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Some Computational Aspects of Discrete
Orthonormal Moments

R. Mukundan, Senior Member, IEEE

Abstract—Discrete orthogonal moments have several computa-
tional advantages over continuous moments. However, when the
moment order becomes large, discrete orthogonal moments (such
as the Tchebichef moments) tend to exhibit numerical instabilities.
This paper introduces the orthonormal version of Tchebichef mo-
ments, and analyzes some of their computational aspects. The re-
cursive procedure used for polynomial evaluation can be suitably
modified to reduce the accumulation of numerical errors. The pro-
posed set of moments can be used for representing image shape
features and for reconstructing an image from its moments with a
high degree of accuracy.

Index Terms—Discrete orthogonal polynomials, image recon-
struction, orthonormal moments, Tchebichef moments.

1. INTRODUCTION

OMENT functions are used in several computer vision

and related applications, such as pattern recognition,
object identification, template matching, and pose estimation
[1]-[4]. Zernike, Pseudo-Zernike, and Legendre moments use
continuous orthogonal polynomials as basis functions and
provide better feature representation capability and improved
robustness to image noise over other types of moments [S]-[7].
Since the Zernike and Legendre polynomials are defined only
inside the unit circle, the computation of those moments require
a coordinate transformation and suitable approximation of the
continuous moment integrals [8]-[11]. Discrete orthogonal
moments such as the Tchebichef (Chebyshev) moments [12],
[13] are directly defined in the image coordinate space and pre-
serve the property of orthogonality in a moment set. Tchebichef
moments are thus expected to perform better than continuous
moments, particularly in applications requiring independent
shape characteristics. The accuracy of image reconstruction
with Tchebichef moments is distinctly better than with contin-
uous orthogonal moments [14].

The scaled Tchebichef polynomials given in [12] provide a
simple framework for generating the moment functions without
significant variation in the range of magnitudes. However, when
the moment order becomes large, the squared norm of the scaled
Tchebichef polynomials assumes very small values, leading to
numerical instabilities in the computed moments. This paper
introduces the theoretical foundation for orthonormal moments
with unit squared norm for the basis functions. This scheme also
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allows for renormalization of the moment functions whenever
necessary, to nullify the effects of small truncation errors.

Another problem encountered in the computation of
Tchebichef moments of large order is the propagation of
numerical errors while using the recurrence relation for eval-
uating the polynomial values. The errors, thus, accumulated
in the recursive procedure can have an exponential growth,
rendering many high-order moment terms unusable. This phe-
nomenon severely affects the quality of image reconstruction,
particularly when large images (typically of size greater than
100 x 100 pixels) are used. A solution to the problem can be
devised by suitably changing the recurrence relations to avoid
cumulative multiplication of large values.

The organization of the paper is as follows. The next section
reviews the key formulae for defining the scaled Tchebichef
polynomials and the associated moments and illustrates the
problems in image reconstruction using high-order moments.
The orthonormal version of Tchebichef polynomials is intro-
duced in Section III. Section IV presents ways to minimize
the accumulation of truncation errors in moment computation.
Some properties of orthonormal moments are discussed in
Section V.

II. TCHEBICHEF POLYNOMIALS AND MOMENTS

For a given positive integer NV (usually the image size), and
a value z in the range [0, N — 1], the scaled Tchebichef poly-
nomials ¢, (x),n = 0,1,..., N — 1, are defined using the fol-
lowing recurrence relation [12]:

@Dt (@)= (n = 1) (1— <"J;;>2) tns(z)

to(x)=
n
n=23,...N—1 (1)
where
tO(‘T):l'/
2c+1— N

The above definition uses the following scale factor [12] for the
polynomial of degree n

B(n, N) = N™. 3)

The set {¢;} has a squared-norm given by
N-1
p(n,N) =Y {ti(x)}?
i=0

N(i-w)(1-%) - (1-
- - (271—}\—1) ( \)‘ @)
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Squared Norm (N=200)
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Fig. 1. Plot of the squared-norm of the scaled Tchebichef polynomials for
N = 200.

The scale factor in (3) was introduced to counteract the increase
in magnitude of the polynomial values with the degree n. How-
ever, in situations where IV (the image size) is large and the poly-
nomial degree approaches [V, the squared-norm given in (4) can
tend to a value close to zero. Fig. 1 shows a plot of p(n, N') with
n, for N = 200.

The values of the squared-norm affect the magnitudes of the
corresponding moments 7},,,, of an image, as they are computed
according to the following formula:

N-1N-1
Ty = DD twl@)ta(y) f(,y)
( TLN TOyO
m,n=0,1,2,...N -1 (5)

where f(x,y) denotes the intensity value at the pixel position
(z,y) in the image. Obviously, the computation of 7,,,,, can lead
to erroneous results when V is large. As an example, consider
the process of reconstruction of an image from its moments,
using the inverse moment transformation

) = Z Z T to(2)tn (y) (6)

m=0n=0

where M denotes the maximum order of moments used and
f(z,y) the reconstructed intensity distribution. For a binary
image, the reconstruction error can be defined as

i) - 1.3 | ™

= {#6.0) - i)} ®)

The images in Fig. 2 are used to illustrate the problems as-
sociated with large-order moments in image reconstruction.
Fig. 3(a) and (b) show some of the reconstructions of image-1
as the maximum order of moments is increased from 10 to 95.
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Fig. 2. Two images used for reconstruction. Image-1 is a binary image of size
96 X 96 pixels and image-2 is a gray-level image of size 200 x 200 pixels.
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M=85 M=90 M=95

Fig. 3. (a) Improvement in the quality of image reconstruction as the
maximum moment order M is increased from 0 to 50. (b) Deterioration in the
quality of image reconstruction as the maximum moment order M is increased
from 85 to 95.
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Fig. 4. Reconstruction error with respect to the maximum moment order M,
for image-1.

The reconstruction error for image-1, as computed from (7),
clearly shows the region where the numerical errors start to
dominate in higher-order moments (Fig. 4). The error starts to
increase when M = 81, toward the end (84%) of the total range
of values (N = 96). Similarly, the plot of the reconstruction
error computed using (8) for image-2 also shows a region of nu-
merical instability (Fig. 5) starting from M = 116, which is at
58% of the total range of moments (N = 200).
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Recn Error (Image-2)
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Fig. 5. Reconstruction error for image-2.

III. ORTHONORMAL MOMENTS

Toward the development a robust method for computing high-
order discrete orthogonal moments, we will first attempt to solve
the problem shown in Fig. 1, by constructing orthonormal ver-
sions of Tchebichef polynomials. This can be done by modi-
fying the scale factor in (3) as

B(n, N) = \/N(W - 1)(N;L—f21)...

(N7 =)

C))

If we denote the new set of polynomials with the above scale
factor, by {¢;}, then it can be easily seen that the recurrence
relations given in (1) now change to the following:

~

tn(z) = a1$£n—1($) + azfn—1(33) + a3£n—2(x)7

n=23...N—-1;, x=0,1,...N -1 (10)
where
2 [4n?2 -1
al_n N2 —n?
(1—N) 4712—1
g = >
2_n

(n—l\/2n+1\/zv2 n—l
- 11
a3 5m—3 N (11)

The starting values for the above recursion can be obtained from
the following equations:

io(s) = —
T) = —,
0 \/N

R 3

t =(2 1-N)| 55—~ 12

@) =@+ 1= V) g (2
We denote the squared norm by p(n, V), so that

N-1
(13)

pn,N) =3 {t.(1)} = 1.0,
1=0

The moment equations in (5) now reduce to

N—-1N-1
=3 @) f(z,y),
=0 y=0
myn=0,1,2...N—1 (14)
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Fig. 6. N x N matrix represents the set of orthonormal polynomial values,
with the solid and the dotted arrows denoting n recursion and « recursion
respectively.

while the inverse moment transform becomes

= Z ZTmnfm(x)fn(y).

m=0n=0

z,y=0,1,2,...N —1. (15)
Since the new moment set is orthonormal, small errors in the nu-
merical values of the Tchebichef polynomials can be corrected

using renormalization

bn(z) = —2 L N-—1. (16)

N-1
2;% {#:(i)}

z=0,1,2,...

However, systems where numerical errors are recursively prop-
agated in each step cannot be corrected using renormalization
alone. Indeed, the use of orthonormal moments with renormal-
ization of high-order moments has only marginally improved
the results presented earlier in Figs. 4 and 5.

IV. RECURRENCE RELATIONS

Note that £, (z) is a polynomial in 2™, and, therefore, the term
i N—1(N — 1) for N = 200 should, at least in theory, contain
the term 2002°° multiplied by an infinitely small coefficient so
that the magnitude is less 1. Numerical instability can therefore
easily occur in the evaluation of such polynomials if the recur-
rence relations are not properly used. A closer look at (10) and
(11) will tell us than none of the coefficients a1, as, a3 is large,
and the only factor that contributes to large magnitude varia-
tions is the repeated multiplication by x. The n recursion given
in (10) is represented by arrows with solid lines in Fig. 6. We
will use this recurrence relation only to compute the polynomial
values for x = 0 and then fill each row of table in Fig. 6 using
the x recursion given below.

‘We know that [15] and [16]

. (1-N)2-N)...(n—N)

£,(0) = n=0,1...N—1.
v B N)
a7
and using (9), we get
—y/ _",/2”+1A =1,...N-1.
N+n\V2n-1 '
(18)
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Fig. 7. Two reconstructions of image-2, using a maximum moment order of
65 and 199, respectively (N = 200).
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Fig. 8. Plot of image-2 reconstruction error with moments computed using
(18)-(22).

Also, we have [15]

19)

t,(1) = {1 + M} £,(0).

1-N

Equations (18) and (19) can be used to obtain the starting values
for the following x recursion:

fn(x) = ’Ylin(x -1+ ’72£n(x —-2),

n=12,...N —1; x:2,3,...g (20)
where
_—nn+1) -2z —-1)(x - N—-1)—
ne (N —x)
_(z-1)(z-N-1)
=y @1

Also note that in (20), the recursion can be terminated at x =
N/2, since we can make use of the symmetry condition

PN = 1— ) = (=1)",(z)

(22)
to evaluate the polynomial values where z is in the range [V /2,
N — 1]. This greatly reduces the computational time, and the
amount of accumulated errors in the result. Equation (20) was
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Fig. 9. Plot of image-1 reconstruction error with moments computed using
(18)—(22). The dotted line shows the change in error when noise is added to the
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Fig. 10. (a) Reconstruction of image-1 without noise, using « recursion. (N =
96). (b) Reconstruction of image-1 with 5% noise, using = recursion. (N = 96).

used to compute the moments of image-2 (Fig. 2) and a few
reconstructions employing high-order moments are shown in
Fig. 7.

Comparing the reconstruction error in Fig. 8 with that given
in Fig. 5, we find that the method using = recursion provides a
significantly high level of stability and accuracy in the computed
high-order moments. The results of the analysis with image-1
are in Fig. 9 (compare this with Fig. 4). The dotted line indicates
the reconstruction error after adding 5% salt-and-pepper noise
to the binary image. A few reconstructions of image-1 with and
without noise added are shown in Fig. 10(a) and (b).

V. A FEW PROPERTIES OF ORTHONORMAL POLYNOMIALS

Since fo(x) is a constant polynomial, the orthogonality prop-
erty implies

N-1
= Z to(z) =0, foralln > 0. (23)
=0
In general
N-1
Sy = Z 2*i,(z) =0, foralln > k. (24)
=0

The above equations can be used as additional constraints on
the polynomial table (Fig. 6) to improve the accuracy of the
computed values. Using (10) and the orthonormal properties of
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fi(x), we can express the coefficients a;q, as, a3 as sums of
products of the polynomial values

1.0
Y =34
> aty(2)tn—1(z)
=0
N-1 )
ay = — o Z T {tn_l(x)}
=0
N-1
a3 = — o Z Tlp—1(0)tp—o(x). (25)
=0

The symmetry property of the Tchebichef polynomials (22)
can be used to simplify (13) as
N/2

p(n,N) = 22 {fn(z)}Q =1.0, when N is even. (26)
From (17), we can derlve a 51mple expresswn for £x_1(0) as
h V-1
- = 2
in-1(0) H\/ng @7)

which can used to start the recursive computation in (18) in the
reverse direction (with decreasing values of n).

VI. CONCLUSION

Discrete orthogonal moments provide several advantages
over continuous moments such as the Zernike and the Legendre
moments. The elimination of numerical approximations and
coordinate transformations in the computation of discrete mo-
ments are very useful in preserving the orthogonality properties
in a moment set. However, the recursive nature of polynomial
evaluation can lead to numerical problems when the required
moment order is large.

This paper has introduced the theoretical framework for the
orthonormal version of Tchebichef polynomials. Orthonormal-
ization eliminates one region of numerical instability while
computing high-order moments, but recurrence relations can
still induce large errors as the moment order increases. The
paper has also proposed using recursion along the z-direc-
tion (coordinate values) rather than the n-direction (moment
order) to minimize the propagation of numerical errors. Image
reconstruction using orthogonal moments has been used as
an example to illustrate the stability of the results with the
proposed method.
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