, the index n − 1 occurs
at most once. Since si 7→ sn−i is an automorphism, it follows that w also has a
reduced word in which the index 1 appears at most once.

Lemma 9.2. For w ∈ Dn, the following are equivalent.

(a) w ∈ An−2s1s1̄An−2.
(b) Every i ∈ R(w) has one 1, one 1̄, and no 2 occurs between the 1 and the 1̄.
(c) The canonical reduced word for w has the subword 11̄ and no other 1 or 1̄.
(d) The one-line form of w has exactly two negative entries, and the first entry

is −1.

Proof. (a)⇒(b). If w ∈ An−2s1s1̄An−2, then there is at least one i ∈ R(w) that
meets the conditions of (b). Furthermore, in any such word, there is no opportunity
to apply the braid relations 121 ≈ 212 or 1̄21̄ ≈ 21̄2. Since the remaining braid
relations preserve the number of occurrences of 1 and 1̄ as well as the relative
positions of 1,2, and 1̄, it follows that every i ∈ R(w) meets the conditions of (b).

(b)⇒(c). Let 〈m1, n1] · · · 〈mr, nr] be the canonical reduced word for w, and
suppose that 1 (resp., 1̄) occurs in the subword 〈mi, ni] (resp., 〈mj , nj ]). If i = j,
then they appear consecutively in the order 11̄, by construction. Otherwise, if (say)
i < j, then a 2 must occur immediately following the 1, contrary to the hypotheses
of (b).

(c)⇒(a) is immediate.
(a)⇔(d). If w = xs1s1̄y for some x, y ∈ An−2, then the first entry of the one-line

form of y must be 1. Therefore, the first two entries of s1s1̄y are (−1,−j) for some
j > 1, and w is obtained by arbitrarily permuting the entries of s1s1̄y in positions
beyond the first. Thus (d) holds. Reversing this argument proves the converse.

We remark that it is not possible to characterize the members of the double
coset An−2s1s1̄An−2 in terms of pattern avoidance. Indeed, every pattern involving
positive terms occurs in some member of this double coset. However, it contains
no member of An−1 and yet members of An−1 have only positive entries.

On the other hand, if we include the double cosets containing the remaining
members of D2 (i.e., 1, s1, and s1̄), it is possible to give both pattern-avoidance
and forbidden subword characterizations.

Theorem 9.3. For w ∈ Dn, the following are equivalent.
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(a) w ∈ An−2D2An−2.
(b) Neither 121̄ nor 1̄21 occur as subwords of any i ∈ R(w).
(c) w avoids all patterns (a, b, c) such that b, c < 0, as well as all patterns that

are permutations of (±1,−2,−3).

Proof. (a)⇒(b). If w ∈ An−2s1s1̄An−2, then the implication (a)⇒(b) of Lemma 9.2
shows that neither 121̄ nor 1̄21 can appear in any reduced word for w. Otherwise,
we have w ∈ An−1 or w ∈ Ān−1, in which case every reduced word for w omits
either 1̄ or 1, and hence (b) is trivially satisfied.

(b)⇒(c). Towards a contradiction, assume that w has three entries (a, b, c)
that fit one of the patterns forbidden by (c), and no reduced word for w contains
121̄ or 1̄21. Among all such counterexamples, choose one that minimizes length.
Given this, w cannot have four or more negative entries; otherwise, any choice
of sj such that `(sjw) < `(w) would yield a shorter element with (at least) four
negative entries or two negative entries preceded by a positive one, both of which
are forbidden. Thus exactly two of a, b, c are negative, and the remaining entries of
w are positive.

If (a, b, c) is a permutation of (1,−2,−3), then since every such permutation is
forbidden, we must have `(sjw) > `(w) for all j ≥ 1. In other words, the one-line
form of w must be increasing. Therefore (a, b, c) must fit the pattern (−3,−2, 1)
and a, b are the first two entries of w. Whether or not the third entry of w is c, the
fact that the entries increase implies that the first three entries also fit the pattern
(−3,−2, 1). However in that case, w has a reduced word that begins with 1̄21, a
contradiction.

The remaining possibility is that (a, b, c) fits a pattern with a > 0 and b, c < 0.
Since every entry prior to b is positive, we may assume that a is the first entry of
w. If we permute any pair of entries of w not involving the first, the result will
still contain a forbidden pattern. Therefore, minimality requires `(sjw) > `(w) for
all j ≥ 2; i.e., the entries beyond the first position of w must increase. Hence,
(a, b, c) fits one of the patterns (1,−3,−2), (2,−3,−1), or (3,−2,−1). In the first
two cases, we see that `(s1̄w) < `(w) and s1̄w still contains a forbidden pattern
(contrary to minimality), but in the last case, w has a reduced word that begins
with 121̄, a contradiction.

(c)⇒(a). If w avoids all patterns involving three negative terms, then w has
at most two negative entries. If w has none, then w ∈ An−1 ⊂ An−2D2An−2

(Lemma 9.1), so assume that w has exactly two. If −1 is not one the negative
entries, then w contains a pattern formed by some permutation of (1,−2,−3),
contrary to (c). If the first entry is positive, then w contains a pattern (a, b, c) such
that b, c < 0, again contrary to (c). Thus the negative entries are −1 and −j for
some j > 1 and one of them occurs in the first position. If −1 occurs first, then
Lemma 9.2 implies w ∈ An−2s1s1̄An−2. Otherwise, we can find x ∈ An−2 so that
the first two entries of the one-line form of xw are (−j,−1). However in that case,
s1̄xw ∈ An−2, and therefore w ∈ An−2s1̄An−2.

Recall that w ∈ Dn is finely symmetric if none of 121̄2, 1̄212, 21̄21, and 2121̄
occur as subwords of any i ∈ R(w). This clearly does not happen unless 121̄ and
1̄21 occur as well, so we obtain the following.

Corollary 9.4. Every w ∈ An−2D2An−2 is finely symmetric.
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Remark 9.5. The members of An−1 and Ān−1 are obviously A-stable and therefore
finely symmetric, so the only “new” finely symmetric elements identified by this
result are the members of An−2s1s1̄An−2. Since Lemma 9.2 implies that every such
element w has exactly one occurrence each of 1 and 1̄ in every reduced word, it
follows that

GD(w; s, t) = 4stGD(w).

In particular, the Q-positivity ofGD(w; s, t) follows from the Q-positivity of GD(w).

Theorem 9.6. For w ∈ Dn, the following are equivalent.

(a) w is finely symmetric.
(b) w is A-stable or w ∈ An−2D2An−2.
(c) w avoids the patterns

(±1,−2,−3), (±1,−3,−2), (−2,±1,−3), (−3,±1,−2),

(−2,−3,±1), (2,−3,−1), (3,−1,−2), (2,−1,−3).

Proof. (a)⇔(b). We have already noted that the A-stable members of Dn, as
well as the members of An−2D2An−2, are finely symmetric. Conversely, if w is
not A-stable and not in An−2s1s1̄An−2, then by Theorem 7.1 and Lemma 9.2 the
subword 11̄ appears in the canonical reduced word i for w, along with at least one
other occurrence of either 1 or 1̄. It follows that i has a subword of the form 1i′11̄,
1̄i′11̄, 11̄i′1, or 11̄i′1̄, with 1 and 1̄ not appearing in i′. Note that 2 must appear in
i′; otherwise i would not be reduced. However in that case, Lemma 9.1 shows that
i′ is braid-equivalent to some word in which 2 appears exactly once (and 1 and 1̄
do not occur at all). Since the indices > 2 commute with 1 and 1̄, it follows that
1i′11̄ is braid-equivalent to a word containing 1211̄ ≈ 2121̄, and hence w could not
be finely symmetric. (The other cases are similar.)

(b)⇒(c). If w is A-stable, then w avoids the patterns (±1,−2) (Theorem 7.1).
Hence w also avoids the patterns listed in (c), since each of them fits either (1,−2)
or (−1,−2). Also, any member of An−2D2An−2 avoids the patterns listed in The-
orem 9.3, and hence also the patterns of (c), since the latter are a subset of the
former.

(c)⇒(b). Assume w has at least two negative entries; otherwise w is clearly
A-stable.

Case 1: w avoids (−1,−2). In this case, the negative terms must appear in increas-
ing order, so if the pattern (1,−2) occurs, then one of the patterns (−3, 1,−2),
(1,−3,−2), or (2,−3,−1) also occurs. However, each of these patterns is explicitly
forbidden by (c). Thus w avoids (±1,−2), and hence is A-stable (Theorem 7.1).

Case 2: w contains the pattern (−1,−2). In this case, w must contain exactly two
negative terms, since the only pattern among the permutations of (−1,−2,−3)
that is not forbidden is (−3,−2,−1). If the first entry of w is positive, then one
of the patterns (1,−2,−3), (2,−1,−3), or (3,−1,−2) occurs, contrary to (c). If
the first entry of w is negative but not −1, then one of the patterns (−2, 1,−3)
or (−2,−3, 1) occurs, again contrary to (c). Hence the first entry of w is −1, so
w ∈ An−2s1s1̄An−2 by Lemma 9.2.

Proposition 9.7. There are

(a) 1
2 (n + 1)! + (n− 1)(n− 1)! finely symmetric members of Dn,
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(b) (3n− 2)(n− 1)! members of An−2D2An−2, and
(c) (2n− 1)(n− 1)! A-stable members of An−2D2An−2.

Proof. The description in Lemma 9.2(d) shows that the double coset An−2s1s1̄An−2

has (n−1)(n−1)! members. Thus (a) follows from Theorem 9.6 and Corollary 7.3.
Obviously no member of this double coset is A-stable, and the remaining members
of An−2D2An−2 consist of An−1∪ Ān−1. The latter has cardinality 2(n!)− (n−1)!,
yielding (c); restoring the (n−1)(n−1)! members of An−2s1s1̄An−2 yields (b).

Define w ∈ Dn to be `±1-invariant if `±1(i) = `1(i) + `1̄(i) is independent of
the choice of i ∈ R(w). Since the only braid relations that affect `1(i) or `1̄(i) are
121 ≈ 212 and 1̄21̄ ≈ 21̄2, it follows that w is `±1-invariant if and only if neither
212 nor 21̄2 occur as subwords of any i ∈ R(w). In particular, every `±1-invariant
element is finely symmetric.

We remark that the `±1-invariant members of Dn and An−2D2An−2, and the
A-stable portions thereof, cannot be characterized in terms of pattern avoidance.
To prove this, note that since A-stability and membership in Dn, An−2D2An−2

and An−1 can be characterized by pattern avoidance, and each contains An−1, it
suffices merely to show that `±1-invariance in An−1 cannot be characterized by
pattern avoidance. For this, consider the one-line form of w = s2s1s2 ∈ D3, i.e.,
(3, 2, 1). Since w is not `±1-invariant, (3, 2, 1) must be a forbidden pattern for `±1-
invariance in An−1, if a set of such patterns exists. However w′ = s2s3s2 ∈ D4

has one-line form (1, 4, 3, 2), so it contains the pattern (3, 2, 1) and yet is clearly
`±1-invariant.

Proposition 9.8. For w ∈ Dn, the following are equivalent.

(a) w is A-stable and `±1-invariant.
(b) N(w) = L(|w|).
(c) σR(w) = R(x) for some x ∈ Bn−1.
(d) In the canonical reduced word for w, the subword 11̄ does not appear, and the

occurrences of 1 and 1̄ alternate.

Proof. (a)⇒(b). If w is A-stable, then we have N(w) ⊆ L(|w|) (Corollary 7.2).
Also, Theorem 7.4 shows that there exist i, i′ ∈ R(w) such that `±1(i) = #N(w)−1
and `±1(i

′) = #L(|w|) − 1. Thus if w is `±1-invariant, #N(w) = #L(|w|) and (b)
follows.

(b)⇒(c). If N(w) = L(|w|) then w is A-stable (Corollary 7.2). Apply Theo-
rem 7.4(b).

(c)⇒(d). Given that σR(w) only contains reduced words for Bn−1, the subword
11̄ cannot appear in the canonical (or any) reduced word i for w. If there were (say)
a subword 1i′1 of i such that neither 1 nor 1̄ occurs in i′, then by Lemma 9.1, 1i′1
would be braid-equivalent to some word in which 1 occurs exactly once (and 1̄ not
at all). The number of occurrences of 0 in the σ-images of these words therefore
varies. On the other hand, the hypothesis σR(w) = R(x) implies that there are
`0(x) occurrences of 0 in every member of σR(w), a contradiction.

(d)⇒(a). If 11̄ does not occur in the canonical reduced word i for w, then w is A-
stable (Theorem 7.1), and σ(i) is the canonical reduced word for some top element
x ∈ Bn−1 (Theorem 4.1). Given that the occurrences of 1 and 1̄ alternate in i, it
follows that if w failed to be `±1-invariant, there would exist a sequence of braid
relations not involving 11̄ ≈ 1̄1, 121 ≈ 212, or 1̄21̄ ≈ 21̄2 that transforms i into a
reduced word j containing 212 or 21̄2. (Each allowed transformation preserves the
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property of alternating 1’s and 1̄’s, so 212 or 21̄2 must occur before 121 or 1̄21̄.)
The σ-images of these transformations are valid for Bn−1, so σ(j) ∈ R(x). However
σ(212) = σ(21̄2) = 101 is a subword of σ(j), which by Theorem 4.1 contradicts the
fact that x is a top element.

Remark 9.9. (a) Suppose that w ∈ Dn is `±1-invariant but not A-stable. Of course
w must be finely symmetric, so w ∈ An−2s1s1̄An−2 by Theorem 9.6. However in
that case, Lemma 9.2 shows that every reduced word for w has one 1 and one 1̄,
and hence is `±1-invariant. In other words, the `±1-invariant members of Dn are
the elements described in Proposition 9.8, together with the members of the double
coset An−2s1s1̄An−2.

(b) For any `±1-invariant w ∈ Dn, the absence of the subwords 212 and 21̄2
shows that not only is `±1(·) constant on R(w), but in fact `1(·) and `1̄(·) are
constant as well. Hence the notations `1(w) and `1̄(w) are unambiguous. In case
w is also A-stable, Theorem 7.4 and Proposition 9.8(d) show that

`1(w) =
1

2
(#L(|w|) − 1 + ξ), `1̄(w) =

1

2
(#L(|w|) − 1− ξ),

where ξ is the sign of the first entry of w when #L(w) is even, and 0 otherwise.
(c) If w ∈ Dn is `±1-invariant and A-stable, then the element x ∈ Bn−1 appearing

in part (c) of Proposition 9.8 is top(|w|) (cf. Remark 7.7(a)). If we restrict our
attention to the `±1-invariant elements w ∈ An−1, the range of the map w 7→
top(w) consists of those elements with exactly one term in the decomposition of
Corollary 2.5, i.e., the members of Bn−1 that are top-and-bottom elements. In
other words, there is a bijection between the top-and-bottom elements of Bn and
the `±1-invariant members of An.

Proposition 9.10. There are

(a) (3n− 2)(n− 1)! `±1-invariant members of Dn,
(b) (2n− 1)(n− 1)! A-stable `±1-invariant members of Dn,
(c) (n− 1)! (n+ 2H(n− 1)) `±1-invariant members of An−2D2An−2, and
(d) (n− 1)! (1 + 2H(n− 1)) A-stable `±1-invariant members of An−2D2An−2.

Proof. For (b), Proposition 9.8 shows that we can construct the canonical reduced
word for any A-stable `±1-invariant w ∈ Dn by selecting any of the n! canonical
reduced words for An−1, and then replacing every other occurrence of 1 with 1̄.
Assuming there is at least one occurrence of 1, this can be done in two ways, for a
total of 2(n!)− (n− 1)!.

For (a) recall from Remark 9.9(a) that the `±1-invariant members of Dn that
are not A-stable are the members of An−2s1s1̄An−2. We know from the proof of
Proposition 9.7 that this double coset has (n− 1)(n− 1)! members.

We know that there are (n−1)! (1+H(n−1)) `±1-invariant members of An−1, by
Remark 9.9(c) and Proposition 4.3, and hence (n−1)! (1+2H(n−1)) `±1-invariant
members of An−1∪Ān−1, since every member of An−1∩Ān−1 is `±1-invariant. This
yields (d), and restoring the (n−1)(n−1)! members of An−2s1s1̄An−2 yields (c).

10. Full commutativity

The equivalence of (a) and (c) in the following has also been obtained by Fan [F,
§7], although his choice of coordinates is not the same as ours.

Theorem 10.1. For w ∈ Dn, the following are equivalent.
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(a) w is fully commutative.
(b) In the canonical reduced word 〈m1, n1] · · · 〈mr, nr] for w, the occurrences of 1

and 1̄ alternate, and either
(1) m1 > · · · > ms > |ms+1| = · · · = |mr| = 1 for some s ≤ r, or
(2) m1 > · · · > mr−1 > −mr ≥ 0, mr−1 > 1, and mr 6= −1.

(c) w avoids all patterns (a, b, c) such that |a| > b > c or −b > |a| > c.

Proof. (a)⇒(b). If w is fully commutative, then w is `±1-invariant. If w is A-stable
as well, then (i) the occurrences of 1 and 1̄ in the canonical reduced word for w
must alternate, and (ii) σR(w) = R(x) for some x ∈ Bn−1, by Proposition 9.8. In
fact x must be a fully commutative top element, since otherwise there would be a
subword i(i − 1)i (with i ≥ 1) appearing in some i ∈ R(x), contradicting the fact
that w is fully commutative. Hence the canonical reduced word [m′

1, n
′
1] · · · [m′

r, n
′
r]

for x satisfies

m′
1 > · · · > m′

s > m′
s+1 = · · · = m′

r = 0

for some s ≤ r, by Corollary 5.6(b). Any σ-preimage of this word satisfies (1), and
is necessarily the canonical reduced word for some member of Dn.

Otherwise, if w is not A-stable, then w ∈ An−2s1s1̄An−2 (see Remark 9.9(a)). It
follows that the subword 11̄ occurs in some factor 〈mi, ni] of the canonical reduced
word i for w, and there are no other occurrences of 1 or 1̄, by Lemma 9.2. Let

i′ = 〈2, ni]〈mi+1, ni+1] · · · 〈mr, nr] = [2, ni][mi+1, ni+1] · · · [mr, nr]

denote the subword of i formed by every term following the unique occurrence of 11̄.
The word i′ is the canonical reduced word for some (necessarily fully) commutative
member of the parabolic subgroup of type A generated by s2, . . . , sn−2. Since the
first term of i′ is 2 (or i′ is empty), Corollary 5.8 shows that this is possible only if
i = r. Therefore, m1, . . . ,mr−1 > 1, mr ≤ 0, and mr 6= −1.

Now let m be the leading term of 〈mr, nr]; i.e., m = −mr (if mr < −1) or m = 1
(if mr = 0), and let

i′′ = 〈m1, n1] · · · 〈mr−1, nr−1]m = [m1, n1] · · · [mr−1, nr−1][m,m]

be the subword of i obtained by deleting all terms beyond the first term of 〈mr, nr].
Since nr−1 > nr ≥ |mr| in every canonical reduced word, it follows that i′′ is a
canonical reduced word for some (necessarily fully commutative member of An−1.
By Corollary 5.8, it follows that m1 > · · · > mr−1 > m ≥ 1.

(c)⇒(a). Arguing by contradiction, it suffices to prove the following.

(i) If w has a reduced word that begins with 21̄2 or i(i− 1)i for some i > 1, then
w contains one of the patterns forbidden by (c).

(ii) If `(sjw) > `(w) and w contains a pattern forbidden by (c), then so does sjw.

Given the hypothesis of (i), w has reduced words beginning with either of 1̄
and 2, or i− 1 and i. In the former case, the one-line form of w, say (w1, . . . , wn),
satisfies −w1 > w2 > w3, and in the latter case we have wi−1 > wi > wi+1. In
either case, w contains one of the forbidden patterns.

For (ii), suppose `(sjw) > `(w) and that the one-line form of w has a subsequence
(a, b, c) such that |a| > b > c or −b > |a| > c. If j ≥ 1 then the same is true of sjw,
by the same argument used in the proof of the implication (c)⇒(a) for Theorem 5.1.
We therefore consider only the case j = 1̄. If b does not occur in the second
position of w, then s1̄w has a subsequence of the form (±a, b, c), contrary to (c).
Otherwise, a and b occur in the first two positions of w, and (a′, b′, c′) = (−b,−a, c)
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is a subsequence of s1̄w. We also have a + b > 0 (since `(s1̄w) > `(w)), so the
subsequence (a, b, c) must satisfy a > b > c or −b > −a > c. In the latter case,
we obtain a′ > b′ > c′ and hence |a′| > b′ > c′, which is forbidden by (c). In the
former case, we obtain −b′ > −a′ > c′. However a + b > 0 also implies −b′ > a′,
so we have −b′ > |a′| ≥ −a′ > c′. Hence −b′ > |a′| > c′, which is also forbidden
by (c).

(b)⇒(c). Let i = 〈m1, n1] · · · 〈mr, nr] denote the canonical reduced word for w.

Case 1: i satisfies (1). In this case, w is A-stable and `±1-invariant, by Proposi-
tion 9.8. In particular, Theorem 7.1 implies that w avoids the patterns (±1,−2),
and hence all patterns (a, b, c) such that −b > |a| > c (or even −b > |a|). Further-
more, among the patterns (a, b, c) such that |a| > b > c (see (5.2)), the only ones
that manage to avoid (±1,−2) are the patterns (±3, 2,±1). Hence for this case, it
suffices to prove that w avoids the patterns (±3, 2,±1).

For this, we first note that σ(i) is the canonical reduced word for some fully
commutative top element x ∈ Bn−1, by Corollary 5.6. In particular (again by
Corollary 5.6), x avoids the patterns (±1,−2) and (±3, 2,±1). Towards a contra-
diction, suppose that (a, b, c) is a subsequence of the one-line form of w that fits
one of the patterns (±3, 2,±1) (i.e., |a| > b > |c|). Since x is a top element, x is
obtained by unbumping the entries of |w| at the positions where left-minima occur.
Therefore if b appears to the right of ±1 in w, no unbumping affects b and c and
(±(a− 1), b− 1, c− 1) is a subsequence of x fitting one of the patterns (±3, 2, 1), a
contradiction. Otherwise, let a1 (resp., a2) be the left-minimum of |w| immediately
preceding (resp., following) b in |w|. Note that b itself cannot be a left-minimum,
since b > 0 and N(w) = L(|w|) (Proposition 9.8). Therefore to obtain x from |w|,
a1 unbumps a2, replacing it with −(a1−1). In particular, (b−1,−(a1−1)) is a sub-
sequence of the one-line form of x. Since x avoids (1,−2), this requires a1 < b. Now
if no unbumping affects a, then a > 0 and (a− 1, b− 1,−(a1− 1)) is a subsequence
of x fitting the pattern (3, 2,−1), a contradiction. Otherwise, if |a| is unbumped,
then |a| appears to the left of a1 (since |a| > b > a1), and (−|a−1|, b−1,−(a1−1))
is a subsequence of x fitting the pattern (−3, 2,−1), a contradiction.

Case 2: i satisfies (2). In this case, 11̄ is a subword of i and there are no other
occurrences of 1 or 1̄. Let j be the word obtained by deleting one of the two
(consecutive) occurrences of 0 from σ(i). The constraints of (2) imply

j = [m1 − 1, n1 − 1] · · · [mr−1 − 1, nr−1 − 1][−(m− 1), nr − 1],

where m denotes the leading term of 〈mr, nr]. Since m1 > · · · > mr−1 > m ≥ 1, it
follows that j is the canonical reduced word for some x ∈ Bn−1 of the type described
in Corollary 5.7(b), and is therefore fully commutative. By Lemma 9.2, the one-line
form of w has exactly two negative entries, and the first entry is −1. The effect
of s1s1̄ on one-line forms of members of Dn is to negate the first two coordinates,
whereas the effect of s0 on Bn is to negate only the first coordinate. The remaining
generators act as adjacent transpositions on Bn and Dn. It follows that if we delete
the initial −1 from w and replace each remaining i (resp., −i) such that i ≥ 2 with
i − 1 (resp., −(i − 1)), we obtain the one-line form of x. Therefore, if (a, b, c) is a
subsequence of the one-line form of w such that |a| > b > c or −b > |a| > c, then a
is the first entry of w; otherwise there would be subsequence of x fitting the same
pattern, contrary to Theorem 5.1. However the first entry is −1, so |a| > b > c or
−b > |a| > c would both imply the impossibility b, c < 0.
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Since (±3, 2,±1) are the only (±1,−2)-avoiding patterns (a, b, c) such that |a| >
b > c or −b > |a| > c, we obtain the following.

Corollary 10.2. For w ∈ Dn, the following are equivalent.

(a) w is fully commutative and A-stable.
(b) In the canonical reduced word 〈m1, n1] · · · 〈mr, nr] for w, the occurrences of 1

and 1̄ alternate and m1 > · · · > ms > |ms+1| = · · · = |mr| = 1 for some
s ≤ r.

(c) w avoids the patterns (±1,−2) and (±3, 2,±1).

Similarly, by selecting the patterns (a, b, c) such that |a| > b > c or −b > |a| > c
that are not eliminated by Theorem 9.3, we obtain

Corollary 10.3. For w ∈ An−2D2An−2, the following are equivalent.

(a) w is fully commutative.
(b) The canonical reduced word 〈m1, n1] · · · 〈mr, nr] for w satisfies

m1 > · · · > mr−1 > max(|mr|, 1).
(c) w avoids the patterns (±3, 2,±1), (2,−3, 1), (3, 1,−2), and (2, 1,−3).

Part (a) of the following has also been obtained by Fan (Proposition 3 of [F]).

Proposition 10.4. There are

(a) 1
2 (n + 3)C(n)− 1 fully commutative members of Dn.

(b) 1
2

(
2n
n

)
fully commutative A-stable members of Dn.

(c) 3C(n)− C(n− 1)− 1 fully commutative members of An−2D2An−2.
(d) 2C(n)− C(n− 1) fully commutative A-stable members of An−2D2An−2.

Proof. For w ∈ Bn, let w′ ∈ Bn be the element obtained by changing the sign of
the entry ±1 in the one-line form of w. Exactly one member of each pair (w,w′) is
the one-line form of a member of Dn. Furthermore, w avoids the patterns (±1,−2)
and (±3, 2,±1) if and only if the same is true of w′. Comparing Corollary 10.2
with Corollary 5.6, we deduce that there are half as many fully commutative A-
stable members of Dn as there are fully commutative top elements in Bn. Applying
Proposition 5.9(b), we obtain (b).

For (d), recall that An−1∪ Ān−1 is the set of A-stable members of An−2D2An−2.
We know that An−1 and Ān−1 each have C(n) fully commutative elements, and
their intersection (being An−2) has C(n − 1) such elements, yielding a total of
2C(n)− C(n− 1).

By Theorem 10.1, the canonical reduced words 〈m1, n1] · · · 〈mr, nr] for the fully
commutative members of An−2s1s1̄An−2 are characterized by the relations

m1 > · · · > mr−1 > m ≥ 1, mr ≤ 0, mr 6= −1,

where m denotes the leading term of 〈mr, nr]. Also, given that mr = 0 or mr < −1,
the leading term of 〈mr, nr] uniquely determines mr as well. Comparing this with
Theorem 5.1, we see that there is a one-to-one correspondence between these words
and the canonical reduced words for the fully commutative members of Bn that
are not top elements. There are C(n) − 1 of the latter, by parts (a) and (b) of
Proposition 5.9.

Since An−2s1s1̄An−2 is the set of `±1-invariant members of Dn that are not
A-stable, it follows that there are 1

2

(
2n
n

)
+ C(n) − 1 = 1

2 (n + 3)C(n) − 1 fully
commutative members of Dn (yielding (a)), and 2C(n)−C(n− 1)+C(n)− 1 fully
commutative members of An−2D2An−2, yielding (c).
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Let 〈m1, n1] · · · 〈mr, nr] be the canonical reduced word for some A-stable fully
commutative w ∈ Dn, and let s be the largest index such that ms ≥ 2. We
define the shape of w to be the shifted shape λ/µ, where λ = (n1, . . . , nr) and
µ = (m1 − 1, . . . ,ms − 1).

The µ = ∅ case in part (b) of the following is equivalent to Proposition 3.13
of [BH].

Proposition 10.5. If w ∈ Dn is fully commutative, A-stable and of shape λ/µ,
then

(a) The heap of w is isomorphic to D′
λ/µ (as a labeled poset).

(b) GD(w) = 2−(`(λ)−`(µ))∆(D′
λ/µ) = Pλ/µ.

Proof. Let i be the canonical reduced word for w. As we have noted previously, σ(i)
is the canonical reduced word for some fully commutative top element x ∈ Bn−1. In
fact x and w have the same shape, so by Proposition 6.1, the heap of x is isomorphic
to D′

λ/µ. Since there is no reduced word for w in which 1 and 1̄ appear consecutively,

it follows that the heaps of i and σ(i) are isomorphic as labeled posets (yielding (a)).
Furthermore, we have `±1(w) = `0(x) = `(λ) − `(µ) (the number of cells on the
main diagonal of D′

λ/µ), so (b) follows from Corollary 6.6 and Corollary 8.2.

Now consider the heap of some fully commutative w ∈ An−2s1s1̄An−2; by The-
orem 10.1, we know that the only fully commutative members of Dn that are not
A-stable are of this type. Furthermore, if i = 〈m1, n1] · · · 〈mr, nr] is the canonical
reduced word for w, then we have m1 > · · · > mr−1 > m ≥ 1, where m denotes
the leading term of 〈mr, nr]. We define the shape of w to be the shape of the fully
commutative A-stable element whose canonical reduced word is

j = 〈m1, n1] · · · 〈mr−1, nr−1]〈m,nr].
That is, the shape of w is λ/µ, where λ = (n1, . . . , nr) and µ = (m1−1, . . . ,mr−1−
1,m− 1).

We obtain i from j by replacing the unique occurrence of the smallest term m
with the word m · · · 211̄2 · · ·m. (In case m = 1, we replace 1 with 11̄.) It follows
that the heap of i can be obtained from the heap of j by replacing the unique vertex
labeled m with the heap of m · · · 211̄2 · · ·m. The latter is nearly a total order, the
only exception being that the vertices labeled 1 and 1̄ are incomparable.

More explicitly, given a labeled poset P with a unique vertex x labeled m ≥ 1,
define Ym(P ) to be the labeled poset obtained from P by replacing x with 2m
elements ordered so that

x−m < · · · < x−2 < x−1, x1 < x2 < · · · < xm.

The label of x−1 is defined to be 1̄, and all other elements xi are labeled | i |.
(Compare this with the definition of Im(P ) in Section 6.1.)

Summarizing, we have the following.

Proposition 10.6. If w ∈ An−2s1s1̄An−2 is fully commutative, then the heap of
w is isomorphic to Ym(P ), where P is the heap of the fully commutative A-stable
element of the same shape as w, and m is the smallest label in P .

For example, the fully commutative element w ∈ D8 whose canonical reduced
word is 〈6, 8]〈4, 6]〈−3, 5] has shape 865/532 (cf. Figure 1). The corresponding fully
commutative A-stable element has canonical reduced word j = 〈6, 8]〈4, 6]〈3, 5] and
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Figure 4

smallest term m = 3. The heap of w is therefore obtained by replacing the vertex
labeled 3 in the heap of j with the heap of 3211̄23 (see Figure 4).

Remark 10.7. By Corollary 8.2, it follows that we obtain a ∆-symmetric poset from
any skew diagram D′

λ/µ with smallest label m > 0 by applying the operation Ym.

11. The V -stable members of Dn

Let i = i1· · · il be a reduced word for some w ∈ Dn, and set wk = sik+1
sik+2

· · · sil
for 0 ≤ k ≤ l. (In particular, wl is the identity element.) The elements w0, . . . , wl
form a shortest path from w = w0 to the identity. We define V (i) to be the set of
“1-visitors” along this path, i.e., the set of entries that appear in the first positions
of the one-line forms of |w0|, . . . , |wl|. It will be convenient to let ν(i) := #V (i).

For example, if i = 21̄2, then the one-line forms of w = w0, w1, w2 and w3

are (in reverse order) (1, 2, 3), (1, 3, 2), (−3,−1, 2), and (−3, 2,−1), so we have
V (i) = {1, 3}.

The following result also occurs in the work of Billey-Haiman (Proposition 3.7
of [BH]).

Lemma 11.1. For w ∈ Dn and i ∈ R(w), we have

#{j ∈ R(w) : σ(j) = σ(i)} = 2`±1(i)−ν(i)+1.

Proof. Let l = `±1(i). For any j ∈ R(w), define j′ to be the word obtained by
replacing each occurrence of 1̄ with 1. There is a unique factorization i0i1 · · · il of
i′ in which 1 is the last term of ik for 0 ≤ k < l and il is possibly empty.

For 0 ≤ k ≤ l, let xk ∈ An−1 denote the product of the generators indexed by ik.
There is a one-to-one correspondence between the set of words j ∈ R(w) such that
i′ = j′ (or equivalently, σ(i) = σ(j)) and l-tuples (t1, . . . , tl) taken from {1, s1s1̄}
such that

w = x0t1x1t2 · · ·xl−1tlxl.(11.1)

Indeed, one chooses tk = 1 (resp., tk = s1s1̄) according to whether the kth occur-
rence of 1 in i′ is in a position where 1 (resp., 1̄) occurs in j.

Thus the objective is to count solutions of (11.1).
For this, note that Dn is the semi-direct product of An−1 and the kernel T of the

homomorphism w 7→ |w|. In particular, every w ∈ Dn has a (unique) representation
w = |w| · t for some t ∈ T . Given any solution of (11.1), we see that |w| = x0 · · ·xl
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and the element t is given by

(x0 · · ·xl)−1(x0t1x1t2 · · ·xl−1tlxl) = ty11 ty22 · · · tyll ,
where yk = xkxk+1 · · ·xl and ty = y−1ty. Conversely, (t1, . . . , tl) is a solution
of (11.1) whenever t = ty11 ty22 · · · tyll . However T is abelian, so

(t1, . . . , tl)
ϕ7−→ ty11 ty22 · · · tyll

is clearly a group homomorphism {1, s1s1̄}l → T . It follows that the number of
solutions of (11.1) is #(Kerϕ) = 2l/#(Imϕ).

To determine the range of ϕ, note that for any y ∈ An−1, (s1s1̄)
y = y−1s1s1̄y ∈ T

acts on Rn by changing the sign of the two coordinates indexed by the first two
entries in the one-line form of y. Now as the one-line form of w is computed by
applying the generators of i (read from right to left), the entry that appears in the
first coordinate changes only when the generator to be applied is s1 or s1̄. It follows
that the members of V (i) are the first entries of y0, . . . , yl; say, v0, v1, . . . , vl = 1.
(We are not assuming that v0, . . . , vl are distinct.) Furthermore, in passing from yk
to yk−1, the entry in the second position of yk moves to the first position of yk−1;
in other words, the first two entries of yk are (vk, vk−1). It follows that Imϕ is the
subgroup of T consisting of all sign changes involving even subsets of coordinates
indexed by V (i), a group of order 2ν(i)−1.

It is easy to see that for i ∈ R(Dn), V (i) and Λ(i) (see (1.2)) depend only on
j = σ(i). Hence the use of ν(j) and Λ(j) in the following is unambiguous.

Theorem 11.2. For w ∈ Dn, we have

GD(w) =
∑

j∈σR(w)

1

2ν(j)−1
KΛ(j).

Proof. Set s = t = 1/2 in (8.1) and apply Lemma 11.1.

Define w ∈ Dn to be V -stable if V (i) does not depend on the choice of i ∈ R(w).

Theorem 11.3. For w ∈ Dn, the following are equivalent.

(a) w is V -stable.
(b) ν(i) = #V (i) is independent of i ∈ R(w).
(c) L(|w|) ⊆ N(w).

Moreover, if w is V -stable, then ν(i) = #N(w) for all i ∈ R(w).

This result is an immediate corollary of the following.

Lemma 11.4. If (w1, . . . , wn) is the one-line form of w ∈ Dn, then

N(w) ⊆ {j : |wj | ∈ V (i)} ⊆ N(w) ∪ L(|w|)
for every i ∈ R(w). Furthermore, both bounds are attained.

Proof. Let j ∈ N(w); i.e., wj < 0, j = 1, or |wj | = 1. If wj < 0, then ±wj must
be the first entry of some member of the path from w to the identity defined by
any i ∈ R(w), since an entry cannot be changed from negative to positive without
appearing in the first position. Also, w1 and 1 must appear in the first position
of the starting and finishing members of the path. Thus in each case, j ∈ N(w)
implies |wj | ∈ V (i).
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Next consider some index j 6∈ N(w) ∪ L(|w|); i.e., suppose that wj is a positive
entry of w that is not a left-minimum of |w|. We claim that if `(siw) < `(w), then
the same is true of siw; i.e., wj is a positive entry of siw that is not a left-minimum.
If si does not change the jth coordinate then there is nothing to prove, so assume
i = j, i = j−1, or i = 1̄ and j = 2. (We cannot have j = 1, otherwise wj is trivially
a left-minimum.) If i = j, then si moves wj to the right and hence it remains a
left non-minimum. If i = j − 1, then si moves wj to the left. However in that case,
`(siw) < `(w) implies wj−1 > wj , so wj remains a left non-minimum. Finally, if
i = 1̄ and j = 2, then `(siw) < `(w) implies w1 + w2 < 0. However this yields
0 < w2 < −w1; thus wj = w2 is a left-minimum of |w|, a contradiction.

Having proved the claim, it follows by induction on `(w) that any positive entry
a of w that is not a left-minimum of |w| can never occur as a left-minimum in any
member of the path from |w| to the identity defined by i. In particular, no such
entry can appear in the first position; i.e., j 6∈ N(w) ∪ L(|w|) implies |wj | 6∈ V (i).

Attaining the lower bound. Since N(w) ⊆ {j : |wj | ∈ V (i)}, it suffices to exhibit
some i ∈ R(w) such that ν(i) ≤ #N(w). For this we proceed by induction on `(w).

Case 1: w ∈ An−1. In this case, w has no negative entries. If the first entry of w
is 1, then #N(w) = 1 and ν(i) = 1 for every i ∈ R(w). Otherwise, if 1 occurs
in position j + 1 ≥ 2, then `(sjw) < `(w). Hence by induction, there exists
j ∈ R(sjw) such that ν(j) ≤ #N(sjw), and by adding j to the beginning of j we
obtain a reduced word i for w. If j = 1, then the first entry of sjw is 1, so we
obtain ν(i) = 2 and N(w) = {1, 2}. On the other hand, if j > 1 then ν(i) = ν(j)
and #N(w) = #N(sjw) = 2. In either case, we obtain ν(i) ≤ #N(w).

Case 2: w 6∈ An−1. In this case, w has two or more negative entries. If the first two
entries are negative then `(s1̄w) < `(w), so by induction we can find j ∈ R(s1̄w) so
that ν(j) = #N(s1̄w), and adding 1̄ at the beginning of j yields a reduced word i for
w. Since the second entry of s1̄w is now positive, we have #N(w)−#N(s1̄w) = 1,
unless this second entry is 1, in which case #N(w) = #N(s1̄w). On the other
hand, in passing from j to i, at most one new entry appears in the first position;
i.e., ν(i) − ν(j) ≤ 1, with equality occurring only if |w1| > 1. Thus in either case,
we obtain ν(i) ≤ #N(w).

The remaining possibility is that w has a positive entry in some position j ≥ 1,
immediately followed by a negative entry. It follows that `(sjw) < `(w), so by
induction there exists j ∈ R(sjw) such that ν(j) ≤ #N(sjw), and by adding j to
the beginning of j we obtain a reduced word i for w. Since w and sjw have the same
negative entries, we have #N(w) = #N(sjw), unless j = 1 and w1 > 1, in which
case #N(w) −#N(sjw) = 1. In passing from j to i, we have ν(i)− ν(j) ≤ 1, with
equality only if a new entry appears in the first position. Since the latter occurs
only if j = 1 and w1 > 1, we again obtain ν(i) ≤ #N(w) in either case.

Attaining the upper bound. Since {j : |wj | ∈ V (i)} ⊆ N(w) ∪ L(|w|), it follows
that the upper bound is attained if there is some i ∈ R(w) such that ν(i) =
#(N(w)∪L(|w|)). In fact, we claim that this occurs when i is the canonical reduced
word for w. Proceeding by induction with respect to n, let xn· · ·x2 be the canonical
factorization of w, and let i′ be the canonical reduced word for w′ = xn−1 · · ·x2, a
suffix of i.

If n occurs in position j > 1 of w, then the one-line form of w is obtained from
w′ by removing n from the nth position (regarding w′ as a member of Dn) and
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re-inserting it into position j. In that case, we claim that

ν(i) = ν(i′) = #(N(w′) ∪ L(|w′|)) = #(N(w) ∪ L(|w|)).
The first equality is a consequence of the fact that in passing from i′ to i, the entry n
never occupies the first position. The second equality is the induction hypothesis,
and the last is a consequence of the fact that since n does not occur in the first
position of w, it cannot be a left-minimum of |w|.

Otherwise, in case −n occurs in any position, or n occurs in the first position of
w, then ±n must visit the first position in passing from i′ to i, and either a new
negative entry occurs in some position beyond the first, or a new left-minimum
is created. It follows that the values of ν(i) and #(N(w) ∪ L(|w|)) are increased
by 1 relative to the corresponding values for i′ and w′. Hence by the induction
hypothesis, the quantities are equal.

Let r(w) = #(N(w) ∪ L(|w|)). Since Lemma 11.4 shows that r(w) is the max-
imum value of ν(i) as i ranges over R(w), it follows from Theorem 11.2 that
2r(w)−1GD(w) is a (symmetric) integer linear combination of the quasi-symmetric
functions KΛ. Thus by Theorem 3.8 of [Ste1], we obtain the following.

Corollary 11.5. For every w ∈ Dn, 2r(w)−1GD(w) is Q-integral.

In other words, for w ∈ Dn and strict partitions λ of size l = `(w), the coefficients
cλ(w) appearing in the expansion

2r(w)−1GD(w) =
∑
λ

cλ(w)Qλ(11.2)

are integers. (And hence, nonnegative integers, by the work of Lam and Billey-
Haiman.)

If we use (11.2) to extract the coefficient of z1· · · zl from 2r(w)−1GD(w), we
obtain

∑
λ cλ(w)2lgλ. On the other hand, if w is V -stable, then ν(i) = r(w) for

every i ∈ R(w), so in this case Theorem 11.2 implies

2r(w)−1GD(w) =
∑

i∈σR(w)

KΛ(i).

Since the coefficient of z1· · · zl in KΛ is 2l (see (1.1)), it follows that in the V -stable
case, the coefficient of z1· · · zl in 2r(w)−1GD(w) is 2l · #σR(w). Having obtained
two expressions for the coefficient of z1· · · zl, we deduce the following.

Corollary 11.6. If w ∈ Dn is V -stable, then the integers cλ(w) of (11.2) satisfy

#σR(w) =
∑
λ

cλ(w)gλ.

For example, consider the longest element w0 of Dn. The one-line form of w0 is
(±1,−2, . . . ,−n), so N(w0) = {1, . . . , n}, L(|w0|) = {1}, and w0 is V -stable, by the
criterion of Theorem 11.3. It is known by Corollary 5.3 of [L] or Proposition 3.16
of [BH] that GD(w0) = P(2n−2,...,4,2), so 2r(w0)−1GD(w0) = Q(2n−2,...,4,2). In other
words, there is just one term in the expansion of Corollary 11.6, yielding

#σR(w0) = g(2n−2,...,4,2).

That is, the number of distinct reduced words for w0 under the identification 1 = 1̄
is the number of standard shifted tableaux of shape (2n− 2, . . . , 4, 2). This fact is
proved bijectively by both Lam [L] and Billey-Haiman [BH].
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Remark 11.7. (a) Given that cλ(w) ≥ 0, the same reasoning that proves Corol-
lary 11.6 can also be used to show that for every w ∈ Dn, we have #σR(w) ≤∑

λ cλ(w)gλ, with equality occurring if and only if w is V -stable. By Theorems 4.18

and 4.35 of [L], it also follows that #σR(w) =
∑

λ bλ(w)gλ for certain nonnegative
integers bλ(w) ≤ cλ(w).

(b) One might hope to prove Corollary 11.5 directly from the P -integrality of
GD(w), bypassing Theorem 11.2. This would require r(w) > `(λ) for every strict
partition λ such that cλ(w) > 0. However this fails, even in the V -stable case.
Alternatively, one could attempt to use (8.1) to bypass Theorem 11.2; this would
require r(w) > `±1(i) for every i ∈ R(w). However again this fails, even in the
V -stable case.

(c) A natural question to ask at this point is how the set of V -stable elements
overlaps with the set of finely symmetric elements. By Corollary 7.2, we know that
w is A-stable if and only if N(w) ⊆ L(|w|). Comparing this with Theorem 11.3,
we see that the only A-stable members of Dn that are also V -stable are those that
satisfy N(w) = L(|w|); by Proposition 9.8, these are the `±1-invariant elements.
Otherwise, if w is finely symmetric but not A-stable, then w ∈ An−2s1s1̄An−2 (Re-
mark 9.5). However the criterion of Lemma 9.2(d) shows that all such elements sat-
isfy L(|w|) = {1}, and hence are V -stable. But the members of w ∈ An−2s1s1̄An−2

are also `±1-invariant, so we conclude that w is finely symmetric and V -stable if
and only if w is `±1-invariant.

(d) We claim that V -stability cannot be characterized by means of pattern avoid-
ance. Indeed, since fine symmetry does have a pattern-avoidance characterization
(Theorem 9.6), a set of patterns for V -stability would, by the previous remark, also
imply the existence of a set of patterns for `±1-invariance. However the discussion
prior to Proposition 9.8 shows that a set of such patterns does not exist.

Let (2n− 1)!! = 1 · 3 · 5 · · · (2n− 1).

Proposition 11.8. There are 2(2n− 1)!!− 2n−1(n− 1)! V -stable members of Dn.

Proof. For a given w ∈ An−1 with l ≥ 2 left-minima, there are 2n−l+1 elements
w′ ∈ Dn such that |w′| = w and L(w) ⊆ N(w′). If w has only one left-minimum
(i.e., the first entry of w is 1), then there are only 2n−1 such elements, not 2n.
Hence by Theorem 11.3, there are∑

w∈An−1

2n−#L(w)+1 −
∑

w∈An−2

2n−1

V -stable members of Dn. Apply Lemma 2.6 with q = 1/2.

Appendix

Tables 1 and 2 list the number of members of Bn and Dn (for n ≤ 7) belonging
to the various subsets identified in Parts I and II, respectively. (Abbreviations:
T = top, B = bottom, FC = fully commutative, FS = finely symmetric, A = A-
stable, ` = `±1-invariant, II = An−2D2An−2.)
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Table 1. Bn

X #Xn 1 2 3 4 5 6 7
All 2nn! 2 8 48 384 3840 46080 645120

A-reduced 1
4 (n+ 2)! + 1

2n! 2 7 33 192 1320 10440 93240
T,B (n + 1)! 2 6 24 120 720 5040 40320
T ∩B n! (1 +H(n)) 2 5 17 74 394 2484 18108
FC (n + 2)C(n)− 1 2 7 24 83 293 1055 3860

FC ∩ T (
2n
n

)
2 6 20 70 252 924 3432

FC ∩B C(n) + C(n + 1)− 1 2 6 18 55 173 560 1858
FC ∩ T ∩B C(n + 1) 2 5 14 42 132 429 1430

Table 2. Dn

X #Xn 2 3 4 5 6 7
All 2n−1n! 4 24 192 1920 23040 322560

V -stable 2(2n− 1)!!− 2n−1(n− 1)! 4 22 162 1506 16950 224190
FS 1

2 (n + 1)! + (n− 1)(n− 1)! 4 16 78 456 3120 24480
A 1

2 (n + 1)! 3 12 60 360 2520 20160
`, II (3n− 2)(n− 1)! 4 14 60 312 1920 13680

A ∩ `, A ∩ II (2n− 1)(n− 1)! 3 10 42 216 1320 9360
` ∩ II (n− 1)! (n+ 2H(n− 1)) 4 12 46 220 1268 8568

A ∩ ` ∩ II (n− 1)! (1 + 2H(n− 1)) 3 8 28 124 668 4248
FC 1

2 (n + 3)C(n)− 1 4 14 48 167 593 2144

FC ∩A 1
2

(
2n
n

)
3 10 35 126 462 1716

FC ∩ II 3C(n)− C(n− 1)− 1 4 12 36 111 353 1154
FC ∩A ∩ II 2C(n)− C(n− 1) 3 8 23 70 222 726
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