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Weprove some common
xed point theorems for�-contractions in 0-complete partialmetric spaces.Our results extend, generalize,
and unify several known results in the literature. Some examples are included which show that the generalization is proper.

1. Introduction and Preliminaries

In 1994, Matthews [1] introduced the notion of partial metric
spaces, as a part of the study of denotational semantics of
dataow network. In partial metric space, the usual distance
was replaced by partial metric, with an interesting property
“nonzero self-distance” of points. Also, the convergence of
sequences in this space was de
ned in such a way that the
limit of a convergent sequence need not be unique. Matthews
showed that the Banach contraction principle is valid in par-
tial metric space and can be applied in program veri
cation.
Later, several authors generalized the result of Matthews (see,
e.g., [2–29]). O’Neill [22] generalized the concept of partial
metric space a bit further by admitting negative distances.
	e partial metric de
ned byO’Neill is called dualistic partial
metric. Heckmann [21] generalized it by omitting small self-
distance axiom. 	e partial metric de
ned by Heckmann is
called weak partial metric.

Romaguera [23] introduced the notion of 0-Cauchy se-
quence, 0-complete partial metric spaces and proved some
characterizations of partial metric spaces in terms of com-
pleteness and 0-completeness. 	e notion of 0-complete par-
tial metric spaces is more general than the complete partial
metric space, as shown by an example in [23].

Recently, Wardowski [30] introduces a new concept of�-contraction and proves a 
xed point theorem which gen-
eralizes the Banach contraction principle in a di�erent way

than the known results of the literature on complete metric
spaces. In this paper, we consider a more generalized type of�-contraction and prove some common 
xed point theorems
for such type ofmappings in 0-complete partialmetric spaces.
	e results of this paper generalize and extend the results of

Wardowski [30], Altun et al. [17], Ćirić [31, 32], and some
well-known results in the literature. Some examples are given
which show that the results of this paper are proper general-
izations of known results.

First we recall some de
nitions and properties of partial
metric space [1, 22, 23, 25, 33].

De	nition 1. A partial metric on a nonempty set � is a
function � : � × � → R

+ (R+ stands for nonnegative reals)
such that for all �, �, and � ∈ �

(P1) � = � if and only if �(�, �) = �(�, �) = �(�, �);
(P2) �(�, �) ≤ �(�, �);
(P3) �(�, �) = �(�, �);
(P4) �(�, �) ≤ �(�, �) + �(�, �) − �(�, �).

A partial metric space is a pair (�, �) such that � is a non-
empty set, and � is a partial metric on�.

It is clear that, if �(�, �) = 0, then from (P1) and (P2)� = �. But if � = �, �(�, �) may not be 0. Also every metric
space is a partial metric space, with zero self-distance.
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Each partial metric on� generates a �0 topology �� on�
which has a base of the family of open �-balls {�(�, �) : � ∈�, � > 0}, where�(�, �) = {� ∈ � : �(�, �) < �(�, �)+�} for
all � ∈ � and � > 0.
De	nition 2. Amapping� : � → � is continuous if and only
if, whenever a sequence {��} in� converges with respect to ��
to a point � ∈ �, the sequence {���} converges with respect
to �� to �� ∈ �.
�eorem 3 (see [1]). For each partial metric � : �×� → R

+

the pair (�, �), where �(�, �) = 2�(�, �)−�(�, �)−�(�, �) for
all �, � ∈ �, is a metric space.

Here (�, �) is called induced metric space, and � is
induced metric. In further discussion until speci
ed, (�, �)
will represent induced metric space.

Example 4 (see [1]). If � : R
+ × R

+ → R
+ is de
ned by�(�, �) = max{�, �}, for all �, � ∈ R

+, then (R+, �) is a partial
metric space.

Example 5. Let (�, �) be a partial metric space; then (�, �∗)
is a partial metric space, where �∗(�, �) = �(�, �) + �(�, �)
for all �, � ∈ � and � is the metric induced by �.

For somemore examples of partial metric spaces, we refer
to [14] and the references therein.

Let (�, �) be a partial metric space.

(1) A sequence {��} in (�, �) converges to a point � ∈ �
if and only if �(�, �) = lim�→∞�(��, �).

(2) A sequence {��} in (�, �) is called the Cauchy se-
quence if there exists (and is 
nite) lim�,�→∞�(��,��).

(3) (�, �) is said to be complete if every Cauchy sequence{��} in� converges with respect to �� to a point� ∈ �
such that �(�, �) = lim�,�→∞�(��, ��).

(4) A sequence {��} in (�, �) is called 0-Cauchy sequence
if lim�,�→∞�(��, ��) = 0. 	e space (�, �) is said
to be 0-complete if every 0-Cauchy sequence in �
converges with respect to �� to a point � ∈ � such
that �(�, �) = 0.

Lemma 6 (see [1, 23, 25, 33]). Let (�, �) be a partial metric
space and {��} any sequence in�.

(i) {��} is a Cauchy sequence in (�, �) if and only if it is a
Cauchy sequence in metric space (�, �).

(ii) (�, �) is complete if and only if the metric space (�, �)
is complete. Furthermore, lim�→∞�(��, �) = 0 if and
only if �(�, �) = lim�→∞�(��, �) = lim�,�→∞�(��,��).

(iii) Every 0-Cauchy sequence in (�, �) is Cauchy in (�, �).
(iv) If (�, �) is complete, then it is 0-complete.

	e converse assertions of (iii) and (iv) do not hold. Indeed,
the partial metric space (Q ∩R+, �), whereQ denotes the set

of rational numbers and the partial metric � is given by�(�, �) =max{�, �}, provides an easy example of a 0-complete
partial metric space which is not complete. Also, it is easy
to see that every closed subset of a 0-complete partial metric
space is 0-complete.

	e proof of the following lemma is easy, and for detail
we refer to [34] and the references therein.

Lemma7. Assume�� → � as � → ∞ in a partialmetric space(�, �) such that �(�, �) = 0. 
en lim�→∞�(��, �) = �(�, �)
for all � ∈ �.

Analogous to [30] we have following de
nitions.

De	nition 8. Let � : R+ → R be a mapping satisfying:

(F1) � is strictly increasing, that is, for �, � ∈ R
+ such that� < � implies �(�) < �(�);

(F2) for each sequence {��} of positive numbers
lim�→∞�� = 0 if and only if lim�→∞�(��) = −∞;

(F3) there exists � ∈ (0, 1) such that lim�→0+�	�(�) = 0.
For examples of function �, we refer to [30]. We denote the
set of all functions satisfying properties (F1)–(F3) byF.

Wardowski in [30] de
ned the �-contraction as follows.
Let (�, �) be a metric space. A mapping � : � → � is

said to be an �-contraction if there exists � ∈ F and � > 0
such that, for all �, � ∈ �, �(��, ��) > 0, we have

� + � (� (��, ��)) ≤ � (� (�, �)) . (1)

	e following lemma will be useful in proving our main
result.

Lemma9. Let (�, �) be a partial metric space and�, � : � →� two mappings. Suppose there exist � ∈ F and � > 0 such
that, for all �, � ∈ �, �(��, ��) > 0, one has

� + � (� (��, ��))
≤ �(max{� (�, �) , � (�, ��) , � (�, ��) ,

� (�, ��) + � (�, ��)
2 }) .

(2)

If � has a 	xed point � ∈ �, then � is a unique common 	xed
point of � and �, and �(�, �) = 0.
Proof. Let � ∈ � be a 
xed point of�. Suppose�(��, ��) > 0;
then by (2) we obtain

� + � (� (��, ��)) ≤ �(max{� (�, �) , � (�, ��) , � (�, ��) ,
� (�, ��) + � (�, ��)

2 }) ,
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� + � (� (�, ��))
≤ �(max{� (�, ��) , � (�, �) + � (�, ��)2 }) ,

� + � (� (�, ��)) ≤ � (� (�, ��)) ,
(3)

a contradiction (as � > 0). 	erefore we have �(��, ��) = 0;
that is,�� = �� = �.	us � is a common 
xed point of� and�. Again, if �(�, �) > 0, then by a similar process as above we
obtain

� + � (� (�, �)) = � + � (� (��, ��)) ≤ � (� (�, ��))
= � (� (�, �)) , (4)

a contradiction (as � > 0).	erefore,�(�, �) = 0. For unique-
ness, let V be another common 
xed point of � and �; that is,�V = �V = V. If �(�, V) > 0, then by (2) we obtain

� + � (� (�, V))
= � + � (� (��, �V))
≤ �(max{� (�, V) , � (�, ��) , � (V, �V) ,

� (�, �V) + � (V, ��)
2 })

= �(max{� (�, V) , � (�, �) , � (V, V) , � (�, V) + � (V, �)2 })
= � (� (�, V)) ,

(5)

a contradiction. 	erefore, �(�, V) = 0; that is, � = V. 	us a
common 
xed point is unique.

Now we can state our main results.

2. Main Results

	e following theorem extends and generalizes the results of
[30] in partial metric spaces.

�eorem 10. Let (�, �) be a 0-complete partial metric space
and �, � : � → � two mappings. Suppose there exist � ∈ F

and � > 0 such that, for all �, � ∈ �, �(��, ��) > 0, one has
� + � (� (��, ��))

≤ �(max{� (�, �) , � (�, ��) , � (�, ��) ,
� (�, ��) + � (�, ��)

2 }) .
(6)

If (i) � or � is continuous or (ii) � is continuous, then � and �
have a unique common 	xed point � ∈ �, and �(�, �) = 0.

Proof. Let �0 ∈ � be arbitrary. De
ne a sequence {��} by�2�+1 = ��2�, and �2�+2 = ��2�+1 for all � ≥ 0. If ��+1 = ��
for any % ∈ N, for example, let �2�+1 = �2�, then it follows
from (6) that

� + � (� (�2�+1, �2�+2))
= � + � (� (��2�, ��2�+1))
≤ �(max{� (�2�, �2�+1) , � (�2�, ��2�) , � (�2�+1, ��2�+1) ,

� (�2�, ��2�+1) + � (�2�+1, ��2�)2 })

= �(max{� (�2�, �2�+1) , � (�2�, �2�+1) , � (�2�+1, �2�+2) ,
� (�2�, �2�+2) + � (�2�+1, �2�+1)2 })

= �(max{� (�2�, �2�) , � (�2�, �2�) , � (�2�, �2�+2) ,
� (�2�, �2�+2) + � (�2�, �2�)2 })

= � (� (�2�, �2�+2)) ,
(7)

that is, �(�(�2�, �2�+2)) ≤ �(�(�2�, �2�+2)) − �. As, � > 0,
we get a contradiction. 	erefore, we must have �(�(�2�,�2�+2)) = 0; that is, �2� = �2�+1 = �2�+2. Similarly, we obtain�2� = �2�+1 = �2�+2 = �2�+3 = ⋅ ⋅ ⋅, and so �2� = ��2� = ��2�.
	us,�2� is a common
xed point of� and�. Now,we assume
that �� /= ��+1 for all% ∈ N; then it follows from (6) that

� + � (� (�2�+1, �2�))
= � + � (� (��2�, ��2�−1))
≤ �(max{� (�2�, �2�−1) , � (�2�, ��2�) , � (�2�−1, ��2�−1) ,

� (�2�, ��2�−1) + � (�2�−1, ��2�)2 })

= �(max{� (�2�, �2�−1) , � (�2�, �2�+1) , � (�2�−1, �2�) ,
� (�2�, �2�) + � (�2�−1, �2�+1)2 })

≤ �(max{� (�2�, �2�−1) , � (�2�, �2�+1) ,
� (�2�−1, �2�) + � (�2�, �2�+1)2 })

= � (max {� (�2�, �2�−1) , � (�2�, �2�+1)}) .
(8)
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If max{�(�2�, �2�−1), �(�2�, �2�+1)} = �(�2�, �2�+1), then it
follows from the above inequality that � + �(�(�2�+1, �2�)) ≤�(�(�2�, �2�+1)), a contradiction (as � > 0). 	erefore, we
must have max{�(�2�, �2�−1), �(�2�, �2�+1)} = �(�2�, �2�−1).
So, setting �� = �(��, ��+1) from the above inequality we
obtain that

� (�2�) ≤ � (�2�−1) − �. (9)

Again, using (6) we obtain

� + � (� (�2�+2, �2�+1))
= � + � (� (��2�+1, ��2�)) = � + � (� (��2�, ��2�+1))
≤ �(max{� (�2�, �2�+1) , � (�2�, ��2�) , � (�2�+1, ��2�+1) ,

� (�2�, ��2�+1) + � (�2�+1, ��2�)2 })

= �(max{� (�2�, �2�+1) , � (�2�, �2�+1) , � (�2�+1, �2�+2) ,
� (�2�, �2�+2) + � (�2�+1, �2�+1)2 })

≤ �(max{� (�2�, �2�+1) , � (�2�+1, �2�+2) ,
� (�2�, �2�+1) + � (�2�+1, �2�+2)2 })

= � (max {� (�2�, �2�+1) , � (�2�+1, �2�+2)}) .
(10)

If max{�(�2�, �2�+1), �(�2�+1, �2�+2)} = �(�2�+1, �2�+2), then
it follows from the above inequality that � + �(�(�2�+2,�2�+1)) ≤ �(�(�2�+2, �2�+1)), a contradiction (as � > 0).
	erefore, wemust havemax{�(�2�, �2�+1), �(�2�+1, �2�+2)} =�(�2�, �2�+1). So from the above inequality we obtain that

� (�2�+1) ≤ � (�2�) − �. (11)

Using (9) and (11) we obtain

� (�2�) ≤ � (�2�−1) − �
≤ � (�2�−2) − 2� ≤ ⋅ ⋅ ⋅ ≤ � (�0) − 2��. (12)

Similarly

� (�2�+1) ≤ � (�2�) − �
≤ � (�2�−1) − 2� ≤ ⋅ ⋅ ⋅ ≤ � (�0) − (2� + 1) �. (13)

It follows from (12) and (13) that lim�→∞�(��) = −∞. As� ∈ F by (F2) we have

lim�→∞�� = 0. (14)

Again, by (F3), there exists � ∈ (0, 1) such that

lim�→∞�	�� (��) = 0. (15)

From (12) and (13) we have

�	2� [� (�2�) − � (�0)] ≤ −2��	2�� ≤ 0,
�	2�+1 [� (�2�+1) − � (�0)] ≤ − (2� + 1) �	2�+1� ≤ 0.

(16)

Using (14) and (15) in the above inequalities we obtain

lim�→∞�(��)	 = 0. (17)

It follows from above that there exists �0 ∈ N such that

�(��)	 < 1 for all � > �0; that is,
�� < 1

�1/	 , ∀� > �0. (18)

Let%, � ∈ N with% > � > �0; then it follows from (18) that

� (��, ��) ≤ � (��, ��+1) + � (��+1, ��+2) + ⋅ ⋅ ⋅ + � (��−1, ��)
− [� (��+1, ��+1) + � (��+2, ��+2)

+ ⋅ ⋅ ⋅ + � (��−1, ��−1)]
≤ �� + ��+1 + ⋅ ⋅ ⋅
≤ 1
�1/	 +

1
(� + 1)1/	 + ⋅ ⋅ ⋅

= ∞∑

=�

1
61/	 .

(19)

As � ∈ (0, 1), therefore the series ∑∞
=� 1/61/	 converges; so it
follows from the above inequality that lim�→∞�(��, ��) =0; that is, the sequence {��} is a 0-Cauchy sequence in �.
	erefore, by 0-completeness of (�, �), there exists � ∈ �
such that

lim�,�→∞� (��, ��) = lim�→∞� (��, �) = � (�, �) = 0. (20)

We will prove that � is a common 
xed point of � and �. We
consider two cases.

Case 1. Suppose � is continuous. Using continuity of �, (20),
and Lemma 7 we obtain

� (�, ��) = lim�→∞� (�2�+1, ��)
= lim�→∞� (��2�, ��) = � (��, ��) .

(21)

We claim that �(��, ��) = 0. Suppose �(��, ��) > 0. If for
each � ∈ N there exists �� such that �(�	�+1, ��) = 0 and�� > ��−1 with �0 = 1, then by Lemma 7 and (20) we have�� = �, and so, by Lemma 9, � is a unique common 
xed
point of � and �.
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Now suppose there exists �1 ∈ N such that�(��, ���) > 0
for all � ≥ �1. 	en, since �(��, ��) > 0, there exists � > 0
such that �(��, ��) > �.

For any � ≥ �1 we have� + � (� (��, ��2�+1))
≤ �(max{� (�, �2�+1) , � (�, ��) , � (�2�+1, ��2�+1) ,

� (�, ��2�+1) + � (�2�+1, ��)2 })

= �(max{� (�, �2�+1) , � (��, ��) , � (�2�+1, �2�+2) ,
� (�, �2�+2) + � (�2�+1, ��)2 }) .

(22)

Using (20) and (21), there exists �2 ∈ N such that �(�,�2�+1), �(�2�+1, �2�+2) < �/2 and �(�2�+1, ��) < �(��, ��) +�/2 for all � > �2; therefore, it follows from the above
inequality that

� + � (� (��, ��2�+1))
≤ �(max{�2 , � (��, ��) ,

�
2 ,

�/2 + � (��, ��) + �/2
2 }) ,

� (� (��, ��2�+1)) < � (� (��, ��)) .

(23)

As � ∈ F, by (F1) we have �(��, ��2�+1) < �(��, ��) for
all � > max{�1, �2}, a contradiction. 	erefore, we must have�(��, ��) = �(�, ��) = 0; that is, �� = �, and by Lemma 9,� is a unique common 
xed point of � and �. Similarly, if �
is continuous, then � is a unique common 
xed point of �
and �.
Case 2. Now suppose that � is continuous. We can assume
that there exists �3 such that �(��, ��) > 0 for all � ≥ �3;
otherwise we get �� = � (similar as in previous case).

For any � ≥ �3, we obtain from (6) that

� + � (� (��, �2�+2))
= � + � (� (��, ��2�+1))
≤ �(max{� (�, �2�+1) , � (�, ��) , � (�2�+1, ��2�+1) ,

� (�, ��2�+1) + � (�2�+1, ��)2 })

≤ �(max{� (�, �2�+1) , � (�, ��) , � (�2�+1, �2�+2) ,
� (�, �2�+2) + � (�2�+1, �) + � (�, ��)2 }) .

(24)

From (20), there exists �4 ∈ N such that

max{� (�, �2�+1) , � (�, ��) , � (�2�+1, �2�+2) ,
� (�, �2�+2) + � (�2�+1, �) + � (�, ��)2 } = � (�, ��) ,

(25)

for all � > �4. 	erefore, it follows from (24) that

� + � (� (��, �2�+2)) ≤ � (� (�, ��)) , ∀� > max {�3, �4} .
(26)

Using continuity of � and letting � → ∞ in the above ine-
quality we obtain

� + � (� (��, �)) ≤ � (� (�, ��)) , (27)

a contradiction (as � > 0).	erefore wemust have �(�, ��) =0; that is, �� = �. Again by Lemma 9 � is a unique common

xed point of � and �.

	e following corollaries are immediate consequences of
	eorem 10.

Corollary 11. Let (�, �) be a 0-complete partial metric space
and �, � : � → � two mappings. Suppose there exist � ∈ F

and � > 0 such that, for all �, � ∈ �, �(��, ��) > 0, one has
� + � (� (��, ��)) ≤ � (max {� (�, �) , � (�, ��) , � (�, ��)}) .

(28)

If (i) � or � is continuous or (ii) � is continuous, then � and �
have a unique common 	xed point � ∈ �, and �(�, �) = 0.
Corollary 12. Let (�, �) be a 0-complete partial metric space
and �, � : � → � two mappings. Suppose there exist � ∈ F

and � > 0 such that, for all �, � ∈ �, �(��, ��) > 0, one has
� + � (� (��, ��)) ≤ � (� (�, �)) . (29)

If (i) � or � is continuous or (ii) � is continuous, then � and �
have a unique common 	xed point � ∈ �, and �(�, �) = 0.

Taking � = � in 	eorem 10 we obtain the following
corollary.

Corollary 13. Let (�, �) be a 0-complete partial metric space
and � : � → � a mapping. Suppose there exist � ∈ F and� > 0 such that, for all �, � ∈ �, �(��, ��) > 0, one has

� + � (� (��, ��))
≤ �(max{� (�, �) , � (�, ��) , � (�, ��) ,

� (�, ��) + � (�, ��)
2 }) .

(30)

If (i)� is continuous or (ii)� is continuous, then� has a unique
	xed point � ∈ �, and �(�, �) = 0.
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	e following is a 
xed point result for�-contraction in 0-
complete partial metric space and follows from Corollary 13.

Corollary 14. Let (�, �) be a 0-complete partial metric space
and � : � → � a mapping. Suppose there exist � ∈ F and� > 0 such that, for all �, � ∈ �, �(��, ��) > 0, one has

� + � (� (��, ��)) ≤ � (� (�, �)) . (31)

If (i)� is continuous or (ii)� is continuous, then� has a unique
	xed point � ∈ �, and �(�, �) = 0.

	e following are some examples which illustrate the
above results and that the generalizations are proper.

Example 15. Let � = [0, 1] ∩Q, and let � : � × � → R
+ be

de
ned by �(�, �) = max{�, �} for all �, � ∈ �. 	en (�, �)
is a 0-complete partial metric space, but it is not complete
partial metric space. Indeed, the inducedmetric space (�, �),
where �(�, �) = |�−�| for all �, � ∈ �, is not a completemet-
ric space. De
ne � : � → � by

�� =
{{{{{{{

�
4 , if � ∈ [0, 1) ;
1
8 , if � = 1.

(32)

We note that� satis
es the condition (31) of Corollary 14 with�(C) = log C for all C ∈ R
+, � ∈ (0, log 4], and 0 ∈ � is unique


xed point of � with �(0, 0) = 0. On the other hand, the
metric version of Corollary 14 is not applicable because (�, �)
is not complete metric space. Also, this example shows that
the class of �-contraction in partial metric spaces is wider
than that in metric spaces. Indeed, for � = 1, � = 9/10, there
is no� ∈ F and � > 0 such that �+�(�(��, ��)) ≤ �(�(�, �)),
where � is usual as well as the metric induced by �.

	e following example illustrates the case when
Corollary 11 is applicable, while Corollary 12 is not, as
well as the metric versions of Corollary 11 are not applicable.

Example 16. Let � = {0, 1, 2, 3}, and let � : � × � → R
+ be

de
ned by

� (�, �) = FFFF� − �FFFF +max {�, �} , ∀�, � ∈ �. (33)

	en, (�, �) is a 0-complete partial metric space. Note that
the metric induced by � is given by �(�, �) = 3|� − �| for all�, � ∈ �. De
ne �, � : � → � by

�0 = 0, �1 = 0, �2 = 1, �3 = 1,
�0 = 0, �1 = 0, �2 = 0, �3 = 1. (34)

Now, by a careful observation one can see that� and � satisfy
the condition (28) of Corollary 11, with �(C) = log C for allC ∈ R
+, � ∈ (0, log(3/2)], and� and� have a unique common


xed point, namely, 0 ∈ � with �(0, 0) = 0. While, � and� do not satisfy the condition (29) of Corollary 12. Indeed,
for � = 2, � = 2, there are no � ∈ F and � > 0 such that� + �(�(��, ��)) ≤ �(�(�, �)). Again, � and � do not satisfy

the metric versions of Condition (28) of Corollary 11. Indeed,� = 2, � = 1 are the points where the induced metric and
usual metric versions of condition (28) of Corollary 11 are not
satis
ed.

References

[1] S. G. Matthews, “Partial metric topology,” Annals of the New
York Academy of Sciences, vol. 728, pp. 183–197, 1994.

[2] A. Amini-Harandi, “Metric-like spaces, partial metric spaces
and 
xed points,” Fixed Point
eory and Applications, vol. 2012,
article 204, 2012.

[3] A. G. Bin Ahmad, Z. M. Fadail, V. C. Rajić, and S. Radenović,
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