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Abstract

This research work presents some comparisons and analyses of the time discontinuous

space–time Galerkin method and the space discontinuous Galerkin method applied to

elastic wave propagation in anisotropic and heterogeneous media. Mechanism of both

methods to ensure their stability using time or space discontinuities of unknown fields

is analyzed and compared. The most general case of anisotropic and heterogeneous

media with physical interfaces of discontinuous material properties is considered,

especially for the space discontinuous Galerkin method. A new stability result is proved.

Numerical applications to different elastic media, more particularly polycrystalline

materials containing a large number of physical interfaces, are also presented to

confirm theoretical analyses.

Keywords: Time discontinuous space–time Galekin method, Space discontinuous

Galerkin method, Stability, Elastic wave propagation, Anisotropy, Heterogeneous

medium with physical interfaces, Polycrystalline materials

Introduction

Nowadays, as a classical problem, the numerical modeling of elastic wave propagation can

be done reliably and efficiently in a large number of cases. However, for heterogeneous

media andwhen the domain of propagation is large compared to the involvedwavelengths

and to the characteristic length of heterogeneities, accurate and efficient simulations

of wave propagation phenomena still remain a challenging task. The case where the

geometries of interior physical interfaces of heterogeneities are complicated, for instance

the polycrystalline materials, and the 3D case are even more problematic. Therefore, the

research field for the development of effective solvers is still active and it is also important

to compare and assess the existing methods that have already proved their effectiveness

in simpler cases.

The purpose of the paper is to present some comparisons and analyses between a space

discontinuous Galerkin (dG) method and a time discontinuous space–time Galerkin

method, hereafter named the time dG method. Both methods use discontinuities of
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unknown fields to ensure the stability but in different ways leading to different conse-

quences.

The time dG method considered herein is a displacement and velocity two-fields

method, which is a specific case of a general time discontinuous space–time finite ele-

ment method for the second order hyperbolic elastodynamic equations developed by

Hughes and Hulbert [1–3]. In the weak formulation of the general method, additional

stabilizing terms of least-squares type are introduced so it can be viewed as a Petrov–

Galerkin method. However, these least-squares terms are not necessary for the stability

of the method and can be omitted. Without these terms, we get a time discontinuous

Galerkin method. In this case, the only appropriate definition of upwind fluxes (due to

the causality), together with the use of the elastic energy inner product to enforce the

displacement–velocity compatibility, is sufficient to make the time dGmethod stable (see

“Displacement–velocity two fields time dGmethod” section). By choosing specific space–

time elements, the time dG method can be finally written as a time-stepping scheme and

results in an implicit solver. As one important advantage, the method provides an appro-

priate framework to develop adaptive computing as it remains unconditionally stable even

if the space discretization changes over time [4–8]. From one time step to another, the

energies that are dissipated in the jumps in time of both displacement and velocity fields

guarantee the unconditional stability.

The space dGmethod1 is based on the use of spatially element-wise discontinuous finite

element basis functions. It has been widely used for computational fluid dynamics, and its

application to solid elastodynamics ismore recent.We refer to [9–18] for a non-exhaustive

review of related research works. To apply the space dGmethod, the second-order elastic

wave equations are transformed to a first-order hyperbolic system, both velocity–stress

[10,11] and velocity–strain [15] formulations can be used. One important advantage of

the space dGmethod is that the use of discontinuous finite element basis functions allows

element-wise solving and makes straightforward the parallel data structures and comput-

ing.

For the spacedGmethod, developing appropriatenumerical fluxesonelement interfaces

is the key point for its success. For this purpose, exact solving of the Riemann problem

defined on element interfaces is usually recommended. Herein, the upwind numerical

fluxes that are exact solutions of the Riemann problem are called exact upwind numerical

fluxes and those are only approximate solutions are called approximate upwind numerical

fluxes. When the space dG method is applied to elastic media, due to the involvement of

the fourth order elastic tensor, the exact upwind numerical fluxes can be easily defined

only in the case of continuous material properties [11,15]. In [15], the exact upwind

numerical fluxes were also developed for 2D isotropic elastic media with discontinuous

material properties for the velocity–strain formulation.

Recently, in the most general case of multidimensional anisotropic elastic media with

discontinuous material properties, a unified and wave oriented variational framework has

been proposed by the author [17], which allows a systematic development of the exact

upwind numerical fluxes for both velocity-stress and velocity–strain formulations [18].

Owing to the compact and intrinsic forms expressed in terms of tensors, the derivation

1It is worth noticing that the space dG method considered is usually called discontinuous Galerkin method. The word

“space” is added in the present work in order to distinguish it from the considered time dG method.
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of upwind numerical fluxes can be done in a well structured way, which allows better

understanding of the physical meaning of the developed upwind numerical fluxes. The

consistency of the exact numerical fluxes can be easily proved [15,18]. However, the

stability analysis of the space dG method is much more difficult. Wilcox et al. has proved

the stability of the velocity–strain dG method in 2D isotropic elastic media including

physical interfaces. Their result shows that the energies dissipated in the jumps in space of

the velocity and strains fields guarantee the stability for the velocity–strain dG formulation

that is not yet discretized in time [15].

In the present paper, the velocity–stress space dG formulation is considered in the gen-

eral case of anisotropic elastic media with physical interfaces and its stability is analyzed.

The result allows explaining the following phenomena previously observed in [17]: when

the degree of discontinuity at physical interfaces is high, the use of approximate numerical

fluxes leads to instability problems, which cannot be resolved by simply reducing the time

step used by the time discretization scheme.

Several numerical examples are presented to illustrate the analytical results. More par-

ticularly, polycrystallinematerials that present an interesting case of heterogeneousmedia

with a large number of physical interfaces are considered. For this, ultrasonic wave propa-

gation in a single-phase anduntexturedpolycristal composedof elliptic grains is simulated.

Displacement–velocity two fields time dGmethod

We consider the wave propagation in an elastic medium � ⊂ R
d of space dimension d

(d = 1, 2, 3) and in a time interval [0, T ]. � is submitted to dynamic body and surface

forces f and g . g is applied on a part of �’s boundary ∂�N ⊂ ∂�.

Within the framework of the displacement–velocity two fields time dG method, the

elastic wave propagation problem is governed by the following first-order in time equa-

tions with as primary unknowns the displacement field u(x, t) and the velocity field v(x, t):

∀(x, t) ∈ �×]0, T [

ρ∂tv − Divx σ(u) − f = 0 (1a)

Divx(σ(∂tu − v)) = 0 (1b)

where ρ denotes the density and σ the second-order Cauchy stress tensor. σ is linked to

the second-order infinitesimal strain tensor ε and the displacement u by the Hooke’s law

and the definition of ε under the hypothesis of small deformations:

σ(u) = C : ε(u) (2a)

ε(u) =
1

2

(

Dx u + (Dx u)
T
)

(2b)

In (2), C is the fourth-order elasticity Hooke tensor, (·)T denotes the transpose oper-

ator and “:” the usual double dot product between two tensors defined as (C : ε)ij =
∑

k,l Cijklεkl ≡ Cijklεkl . Herein, the Einstein summation convention is systematically used

and all the vectors and tensors are denoted using bold letters. The partial derivative oper-

ator with respect to time is denoted ∂t .
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Otherwise, it is useful to recall the usual space gradient and divergence operators defined

using an orthonormal basis (ei)i=1,...,d :

Dx u =
∂u

∂xi
⊗ ei, Divx σ =

∂σ

∂xi
· ei (3)

with “⊗” theusual tensorproduct between twovectors: (a⊗b)ij = aibj and “·” theusual dot
product between a tensor and a vector: (A ·a)i = Aijaj . In the following, the symmetrized

tensor product “⊗s” will also be used and it is defined as: (a ⊗s b) = 1
2 (a ⊗ b + b ⊗ a).

Among the two equations of the governing system (1), the first one (1a) expresses the

elastodynamic equilibrium and the second one (1b) the compatibility condition between

the displacement and velocity fields, which are treated as independent unknowns. How-

ever, (1b) is less classical due to the use of the space derivative operatorDivx(σ(·)), which

allows, as will be indicated later, proving the stability of the time dG method in terms of

kinetic and elastic energies. It isworth noticing that, due to the special formof the equation

(1b), the extension of the time dG method to nonlinear problems is not straightforward,

since the meaning of the term Divx(σ(∂tu − v)) in (1b) becomes unclear. For example, in

the case of an elastoplastic problem, if only the elastic part of the stress operator is taken

into account to have (1b) well-defined, then the stability analysis of the obtained solver

would be difficult.

For the time-dependent problem (1), the following initial conditions are necessary:

∀x ∈ �

u(x, 0) = u0(x), v(x, 0) = v0(x) (4)

with u0 and v0 respectively the initial displacement and velocity fields. Finally, to complete

the definition of the elastic wave propagation problem, the following boundary conditions

are prescribed:

u(x, t) = uD(x, t) , v(x, t) = ∂tuD(x, t) ∀(x, t) ∈ ∂�D×]0, T [ (5a)

σ(u(x, t)) · n = g(x, t) , σ(v(x, t)) · n = ∂tg(x, t) ∀(x, t) ∈ ∂�N×]0, T [ (5b)

The main idea of the displacement–velocity two fields time dG method is to establish

a space–time variational formulation of the strong formulation (1), which is furthermore

already discretized in time.

To do this, the whole space–time domain S = �× ]0, T [ is subdivided into N space–

time slabs: {Sn = �×�Tn}n=1,···,N , with�Tn = ]tn−1, tn[. Between two successive space–

time slabs, the unknown fields u and v can be discontinuous. Then, by considering the bal-

ance of the virtual works integrated in the space-time domain, the variational formulation

in each space–time slab Sn expressing the dynamic equilibrium and the displacement–

velocity compatibility reads as: ∀(wu,wv) ∈ V (Sn) × V (Sn)

(ρ∂tv,wv)Sn + (σ(u), ε(wv))Sn + (ρ[v(tn−1)],wv(t
+
n−1))�

= (f ,wv)Sn + (g ,wv)∂�N×�Tn (6a)

(σ(∂tu − v), ε(wu))Sn + (σ([u(tn−1)]), ε(wu(t
+
n−1)))� = 0 (6b)
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whereV (Sn) is the space of kinematically admissible fields (wu,wv), [·(tn−1)] = (·)(t+n−1)−
(·)(t−n−1) denotes the jump quantity in time at tn−1 and (·, ·)D denotes the inner product

between two vector fields or two tensor fields integrated over a domain D, e.g.

(v,wv)D =
∫

D
v · wvdV , (σ(u), ε(wu))D =

∫

D
σ(u) : ε(wu)dV (7)

It is worth recalling that to obtain (6), the integration by parts is also made in time,

then a numerical flux between two successive space–time slabs should be chosen, as the

fluxes are not continuous, e.g. at tn, we have (v(t−n ), σ(u(t
−
n ))) �= (v(t+n ), σ(u(t

+
n ))). Due

to causality, a natural choice is to take the numerical fluxes equal to the upwind fluxes

(v(t−n ), σ(u(t
−
n ))).

Now, let us consider the total energy functional E�(u(t), v(t)) over the whole studied

domain � that is defined as follows:

E�(u(t), v(t)) =
1

2
(σ(u(t)), ε(u(t)))� +

1

2
(ρv(t), v(t))� (8)

The following result concerning the stability of the time dG method (6) can be proved.

Theorem 1 By assuming that there is no source term inside � (i.e. f = 0) and the homo-

geneous Neumann and Dirichlet boundary conditions (i.e. g = 0 and uD = 0), the time

dG method (6) is stable in the sense that the following equations hold for each space–time

slab Sn and for the whole space–time domain S:

E�(u(t
−
n ), v(t

−
n )) − E�(u(t

−
n−1), v(t

−
n−1)) = −E�([u(tn−1)], [v(tn−1)]) ≤ 0 (9a)

E�(u(T
−), v(T−)) − E�(u0, v0) = −

N
∑

n=1

E�([u(tn−1)], [v(tn−1)]) ≤ 0 (9b)

In the sense that (9) holds also for finite element solutions whatever the space–time mesh

used to discretize each space–time slab Sn, the time dGmethod (6) is unconditionally stable.

Proof Taking (wv ,wu) = (v,u) in (6), (9a) is straightforward for each space–time slab

Sn. Then summing up all the space–time slabs and noticing that (u(x, 0−), v(x, 0−)) =
(u0(x), v0(x)), (9b) is immediate. ⊓⊔

Hence, the kinetic and elastic energies dissipated in the displacement and velocity jumps

in time between two successive space–time slabs guarantee the unconditional stability of

the time dG method.

Otherwise, we recall that space–time meshes generally used for the time dG method

are composed of a classical finite element mesh in space and one linear element in time

in each space–time slab and so an implicit solver is actually obtained [4–8,17].

Velocity–stress space dGmethod

The governing equations of the same model problem of elastic wave propagation defined

in the preceding are firstly given within the framework of the velocity–stress space dG

method. The unified andwave oriented variational framework proposed in [17] is recalled.

Then the exact upwind numerical fluxes developed in [17,18] are given before the presen-

tation of the main result of the present work: the stability of the space dG method in the

general case of anisotropic heterogeneousmedia with physical interfaces of discontinuous

material properties.
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Strong and variational formulations

Weconsider the samemodel problemof elasticwave propagation defined in the preceding

section. However, within the framework of the velocity–stress space dGmethod proposed

in [10,11,19] (see Eqs. (22.14–22.15) in [19]), its governing equations are put into the

following strong first-order hyperbolic systemwith as primary unknowns the velocity and

stress fields (v, σ): ∀(x, t) ∈ �×]0, T [

∂tU + A∂x (U ) = 0 or
∂tv − ρ−1

Divx σ = 0

∂tσ − C : ε(v) = 0
(10)

where the space derivation operator A∂x and its transpose (useful hereafter) are defined

as follows: ∀W = (w τ)T

A∂x

(

w

τ

)

=

(

−ρ−1
Divx τ

−C : ε(w)

)

, A∂x ,T

(

w

τ

)

=

(

−Divx(C : τ)

−ρ−1ε(w)

)

(11)

We note that in this section no body force is considered in the equilibrium equation

without loss of generality of the purpose of the present work.

The tensorial compact form in (10) was proposed in [17]: the generalized unknown

U (x, t) = (v(x, t) σ(x, t))T composed of v and σ is a field inR
d ×R

d×dsym and defined over

the space–time domain S = �×]0, T [, withR
d×dsym indicating that σ is a d×d symmetric

second-order tensor. The inner product in the vectorial space R
d × R

d×dsym is defined as:

∀W i = (wi τi)
T , (i = 1, 2),

W 1 · W 2 = w1 · w2 + τ1 : τ2 (12)

According to the definition of the space derivative operators (3), it is easy to show that,

on the boundary ∂D of any subdomain D ⊆ �, the flux operator Fn (with n = niei the

outward unit normal vector defined on ∂D) associated to the first-order system (10) is in

fact equal to An the Jacobian operator in the n direction, that is: ∀W = (w τ)T ,

Fn(W ) = An(W ) =

(

−ρ−1τ · n
−C : (n ⊗s w)

)

(13)

In (13), the subscript index “n” indicates the dependency of Fn and An on n. In the

following, the local orthonormal basis defined on ∂Dwill be denoted by (n, {tα}α=1,...,d−1).

Furthermore, it is useful to recall one important result given in [17]: An can be decom-

posed using its two eigenbases as follows:

An = λ−
n,k

R−
n,k

⊗ L−
n,k

+ λ+
n,k

R+
n,k

⊗ L+
n,k

(14)

where (λ−
n,k

,R−
n,k

,L−
n,k

)k=qL,{qTα}α=1,d−1
and (λ+

n,k
,R+

n,k
,L+

n,k
)k=qL,{qTα}α=1,d−1

are respectively

the strictly negative and positive eigenvalues and the corresponding right and left eigen-

vectors of An. The left eigenvectors of An are the right eigenvectors of A
T
n .

We recall that, among the m = d + d(d + 1)/2 eigenvalues of An, there are d strictly

negative eigenvalues (λ−
n,k

= −cn,k )k=qL,{qTα}α=1,...,d−1
and d strictly positive eigenvalues

(λ+
n,k

= cn,k )k=qL,{qTα}α=1,...,d−1
, cn,qL and cn,qTα being respectively the velocity of quasi
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longitudinal and quasi transverse wave modes propagating in the n direction. The sub-

script indices “qL” and “qT ” respectively refer to terms “quasi longitudinal” and “quasi

transverse”.

According to [17], the right and left eigenmodes corresponding to the nonzero eigen-

values of An read as: ∀k = qL, {qTα}α=1,...,d−1

R±
n,k

=

(

wn,k

−ρ(z±
n,k

)−1C : (n ⊗s wn,k )

)

, L±
n,k

=

(

wn,k

−(z±
n,k

)−1n ⊗s wn,k

)

(15)

with z±
n,k

= ρλ±
n,k

the acoustic impedance,wn,k = 1√
2
γn,k , (γn,k )k=qL,{qTα}α=1,...,d−1

the unit

eigenvectors of the usual eigensystem of the Christoffel tensor Ŵn:

Ŵn · γn,k = λ2n,kγn,k (16)

The definition of the Christoffel tensor Ŵn is recalled in the following:

Ŵn · w = ρ−1(C : (n ⊗s w)) · n, ∀w (17)

We recall that the word “quasi” means that in the general anisotropic case we have nei-

ther pure longitudinal wave mode verifying γn,qL ‖ n nor pure transverse waves modes

verifying γn,qT ⊥ n, in contrast to the isotropic case.

To develop the variational formulation for the space dG method applied to the strong

formulation (10), the main idea is to seek an approximated solution Uh = (vh σh)
T that

are discontinuous in space, so we need to use a finite elementmesh and the obtained space

dG formulation is already discretized in space.

Let Mh = {�k}k denote a finite element mesh of �. In the following, any element �k

of the mesh Mh will be denoted by E and any of its neighboring elements by E′. The

discontinuous solutions in E and E′ are respectively denoted by Uh and U ′
h. Then the

space dG variational formulation of the elastic wave model problem (10) for any elemnt

E can be put into the following two equivalent forms: ∀W h(x) = (wh(x) τh(x))
T

(W h, ∂tUh)E − (A∂x ,T (W h),Uh)E + (W h, F̂n(Uh,U
′
h))∂E = 0 (18a)

(W h, ∂tUh)E + (W h,A
∂x (Uh))E + (W h, F̂n(Uh,U

′
h) − Fn(Uh))∂E = 0 (18b)

In (18), F̂n(Uh,U
′
h) denotes anumerical fluxused to replace thediscontinuousfluxFn(Uh)

on the element boundary ∂E when the variational formulation (18a) is established. Hence,

an appropriate choice of the numerical flux is essential for the success of the space dG

method.

In the following, is firstly recalled the definition of numerical fluxes on the interior

element boundary ∂Eint = ∂E\(∂E ∩ ∂�), which should also depend on the solution

U ′
h in the neighboring elements E′ of E. As for the exterior element boundary ∂Eext =

∂E∩∂�, the definitionof thenumerical flux F̂n(Uh) should take into account the boundary

conditions U ′
h. It was given in [17] and will be recalled in Lemma 1.



Tie Adv. Model. and Simul. in Eng. Sci.            (2019) 6:3 Page 8 of 27

Fig. 1 Sketch illustrating the Rankine–Hugoniot jump conditions in the Riemann problem in the 3D case

Exact upwind numerical fluxes

Let us consider the interface of two adjacent elements E and E′ having respectively

(ρ,C ,Uh) and (ρ′,C ′,U ′
h) as densities, elastic moduli and initial states (Fig. 1). The two

outward unit normal vectors of E and E′ on their interface are respectively n and n′ and

verify n + n′ = 0.

To define exact upwind numerical fluxes, we should consider the Riemann problem

governing the states that are results of the propagation of the discontinuity Uh − U ′

h

[15,17–20]. In the following all the equations are written in the 3D case without loss of

generality.

As discussed in [17], solving exactly the Riemann problem at element interfaces is not a

sufficient condition to get physically sound numerical solutions. Indeed, different equiva-

lent strong forms of the elastic wave problem give rise to different forms of the Riemann

problem and consequently to different interface conditions. For example, the Riemann

problem directly derived from the strong form (10) leads to the following interface con-

ditions:

σc
h

· n
ρ

+
σc′
h

· n′

ρ′ = 0 , ρŴn · vch − ρ′Ŵ′
n′ · vc

′
h = 0 (19)

Obviously, on a physical interface with ρ �= ρ′ or/and Ŵn �= Ŵ′
n′ , (19) are generally not

coherent with the classical interface conditions, i.e. the following velocity and stress vector

continuities:

σc
h · n + σc′

h · n′ = 0 , vch − vc
′
h = 0 (20)

In the present work, only the exact upwind numerical fluxes developed in [18] that are

coherent with (20) are considered.

Recalling the results given in [18], the Rankine–Hugoniot jump conditions leading to

the interface conditions (20) read as:

Ãn(Uh) − Ãn(U
c
h) = α̃kλ

−
n,k

M̃(R−
n,k

) (21a)

Ãn(U
c
h) + Ã

′
n′ (U c′

h ) = 0 (21b)

Ã
′
n′ (U ′

h) − Ã
′
n′ (U c′

h ) = α̃′
kλ

−′

n′ ,kM̃
′
(R−′

n′ ,k ) (21c)
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It is worth noticing that the Riemann problem (21) corresponds to another equivalent

form of the first-order velocity–stress system (10):

M̃(∂tU ) + Ã
∂x
(U ) = 0 or

ρ∂tv − Divx σ = 0

C−1 : ∂tσ − ε(v) = 0
(22)

with

M̃

(

w

τ

)

=

(

ρw

C−1 : τ

)

, Ã
∂x

(

w

τ

)

=

(

−Divx τ

−ε(w)

)

, Ãn

(

w

τ

)

=

(

−τ · n
−n ⊗s w

)

(23)

Furthermore, by recalling (15) the definition of (R−
n,k

,L−
n,k

) and (14) the decomposition of

An, it can be shown that:

M̃(Rn,k ) = ρLn,k (24a)

Ãn = z±
n,k

L±
n,k

⊗ L±
n,k

(24b)

Solving of the Riemann problem (21) leads to the determination of the six unknown

states {Ua,Ub,U c ,Ua′
,Ub′

,U c′}, i.e. the six characteristic coefficients {α̃k , α̃
′
k
}k=qL,qT1 ,qT2

.

Then, the exact numerical fluxes are defined in the following way:

ˆ̃Fn(Uh,U
′
h) = Ãn(U

c
h) = Ãn(Uh) − α̃kλ

−
n,k

M̃(R−
n,k

) (25a)

=
1

2
Ãn(U

c
h) −

1

2
Ã

′
n′ (U c′

h ) (25b)

F̂n(Uh,U
′
h) = M̃

−1 · ˆ̃Fn(Uh,U
′
h) = An(Uh) − α̃kλ

−
n,k

R−
n,k

(25c)

We remark that (25b) gives another flux definition that is equivalent to (25a). It will be

used in the proof of Lemma 1.

In [18], it has been proved that {α̃k , α̃
′
k
}k=qL,qT1 ,qT2

are the solution of the following

linear system of equations:

[

[Id] [B̃]

[B̃′] [Id]

]

·

(

{α̃k}
{α̃′

k
}

)

=

(

{̃L−
n,k

· (Uh − U ′
h)}

{̃L−′

n′ ,k · (U ′
h − Uh)}

)

(26)

In (26), [Id] is the d × d identity matrix and [B̃] and [B̃′] are d × d matrices with zero

diagonal terms and the following extra-diagonal terms:

B̃kl,k �=l = −
C−
z,k

2

δz−′

n′ ,kl

z−′
n′ ,k

γn,k · γ ′
n′ ,l , B̃

′
kl,k �=l = −

C−′

z,k

2

δz−
n,kl

z−
n,k

γ ′
n′ ,k · γn,l (27)

with δz−
n,kl

= z−
n,k

− z−
n,l
, δz−′

n′ ,kl = z−′

n′ ,k − z−′

n′ ,l and,

C−
z,k

=
z−
n,k

R

z−
n,k

=
z−′

n,k

z−
n,k

V
> 0 , C−′

z,k
=

z−
n,k

R

z−′
n′ ,k

=
z−
n,k

z−
n,k

V
> 0 (28)
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z−
n,k

R
and z−

n,k

V
respectively denote the harmonic and arithmetic means of the acoustic

impedances of the k-th eigenvector. {̃L−
n,k

, L̃−′

n′ ,k} are the perturbed left eigenmodes of

{An,A
′
n′} calculated by using the material properties of the adjacent element E′ in the

following way:

L̃−
n,k

= C−
z,k

(

wn,k

−(z−′

n′ ,k )
−1n ⊗s wn,k

)

, L̃−′

n′ ,k = C−′

z,k

(

w′
n′ ,k

−(z−
n,k

)−1n′ ⊗s w
′
n′ ,k

)

(29)

Two simpler but interesting cases to consider are:

• Continuous case

On an element interface with continuous material properties, it is straightforward

that:

α̃k = L−
n,k

· (Uh − U ′
h) , α̃′

k = L−′

n′ ,k · (U ′
h − Uh) (30)

• Discontinuous isotropic case

On an element interface separating two different isotropicmaterials, by simply recall-

ing that in the isotropic case γn,qL = n, γn,qT1
= t1 and γn,qT2

= t2, it is straightfor-

ward that:

α̃k = L̃−
n,k

· (Uh − U ′
h) , α̃′

k = L̃−′

n′ ,k · (U ′
h − Uh) (31)

We note that, only in the general case of an element interface separating two different

anisotropic materials, we have [B̃] �= [0] and [B̃′] �= [0]. Otherwise, it is interesting to note

that the perturbed left eigenmodes {̃L−
n,k

, L̃−′

n′ ,k} take into account the coupling between

the wave modes of the same type, e.g. both qL-modes, of the adjacent elements E and E′,

while the matrices [B] and [B′] take into account the coupling between two wave modes

of different type, e.g. a qL wave mode from E with a qT wave mode from E′.

Stability analysis

Now the main result concerning the stability of the space dG method (18) using the

exact upwind numerical fluxes (25)–(26) is given. Firstly, the stability of the space dG

method is proved in both continuous case and discontinuous isotropic case whatever the

space dimension. Then, in the general case of anisotropic media with physical interfaces

separating different materials, the proof, which is much more complicated, is given only

for the space dimension equal to 2.

Hereafter, ŴEE′ = ∂E ∩ ∂E′ denotes the interface between any pair of adjacent elements

E and E′ and the following notations are used for space jumps across it:

[Uh] = Uh − U ′
h , [vh] = vh − v′

h , [σh · n] = σh · n − σ′
h · n (32)

Let us consider the total energy functional E�(t) over the whole studied domain � that

is defined within the framework of the space dG method as follows:

E�(t) =
∑

E

EE(Uh(t),Uh(t)) =
1

2

∑

E

((

ρvh(t), vh(t)
)

E
+

(

C−1 : σh(t), σh(t)
)

E

)

(33)

Firstly, the following lemma can be proved.
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Lemma 1 By assuming that there is no source term inside � ( i.e. f = 0) and the homo-

geneous Neumann and Dirichlet boundary conditions ( i.e. g = 0 and uD = 0), we have

∂tE� =
∑

ŴEE′

(

[Uh],
1

2
(α̃kz

−
n,k

L−
n,k

− α̃′
kz

−′

n′ ,kL
−′

n′ ,k )
)

ŴEE′
(34)

Proof Let us consider any element E. When ∂Eext �= ∅, let us assume, as in [17] (“Exact

upwind numerical fluxes” section), that the Dirichlet boundary conditions are strongly

imposed by eliminating the prescribed degrees of freedom of velocity in the final system

to solve. On the other hand, as also discussed in [17], it is natural to choose the following

numerical flux on ∂�N where the Neumann boundary conditions are prescribed:

F̂n(Uh, g) =

(

−ρ−1g

−C : (n ⊗s vh)

)

(35)

Then, when the strategy of weak verification of the Neumann boundary conditions is

chosen, the two equivalent space dG variational formulations (18) become:

(W h, ∂tUh)E − (A∂x ,T (W h),Uh)E + (W h, F̂n(Uh,U
′
h))∂Eint

+ (W h, F̂n(Uh, g))∂E∩∂�N = 0 (36a)

(W h, ∂tUh)E + (W h,A
∂x (Uh))E + (W h, F̂n(Uh,U

′
h) − Fn(Uh))∂Eint

+ (W h, F̂n(Uh, g) − Fn(Uh))∂E∩∂�N
= 0 (36b)

and, when the strategy of strong verification of the Neumann boundary conditions is

chosen, i.e. σh · n = g , they become:

(W h, ∂tUh)E − (A∂x ,T (W h),Uh)E + (W h, F̂n(Uh,U
′
h))∂Eint

+ (W h, F̂n(Uh, g))∂E∩∂�N = 0 (37a)

(W h, ∂tUh)E + (W h,A
∂x (Uh))E + (W h, F̂n(Uh,U

′
h) − Fn(Uh))∂Eint = 0 (37b)

Now let us sum up the two equivalent space dG variational formulations (36) or (37),

divide the obtained equation by 2 and take

W h = M̃ · Uh =

(

ρvh

C−1 : σh

)

(38)

then, by remarking that the following equations are true:

(

W h, ∂tUh

)

E
= ∂tEE(Uh(t),Uh(t)) (39a)

−
(

A∂x ,T (W h),Uh

)

E
+

(

W h,A
∂x (Uh)

)

E
= 0 (39b)

we finally get:

∂tEE(Uh,Uh) = −
(

Uh,
ˆ̃Fn(Uh,U

′
h)

)

∂Eint
+

1

2

(

Uh, F̃n(Uh)
)

∂Eint
+ (vh, g)∂E∩∂�N (40)

Now, by summing up all the elements, remarking that:

(

Uh, F̃
′
n′ (U ′

h)
)

ŴEE′
+

(

U ′
h, F̃n(Uh)

)

ŴEE′
= 0 (41)
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and taking into the definition (25b) of the numerical fluxes ˆ̃Fn(Uh,U
′
h) and (24a), the Eq.

(34) can be finally proved. ⊓⊔

Now, using Lemma 1, the following results concerning the stability of the space dG

method can be proved.

Theorem 2 In the continuous case, the space dG method is stable in the sense that:

∂tE� = −
1

2

∑

ŴEE′

(

[Uh], |Ãn| · [Uh]
)

ŴEE′
≤ 0 (42)

with |Ãn| = |z±
n,k

|L±
n,k

⊗ L±
n,k

.

Proof In the continuous case, {α̃k , α̃
′
k
}k=qL,qT1 ,qT2

are given by (30) and the following

equations hold:

λ±′

n′ ,k = λ±
n,k

, R∓′

n,k
= R±

n′ ,k , L∓′

n′ ,k = L±
n,k

(43)

Using the decomposition (24b) of Ãn, the equation in (42) is straightforward. As |Ãn| is
symmetric and positive-definite, the inequation in (42) is obvious. ⊓⊔

Theorem 3 In the discontinuous isotropic case, the space dGmethod is stable in the sense

that:

∂tE� = −
1

2

∑

ŴEE′

∫

ŴEE′

(

|z−
n,k

|
R
([vh] · γn,k )

2 +
(

[σh · n] · γn,k )
2

|z−
n,k

|
V

)

dŴ ≤ 0 (44)

Proof In this case, {α̃k , α̃
′
k
}k=qL,qT1 ,qT2

are given in (31), then we get:

∂tE� = −
1

2

∑

ŴEE′

(

[Uh],A
∗ · [Uh]

)

ŴEE′
(45)

with A∗ = |z−
n,k

|L−
n,k

⊗ L̃−
n,k

+ |z−′

n′ ,k |L
−′

n′ ,k ⊗ L̃−′

n′ ,k .

According to (15), (29) and (28), the definitions of (L−
n,k

,L−′

n′ ,k ), (̃L−
n,k

, L̃−′

n′ ,k ) and

(C−
z,k
, C−′

z,k
), we get:

A∗ =
1

2
|z−
n,k

|
R

( (

γn,k

|z−
n,k

|−1n ⊗s γn,k

)

⊗

(

γn,k

|z−′

n′ ,k |
−1n ⊗s γn,k

)

+

(

γ ′
n′ ,k

|z−′

n′ ,k |
−1n′ ⊗s γ ′

n′ ,k

)

⊗

(

γ ′
n′ ,k

|z−
n,k

|−1n′ ⊗s γ ′
n′ ,k

) ) (46)

Herein, the orthonormal basis on ŴEE′ chosen for E (resp. E′) is (n, {t l}l=1,d−1) (resp.

(n′, {t ′
l
}l=1,d−1)) with t l + t ′

l
= 0. Then by taking into account the fact that in the isotropic

case the eigenvector {γn,k}k=1,d (resp. {γ ′
n′ ,k}k=1,d) can be taken equal to the elements of

the corresponding basis, we have γ ′
n′ ,k = −γn,k (∀k). Putting the latter and (46) in (45), it

is easy to get (44). ⊓⊔



Tie Adv. Model. and Simul. in Eng. Sci.            (2019) 6:3 Page 13 of 27

We note that a similar result for the velocity–strain space dG formulation was proved

by Wilcox et al. in [15], similar roles played by the harmonic and arithmetic means of the

acoustic impedances |z−
n,k

|
R
and |z−

n,k
|
V
were highlighted.

It can be noticed that the proof of the stability in the discontinuous isotropic case is

more tricky than the one in the continuous case. However, thanks to the fact that the

relation γ ′
n′ ,k = −γn,k (∀k) remains true, the proof remains relatively simple, contrary to

the stability analysis in the discontinuous anisotropic case. In the following, only the 2D

case is considered and the stability is proved only under a sufficient condition.

In the 2D case, let us assume that four orthonormal bases are used: (n, t) and (γn,1, γn,2)

forE, and (n′, t ′) and (γ ′
n′ ,1, γ

′
n′ ,2) forE

′, with e3 = n∧t = n′∧t ′ = γn,1∧γn,2 = γ ′
n′ ,1∧γ ′

n′ ,2.

Otherwise, ζ defined as follows is also used:

ζ ≡ γn,1 · γ ′
n′ ,2 = −γn,2 · γ ′

n′ ,1 (47)

We remark that ζ = 0 in both continuous and discontinuous isotropic cases.

Theorem 4 In the 2D discontinuous anisotropic case, the space dGmethod is stable in the

sense that:

∂tE� = −
D̃11

8

∑

ŴEE′

∫

ŴEE′

(

G(|z−
n,1|

R
, |z−

n,2|
R
,�R

12; [vh]

)

+ G

⎛

⎝

1

|z−
n,1|

V
,

1

|z−
n,2|

V
,�V

12; [σh · n]

⎞

⎠

⎞

⎠

≤ 0 (48)

under the following sufficient condition:

1

|z−
n,1|

R
|z−
n,2|

R
=

1

4

(

1

|z−
n,1|

+
1

|z−′
n′ ,1|

)(

1

|z−
n,2|

+
1

|z−′
n′ ,2|

)

≥
(

�R
12ζ

2

)2

(49a)

|z−
n,1|

V
|z−
n,2|

V
=

1

4

(

|z−
n,1| + |z−′

n′ ,1|
)(

|z−
n,2| + |z−′

n′ ,2|
)

≥
(

�V
12ζ

2

)2

(49b)

In (48), G(C1, C2,�;w) is defined as follows: ∀C1 ≥ 0, C2 ≥ 0 and w

G(C1, C2,�;w)

=
(√

C1

√

β+(C1, C2,�)w · γn,1 − sgn(�ζ )
√
C2

√

β−(C1, C2,�)w · γ ′
n′ ,2

)2

+
(√

C1

√

β−(C1, C2,�)w · γn,1 − sgn(�ζ )
√
C2

√

β+(C1, C2,�)w · γ ′
n′ ,2

)2

+
(√

C2

√

β+(C1, C2,�)w · γn,2 + sgn(�ζ )
√
C2

√

β−(C1, C2,�)w · γ ′
n′ ,1

)2

+
(√

C2

√

β−(C1, C2,�)w · γn,2 + sgn(�ζ )
√
C2

√

β+(C1, C2,�)w · γ ′
n′ ,1

)2

≥ 0

(50)

with

�R
12 =

∣

∣

1

z−
n,1

−
1

z−
n,2

∣

∣ −
∣

∣

1

z−′
n′ ,1

−
1

z−′
n′ ,2

∣

∣ (51a)

�V
12 = |δz−

n,12| − |δz−′

n′ ,12| (51b)

β±(C1, C2,�) = 1 ±

√

1 −
C1C2(�ζ )2

4
(51c)
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Proof See Appendix A. ⊓⊔

We remark that in the discontinuous isotropic case, as γ ′
n′ ,1 = −γn,1 and γ ′

n′ ,2 = −γn,2,

so (48) is identical to (44).

In the discontinuous anisotropic case, Theorem 4 shows that the stability of the space

dG method is much more complicated to establish, even in the 2D case. The difficulty is

essentially due to the interactions betweenwavemodes of different types, i.e. γn,1with γ ′
n′ ,2

and γn,2 with γ ′
n′ ,1, coming from two adjacent elements separated by a physical interface.

The kinetic and elastic energies dissipated in the space jumps of velocity [vh] and of stress

vector [σh · n] can still guarantee the stability, but under a sufficient condition. For the

moment, it has not been possible either to remove this condition or prove that it is also a

necessary condition. However, we remark that all equations developed in Theorem 4 and

in its proof are perfectly symmetric with respect to all quantities coming from E and E′,

hence, we believe that it would be difficult to further improve the condition proposed in

Theorem 4.

Concerning the sufficient condition (49), it depends obviously on the degree of dis-

continuity across a physical interface, as �R
12, �V

12 and ζ are proportional to the latter.

Future theoretical and numerical investigations are necessary to better understand this

condition. However, a first analysis suggests that it should be satisfied for relatively high

degrees of discontinuity.

In conclusion, for both time dG and space dG methods, the mechanism to ensure the

stability is the energy dissipation of velocity, displacement or stress vector jumps in time

or in space. However, contrary to the stability of the time dGmethod that is unconditional

whatever the space and time discretizations used, the stability of the space dG method is

proved for its variational formulation discretized in space but not yet discretized in time.

When a time discretization scheme is applied, its own stability condition should also be

taken into account. For example, in the presentwork, the standard four-stage fourth-order

Runge–Kutta (RK)method is used for the time discretization of the space dGmethod, it is

an explicit scheme submitted to Courant–Friedrichs–Lewy (CFL) type stability condition

[17]. Inversely, even when the stability condition is satisfied by the time discretization

method, if the stability is not proved at the continuous level for the space dG variational

formulation, typically in the case of the use of approximated numerical fluxes, the stability

of discretized solutions cannot be guaranteed.

Numerical investigations and comparisons

This section presents several numerical examples of comparison between both time and

space dGmethods. As previously indicated, concerning the time dGmethod, a space–time

finite element mesh composed of a classical finite element mesh in space and one unique

linear element in time is used to discretize each space–time slab. For the comparison,

a same space finite element mesh is used by both methods, but the space dG method

uses the standard four-stage fourth-order RK algorithm that is explicit and conditionally

stable.

The strategy adopted in our works to choose space and time discretization parameters

was detailed in [17]. In summary, the element size hE is determined by the shortest

wavelength of interest, which is defined by the highest frequency of interest. Concerning

the time step �t, it is determined by the element size and the following CFL (Courant–
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Friedrichs–Levy) type conditions: for the space dGmethod it is a stability condition, while

for the time dGmethod it is a condition to prevent high frequency modes of interest from

numerical damping:

�t ≤
CFLsDG

2Np + 1
minE

{

hE

maxn{cEn,L}

}

, �t ≤ CtDG−dampingminE

{

hE

maxn{cEn,L}

}

(52)

In (52),Np is the order of FE basis function andCFLsDG the CFL number in classical sense.

For the numerical examples presented hereafter, only linear (1D) or bilinear (2D, quadri-

lateral elementwith 4 nodes) elements are used, andwe takeCFLsDG ≈ CtDG−damping with

Np = 1. So the time step used for the time dG method is three times larger than the one

used for the space dG method.

As far as the external loadings are concerned, their dependency upon the time t is chosen

to be a ricker signal, defined as follows:

g(x, t) = ag (x)

(

1 − 2

(

2π (t − Tr/2)

Tr

)2
)

e
−

(

2π (t − Tr/2)

Tr

)2

(53)

with Tr the period of the ricker signal. We recall that the ricker signal (53) provides a

perfectly controlled frequency content, its center frequency is fmax = 2T−1
r and its cutoff

frequency can be reasonably considered as fc = 3fmax (see Figure 2 in [17]).

1D case with a physical interface

A 1D elastic rod � = �1 ∪ �2 composed of two parts of different materials is studied.

It was already considered in [17]. The density ρ = 2500 kgm−3 is uniform in the entire

rod, while the Young’s modulus in the two subdomains is respectively (from left to right)

E1 = 22.5 GPa and E2 = a2E1. Hence, the phase velocity in the two subdomains is

respectively equal to cL1 = 3000 m s−1 and cL2 = a cL1. The total length of the rod is

L = L1 + L2 = (1 + a)L1, with L1 = 900 m. The impedance contrast between the two

subdomains is
√
E2ρ2/

√
E1ρ1 = a. It is obvious that the smaller the value of a, the higher

the degree of discontinuity. Three degrees of discontinuity are considered, corresponding

to three values of a: 1 (homogeneous case), 0.5 (discontinuous case) and 0.01 (highly

discontinuous case).

A pressure loading g(t) is applied on the left end of the rod and the free boundary

condition is prescribed on the right end. g(t) is a ricker signal with period Tr = 0.04 s

and cutoff frequency fc = 125Hz. The corresponding shortest wavelength to consider is

ℓL(fc) = 24m. The time that waves need to propagate from the left end to the physical

interface is equal to 0.2 s, so is the time from the physical interface to the right end. The

total time of analysis is taken equal to 1.6 s, which corresponds to the time required for 2

round trips.

Firstly, the following element sizes hE1 = 0.6m and hE2 = a hE1 are used in the two

subdomains, which results in Ne = λmin

hE
= 40 elements in the shortest longitudinal

wavelength of interest. The time step �t = 62.5µs is used by the space dG method and

�t = 20µs by the time dG method, leading to CFLsDG ≈ CtDG−damping ≈ 1.
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Fig. 2 Decreasing of the total energy over time by both space and time dG methods with different degrees

of discontinuity. a Total loss accumulated w.r.t. time; b incremental loss w.r.t. time
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Fig. 3 a At the physical interface, influence of a on the energy damping by the time dG method; b influence

of boundary conditions on the energy damping

Decreasing over time of the total energy in the entire rod is studied using two quantities:

the first one is the total loss accumulated up to a time step: E(t)−max(E)
max(E)

(Fig. 2b), and the

secondone is the incremental loss between two successive time steps: E(tn)−E(tn−1)
max(E)

(Fig. 2b).

Figure 2a leads to a first conclusion: with only one physical interface, there is no

significant influence of the degree of discontinuity, i.e. of a, on the numerical damp-

ing rate over time. Moreover, with our choice of discretization parameters (hE ,�t), i.e.

CFLsDG ≈ CtDG−damping ≈ 1, same levels of damping are observed for the two methods.

However, detailed analyses of the energy decreasing between two successive time steps

(Figs. 2b, 3a) show that, at the physical interface, perturbations are observed only for the

time dG method, which increase with decreasing value of a, while the space dG method

shows a perfect behavior at the physical interface. Otherwise, due to the weak verification

of the free boundary conditions, the energy damping of both methods is perturbed and

such perturbations do not depend on a and are much more important for the space dG

method than for the time dG method (Figs. 2b, 3b). It will be shown in the next section

that such perturbations may become problematic in the 2D case.
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Fig. 4 Influence of (hE = λmin
Ne

,�t) on the numerical damping for a both space and time dG methods with

CFLsDG ≈ CtDG−damping ≈ 1; b for the space dG method; c for the time dG method

In conclusion, compared to the time dG method, the behavior of the space dG method

across the physical interface is very interesting especially in cases involving a large number

of physical interfaces. But future studies are necessary to understand and improve its

behavior at external boundaries.

Secondly, influences of space–time discretization parameters (hE ,�t) are investigated.

For both methods, the energy damping increases rapidly with mesh coarsening in space

and in time (Fig. 4a). As expected, the energy damping of the space dG method depends

principally on the element size in space (Fig. 4b), while the one of the time dG method

depends principally on the time step (Fig. 4c).

2D case with physical interfaces

For the 2D case, the studied 2D rectangular elastic domain � is presented in Fig. 5a and

the width of the whole domain is Lx = 5 mm. A similar but four times larger (in each

space dimension) domain was already considered in [17]. The following four cases are

simulated:

• (1) Homogeneous isotropic case

In this case, the density, the Young’s moduli and the Poisson’s ratio of the elastic

material are ρ = 4428 kgm−3, E1 = 73.95 GPa and ν = 0.395. The phase velocities

of the longitudinal and the transverse waves are respectively cL1 = 5879 m s−1 and

cT1 = 2446 m s−1.
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Fig. 5 Studied 2D rectangular elastic domain. a Case with two vertical physical interfaces; b case of

polycrystalline material with elliptic grains

• (2) Heterogeneous isotropic case

In this case, the domain � = �1 ∪ �2 contains two vertical interfaces as shown in

Fig. 5a. Only the Young’s modulus differs in �1 and �2 with E1 already given in the

case (1) and E2 = (1.5)2E1. The phase velocities of the longitudinal and the transverse

waves in �2 are respectively cL2 = 1.5 cL1 = 8819 m s−1 and cT2 = 1.5 cT1 =
3670 m s−1

• (3) Homogeneous anisotropic case

This case corresponds to a monocrystalline material, a single crystal of cubic symme-

try from titaniumalloy.TheEuler angles of its crystallographic orientation are equal to

(0◦, 0◦, 0◦). The elastic moduli of the Hooke tensorC in the local material anisotropic

basis (a1,a2,a3) of the single crystal are: Ciiii = 134.0 GPa, Ciijj,i �=j = 110.0 GPa and

Cijij,i �=j = 36.0 GPa. The density is the same as the isotropic material given in the

cases (1) and (2).

• (4) Heterogeneous polycrystalline case

This case corresponds to a single-phase polycrystallinematerial with 85 elliptic grains

of size 480 µm×240 µm(Fig. 5b). Eachgrainhas the sameHooke tensorC given in the

case (3) but a randomly chosen crystallographic orientation. The layer surrounding

the 85 grains is the single crystal of the case (3). Themaximum phase velocity of quasi

longitudinal waves is cqL,max = 6123 m s−1.

Elastic waves are generated by applying a pressure loading g(x, t)ey in the vertical direc-

tion ey on an extremely short segment Le of length 50 µm at the center of the external top

boundary of �, while free surface boundary conditions are prescribed on the remaining

parts (Fig. 5a). The pressure g(x, t)ey is uniformly distributed in space and its period of

ricker signal in time is Tr = 0.64 µs, resulting in fmax = 3.1 MHz and fc = 7.8 MHz.

Bilinear square finite elements of size hE = 25 µm are used to discretize the whole

domain �. For the two first cases, this choice corresponds to respectively 12 and 18

elements in the shortest transverse wavelengths of interest ℓT1(fc) = 314µm in �1 and

ℓT2(fc) = 470 µm in�2. For the polycrystalline material, it corresponds to 16 elements in

the shortest quasi transverse wavelengths of interest ℓqT,min(fc) = 422 µm. With respect

to each elliptic grain in the polycrystalline case, it corresponds to about 13 elements in the

major axis and about 10 element in the minor axis. This choice of element size is based

on our previous studies on the mesh convergence of the time dG solver in terms of the
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Fig. 7 Energy evolution over time. a Comparison between both space and time dG methods in the

polycrystalline case; b comparison between monocrystalline and polycrystalline cases

attenuation and scattering (noise level) coefficients in the case of polycrystalline materials

[21,22]. In particular, it has been shown that the mesh convergence depends not only on

the wavelength to element size ratio but also on the grain size to element size ratio.

The time step used for the space dGmethod is�tsDG = 0.533 ns and the one for the time

dG method is �ttDG = 3�tsDG = 1.6 ns, leading to the value of CFLsDG = CtDG−damping

equal to 0.37 for the case (1), to 0.56 for the case (2) and to 0.42 for the last two cases.

Evolution over time of the total, the kinetic and the elastic energies calculated by both

space and time dG methods are compared in Figs. 6, 7. Both methods give very close

curves for the kinetic energy, which is coherent with de comparison presented in [17]

done only with the data of the velocity unknown field vh.

However, as the space dG method implemented in the present work uses the strategy

of weak verification of the Neumann boundary conditions, the elastic energy calculated

by the space dG method is highly perturbed by the non verification of those boundary

conditions. Indeed, according to (40), for example, when the free Neumann boundary

conditions are not exactly verified, the quantity (vh, g)∂�N , with g = σh · n, should be
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added in the energy evolution. In Fig. 6b, it is shown that this perturbation increases in the

domain �2 with larger elastic moduli. In Fig. 7b, it is shown that this perturbation highly

increases in the polycrystalline case, probably because the grains constantly reflect waves

in the boundary layer and thus reinforces the perturbation. Future studies are therefore

necessary to improve the stress field solution of the space dG method with respect to the

Neumann boundary condition, by adopting for example the strategy of strong verification

of them. Afterward, quantitative comparison of the damping behavior between both space

and dG methods would be performed.

Conclusions

Comparisons and analyses of the time discontinuous space–time Galerkin method and

the space discontinuous Galerkin method applied to the elastic wave propagation in

anisotropic and heterogeneous media were presented. More particularly, the stability

of both methods was investigated. It has been shown that the mechanism to ensure the

stability of bothmethods is similar, in the sense that it is based on the energies dissipated in

time or space discontinuities of unknown fields, but essentially different. Indeed, contrary

to the stability of the time dG method that is unconditional whatever the space and time

discretizations used, the stability of the space dG method is proved for its variational for-

mulation discretized in space but not yet discretized in time. When a time discretization

scheme is applied, its own stability condition should also be taken into account.

As themain contribution, a new result of stability of the velocity–stress space dGmethod

was given. The stability of the space dG method was proved at the continuous level of

time in the case of elastic media with continuous properties and the case of isotropic

elastic media with discontinuous properties, whatever the space dimension. However, the

proof of the stability was given only in the 2D case for anisotropic elastic media with

discontinuous properties under a sufficient condition. Future theoretical and numerical

investigations are necessary to better understand this condition. However, a first analysis

suggests that it should be satisfied for relatively high degrees of discontinuity. Otherwise,

the existence of such a sufficient condition in the 2D case suggests the existence of a

similar condition in the 3D case. It should be important to develop it even if the proof in

the 3D case would be very complicated.

Otherwise, the stability result of the space dG method was proved with the use of the

exact numerical fluxes. It allows explaining previously observed phenomena [17]: when

the degree of discontinuity at physical interfaces is high, the use of approximate numerical

fluxes leads to an instability problem, which can be considered as intrinsic to the space

dG method, in the sense that it cannot be resolved by simply reducing the time step used

by the time discretization scheme.

Numerical applications to different elasticmediawithphysical interfaceswere presented

and the numerical damping behavior of both space and time dGmethodswas investigated.

In the 1D case, the quantitative comparison between the two methods was complete and

has shown, at physical interfaces, the perfect behavior of the space dG method using the

exact numerical fluxes. In the 2D case, the necessity to well satisfy theNeumann boundary

conditions by the stress field calculated by the space dG method was highlighted. Future

studies should be done to complete the quantitative comparison between the two dG

methods and to assess the convergence rate of the space dG solver in terms of the energy
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and L2 norms and also of the physical quantities of interest, such as the attenuation and

noise levels in the case of polycrystalline materials.
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Appendix A. Proof of Theorem 4

Firstly, the following Lemma can be proved.

Lemma 2 Let us consider �±(C1, C2,�, ζ ; x, y) two second order polynomial functions of

(x, y) defined as follows:

�±(C1, C2,�, ζ ; x, y) = C1x
2 + C2y

2 ± C1C2(�ζ )xy (54)

with C1 ≥ 0, C2 ≥ 0. Under the following condition:

1

C1C2
≥

(

�ζ

2

)2

(55)

they can be written in the following form:

�±(C1, C2,�, ζ ; x, y)

=
1

2

(

√

C1

√

β+(C1, C2,�)x ± sgn(�ζ )
√

C2

√

β−(C1, C2,�)y
)2

+
1

2

(

√

C1

√

β−(C1, C2,�)x ± sgn(�ζ )
√

C2

√

β+(C1, C2,�)y
)2

(56)

where β±(C1, C2,�) are two real numbers defined by (51c) in Theorem 4.

Proof The proof is given for �−, as it can be done in the same way for �+. The idea is to

find an appropriate quadruplet (a1, b1, a2, b2) so that the following decomposition of �−
holds:

�−(C1, C2,�, ζ ; x, y) = C1

(

a1x − b1(�ζ )y)2 + C2

(

a2y − b2(�ζ )x)2 (57)

It is obvious that the quadruplet should verify the following equations:

C1a
2
1 + C2b

2
2(�ζ )2 = C1 (58a)

C2a
2
2 + C1b

2
1(�ζ )2 = C2 (58b)

r1 + r2 =
1

2
(58c)

with r1 and r2 defined as

a1b1 = r1C2 , a2b2 = r2C1 (59)
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Eliminating (b1, b2), the first two equations of (58) become

a21a
2
2 − a22 + C1C2r

2
2 (�ζ )2 = 0 (60a)

a21a
2
2 − a21 + C1C2r

2
1 (�ζ )2 = 0 (60b)

Taking into account the symmetry between x and y, an intuitive and reasonable choice is

r1 = r2 =
1

4
and a21 = a22, then finally both equations of (60) become

a41,2 − a21,2 +
C1C2(�ζ )2

16
= 0 (61)

It is obvious that, for both solutions of (61) to be real, the condition (55) should be verified.

Then, together with (59), the following results are straightforward:

a21 = a22 =
1

2
β+(C1, C2,�) (62a)

b21 =
1

2

C2

C1

β−(C1, C2,�)

(�ζ )
, b22 =

1

2

C1

C2

β−(C1, C2,�)

(�ζ )
(62b)

Putting (62) into (57) gives rise to the final result to prove. ⊓⊔

Then the proof of Theorem 4 is organized in eight parts.

Proof of Theorem 4

• (1) Inverse of the system (26)

To get {α̃k , α̃
′
k
}k=1,2, with k = 1 and 2 corresponding respectively to qL and qT , we

need to calculate the inverse of the 2d × 2d matrix, denoted as [R̃], of the system of

linear equations (26). The inverse matrix is:

[R̃]−1 =

[

[D̃] [H̃ ]

[H̃ ′] [D̃′]

]

=

⎡

⎢

⎢

⎢

⎣

D̃11 0 0 −B̃12D̃11

0 D̃22 −B̃21D22 0

0 −B̃′
12D̃

′
11 D̃′

11 0

−B̃′
21D̃

′
22 0 0 D̃′

22

⎤

⎥

⎥

⎥

⎦

(63)

with

D̃11 = D̃′
22 =

1

1 − B̃12B̃
′
21

, D̃22 = D̃′
11 =

1

1 − B̃21B̃
′
12

(64)

We recall that four orthonormal bases are used: (n, t), (n′, t ′), (γn,1, γn,2) and

(γ ′
n′ ,1, γ

′
n′ ,2) with e3 = n ∧ t = n′ ∧ t ′ = γn,1 ∧ γn,2 = γ ′

n′ ,1 ∧ γ ′
n′ ,2, then it can

be shown that the following equations hold:

ζ = γn,1 · γ ′
n′ ,2 = −γn,2 · γ ′

n′ ,1 = γn,1nγ
′
n′ ,1t ′ − γn,1tγ

′
n′ ,1n′ (65a)

B̃12 = −
C−
z,1

2

δz−′

n′ ,12

z−′
n′ ,1

ζ , B̃′
12 =

C−′

z,1

2

δz−
n,12

z−
n,1

ζ = −
δz−

n,12

δz−′
n′ ,12

B̃12 (65b)

B̃21 = −
C−
z,2

2

δz−′

n′ ,12

z−′
n′ ,2

ζ , B̃′
21 =

C−′

z,2

2

δz−
n,12

z−
n,2

ζ = −
δz−

n,12

δz−′
n′ ,12

B̃21 (65c)
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with γn,1n = γn,1 · n, γn,1t = γn,1 · t , γ ′
n′ ,1n′ = γ ′

n′ ,1 · n′ and γn′ ,1t ′ = γn′ ,1 · t ′. We note

that γn,2n = −γn,1t and γn,2t = γn,1n.

Otherwise, we recall that λ−
n,1 ≤ λ−

n,2 and λ−′

n′ ,1 ≤ λ−′

n′ ,2, hence we get:

D̃11 = D̃22 = D̃′
11 = D̃′

22 =
1

1 + B̃12B̃21

δz−
n,12

δz−′
n′ ,12

> 0 (66)

• (2) Decomposition of ∂tE� into different parts to analyze

According to (26), we have:

α̃k = D̃kl L̃
−
n,l

· [Uh] − H̃kl L̃
−′

n′ ,l · [Uh] (67a)

α̃′
k = −D̃′

kl L̃
−′

n′ ,l · [Uh] + H̃ ′
kl L̃

−
n,l

· [Uh] (67b)

Using Lemma 1, we get:

∂tE� =
∑

ŴEE′

D̃11

2

(

[Uh], (PEE′ + QEE′ + Q′
EE′ ) · [Uh]

)

ŴEE′
(68)

with

PEE′ = z−
n,1L

−
n,1 ⊗ L̃−

n,1 + z−
n,2L

−
n,2 ⊗ L̃−

n,2

+ z−′

n′ ,1L
−′

n′ ,1 ⊗ L̃−′

n′ ,1 + z−′

n′ ,2L
−′

n′ ,2 ⊗ L̃−′

n′ ,2 (69a)

QEE′ = B̃12z
−
n,1L

−
n,1 ⊗ L̃−′

n′ ,2 + B̃21z
−
n,2L

−
n,2 ⊗ L̃−′

n′ ,1 (69b)

Q′
EE′ = B̃′

12z
−′

n,1L
−′

n′ ,1 ⊗ L̃−
n,2 + B̃′

21z
−′

n′ ,2L
−′

n′ ,2 ⊗ L̃−
n,1 (69c)

• (3) Calculation of the term concerning PEE′

According to (15) and (29) the definitions of (L−
n,k

,L−′

n′ ,k ) and (̃L
−
n,k

, L̃−′

n′ ,k ) and recalling

that wn,k = 1√
2
γn,k , we get:

[Uh] · PEE′ · [Uh]

= −
∑

k

|z−
n,k

|
R

2

(

[vh] · γn,k +
[σh · n] · γn,k

|z−
n,k

|

)(

[vh] · γn,k +
[σh · n] · γn,k

|z−′
n′ ,k |

)

−
∑

k

|z−
n,k

|
R

2

(

[vh] · γ ′
n′ ,k −

[σh · n] · γ ′
n′ ,k

|z−′
n′ ,k |

)(

[vh] · γ ′
n′ ,k −

[σh · n] · γ ′
n′ ,k

|z−
n,k

|

)

(70a)

= −
1

2

∑

k

|z−
n,k

|
R
(

([vh] · γn,k )
2 + ([vh] · γ ′

n′ ,k )
2

)

−
1

2

∑

k

([σh · n] · γn,k )
2 + ([σh · n] · γ ′

n′ ,k )
2

|z−
n,k

|
V

+ ([vh] ⊗ [σh · n]) :
(

∑

k

γn,k ⊗ γn,k −
∑

k

γ ′
n′ ,k ⊗ γ ′

n′ ,k

)

(70b)
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We remark that the last term of (70b) equals to zero as
∑

k γn,k ⊗ γn,k =
∑

k γ ′
n′ ,k ⊗

γ ′
n′ ,k = I . Finally (70) is written in the following form by decomposing it into two

independent parts, related respectively to [vh] and [σh · n]:

[Uh] · PEE′ · [Uh] = P[vh] + P[σh·n] (71)

• (4) Calculation of the term concerning QEE′

According to (15), (29) and (28), the definitions of (L−
n,k

,L−′

n′ ,k ), (̃L
−
n,k

, L̃−′

n′ ,k ) and

(C−
z,k
, C−′

z,k
) and to (65), we get:

[Uh] · QEE′ · [Uh]

= −
|z−
n,1|

R
|z−
n,2|

R

2

∣

∣

δz−′

n′ ,12

z−′
n′ ,1z

−′
n′ ,2

∣

∣ζ

(

([vh] ⊗ [vh] −
[σh · n] ⊗ [σh · n]

|z−
n,1||z

−
n,2|

)

: (γn,1 ⊗ γ ′
n′ ,2 + γn,2 ⊗ γ ′

n′ ,1) + CQ

)

(72)

with

CQ =
[vh] ⊗ [σh · n]

|z−
n,1|

(γ ′
n′ ,2 ⊗ γn,1 − γn,2 ⊗ γ ′

n′ ,1)

+
[vh] ⊗ [σh · n]

|z−
n,2|

(−γn,1 ⊗ γ ′
n′ ,2 + γ ′

n′ ,1 ⊗ γn,2)
)

(73)

Then by taking into account that:

(γ ′
n′ ,2 ⊗γn,1 −γn,2 ⊗γ ′

n′ ,1) = (γn,1nγ
′
n′ ,1t ′ −γn,1tγ

′
n′ ,1n′ )(n⊗n+ t ⊗ t) = ζ I (74)

it can be proved that:

[Uh] · QEE′ · [Uh]

= −
|z−
n,1|

R
|z−
n,2|

R

2

∣

∣

δz−′

n′ ,12

z−′
n′ ,1z

−′
n′ ,2

∣

∣ζ

(

[vh] ⊗ [vh] −
[σh · n] ⊗ [σh · n]

|z−
n,1||z

−
n,2|

)

: AQ

+
|δz−

n,12||δz
−′

n′ ,12|ζ
2

2|z−
n,1|

V
|z−
n,2|

V
[σh · n] · [vh]

(75)

In (75), the following notation is adopted:

AQ = γn,1 ⊗ γ ′
n′ ,2 + γn,2 ⊗ γ ′

n′ ,1 (76)

Otherwise, it can be proved that AQ is symmetric, as we have

AQ = (γn,1nγ
′
n′ ,1t ′ + γn,1tγ

′
n′ ,1n′ )(n ⊗ n − t ⊗ t)

− (γn,1nγ
′
n′ ,1n′ − γn,1t ′γ

′
n′ ,1n′ )(n ⊗ t + t ⊗ n)

(77)
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• (5) Calculation of the term concerning Q′
EE′

In the same way as for QEE′ , we get:

[Uh] · Q′
EE′ · [Uh]

=
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R
|z−
n,2|

R

2

∣
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∣

∣

∣
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−
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∣

∣

∣

∣

∣

ζ

(
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)
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−′
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2

2|z−
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V
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V
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with

A′
Q = γ ′

n′ ,1 ⊗ γn,2 + γ ′
n′ ,2 ⊗ γn,1 (79)

It can be proved that A′
Q = (AQ)

T = AQ. Otherwise, we remark that the sum of the

two last terms in (75) and (78) is equal to zero.

• (6) Calculation of the two terms concerning QEE′ and Q′
EE′

The two terms that need further analysis are:
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= −
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(80)

• (7) Calculation of the terms P[vh] and Q[vh]

Using (51a), (54), (70), (71), (80) the definition of the polynomial functions �± given

in Lemma 2 and (50) the definition of G(C1, C2,�;w) in Theorem 4, it can be shown

that:
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with

�R
12 ≡

∣

∣

∣

∣

δz−
n,12

z−
n,1z

−
n,2

∣

∣

∣

∣

−
∣

∣

∣

∣

δz−′

n′ ,12

z−′
n′ ,1z

−′
n′ ,2

∣

∣

∣

∣

=
∣

∣

∣

∣

1

z−
n,1

−
1

z−
n,2

∣

∣

∣

∣

−
∣

∣

∣

∣

1

z−′
n′ ,1

−
1

z−′
n′ ,2

∣

∣

∣

∣

(82)

Furthermore, according to (55), it is easy to obtain (49a) the first part of the sufficient

condition (49).

• (8) Calculation of the terms P[σh·n] and Q[σh·n]
Using (51b), (54), (70), (71), (80) the definition of the polynomial functions �± given
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in Lemma 2 and (50) the definition of G(C1, C2,�;w) in Theorem 4, it can be shown

that:

P[σh·n] + Q[σh·n] = −
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(83)

with

�V
12 = |δz−

n,12| − |δz−′

n′ ,12| (84)

Furthermore, according to (55), it is easy to obtain (49b) the second part of the

sufficient condition (49).

Finally, taking into account (68), (81) and (83) leads to (48) of Theorem 4. ⊓⊔
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