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Some Comments on Magnetotelluric Response Function Estimation 

ALAN D. CHAVE AND DAVID J. THOMSON 

AT& T Bell Laboratories, Murray Hill, New Jersey 

A new set of computational procedures are proposed for estimating the magnetotelluric response functions 
from time series of natural source electromagnetic field variations. These combine the remote reference method, 
which is effective at minimizing bias errors in the response, with robust processing, which is useful for removing 
contamination by outliers and other departures from Gauss-Markov optimality on regression estimates. In addi- 
tion, a nonparametric jackknife estimator for the confidence limits on the response functions is introduced. The 
jackknife offers many advantages over conventional approaches, including robustness to heterogeneity of resi- 
dual variance, relative insensitivity to correlations induced by the spectral analysis of finite data sequences, and 
computational simplicity. These techniques are illustrated using long-period magnetotelluric data from the 
EMSLAB Lincoln line. The paper concludes with a cautionary note about leverage effects by high power events 
in the dependent variables that are not necessarily removable by any robust method based on regression residu- 
als. 

INTRODUCTION 

Magnetotelluric and geomagnetic depth sounding theory is 

based on the assumption that the function space representing the 

external sources has low dimensionality. This is usually achieved 

by specifying a form for the external source electric currents; the 

plane wave or zero wavenumber model is the most common 

example. A variety of studies have shown that this implies the 

existence of a set of linear relations between the electromagnetic 

field components observed at the Earth's surface [e.g., Berdichev- 

sky and Zhdanov, 1984; Egbert and Booker, this issue]. In the 

absence of noise, these linear relationships for magnetotellurics 

may be written 

E=ZB (1) 

where E and B are frequency domain, two vectors of the horizon- 

tal electric and magnetic field components at a single site and fre- 

quency and Z is the second rank response or transfer tensor con- 

necting them. The solution of (1) is 

Z = (EB") (BB") -• (2) 

where the superscript H denotes the Hermitian transpose and the 

terms in parentheses are the exact cross-power and autopower 

spectra. Similar response functions may be obtained between the 

vertical and horizontal magnetic fields or quantities derived from 
them. 

A variety of methods have been proposed for the numerical 

computation of electromagnetic response functions and their asso- 

ciated errors from a finite realization of the induction process and 

in the presence of noise. Most of these are based on classical 

spectral analysis procedures and least squares regression, and are 

ultimately derived from simple, wide-sense stationary, Gaussian 

models. It is generally recognized that natural source electromag- 

netic data exhibit gross departures from this simple situation, 

including nonstationary phenomena such as geomagnetic storms 

and outliers caused by both measurement errors and source field 

inhomogeneity, and it is equally well-known that these disrut- 
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bances can destroy conventional spectral estimates. This has 

motivated the development of methods which are robust, in the 

sense of being relatively insensitive to a moderate amount of non- 

stationarity and outliers or to small inadequacies of the model, 

and which react gradually rather than abruptly to perturbations of 

either. These methods are sensitive only to outliers in the depen- 

dent variable (usually E in a magnetotelluric context), but 

response functions computed with real data will also be biased 

downward by noise in the independent variables. This led to the 
remote reference method of Gamble et al. [ 1979] in which auxili- 

ary observations from a second location, usually of the horizontal 

magnetic field, are used to minimize bias effects. The success of 

remote reference methodology is attested to by its nearly univer- 

sal adoption by magnetotelluric practitioners. While a vast 

improvement over conventional approaches, outliers in the elec- 
tric field or noise coherence between the local and reference fields 

can cause it to fail. 

An essential feature of any statistical method is the provision of 

both an estimate and a measure of its accuracy. The traditional 

accuracy estimates, or confidence intervals, on spectral quantities 

are obtained using explicit statistical models which are ultimately 

based on a Gaussian distribution. Despite this simplifying 

assumption, the probability distributions associated with spectra 

are complicated, especially for multivariate problems. These pro- 

cedures also require auxiliary information such as the correct 

number of degrees of freedom that is often difficult to obtain due 

to estimator-induced correlations or the presence of nonstationary 

signals. These (and other) problems with distribution-based error 

estimates on variables with complicated properties have led to the 

development of nonparametric estimators which require few res- 

trictive conditions. The most widely used of the nonparametric 

estimators is the jackknife which is reviewed in this work. 

In this paper, new procedures for the analysis of electromag- 

netic induction data are proposed which combine some of the best 
features of the robust and remote reference methods and use the 

jackknife to provide error estimates. In the next section, a brief 

review of the principles of robust statistics and its application to 

response function estimation is given. This is followed by a 

description of a hybrid robust remote reference estimator and its 

implementation. A review of the jackknife and its use for the 

computation of confidence limits on the response functions is then 

presented. Examples from the long-period EMSLAB magnetotel- 

14,215 



14,216 CHAVE AND THOMSON: MAGNETOTELLURIC RESPONSE FUNCTION ESTIMATION 

luric data are used to illustrate the advantages of this approach. 

The paper concludes with a cautionary note about the effect of 

leverage by high power events in the magnetic field that may not 

be removable by robust estimation, along with a suggested diag- 

nostic to detect its presence. 

ROBUST RESPONSE FUNCTION ESTIMATION 

When E and B are actual measurements, (1) and (2) do not 

hold exactly due to the presence of noise from sampling errors, 

violations of the induction model assumptions, and variability 

produced by a finite realization of an infinite process. It becomes 

necessary to estimate the response functions Z from imperfect 

data, and the problem becomes statistical. 

In the sequel, it is assumed that simultaneous, finite time 

sequences of the electric and magnetic field from one or more 

sites are available. It is also presumed that the time series are col- 

lected without aliasing and that any necessary preprocessing to 

remove trends and gross data errors has been performed correctly. 

This may include the removal of periodic phenomena like ocean 

tides in the case of seafloor data, and robust least squares methods 

are essential for this step in the data preparation. The time series 

may optionally be prewhitened using an autoregressive or dif- 
ferentiation filter. A subset size is then chosen based on the 

lowest frequency of interest and a target value for the final 

degrees of freedom. Each subset is tapered with a data window, 

Fourier-transformed, and stored; the subsets may be overlapped 

by an amount that depends on the correlation properties of the 

data window. The superiority of the discrete prolate spheroidal 

sequences as data windows is now well-documented. See Thom- 

son [1977] for a thorough discussion of the properties of prolate 

data windows and their use. In the remainder of this paper, the 

Fourier transforms of windowed subsets of the electric and mag- 

netic field will be referred to as the data. The implementation of 

robust processing requires the use of the overlapped section- 

averaging method outlined here and is not amenable to a more 

conventional, straight band-averaging approach. The subsets 

need not be contiguous, so that sections of poor quality data may 

be excluded if necessary. However, it is sometimes desirable to 

combine band and section averaging to raise the effective degrees 

of freedom or produce estimates that are evenly spaced in fre- 

quency. 

There is a large body of literature on response function compu- 

tation; in addition to standard references on spectral analysis and 

regression, it includes the papers by Sims et al. [ 1971], Gamble et 

al. [1979], Larsen [ 1980], and Egbert and Booker [1986], which 

explicitly address the magnetotelluric problem. These procedures 

are based on least squares methods in which the tensor equation 

(1) is replaced by an equivalent matrix form 

e=bz+r (3) 

where there are N observations (i.e., the number of data sections 

times the number of frequencies in each section is N) so that e and 

r are N-vectors, b is an Nx2 matrix, and z is a two vector. The 

residual power in (3) is then minimized, yielding 

z = (b H b) -1 (b H e) (4) 

The elements of (b H b) and (b H e) are the averaged autopower and 
cross-power spectral estimates based on the available data. 

The advantages of least squares include simplicity and the 

optimality properties established by the Gauss-Markov theorem 

[e.g., Kendall and Stuart, 1977, chapter 19]. For example, linear 

regression yields the best linear unbiased estimate when the errors 

in (3) are uncorrelated and share a common variance; this holds 

independent of any assumptions about their statistical distribution 

except that it must have a variance. In addition, if the residuals 

are drawn from a multivariate normal probability distribution, 

then the least squares result is a maximum likelihood, fully effi- 

cient, minimum variance estimate. It should be noted that the 

latter condition is essential to the computation of confidence lim- 

its using a distribution-based approach but is not necessary to 

obtain the response functions themselves. 

With natural source electromagnetic data, the Gauss-Markov 

assumptions about the error structure are rarely tenable. First, it is 

often true that the error variance depends on the signal power over 

at least part of a data series. A large portion of the misfit of the 

data to the model in (3) is due to source field complications. It is 

well-known that the energetic early phases of magnetic storms 

correspond to times of source field complexity; other active 

events may be produced by morphologically complex, small spa- 

tial scale current systems. Second, finite duration, transient 

features in the geomagnetic field cause outliers to occur in 

patches, violating the Gauss-Markov independence condition. 

Finally, the requirement that the errors be normally distributed is 

often untenable. Due to marked nonstationarity, departures from 

the model that produce very large residuals are likely, and such 

outliers are poorly described by a Gaussian model. This situation 

virtually guarantees problems with conventional least squares. As 

a consequence, data analysts have adopted a variety of screening 

techniques ranging from inspection of the data for outliers to ad 

hoc coherence weighting or high power event rejection in an 

attempt to alleviate the limitations of conventional approaches. 

True robust methods can accomplish this under more general cir- 
cumstances and in a more automatic fashion. 

The least squares or Gaussian maximum likelihood solution (4) 

to (3) was obtained by minimizing the L 2 norm rH'r of the residu- 
als. Some of the problems with the L 2 norm treatment of elec- 

tromagnetic data have already been noted. The first of these, the 

occurrence of unequal error variance, is easily detected by plot- 

ting the residual power against the power in the magnetic field 

and noting any correlations. It can be treated using weighted least 

squares where the rows of (3) are scaled by the inverse of the total 

power in the same row of b. This is discussed in the context of 

geomagnetic depth sounding by Egbert and Booker [1986], but 

has rarely been found by the authors to suffice for magnetotelluric 

data, probably because the error variance structure is itself nonsta- 

tionary. In addition, the existence of a fraction of residuals whose 

distribution is anomalous compared to the remainder seems to be 

ubiquitous and requires additional treatment to achieve robust- 

ness. However, in some instances it may be necessary to prescale 

the data to equalize the error variance; it will be assumed that 

such preprocessing is applied when required prior to utilizing the 

robust estimators described in this paper. 

The least absolute deviations or L • norm, where the sum of the 

absolute values of the elements of r is minimized, is a commonly 

used robust measure. This has led to the suggestion to substitute it 

for least squares in many geophysical applications. Such a course 

of action is not recommended for reasons discussed by Chave et 

al. [1987]. There are several classes of more general robust esti- 

mates in current use; the most widely applied are the M estimates 

which are motivated by analogy to the statistical concept of max- 

imum likelihood. For the present application, M estimation is 

similar to least squares in that it minimizes a norm of the residu- 
als, but the misfit measure is chosen so that a few extreme values 

cannot dominate the answer. The M estimate is obtained by solv- 
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ing min{RH'R}, where R is an N vector whose ith entry is 
(p(ri/d)) •, d is a scale factor, and p(x) is called a loss function. 
For standard least squares, p(x)=x 2/2, while for the L• estimator, 
0(x)--Ixl. In general, if p(x) is chosen to be -logf (x), where 
f (x) is the true probability density function of the regression resi- 

duals, then the M estimator is maximum likelihood. In practice, 

f (x) cannot be estimated accurately from finite samples, and the 

loss function is chosen on theoretical or empirical grounds. Per- 

forming the minimization yields 

bH •'IJ = 0 (5) 

where ß is an N vector whose ith entry is the influence function 

value uJ(ri/d ) and •t(x)=3•cp(x). Expression (5) corresponds to the 

familiar normal equations of least squares. 

Many methods exist to solve such equations, but it is easiest to 

rewrite them as weighted least squares problems and iterate to get 

a linear approximation. The weighted least squares form of (5) is 

bHwr=0 (6) 

where r is the residual in (3) and w is an NxN diagonal matrix of 

weights whose ith element is w,=uJ(ri/d)/ri. The weights are 

computed based on the residuals and scale estimate from the pre- 

vious iteration to linearize the problem; they are initialized using 

the residuals and scale from ordinary least squares. Note that 

since the weights are chosen to minimize the influence of data 

corresponding to large residuals, the M estimator is data adaptive. 
The solution of (6) is 

z = (b H w b) -1 (b H w e) (7) 

and the terms in parentheses are identified as the weighted autos- 

pectra and cross-spectra analogous to those in (4). 

There are a multitude of possible forms for the weight matrix 

used in (6)-(7). The most widely used is the Huber [ 1964] weight 
and is based on the least favorable model for the residual distribu- 

tion that tums out to be Gaussian in the center and Laplacian in 
the tails 

w, = 1 I xi l _<a 

a Ix, I>a (8) 
wi= Ixi[ 

A value of a=l.5 gives better than 95% efficiency with outlier- 

free Gaussian data. Downweighting of the data with (8) begins 
when xi=ri/d-a , so the scale factor d determines which of the 

residuals are considered large. It is necessary because (5) is not 

scale invariant without it, in the sense that multiplication of the 

data by a constant will not produce an affine change in the solu- 

tion. The scale estimate must be chosen robustly, and L 2 norm 

parameters like the standard error are not suitable due to serious 

sensitivity to outliers. Chave et al. [1987] and Rousseeuw and 

Leroy [ 1987] discuss possible forms for d and show that either 

or 

SiQ 
d• = (9) 

IJiQ 

s MAD 

d 2 = • (10) 
IJMAD 

are suitable, where s and (• refer to the sample and theoretical 

values of the interquartile distance (IQ) and median absolute devi- 

ation from the median (MAD), respectively. The sample inter- 

quartile distance or MAD are easily obtained by sorting the resi- 

duals. If N real residuals {r,} are convened to order statistics by 

placing them in the ascending order r(•)_<r(2)_<'''_<r(N), then the 
sample interquartile distance is 

SiQ: r(3N/4)--r(N/4 ) (11) 

while the sample MAD is 

SMAD = median{ I ri-r(N/2 ) I ] (12) 

where the median is the N/2th order statistic. 

Either (9) or (10) require a target distribution for the residuals 

to get the theoretical entities, and while the Gaussian is usually 

used as a reference for real data, the complex Gaussian is not 

necessarily the optimal choice with complex data. It is preferable 

to measure residual size by the magnitude of the complex residu- 

als because this is rotationally (i.e., phase) invariant. Because the 

real and imaginary parts of a complex Fourier transform are 

independent, its magnitude or absolute value is Rayleigh, and this 

distribution will be used exclusively in the present paper. The 

real and imaginary pans of the data are identically constrained 

with the Rayleigh approach, whereas weights based on the Gaus- 

sian treat the real and imaginary pans separately, altering the 

phase of the data. The theoretical Rayleigh interquartile distance 

and MAD are derived by Chave et al. [ 1987]. 

Because the weights (8) fall off slowly for large residuals and 

never descend to zero, they provide inadequate protection against 

the severe outliers that are observed in magnetotelluric data. 

However, the loss function corresponding to (8) is convex so that 

convergence to a local rather than a global minimum cannot occur 

in (6). A common practice is to use (8) for a few iterations to get 

a solution near the optimal one while computing a good estimate 

for the scale d, fix the scale, and switch to the more severe weight 

function proposed by Thomson [ 1977] 

W i = exp{-e •(l•c' I-•)} (13) 

where the parameter ot determines the residual size at which the 

downweighting begins and is analogous to a in (8). Chave et al. 

[1987] discuss a choice for ot which depends explicitly on the 

number of data, yielding a nearly automatic, data-adaptive result. 

To summarize, robust processing of magnetotelluric data 

begins with data editing and the computation of the windowed 

Fourier transforms of subsets of a longer time sequence. At each 

frequency of interest, an initial solution (4) is obtained with ordi- 

nary least squares and used to compute the residuals r and an ini- 

tial scale estimate using (9) or (10). Several iterations are then 

performed using weighted least squares (6)-(7) and the Huber 

weight function (8), with the weights and scale computed at each 

stage using the residuals from the pre. vious iteration. This is ter- 

minated when the weighted residual power rHw r does not vary 
above a threshold value. The scale is then fixed at the final Huber 

value, and several iterations are carried out using the weight func- 

tion (13). This stops when the weighted residual power does not 

change appreciably, yielding the final robust estimate of the 

response functions. 

ROBUST REMOTE REFERENCE METHOD 

The remote reference method was introduced to magnetotellu- 

rics by Goubau et al. [1978] and developed by Gamble et al 

[1979]. It is based on classical principles but utilizes additional 

observations of the electromagnetic field at a site some distance 
from the station of interest to reduce the influence of noise. The 

necessary separation of the two measurements depends on the 
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local geology, the source field behavior, and the instrument noise 

and will not be considered here; for a relevant experimental study, 

see Goubau et al. [1984]. 

It is instructive to consider the remote reference method in the 

context of norm minimization used earlier. Let the local electric 

(e) and magnetic (b) fields and the remote magnetic (bR) field be 

observed over the same time interval and processed into fre- 

quency domain data in an identical manner. At the first site, the 

response functions z satisfy the linear regression 

e=bz+r (14) 

while at the second site a similar relationship is 

e = b R (z+•z) + r R (15) 

where the dimensions of the vectors and matrices are as for (3). 

The term •Sz accounts for any changes in the response function 

using the remote magnetic field caused by the separation of the 

electric and magnetic field measurements. The remote reference 

response functions are computed by minimizing the magnitude of 

the covariance of the residuals, or the norm I rRH'r I , yielding 

z = (bR n b)-' (bR n e) (16) 

which is the remote reference response function given by Gamble 

et al. [1979]. The equivalence of remote reference estimates with 
minimization of the absolute covariance of the residuals was also 

recognized by J.C. Larsen (private communication, 1987). 

The advantages of the remote reference method are well- 

known. Since the crosspowers of b and bR appear in the denomi- 

nator of (16) rather than the autopower of b as in (4), remote 

reference estimates are in principle not biased downward by noise 

in the local magnetic field b. The remote reference method effec- 

tively eliminates this bias if the noise is not correlated between 

the two sites. It also has some effect in reducing local electric 

field noise if it is uncorrelated with the remote magnetic field. 

However, the remote reference method is not robust; if there is 

correlated noise on all of the channels, then it will break down 

like least squares. Such noise is obviously not instrumental but 

must be related to inhomogeneous source structure; see Egbert 

and Booker [this issue] for an example. It should also be noted 

that the remote reference method is not data adaptive since there 

is no explicit weighting based on data quality, so that severe con- 

tamination of the electromagnetic field at one of the sites cannot 

necessarily be removed. 

The remote reference technique is equivalent to the method of 

instrumental variables for solving errors-in-variables problems as 

tion of such additional quantities is often difficult, yet errors in 
their values will bias the solution z. The method of instrumental 

variables instead utilizes a set of auxiliary measurements to over- 

come the indeterminate form of (17)-(18). Under the conditions 

that the instrumental variables (e.g., the remote reference mag- 

netic field) are uncorrelated with the noise g and that no linear 

combination of them is orthogonal to b, this gives a solution 

identical to the remote reference result (16). However, it can be 

shown that the answer is not precise unless the coherences 

between the reference field, b, and • are high and that correlation 

of the reference measurements with the errors in (18) will produce 
substantial bias. The instrumental variable estimate is not 

minimum variance, and confidence limits on the result will in 

general exceed those for more conventional ones. For details, see 

Fuller [ 1987]. 

The effectiveness of robust M estimation in dealing with 

outliers in the electric field and the ability of the remote reference 

method to remove bias induced by local magnetic field noise sug- 

gests that a hybrid approach could be especially fruitful. The 

implementation of such a combination is conceptually straightfor- 

ward. The remote reference solution to the weighted least squares 

problem analogous to (7) may be written 

z = (bR H w b) -• (bR H w e) (19) 

where bR is the Nx2 matrix containing the remote field data and 

w is the NxN diagonal matrix containing the robust weights of 

(7). By hypothesis, the remote and local magnetic fields are 

identical except for a possible coordinate rotation and uncorre- 

lated noise, so the distribution of the absolute value of the residu- 

als will still be approximately Rayleigh in the absence of outliers. 

This means that the scale and weight parameters outlined in the 

last section are applicable. In all other respects, the robust remote 

reference procedure is like the regular robust one described in the 
last section. 

THE JACKKNIFE 

By use of a loose form of the central limit theorem, it is often 

claimed that Fourier transforms of time series are nearly Gaussian 

even if the time domain data are not. While this argument may be 

true for sequences that are drawn from a single statistical distribu- 

tion, it fails in the presence of mixtures of distributions, nonsta- 

tionarity, and outliers, particularly when the underlying process 

has a complicated spectrum. However, assuming that the Gauss- 

Markov conditions are approximately met, even non-Gaussian 

frequency domain data can be analyzed with least squares to get 

introduced by Reiersol [1945] and is used in the field of reasonably accurate response functions. This does not hold for 
econometrics [e.g., Malinvaud, 1970]. The errors-in-variables 

model allows for measurement error in both e and the components 

of b, and (3) becomes 

•=bz+r (17) 

where • and b are the true electric and magnetic fields which are 

related to the measured ones by 

e=•+f 

b=b+g (18) 

and f and g represent the errors. A least squares solution is valid 

only if r-f+g z meets the Gauss-Markov conditions. It is not 

difficult to show that the complete solution of (17)-(18) requires 

additional information such as the ratio of the noise powers in f 

and g; see Miller [1986, chapter 5] for details. Accurate estima- 

distribution-based estimates of the errors on the response func- 

tions; these are extremely sensitive to departures from normality. 

Even for stationary Gaussian processes, the probability distri- 

bution for the response functions is a complicated multivariate 

form of the t distribution [Brillinger, 1981]. Because of the 

difficulties in working directly with this distribution, asymptotic 

or Taylor series approximations are in standard use. The range of 

validity of this type of expression is often difficult to establish a 

priori, and its undetected breakdown can lead to erroneous infer- 

ences. In addition, distribution-based confidence limits are 

characterized by a degrees-of-freedom parameter whose estima- 

tion must be performed accurately. While this is frequently done 

by counting Fourier frequency bins and attributing two degrees of 

freedom to each, the presence of correlations caused by the use of 

data windows (especially the low-bias types) and section overlap- 

ping can alter the answer substantially, and must be corrected for. 
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Quantitative removal of these effects is not straightforward; see 

Thomson and Chave [1989] for an extended discussion. Finally, 

the presence of spectral leakage due to data window failure or 

nonstationarity and outliers can dramatically alter the effective 

degrees of freedom. It should be noted that all of these complica- 

tions reduce the true number of degrees of freedom, and unless 

properly accounted for, the standard distribution-based confidence 
limits will be too small. 

Because they depend explicitly on hypotheses about the proba- 

bility distribution and auxiliary quantities, the standard confidence 

limit estimators are parametric. In the field of statistical infer- 

ence, parametric estimators have been displaced by newer non- 

parametric types due to the latter's simplicity and better perfor- 

mance in complicated situations. The most frequently applied 

nonparametric method is the jackknife. For an introduction to the 

jackknife and related methods, see Efron [1982] or Efron and 

Gong [ 1983]. The jackknife has recently been applied to a variety 

of spectral analysis problems by Thomson and Chave [1989]. 

Let {xi} be a sample of N observations drawn from some distri- 

bution characterized by a statistical parameter 0 which is to be 

computed. For the moment, only a scalar-valued parameter 0 will 

b•e considered. Denote an estimate of 0 based on all of the data by 
0. The data are then divided into N groups of size N-1 each by 

deleting an entry in turn from the whole set. Let the estimate of 0 

based on the ith subset, where the ith datum has been removed, be 

0_i. The pseudovalues are 

•i - N• -(N-1)•_i (20) 

and serve as substitute jackknife data in standard statistical pro- 

cedures. The jackknife mean is just the arithmetic average of the 

pseudovalues 

N ^ 

1 •(i) i 
N^ 

- N• - N-1 ,•_,0_, (21) 
N i=1 

>From (21), it is clear that the pseudovalues (20) are not really 

necessary, and the delete-one estimates can be used directly. 

However, the pseudovalue form pervades the jackknife literature. 

The quantity (21) was originally• introduced as a lower bias 
replacement for the regular mean 0; see Efron [1982] for details. 

For a statistic 0 which is linear in the data, the jackknife value 0 

and the conventional one 0 will be equivalent. Several studies 

have shown that the varia_bility of the jackknife mean can be larg•e 
for some statistics, and 0 should be used as a substitute for 0 

when it is distinct only with caution. 

A more important application for the jackknife is in the non- 

parametric estimation of the variance of an arbitrary statistic. The 

jackknife variance is just the standard sample variance of the 
pseudovalues, and may conveniently be written in terms either of 
the pseudovalues or of the delete-one estimates as 

•2 1 N 

S = /(/--1),•_,(•i_•)2 i=1 

_N-1 N ^ 
-- --•--/•(0-i -- •)2 (22) .= 

where 

N 
-- I ^ 

0 = •0_ i 
i=i 

An important advantage of the jackknife is computational simpli- 
city with complicated statistics; as long as a rule relating the data 
to 0 is available, it can be applied. This should be contrasted to 

parametric approaches where 0 is typically contained in a compli- 
cated distribution function which is reduced by maximum likeli- 

hood, often yielding a highly nonlinear equation. Another impor- 
tant property of the jackknife variance estimate is its conserva- 

tism: Efron and Stein [1981] have shown that the expected value 
of the jackknife variance always slightly exceeds the true value 

even when the data are not identically distributed. 

Under very general conditions, it can be shown that (•-0)/• is 
asymptotically normally distributed, allowing approximate 

double-sided 100(1-),)% confidence limits to be placed on 0 in the 
usual way 

)' J<0<•+tv(1 )' •-tv(1-•-) -•-)j (23) 

where tv(1-)'/2) is a value from Student's t distribution with v 

degrees of freedom. When v exceeds 50, the t distribution can be 

approximated by the normal one. Note also that the use of an 

incorrect degrees-of-freedom estimate leads to small errors in (23) 

for v> 10; this is generally not true for the more complicated dis- 

tributions used in parametric estimates on spectra. However, 

asymptotic behavior does not guarantee correct results for finite 

samples, and Hinkley [1977a] has shown that substantial errors 

can accrue if (23) is used blindly on markedly non-normal statis- 

tics with,small samples. This can be corrected using transforma- 
tions on 0 to get a more Gaussian form. In a magnetotelluric con- 
text, the response functions are roughly Gaussian without modifi- 

cation, and nonnormality is not a critical consideration. However, 

jackknifing of coherence estimates requires an inverse hyperbolic 
tangent transformation; see Thomson and Chave [1989] for 
details. 

Some further complications occur when the jackknife is 

applied to the regression problems (3) or (6). First, the response 
functions z are vector-valued, so the scalar variance (22) becomes 

a covariance matrix. Second, regression is an unbalanced opera- 
tion in the sense that the overall sample sizes and possibly the 
sample variances are different for the vector e and the matrix b. 

To apply the balanced jackknife (22) to (3) or (6), (4) or (7) can 

be used with a row removed in turn to get the delete-one esti- 

mates, and (22) can be applied directly after modification to allow 

for the vector form of 0 and replacement of N-1 with N-p, 

where p is the number of columns in b, to correct the sample bias. 

However, Hinkley [1977b] examined the small sample properties 

of the balanced jackknife variance applied to regression and sug- 
gested that it produces a consistently biased result. He proposed 
the use of a weighted pseudovalue to eliminate the error. Rewrit- 

ing (20) in vector form and including the weight gives 

Pi = (N (1-hi)+l) •-N (l-h/) •)-i (24) 

where • is the vector statistical parameter replacing • and the {hi} 
are the diagonal elements of the hat matrix. Since the hat matrix 

is important to several points contained in the remainder of this 

paper, a digression to examine its properties is in order. 

The hat matrix is defined by considering the residual r in (3) as 
the difference between the observed electric field e and that 

predicted by the regression •, so that 

r = (I- H) e (25) 

where I is the identity matrix and H is the hat matrix given expli- 
citly by 
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Fig. 1. The phase (top panel) and apparent resistivity (bottom panel) for the 
TE mode response function at Lincoln line site 4 remote referenced to site 
1. The TE mode has the electric field polarized geographic north-south. 

The bands are the double-sided 95% confidence limits computed using the 

jackknife estimates of standard error and (29)-(30). Note the variability of 
the response function and the large error bars; the uncertainty in the phase 

is typically 15 ø and for the apparent resistivity it often exceeds 50%. 

H = b(b H b) -1 b H (26) 

For robust regression using (6)-(7), (26) must be modified by 

replacing b" with bHw to account for the weights. The hat matrix 
is a projection matrix which maps e onto •. The lack of balance 
in a regression problem is reflected in its diagonal. Hoaglin and 

Welsch [ 1978] summarize some of the properties of the hat matrix 

diagonal that are essential to its interpretation. First, H is a pro- 

jection matrix, hence is symmetric and idempotent (H2=H). 
These characteristics can be used to show that 0_<h,_<l. Second, 

the eigenvalues of a projection matrix are either 0 or 1, and the 

number of nonzero eigenvalues is equal to its rank. Since 

rank(lt)=rank(b)=p, where p is the number of columns in b, the 

trace of H is p. This suggests that the average size of h i is p/N. 

Finally, the two endpoint values for h i have special meaning. If 

hi-O, then the ith predicted value is fixed at zero and not affected 

by any datum in e. If hi-l, then the predicted and observed 

values of e i are identical, and the model fits the data exactly. 

Some additional considerations become important for remote 

reference regression. In this instance, the counterpart to the hat 
matrix is 

HR = b(bR H b)-' bR H (27) 

and the robust version is (27) with bR H replaced by bR H w. This 
matrix is idempotent but does not possess Hermitian symmetry 

and is not formally a projection matrix. The diagonal elements of 

(27) are not necessarily real, unlike those of (26). It is not diffi- 

cult to show that the magnitudes of the diagonal elements of (27) 

are bounded by 0 and 1. Furthermore, numerical simulations 

show that the diagonal elements are nearly real when b and bR are 

highly correlated and behave like those of (26). In addition, the 

equivalence of (26) and (27) can be verified using the errors-in- 

variables model (17)-(18). While these are not rigorous argu- 

ments, they can be justified heuristically for the applications con- 

sidered here. It will be assumed that the magnitude of the diago- 

nal of (27) can be used interchangeably with the diagonal of (26) 

in applications used in the remainder of this paper. 

When hi=p/N in (24), the balanced pseudovalue is obtained; 

since this is actually the expected value of h i , the unbalanced 

pseudovalue is in general different for finite samples. The jack- 

knife estimate of the regression covariance matrix is 

S= N(N_p-••.i•i[O-Pi][•)-pi]H (28) 

where • is the arithmetic average of the {P,} as in (20). The 
diagonal terms of (28) give the variances of the corresponding 

terms in z, while the off-diagonal terms are the covariances; note 

that the errors on the real and imaginary parts are identical. An 

important property of the jackknife regression variance is robust- 

ness in the presence of inhomogeneity of error variance, in con- 

trast to parametric estimators [Hinkley, 1977b]. Note also that 

(22) or (28) do not require an explicit accounting for the effective 

degrees of freedom. In the presence of the inevitable correlations 
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Fig. 2. The phase (top panel) and apparent resistivity (bottom panel) for the 
TM mode response function at Lincoln line site 4 remote referenced to site 

1. The TM mode has the electric field polarized geographic east-west. 

The bands are the double-sided 95% confidence limits computed using the 
jackknife estimates of standard error and (29)-(30). While these values are 

smoother than for the TE mode in Figure 1, the phase error is typically 3 ø- 
5 ø , and the apparent resistivity uncertainty is typically 15%. 
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Fig. 3. Robust remote reference results for the data used in Figure 1. Note 
the much smoother response and smaller error bars. The uncertainty in the 
phase is typically 3 ø , and for the apparent resistivity it is under 10%. The 
anomalous kink near 2000 s is discussed in the text. 

induced by a data window with finite length sequences, the actual 

degrees of freedom will be lower than the standard value of twice 

the number of raw frequency estimates, and the usual jackknife 

assumption of independent data is violated. Thomson and Chave 

[1989] have shown that (22) and (28) will give asymptotically 

reliable results in spite of this with section-averaged spectra. 

To summarize, estimation of the jackknife confidence limits on 

the response functions first requires the delete-one estimates of z. 

These can be derived for either the conventional (4), robust (7), or 

robust remote reference (19) estimators by deleting a row from e 

and b in turn and solving the problem. Significant computational 

advantages accrue if (3) or its counterpart for (6) are solved by 

QR or Cholesky decomposition since standard methods for 

removing a row by downdating the upper triangular factor are 

available, avoiding the need to completely solve (4) or (7) N addi- 

tional times. For the remote reference method, this is precluded 

by the lack of Hermitian symmetry in (19). The magnitude of the 

diagonal of the hat matrix (27) is also required. The jackknife 

estimate of the covariance matrix follows from (28). Estimates of 

the standard errors on the response functions are given by the 

square roots of the diagonal terms. This may be converted to a 

confidence level using (23). 

The additional computational burden imposed by using the 

jackknife over conventional, parametric error estimates is some- 

times a source of complaint. However, the authors feel that get- 

ting the correct answer is more important than reducing the com- 

putational load. For readers that are still in doubt, examples with 

order-of-magnitude differences between Gaussian-based and jack- 

knife confidence limits on spectra are given by Thomson and 

Chave [1989]. 

DISCUSSION AND EXAMPLES 

The examples in this section are typical of the results achieved 

on the long-period EMSLAB data and have not been selected to 

accentuate the capabilities of either robust processing or the jack- 

knife. Only the remote reference and robust remote reference 

methods are treated here; for a more thorough comparison of a 

variety of commonly used processing schemes, see Jones et al. 

[this issue]. 

The response function examples were computed for Lincoln 

line site 4 (44ø51.2'N, 123ø31.6'W) using the site 1 (44ø54.2'N, 

123ø55.1'W) horizontal magnetic field as a reference. The time 

series at both locations were collected by the Geological Survey 

of Canada under the direction of A. G. Jones and are among their 

highest-quality data from the Lincoln line; see Wannamaker et al. 

[this issue] for details. A 1-week long segment beginning at 0400 

UT on August 11, 1985, was selected for processing. This inter- 

val displayed moderate activity with no obvious problems. Aside 

from interpolating across a few very short data gaps, no prelim- 

inary editing of the data was deemed necessary on the basis of 

visual inspection. Six-hour sections of the time series overlapped 

by 70% with adjacent ones were then tapered by a prolate data 

window of time-bandwidth product 4, converted to frequency 

domain data, corrected for the response of antialiasing and high- 

pass filters, and rotated to a geographic coordinate system. Target 

center frequencies were selected to yield eight values per decade 

evenly spaced on a logarithmic scale, and a combination of sec- 

tion and band averaging was applied to get the remote reference 

response functions (16) and their robust counterparts (19). The 

unbalanced jackknife (28) was used to get the response variances. 

The response functions will be shown in geographic coordi- 

nates because the dominant geologic features are believed to 
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Fig. 4. Robust remote reference results for the data of Figure 2. Note the 
very smooth response and consistent error bars. The uncertainty in the 
phase is typically 1 ø, and for the apparent resistivity it is under 5 %. 
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Fig. 5. Quantile-quantile plots for the results of Figures 2 and 4 at a period 
of 5400 s. The top panel shows the original q-q plot for the ordinary 
remote reference estimate. The residual distribution is quite long-tailed. 

The bottom panel shows the final q-q plot for the robustly weighted residu- 
als and is approximately Gaussian. 

frequencies in the responses, for Gaussian data, one estimate is 

expected to lie outside a smooth 95% confidence band. This is 

observed for Figures 3 and 4, but more departures are seen in Fig- 
ures 1 and 2. This attests to the non-Gaussian form of the least 

squares residuals in the absence of robust processing. The 
unusual behavior of the response at low frequencies is caused by 

topographic effects; the geomagnetic north-south electric field 

line was placed over ground with substantial relief. In addition, 

the turn-down in the apparent resistivity and phase at short 

periods is due to inadequate knowledge of the system response. 

It is instructive to apply some diagnostic tools that can provide 

insight to the statistical nature of robust estimation. The first of 

these is the quantile-quantile (q-q) plot which gives a qualitative 

picture of the residual distribution. The quantiles are the theoreti- 
cal entities that divide the area under a probability density func- 

tion into N+I pieces of equal area and are easily computed for a 

specified distribution. The order statistics are obtained by ranking 
the data and provide the empirical quantiles. By producing a q-q 

plot of the quantiles against the order statistics, a qualitative 
impression of the fit to a given distribution can quickly be 
obtained. If the residuals are drawn from the model distribution, 

then the q-q plot will approximate a straight-line segment whose 

slope is proportional to the scale. Outliers typically appear as 

sharp departures from a straight line at the distribution extremes. 
Figures 5 and 6 show q-q plots for the TM mode response 

functions of Figures 2 and 4 at periods of 5400 and 617 s respec- 

tively. Ordered residual plots for the TE mode are similar in 

appearance. Since the residuals from a regression like (3) are 

complex, the order statistics are computed from their absolute 

magnitudes, and the appropriate theoretical distribution is Ray- 

strike north-south in the EMSLAB region. The TE mode is the 

response function component determined primarily by the north 
electric field, while the TM mode is the conjugate one where the 
electric field is east-west. The remote reference values for the 

two modes appear in Figures 1 and 2. The robust remote refer- 

ence values are in Figures 3 and 4. For display purposes, approxi- 

mate standard errors on the apparent resistivity and phase were 

computed by expanding them in first-order Taylor series to get 

ap = 0.4T I z I l az I (29) 

and 

5•-- sin-•( I z l ) (30) 
where T is the period in seconds and z and •z are the relevant 

components of the complex response function and its standard 

error. Approximate double-sided 95% confidence limits follow 

from (29)-(30) by multiplying the standard error by 1.96 and are 

shown in the figures. The apparent resistivity and phase from 

standard remote reference processing for both polarizations show 

a variety of unphysical kinks and have relatively large error 

bounds. By contrast, the robust remote reference results in Fig- 

ures 3 and 4 are relatively smooth and possess much smaller 

errors. This is especially true of the TM mode result in Figure 4. 

The robust TE mode response still contains a sharp peak near 

2000 s that is neither physical nor caused by outlier contamination 
and will be examined in detail later. Note that parametric error 

bounds for the response functions of Figures 1 and 2 are only 

slightly larger than those in Figures 3 and 4 and would clearly be 
too small to be consistent with the estimates. Since there are 20 
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Fig. 6. Quantile_quantile plots for the results in Figures 2 and 4 at a period 
of 617 s. The ordinary remote reference result (top panel) is markedly 
long-tailed, while robust weighting (bottom panel) has reduced the residual 
distribution to one which is roughly Gaussian. 
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Fig. 7. Scatter plots of the power in the magnetic field against the residual 
power for each data section and frequency for the TM mode result of Fig- 
ures 2 and 4 at a period of 5400 s. The remote reference result (top panel) 
indicates a slight correlation of the residual variance with the magnetic 
field power. This is effectively removed by robust weighting (bottom 
panel). 

leigh. The order statistics have been scaled so that their sample 

variance is 2, the expected Rayleigh value. For both period 

bands, the original q-q plot displays markedly long-tailed 

behavior; residuals appear which are much too large to have come 

from a Gaussian-derived distribution. The robust q-q plot, in 
which the order statistics are derived from the weighted residuals 

w • r, approximates a straight line much more closely. The depar- 
ture in slope seen for the largest quantiles is due to the shape of 
the weight function (13) and is not of concern because of the 
minimal number of terms involved and the small size of their 

deviation. However, the remaining residuals show a slight curva- 

ture and approximate two line segments of different slope with a 

break between 1.5 and 2 on the x axis. This suggests a mixture 

situation in which the original residuals are drawn from a combi- 

nation of two Gaussian distributions with different variances plus 
a few extreme outliers. The proportion of the populations is about 

two to one with the lower variance group being larger. To deter- 

mine if a heterogeneous residual distribution of this type could 
bias the results of Figures 3 and 4, the parameter ot in (13) was 

reduced enough to eliminate the higher variance population. The 

apparent resistivity and phase were almost unchanged, while their 

errors were reduced slightly. This suggests that while least 

squares-based estimators are very sensitive to extreme outliers, 

they are relatively immune to slight mixture situations. However, 

the presence of a mixture does require an increase in the size of 

the errors on the response functions. While the jackknife accom- 

modates this automatically, as observed when one population was 

eliminated, parametric confidence limit estimators cannot detect 

heterogeneity and will generally be too small in its presence. 

The use of summary tests such as the Z 2 goodness-of-fit type to 
assess the fit of the residuals to a given distribution is sometimes 

suggested in preference to the use of q-q plots. While this may 

prove useful under some circumstances, such tests are binary (in 
the sense that they either accept or reject a goodness of fit at some 

confidence level) and cannot be used to understand the form of 

the residual distribution and guide subsequent corrective action. 

The potential importance of this is seen in Figures 3 and 4. In any 
case, the Z 2 test involves arbitrary binning and is most sensitive to 
misfit near the middle of the distribution where problems are least 

likely to occur. If summary goodness-of-fit statistics are desired, 

the Anderson-Darling test [Anderson and Darling, 1952, 1954] is 

preferred because it does not group the residuals arbitrarily and is 
preferentially sensitive to discrepancies at the tails of their distri- 
bution. 

Another commonly used diagnostic is a plot of residual versus 

input power. Figures 7 and 8 show the residual power against the 
power in the corresponding row of b for the TM mode response 
using the same period bands as in Figures 5 and 6. At 5400 s, 

there is a weak correlation of residual and magnetic field power 
that disappears when the data corresponding to large residuals are 

robustly downweighted. The relationship of residual and input 
power is less pronounced at 617 s and is again reduced by robust 

processing. Attempts to process the data with a priori scaling of 
the rows of w by the inverse power in the input magnetic field 
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Fig. 8. Scatter plots of the power in the magnetic field against the residual 
power for each data section and frequency for the TM mode result of Fig- 
ures 2 and 4 at a period of 617 s. The remote reference result (top panel) 
indicates a weak association of residual and magnetic field power that is 
greatly reduced by the robust weighting (bottom panel). 
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Fig. 9. The robust remote reference TE mode response functions of Figure 

3 recomputed so that leverage effects are reduced. Data corresponding to 

hat matrix residuals exceeding 8/N, where N is the number of estimates in 
a given frequency band, have been discarded. Note the marked reduction 
in the kink near 2000 s and the much smoother response compared to Fig- 
ure 3. 

substantially degraded the quality of the response functions. 

While this will certainly reduce the influence of the highest power 

events, it may inadvertently accentuate noise in low power inter- 

vals. Egbert and Booker [1986] suggest scaling by the inverse of 

the sum of the magnetic field power plus a constant to set a 

minimum magnetic field power level below which the weighting 

is stopped. In the authors' experience, this alleviates the difficul- 

ties in scaling (7) or (19) only slightly, probably because of non- 

stationarity of the residual power relationship. In any case, Fig- 

ures 7 and 8 suggest that slight correlations of the residuals with 

power are readily eliminated by standard robust processing in this 

example, and fi•rther treatment is not called for. The same obser- 

vations hold for the TE mode data in Figure 3. 

The final effect to be considered is leverage. Leverage is the 

extent to which a given row of b is extraordinary compared to its 

remaining rows. The diagonal of the hat matrix (26) is a standard 

statistical measure of leverage. To illustrate, consider (25) when 

the ith element of e is replaced by ei+c so that the corresponding 

predicted value becomes •i+hi c, and a large diagonal element h i 
can produce a substantial change in the predicted electric field, 

the residual, and ultimately the answer. This pulling effect is 

reminiscent of the influence which large regression residuals can 

exert on ordinary least squares. Since the hat matrix (26) is a 

function only of the input variables b, this is an effect that may 

not be detected and eliminated by robust procedures that use 

residual-dependent weighting. While this characterizes the nor- 

mal behavior of hi, some method to detect anomalous values is 

still required. When the rows of b are independently Gaussian, 

then (N-p)[hi-1/N]/[(p-1)(1-hi)] is F distributed with p-1 and 

N-p degrees of freedom [Hoaglin and Welsch, 1978]. Since p =2 
and N > 10 for most magnetotelluric problems, this gives a critical 

value of hi--2.8p/N at the 95% level, which compares favorably to 

the statistical rule of thumb that data corresponding to h;>2p/N 

are leverage points deserving of attention. 

With these properties in mind, it is instructive to examine the 

effect of leverage points on the response functions in Figures 3 

and 4. A crude attempt to account for leverage in solving (19) 

was made by iterating with Huber weights (8) to find the scale 

and an approximate robust solution in the usual way and comput- 

ing the hat matrix (27) using the final weights. The robust pro- 

cessing then proceeded using the weight (13) in the standard 
manner, but data corresponding to hat matrix diagonal values 

whose magnitude exceeded a threshold were discarded. The 

threshold was a free parameter, but typically a few times p/N. It 

should be noted that the approach considered here is distinct from 

weighting the rows of w in (7) or (19) by the inverse of the power 

in the independent variables b; in the present case, only extreme 

values are affected, whereas weighting influences all of the data 

and accentuates noise in weak power intervals. Figure 9 shows 

the apparent resistivity and phase for the TE mode corresponding 

to Figure 3 but with leverage points removed. Both the apparent 

resistivity and phase are smoother and have slightly larger error 
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Fig. 10. Scatter plots of the residual power against the magnitude of the hat 
matrix diagonal for the TE mode response of Figure 3 at a period of 1440 
s, near the peak of the anomalous kink in the apparent resistivity and 
phase. There are 460 estimates in this frequency band, so the expected 
value of the hat matrix diagonal is about 0.0043 and leverage points 
correspond to values exceeding about 0.009. The extreme leverage points 
seen in both panels are as much as 40 times the expected value in size. 
Note that robust weighting based on the regression residuals does not elim- 
inate leverage points. 
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bounds, but the unphysical kink near 2000 s is greatly reduced in 

amplitude. The TM mode result with leverage point rejection is 
virtually indistinguishable from Figure 4. 

To understand the behavior seen in Figure 9, it is instructive to 

examine a scatter plot of the residual power on the magnitude of 
the hat matrix diagonal. This is shown in Figure 10 at a period of 
1440 s, near the peak of the kink in Figure 3. An association of 

residual power with the magnitude of the hat matrix diagonal is 
obvious for the nonrobust solution, and is just the slight correla- 
tion with magnetic field power seen in Figures 7 and 8. There are 

470 data in the plot, so the mean value of the hat matrix diagonal 
is --0.004 and data corresponding to those exceeding --0.01 are 
leverage points. It is clear that robust weighting does not elim- 

inate the leverage points in this example and that many remain in 
association with small to moderate residuals. These leverage 
points dominate the solution (19) in a similar manner to the way 
large residuals affect (16), and produce the non-physical kink in 

the response seen in Figure 3. This example is not pathological; 
similar effects have been observed in many magnetotelluric data 
series. 

The leverage point rejection scheme used here is a simple type 
of generalized M or GM estimator, and is not recommended for 

routine use. While conventional M estimators are reasonably well 
understood, GM estimators are a topic of ongoing research in 
applied statistics, and each contribution seems to pose more new 
questions than it answers old ones. For a comprehensive discus- 

sion of GM estimates, see Huber [1983]. The increased complex- 
ity of GM estimation is obvious: while data corresponding to large 
regression residuals can be regarded as spurious, only leverage 
points that occur in association with anomalous residuals should 

be rejected. Quantifying this statement is difficult, and detecting 
leverage points in a manner that preserves efficiency, yet yields 

an unbiased result is a delicate business. However, the example 
presented here, as well as many similar trials, suggests that seri- 
ous attention to leverage points is required. 
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