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Abstract

In a recent paper Noh et al. (2013) proposed a new semiparametric estimate of a

regression function with a multivariate predictor, which is based on a specification

of the dependence structure between the predictor and the response by means of

a parametric copula. This comment investigates the effect which occurs under

misspecification of the parametric model. We demonstrate by means of several

examples that even for a one or two dimensional predictor the error caused by a

“wrong” specification of the parametric family is rather severe, if the regression is

not monotone in one of the components of the predictor. Moreover, we also show

that these problems occur for all of the commonly used copula families and we

illustrate in several examples that the copula-based regression may lead to invalid

results even when flexible copula models such as vine copulae (with the common

parametric families) are used in the estimation procedure.

Keywords: curse of dimensionality, semiparametric inference, copulae, pairwise copulae,

vine copulae
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1 Introduction

It is well known that nonparametric regression estimates suffer from the curse of dimen-

sionality if the dimension of the predictor is large. In this case a regression function

cannot be estimated with reasonable accuracy and several authors have proposed meth-

ods to avoid this problem. A common feature of all publications in this direction consists

in additional structural or parametric assumptions regarding the unknown regression

function, such as additivity [see Stone (1985)], tree-based models [Hastie et al. (2001)]

or single index models [Ichimura (1993)]. In a recent paper Noh et al. (2013) introduced

a novel semiparametric estimate of the regression function in a nonparametric regression

model with a high-dimensional predictor. Roughly speaking, these authors propose to

model the dependency structure between the response and the predictor by a paramet-

ric copula family in order to obtain estimates of the regression function which converge

with a parametric rate. The authors demonstrate (theoretically and empirically) that

the resulting estimates have nice properties if the parametric copula family has been

chosen correctly. This note is devoted to a careful investigation of the properties of

the copula-based regression estimate in the case where the copula family is misspecified.

More precisely, our aim is to investigate the kinds of regression dependence that can be

described by commonly used copula models.

Let Y and X = (X1, . . . , Xd)
T be a real and d-dimensional random variable (d ≥ 1),

respectively, and denote by FY , F1, . . . , Fd the cumulative distribution functions of Y

and the margins of X, which will be assumed as differentiable throughout this note.

The corresponding densities are denoted by fY , f1, . . . , fd. The famous Sklar’s theorem

[Sklar (1959)] shows that the joint distribution function F of the vector (Y,XT )T can be

represented as

F (y,xT ) = C(FY (y), F1(x1), . . . , Fd(xd)),

where (y,xT )T = (y, x1, . . . , xd)
T and C is the copula. Noh et al. (2013) showed that the
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mean regression function m(x1, . . . , xd) = IE[Y |X = (x1, . . . , xd)] can be represented as

(1) m(x1, . . . , xd) =

∫ ∞
−∞

y
c(FY (y), F1(x1), . . . , Fd(xd))

cX(F1(x1), . . . , Fd(xd))
dFY (y),

where c = ∂d+1

∂y∂x1...∂xd
C denotes the density of the copula C corresponding to the vector

(Y,XT )T , and

cX(u1, . . . , ud) =

∫ ∞
−∞

c(FY (y), u1, . . . , ud)dFY (y)

denotes the copula density corresponding to the vector X. In order to avoid the curse

of dimensionality in the estimation of the regression function m these authors propose

to use a semi-parametric estimate using a parametric copula family, say {cθ| θ ∈ Θ}

for the copula density c in (1) and to estimate the unknown marginal distributions sep-

arately. More precisely, if (Y1,X
T
1 )T , . . . , (Yn,X

T
n )T denotes a sample of independent

identically distributed observations with copula C and marginal distribution functions

FY , F1, ..., Fd, Noh et al. (2013) suggest to estimate the marginal distributions FY and

Fj non-parametrically by F̂Y (y) = 1
n+1

∑n
i=1 I(Yi ≤ y) and F̂j(x) = 1

n+1

∑n
i=1 I(Xij ≤ x),

respectively (here we use the notation Xi = (Xi1, . . . , Xid)
T ) and to estimate the param-

eter θ of the parametric copula family by a pseudo–maximum likelihood method, that

is

θ̂PL = argmax
θ∈Θ

n∑
i=1

log c(F̂Y (Yi), F̂1(Xi1), . . . , F̂d(Xid);θ)

[see Genest et al. (1995) or Tsukahara (2005)]. The final estimate of the regression

function m is then defined by

m̂(x, θ̂PL) =

∫ ∞
−∞

y
c(F̂Y (y), F̂1(x1), . . . , F̂d(xd); θ̂PL)∫∞

−∞ c(F̂Y (u), F̂1(x1), . . . , F̂d(xd); θ̂PL)dF̂Y (u)
dF̂Y (y)(2)

=
1

n+ 1

n∑
i=1

Yi
c(F̂Y (Yi), F̂1(x1), . . . , F̂d(xd); θ̂PL)

1
n+1

∑n
j=1 c(F̂Y (Yj), F̂1(x1), . . . , F̂d(xd); θ̂PL)

.

In the case of a one-dimensional covariate, i.e. d = 1, we have cX1 ≡ 1 and thus the
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estimate simplifies to

m̂(x) =
1

n+ 1

n∑
i=1

Yic(F̂Y (Yi), F̂1(x); θ̂PL).(3)

Noh et al. (2013) demonstrate that the estimator defined in (2) avoids the problem of

the curse of dimensionality. More precisely, they show that m̂(x) is a
√
n-consistent

and asymptotically normal distributed estimate if the parametric copula model has been

specified correctly. On the other hand, under misspecification of the copula structure, it

is shown that the statistic m̂(x) estimates the quantity

(4) m(x;θ∗) =

∫ ∞
−∞

y
c(FY (y), F1(x1), . . . , Fd(xd);θ

∗)

cX(F1(x1), . . . , Fd(xd);θ
∗)

dFY (y),

where θ∗ is the minimum of the function

(5) I(θ) =

∫
[0,1]d+1

log
( c(u0, . . . , ud)

c(u0, . . . , ud;θ)

)
dC(u0, . . . , ud),

and C, c denote the ’true’ copula and copula density that generated the data, respectively.

As it was pointed out by Noh et al. (2013), the quantity m(x;θ∗) does in general not

coincide with the true regression function m(x). Consequently there exists a bias if the

parametric copula has been misspecified, but no further evidence regarding the kinds

of regression functions which can be estimated well (i.e. for which this bias is small)

is given. Overall, one might hope that the commonly used parametric copula models

are flexible enough to model a rich variety of regression dependencies. In the following

section however we will demonstrate that this is not the case and that the quality of

the estimate (2) under misspecification of the parametric copula depends heavily on the

specific structure of the unknown regression function m. In particular we show that for

non-monotone regression functions these estimates are in fact not reliable. We will also

demonstrate that model selection from a class of the commonly used copula families by
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information type criteria (in the case d = 1) or the application of more flexible copula

families such as vine copulae in the case d ≥ 2 [see Aas et al. (2009)] does not solve

these problems. As soon as the regression is not monotone in one of the components

of the explanatory variable the copula-based regression estimate and the true regression

function show substantially different qualitative features.

2 Inference under misspecification - examples

All presented results are based on a sample of size n = 100. For the sake of brevity we

restrict ourselves to the case d = 1 and d = 2, where the problems of misspecification

of the parametric copula family are already very visible and the arguments are more

transparent. We expect that for high dimensional predictors these problems are even

more severe.

We start our investigation with the one-dimensional regression model

(6) Yi = (Xi − 0.5)2 + σεi, i = 1, . . . , n,

where the explanatory variable Xi is uniformly distributed on the interval [0, 1] and the

errors are normally distributed with mean 0 and variance σ2 = 0.01. We present in Fig-

ure 2 ”typical” simulated data from this model with the corresponding copula regression

estimates, where we use the t, Frank copula in the left and middle panel and a mixture of

two normal copulas in the right panel (here the mixing proportion is also estimated from

the data) and as a first conclusion we note that none of these choices yields a reasonable

estimate of the regression function. In fact we considered all copulae from the follow-

ing list {“amh copula”,“independence copula”, “Gaussian copula”, ”t-copula”, “Clayton

copula”, “Gumbel copula”, “Frank copula”, “Joe copula”, “Clayton-Gumbel copula”,

“Joe-Gumbel copula”, “Joe-Clayton copula”, “Joe-Frank copula”} together with corre-
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sponding rotations. No copula mentioned above reproduces the structure of the regression

function in the resulting estimate.

Insert Figure 1 and 2 about here

This observation can be explained by the fact that none of the available parametric copula

models for the vector (Y,X1) yields a non-monotone regression function

m(x1) = E[Y |X1 = x1] =

∫ ∞
−∞

yc(FY (y), F1(x1))dFY (y).(7)

In Figure 1 this function is exemplarily displayed for various commonly used parametric

copula models (and different parameters). Other results, which are not displayed here

for the sake of brevity, show similar features. We observe that all of the commonly used

parametric copula models lead to a monotone regression in (7). As a consequence we

point out that model selection (for example by the AIC criterion) from a large class

of commonly used parametric copula models will not improve the performance of the

estimate.

Remark 2.1 hello

(1) Obviously, by definition of a copula, there exists a copula model corresponding

to the model (6). However, our numerical investigations indicate that this copula

cannot be well approximated by any of the commonly proposed parametric copula

models.

(2) The application of alternative estimates for the parameter of the copula does not

lead to a significant improvement of the situation. For example investigations for

the L2-type estimator defined by

(8) θ̂L2 = argmin
θ∈Θ

n∑
i=1

(Yi − m̂(Xi;θ))2 ,
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with

(9) m̂(x; θ̂L2) =
1

n+ 1

n∑
i=1

Yic(F̂Y (Yi), F̂1(x); θ̂L2)

yield a picture very similar to the results presented here (these results are not

displayed for the sake of brevity).

Insert Figure 3 about here

Obviously the observations of the previous paragraph carry over to higher dimensional

predictors if the regression is not monotone in one of the predictors. To demonstrate

this, we exemplarily briefly consider the two-dimensional regression model

(10) Yi = m(Xi1, Xi2) + σεi, i = 1, . . . , n,

with regression function

(11) m(x1, x2) = (x1 − 0.5)2 + (x2 − 0.5)2,

where the sample size is again n = 100 and Xi1 and Xi2 are independent uniformly

distributed on the interval [0, 1]. Some results for the Gaussian, Gumbel and t copula

are displayed in Figure 3, and we observe the same problems as in the one-dimensional

case. The considered parametric copula families are simply not flexible enough and the

resulting estimate is unable to reflect the curvature of the regression function.

In order to investigate more flexible classes of parametric copula models we briefly con-

sider the concept of vine copulae, which is based on a decomposition of the copula density

into a product of (conditional) bivariate copula densities according to a carefully chosen

so called R-vine structure. The bivariate copula densities are then chosen from para-

metric copula families by applying a model selection criterion. It has been argued by
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several authors [see e.g. Aas et al. (2009)] that the resulting vine copula obtained by

this pair-copula decomposition admits a flexible modeling of the dependency structure

in the case of multiple covariates. Here we briefly investigate if this concept can be used

to obtain improved copula-based regression estimates in the case d ≥ 2. The pair-copula

decomposition gives us the possibility to model the copula density c in different ways by

first selecting an R-Vine structure and then choosing the pair-copulae independently from

a set of parametric copula families. To implement this approach, we used the R-package

VineCopula to select the vine structure as well as the parametric pair copulae with the

corresponding estimated parameters by the Akaike information criterion [see Dißmann

et al. (2011) for more details]. Here, the parametric pair copulae were selected from the

set {“independence copula”, “Gaussian copula”, ”t-copula”, “Clayton copula”, “Gumbel

copula”, “Frank copula”, “Joe copula”, “Clayton-Gumbel copula”, “Joe-Gumbel cop-

ula”, “Joe-Clayton copula”, “Joe-Frank copula”} with corresponding rotations.

In Figure 4 we display a typical situation for model (10) with regression functions given

in (11) as well as,

m(x1, x2) = (x1 − 0.5)2 − (x2 − 0.5)2.(12)

The sample size is again n = 100 and the variance is σ2 = 0.01. We observe that in

all cases the copula-based regression method does not yield estimates which reflect the

qualitative behavior of the regression function. These results show that even the rather

large family of vine-copulae does not reproduce the regression structures imposed by the

models (11) and (12).

Insert Figure 4 and 5 about here
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3 Conclusions

In this note we have studied some properties of a semiparametric copula-based regression

estimate which has been recently proposed in Noh et al. (2013), and, more broadly, the

types of regression dependence that can be obtained from commonly used copula families.

Our simulations (not shown in this note) confirmed that the approach of Noh et al. (2013)

is attractive if the dependency structure of the data can be specified accurately. On the

other hand – if the true copula structure has been misspecified – the approach often does

not yield reliable estimates of the regression function. If the regression function is not

monotone, copula-based regression estimates do not reproduce the qualitative features of

the regression function. This property does not depend on the specific misspecified copula

model but can be observed for all of the commonly used parametric copula families. For

a high-dimensional predictor the situation is even worse. Moreover, we also show that for

high-dimensional predictors more flexible models as vine copulae (based on the commonly

used parametric models) will not improve the properties of the estimator. The reason

for these problems consists in the fact that (for d = 1) all commonly used parametric

copula families produce a regression function m(x) = E[Y |X = x] which is monotone in

the explanatory variable X. As a consequence non-monotone features of the regression

function cannot be reproduced by the copula-based regression estimate. In Figure 5 we

display level sets of a copula density corresponding to some non-monotone regression

functions. We observe that these differ substantially from the sets of all commonly

used parametric copula densities. Future research is necessary to develop more flexible

parametric copula models reflecting these structures.
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Figure 1: The function (7) for commonly used parametric copula families (different pa-
rameters are used in each figure)
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Figure 2: Copula based regression estimates of the regression function in model (6). The
t-copula (left panel), Frank copula (middle panel) and a mixtures of two normal copulae
(right panel) are used in the estimate (2).

Figure 3: Copula based regression estimates of the two-dimensional regression function
(11). The copula in the estimate (2) is chosen as Gaussian copula (left panel), Frank
copula (middle panel) and t-copula (right panel).
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Figure 4: Copula based regression estimates of the regression function in model (11) (left
panel), and (12) (right panel). A vine copula selected by the AIC criterion has been used
in the estimate (2).
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Figure 5: Simulated contour plots of the copula density corresponding to the one-
dimensional regression model (6) (left panel), the function m(x) = x sin(10x) (middle
panel) and the function m(x) = exp(cos(10x)) (right panel) with Gaussian errors.
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