VICTORIA UNIVERSITY MELBOURNE AUSTRALIA

Some Completely Monotonic Functions Involving the Gamma and Polygamma Functions

This is the Published version of the following publication

Qi, Feng, Guo, Bai-Ni and Chen, Chao-Ping (2004) Some Completely Monotonic Functions Involving the Gamma and Polygamma Functions. Research report collection, 7 (1).

The publisher's official version can be found at
Note that access to this version may require subscription.

SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE GAMMA AND POLYGAMMA FUNCTIONS

FENG QI, BAI-NI GUO, AND CHAO-PING CHEN

AbStract. The function $\frac{[\Gamma(x+1)]^{1 / x}}{x}\left(1+\frac{1}{x}\right)^{x}$ is strictly logarithmically completely monotonic in $(0, \infty)$. The function $\psi^{\prime \prime}(x+2)+\frac{1+x^{2}}{x^{2}(1+x)^{2}}$ is strictly completely monotonic in $(0, \infty)$.

1. Introduction

It is well known that the gamma function $\Gamma(z)$ is defined for $\operatorname{Re} z>0$ as

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t \tag{1}
\end{equation*}
$$

The psi or digamma function $\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$, the logarithmic derivative of the gamma function, and the polygamma functions can be expressed for $x>0$ and $k \in \mathbb{N}$ as

$$
\begin{align*}
\psi(x) & =-\gamma+\sum_{n=0}^{\infty}\left(\frac{1}{1+n}-\frac{1}{x+n}\right), \tag{2}\\
\psi^{(k)}(x) & =(-1)^{k+1} k!\sum_{i=0}^{\infty} \frac{1}{(x+i)^{k+1}}, \tag{3}\\
\psi(x) & =-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} \mathrm{~d} t \tag{4}\\
\psi^{(k)}(x) & =(-1)^{k+1} \int_{0}^{\infty} \frac{t^{k} e^{-x t}}{1-e^{-t}} \mathrm{~d} t \tag{5}
\end{align*}
$$

where $\gamma=0.57721566490153286 \cdots$ is the Euler-Mascheroni constant.

2000 Mathematics Subject Classification. Primary 33B15; Secondary 26D07.
Key words and phrases. strictly completely monotonic function, logarithmically completely monotonic function, gamma function, polygamma function.

The authors were supported in part by NNSF (\#10001016) of China, SF for the Prominent Youth of Henan Province (\#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Jiaozuo Institute of Technology, CHINA.

This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-}$-IATEX.

A function f is said to be completely monotonic on an interval I if f has derivatives of all orders on I which alternate successively in sign, that is

$$
\begin{equation*}
(-1)^{n} f^{(n)}(x) \geq 0 \tag{6}
\end{equation*}
$$

for $x \in I$ and $n \geq 0$. If inequality (6) is strict for all $x \in I$ and for all $n \geq 0$, then f is said to be strictly completely monotonic.

For $x>0$ and $s \geq 0$, we have

$$
\begin{equation*}
\frac{1}{(x+s)^{n}}=\frac{1}{(n-1)!} \int_{0}^{\infty} t^{n-1} e^{-(x+s) t} \mathrm{~d} t, \quad n \in \mathbb{N} \tag{7}
\end{equation*}
$$

A function f is said to be logarithmically completely monotonic on an interval I if its logarithm $\ln f$ satisfies

$$
\begin{equation*}
(-1)^{k}[\ln f(x)]^{(k)} \geq 0 \tag{8}
\end{equation*}
$$

for $k \in \mathbb{N}$ on I. If inequality (8) is strict for all $x \in I$ and for all $k \in \mathbb{N}$, then f is said to be strictly logarithmically completely monotonic.

In [4] it is proved that a (strictly) logarithmically completely monotonic function is also (strictly) completely monotonic. But not conversely, since a convex function may not be logarithmically convex (see Remark. 1.16 at page 7 in [3]).

Completely monotonic functions have applications in many branches. For example, they play a role in potential theory, probability theory, physics, numerical and asymptotic analysis, and combinatorics. Some related references are listed in [1].

It is well known that the function $\left(1+\frac{1}{x}\right)^{-x}$ is strictly completely monotonic in $(0, \infty)$. In [1], it is proved that the function $\left(1+\frac{a}{x}\right)^{x+b}-e^{a}$ is completely monotonic with $x \in(0, \infty)$ if and only if $a \leq 2 b$, where $a>0$ and b are real numbers.

Among other things, the following completely monotonic properties are obtained in [4]: For $\alpha \leq 0$, the function $\frac{x^{\alpha}}{[\Gamma(x+1)]^{1 / x}}$ is strictly completely monotonic in $(0, \infty)$. For $\alpha \geq 1$, the function $\frac{[\Gamma(x+1)]^{1 / x}}{x^{\alpha}}$ is strictly completely monotonic in $(0, \infty)$.

In [2] the following two inequalities are presented: For $x \in(0,1)$, we have

$$
\begin{equation*}
\frac{x}{[\Gamma(x+1)]^{1 / x}}<\left(1+\frac{1}{x}\right)^{x}<\frac{x+1}{[\Gamma(x+1)]^{1 / x}} . \tag{9}
\end{equation*}
$$

For $x \geq 1$,

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x} \geq \frac{x+1}{[\Gamma(x+1)]^{1 / x}} \tag{10}
\end{equation*}
$$

Equality in (10) occurs for $x=1$.
It is easy to see that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{[\Gamma(x+1)]^{1 / x}}{x}\left(1+\frac{1}{x}\right)^{x}=1 \tag{11}
\end{equation*}
$$

The main purpose of this paper is to give a strictly logarithmically completely monotonic property of the function $\frac{[\Gamma(x+1)]^{1 / x}}{x}\left(1+\frac{1}{x}\right)^{x}$ in $(0, \infty)$ as follows.

Theorem 1. The function $\frac{[\Gamma(x+1)]^{1 / x}}{x}\left(1+\frac{1}{x}\right)^{x}$ is strictly logarithmically completely monotonic in $(0, \infty)$.

As a direct consequence of the proof of Theorem 1, we have the following

Corollary 1. The function

$$
\begin{equation*}
\psi^{\prime \prime}(x)+\frac{x^{4}+5 x^{3}+7 x^{2}+7 x+2}{x^{3}(x+1)^{3}}=\psi^{\prime \prime}(x+2)+\frac{1+x^{2}}{x^{2}(1+x)^{2}} \tag{12}
\end{equation*}
$$

is strictly completely monotonic in $(0, \infty)$.

2. Proof of Theorem 1

Define

$$
\begin{equation*}
F(x)=\frac{[\Gamma(x+1)]^{1 / x}}{x^{c}}\left(1+\frac{a}{x}\right)^{x+b} \tag{13}
\end{equation*}
$$

for $x>0$ and some fixed real numbers a, b and c.
Taking the logarithm of $F(x)$ defined by (13) and differentiating yields

$$
\begin{align*}
\ln F(x) & =(x+b) \ln \left(1+\frac{a}{x}\right)+\frac{\ln \Gamma(x+1)}{x}-c \ln x \tag{14}\\
{[\ln F(x)]^{\prime} } & =\ln \left(1+\frac{a}{x}\right)-\frac{a(x+b)}{x(x+a)}+\frac{x \psi(x+1)-\ln \Gamma(x+1)}{x^{2}}-\frac{c}{x} \tag{15}
\end{align*}
$$

and

$$
\begin{aligned}
{[\ln F(x)]^{(n)}=} & (-1)^{n-1}(n-1)!(x+b)\left[\frac{1}{(x+a)^{n}}-\frac{1}{x^{n}}\right] \\
& +(-1)^{n}(n-2)!n\left[\frac{1}{(x+a)^{n-1}}-\frac{1}{x^{n-1}}\right] \\
& +\frac{h_{n}(x)}{x^{n+1}}+(-1)^{n}(n-1)!\frac{c}{x^{n}}
\end{aligned}
$$

$$
\begin{equation*}
=(-1)^{n}(n-2)!\left[\frac{(n-1)(b+c)-x}{x^{n}}+\frac{x+n a-(n-1) b}{(x+a)^{n}}\right]+\frac{h_{n}(x)}{x^{n+1}}, \tag{16}
\end{equation*}
$$

where $n \geq 2, \psi^{(-1)}(x+1)=\ln \Gamma(x+1), \psi^{(0)}(x+1)=\psi(x+1)$, and

$$
\begin{align*}
& h_{n}(x)=\sum_{k=0}^{n} \frac{(-1)^{n-k} n!x^{k} \psi^{(k-1)}(x+1)}{k!} \tag{17}\\
& h_{n}^{\prime}(x)=x^{n} \psi^{(n)}(x+1) \begin{cases}>0, & \text { if } n \text { is odd } \\
<0, & \text { if } n \text { is even. }\end{cases} \tag{18}
\end{align*}
$$

Therefore, we have

$$
\begin{align*}
& (-1)^{n} x^{n+1}[\ln F(x)]^{(n)} \\
& \quad=(n-2)!\left\{(n-1)(b+c)-x+\frac{x^{n}[x+n a-(n-1) b]}{(x+a)^{n}}\right\} x+(-1)^{n} h_{n}(x) \tag{19}
\end{align*}
$$

and

$$
\begin{aligned}
& \frac{\mathrm{d}\left\{(-1)^{n} x^{n+1}[\ln F(x)]^{(n)}\right\}}{\mathrm{d} x} \\
= & (-1)^{n} x^{n} \psi^{(n)}(x+1)+(n-2)!\{(n-1)(b+c)-2 x \\
& \left.+\frac{x^{n}\left[a\left(b+a n+a n^{2}-b n^{2}\right)+(2 a+b+2 a n-b n) x+2 x^{2}\right]}{(x+a)^{n+1}}\right\} \\
= & x^{n}\left\{(-1)^{n} \psi^{(n)}(x+1)+(n-2)!\left[\frac{(n-1)(b+c)-2 x}{x^{n}}\right.\right. \\
& +\frac{a\left(b+a n+a n^{2}-b n^{2}\right)+(2 a+b+2 a n-b n) x+2 x^{2}}{\left.\left.(x+a)^{n+1}\right]\right\}} \\
= & x^{n}\left\{(-1)^{n} \psi^{(n)}(x)+\frac{n!}{x^{n+1}}+(n-2)!\left[\frac{(n-1)(b+c)-2 x}{x^{n}}\right.\right. \\
& \left.\left.+\frac{a\left(b+a n+a n^{2}-b n^{2}\right)+(2 a+b+2 a n-b n) x+2 x^{2}}{(x+a)^{n+1}}\right]\right\}
\end{aligned}
$$

By letting $a=c=1$ and $b=0$, we have

$$
\begin{aligned}
& \frac{\mathrm{d}\left\{(-1)^{n} x^{n+1}[\ln F(x)]^{(n)}\right\}}{\mathrm{d} x}=x^{n}\left\{(-1)^{n} \psi^{(n)}(x)+\frac{n!}{x^{n+1}}\right. \\
& \left.\quad+(n-2)!\left[\frac{n-1-2 x}{x^{n}}+\frac{n(n+1)+2(n+1) x+2 x^{2}}{(x+1)^{n+1}}\right]\right\} \\
& =x^{n}\left\{(-1)^{n} \psi^{(n)}(x)+(n-2)!\left[\frac{n(n-1)+(n-1) x-2 x^{2}}{x^{n+1}}\right.\right. \\
& \left.\left.\quad+\frac{n(n+1)+2(n+1) x+2 x^{2}}{(x+1)^{n+1}}\right]\right\}
\end{aligned}
$$

SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING POLYGAMMA FUNCTIONS 5

$$
\triangleq x^{n}\left\{(-1)^{n} \psi^{(n)}(x)+(n-2)!g_{n}(x)+(n-2)!h_{n}(x)\right\} .
$$

By induction, it follows that

$$
\begin{equation*}
g_{n}^{\prime}(x)=-(n-1) g_{n+1}(x) \quad \text { and } \quad h_{n}^{\prime}(x)=-(n-1) h_{n+1}(x), \tag{20}
\end{equation*}
$$

this implies

$$
\begin{equation*}
g_{2}^{(n-2)}(x)=(-1)^{n}(n-2)!g_{n}(x) \quad \text { and } \quad h_{2}^{(n-2)}(x)=(-1)^{n}(n-2)!h_{n}(x) \tag{21}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\frac{\mathrm{d}\left\{(-1)^{n} x^{n+1}[\ln F(x)]^{(n)}\right\}}{\mathrm{d} x}=(-1)^{n} x^{n}\left[\psi^{\prime \prime}(x)+g_{2}(x)+h_{2}(x)\right]^{(n-2)} \tag{22}
\end{equation*}
$$

From formulas $(3),(5)$ and (7), for $x \in(0, \infty)$ and any nonnegative integer i, we have

$$
\begin{aligned}
\phi(x) \triangleq & \psi^{\prime \prime}(x)+g_{2}(x)+h_{2}(x) \\
= & \psi^{\prime \prime}(x)+\frac{2+x-2 x^{2}}{x^{3}}+\frac{2\left(3+3 x+x^{2}\right)}{(x+1)^{3}} \\
= & \psi^{\prime \prime}(x)+\frac{x^{4}+5 x^{3}+7 x^{2}+7 x+2}{x^{3}(x+1)^{3}} \\
= & \psi^{\prime \prime}(x)+\frac{2}{x^{3}}+\frac{1}{x^{2}}-\frac{2}{x}+\frac{2}{(1+x)^{3}}+\frac{2}{(1+x)^{2}}+\frac{2}{1+x} \\
= & \frac{1}{x^{2}}-\frac{2}{x}+\frac{2}{(1+x)^{2}}+\frac{2}{1+x}-2 \sum_{i=2}^{\infty} \frac{1}{(x+i)^{3}} \\
= & \psi^{\prime \prime}(x+2)+\frac{1}{x^{2}}-\frac{2}{x}+\frac{2}{(1+x)^{2}}+\frac{2}{1+x} \\
= & \psi^{\prime \prime}(x+2)+\frac{1+x^{2}}{x^{2}(1+x)^{2}} \\
= & \int_{0}^{\infty} t e^{-x t} \mathrm{~d} t-2 \int_{0}^{\infty} e^{-x t} \mathrm{~d} t+2 \int_{0}^{\infty} t e^{-(x+1) t} \mathrm{~d} t \\
& +2 \int_{0}^{\infty} e^{-(x+1) t} \mathrm{~d} t-\int_{0}^{\infty} \frac{t^{2} e^{-(x+2) t}}{1-e^{-t}} \mathrm{~d} t \\
= & \int_{0}^{\infty}\left[t-2+(t+4) e^{-t}-\left(t^{2}+2 t+2\right) e^{-2 t}\right] e^{-x t} \mathrm{~d} t \\
\triangleq & \int_{0}^{\infty} q(t) e^{-x t} \mathrm{~d} t, \\
\phi^{(i)}(x)= & (-1)^{i} \int_{0}^{\infty} q(t) t^{i} e^{-x t} \mathrm{~d} t,
\end{aligned}
$$

and

$$
\begin{aligned}
q^{\prime}(t) & =\left(2+2 t+2 t^{2}-3 e^{t}+e^{2 t}-t e^{t}\right) e^{-2 t} \\
& \triangleq p(t) e^{-2 t} \\
p^{\prime}(t) & =2+4 t-4 e^{t}+2 e^{2 t}-t e^{t}, \\
p^{\prime \prime}(t) & =4-5 e^{t}+4 e^{2 t}-t e^{t} \\
p^{\prime \prime \prime}(t) & =\left(8 e^{t}-t-6\right) e^{t} \\
& >0
\end{aligned}
$$

Hence, $p^{\prime \prime}(t)$ increases in $(0, \infty)$. Since $p^{\prime \prime}(0)=3>0$, we have $p^{\prime \prime}(t)>0$ and $p^{\prime}(t)$ is increasing. Because of $p^{\prime}(0)=0$, it follows that $p^{\prime}(t)>0$ in $(0, \infty)$, and then $p(t)$ is increasing. From $p(0)=0$, it is deduced that $p(t)>0$ and $q^{\prime}(t)>0$ in $(0, \infty)$, then $q(t)$ increases. As a result of $q(0)=0$, we obtain $q(t)>0$ in $(0, \infty)$. Therefore, we have $\phi(x)>0$ in $(0, \infty)$, and then for all nonnegative integer i, we have $(-1)^{i} \phi^{(i)}(x)>0$ in $(0, \infty)$. This means that the function $\psi^{\prime \prime}(x)+g_{2}(x)+h_{2}(x)$ is strictly completely monotonic on $(0, \infty)$.

Thus the function $(-1)^{n} x^{n+1}[\ln F(x)]^{(n)}$ is increasing in $x \in(0, \infty)$. Since

$$
\lim _{x \rightarrow 0}\left\{(-1)^{n} x^{n+1}[\ln F(x)]^{(n)}\right\}=0
$$

we have $(-1)^{n} x^{n+1}[\ln F(x)]^{(n)}>0$, then $(-1)^{n}[\ln F(x)]^{(n)}>0$ for $n \geq 2$ in $(0, \infty)$. Since $[\ln F(x)]^{\prime \prime}>0$, the function $[\ln F(x)]^{\prime}$ is increasing. It is not difficult to obtain $\lim _{x \rightarrow \infty}[\ln F(x)]^{\prime}=0$, so $[\ln F(x)]^{\prime}<0$ and $\ln F(x)$ is decreasing in $(0, \infty)$. In conclusion, the function $\ln F(x)$ is strictly completely monotonic in $(0, \infty)$. The proof is complete.

3. An open problem

Open Problem. Under what conditions on a, b and c the function $F(x)$ defined by (13) is strictly logarithmically completely monotonic in $(0, \infty)$?

References

[1] H. Alzer and C. Berg, Some classes of completely monotonic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 445-460.
[2] Ch.-P. Chen and F. Qi, Inequalities relating to the gamma function, J. Inequal. Pure Appl. Math. (2004), accepted.
[3] J. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering 187, Academic Press, 1992.
[4] F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 6. Available online at http://rgmia. vu.edu.au/v7n1.html.
(F. Qi) Department of Applied Mathematics and Informatics and Institute of Applied Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHinA

E-mail address: qifeng@jzit.edu.cn, fengqi618@member.ams.org
URL: http://rgmia.vu.edu.au/qi.html
(B.-N. Guo) Department of Applied Mathematics and Informatics and Institute of Applied Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHINA

E-mail address: guobaini@jzit.edu.cn
(Ch.-P. Chen) Department of Applied Mathematics and Informatics and Institute of Applied Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHINA

E-mail address: chenchaoping@sohu.com

