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SOME COMPUTATIONAL ASPECTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF 
ELASTIC-PLASTIC LARGE STRAIN ANALYSI 

J. c. NAGTEGAAL~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MARC Analysis Research Corporation, Rijswijk, The Netherlands 

J. E. DE JONG 

Philips Research Laboratories, Eindhoven, The Netherlands 

SUMMARY 

The governing equations for large strain analysis of elastic-plastic problems are reconsidered. An 
improved form of these equations is derived, which is valid for small increments of strain and large 
increments of rotation. Special attention is paid to the integration procedures for these equations in the 
deformation history. It is shown that the tangent modulus procedure for integration of the constitutive 
equations is conditionally stable, and that implicit methods, such as the ‘mean normal’ method, are to be 
preferred. A novel procedure is introduced for the treatment of nonlinear geometric effects. The 
performance of various element types is examined, with specific attention to effects of ‘locking’ and 
distortion. Several applications are discussed to illustrate the various aspects of the formulation developed 
in this paper. 

INTRODUCTION 

In recent years, growing interest has been shown in the analysis of metal-forming problems by 
the finite element method. Initially, attention was focused on the steady-state analysis of 
continuous processes, such as wire drawing and extrusion. In the analysis of such problems the 
material behaviour is often assumed to be rigid-perfectly plastic, and an Eulerian flow-type 
approach is used to formulate the problem.’-* Although reasonably accurate results can be 
obtained with this method, problems arise when either free boundaries are present or when 
significant hardening effects occur. Furthermore, the method is not suitable for non steady-state 
problems or for problems in which the elasticity effects are of importance. For such problems, a 
Lagrangian-type large deformation formulation is more suitable. One of the first attempts to use 

such a formulation was made by Hibbitt, Margal and Rice.3 They used a total Lagrangian 
formulation, which still causes some problems, since the rate equations of plasticity are most 
suitably formulated with reference to the current state, and not with reference to the original 
state. 

Later, McMeeking and Rice4 pioneered the use of an updated Lagrange-type approach, 
showing that it was viable for a variety of problems. The updated Lagrange analysis procedure is 
more suitable for plasticity problems, because at each instant the reference state is updated to 
coincide with the current state, and this procedure is used here. The governing equations used 
here are the same as in many other studies where the updated Lagrange method is used. The 
main contribution of this study is the review of the basic equations with special attention to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
? Currently Technical University, Eindhoven, The Netherlands zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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complicating aspects of discretized analysis models. As will be seen, a close study of the effects of 
discretizing both in space and (deformation) history yields considerably improved analysis 
procedures with respect to both cost and accuracy. 

A difference compared with previously described methods is the derivation of the governing 
equations directly in incremental form instead of first deriving the rate equations and then 
generalizing these to a finite increment. This leads to an improved formulation when large 
increments in rotation occur. 

Consideration is given to the type of forward integration method used, with specific attention 
to the integration of the constitutive equations. It became clear, and was proved, that the usual 
tangent modulus method for elastic-plastic material behaviour is only stable when the strain 
increments are relatively small. Several procedures are discussed for the treatment of the 
geometric nonlinearities, and a novel procedure, called the 'strain correction' method, is 
developed. Another important aspect of the analysis of forming processing with the updated 
Lagrange method is the selection of appropriate element types. The results of several compara- 
tive calculations indicate that simple elements with relatively few dilatational degrees-of- 
freedom (to prevent 'locking' of the mesh') give the best performance. The formulation derived 
in this paper was implemented in the MARC general-purpose nonlinear finite element 
computer program6 It is intended to serve as a tool in the analysis of actual manufacturing 
processes. In the final section two examples are presented to illustrate the use of the program in 
the analysis of some practical problems. 

THE UPDATED LAGRANGE PROCEDURE 

The incremen@l procedure of analysis, known as the updated Lagrange procedure, is based 
upon the following concepts: 

1. During each analysis increment a Lagrangian formulation is used: the state variables are 

2. At the end of each increment, the state variables are redefined (updated) with respect to the 

First the state at the start of the increment is considered. In the Lagrangian description, the 
spatial position of a body expressed in terms of a Cartesian co-ordinate system is described by 
the expression 

defined with respect to the state at the start of the increment. 

state at the end of the increment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=xi(@") (1) 

where a material point of the body is uniquely defined by its values in the convected curvilinear 
co-ordinate system 6" (Figure 1). The equilibrium of the body is expressed by the virtual work 
equation formulated in terms of the components in the Cartesian co-ordinate system: 

uii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAScij d V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPi Sui d S  

or alternatively formulated in terms of the components in the convected curvilinear co-ordinate 
system: 

For brevity, only surface loads formulated in terms of the Cartesian co-ordinates have been 
considered. Since the integrations in (2b) are carried out over the current state of the body, the 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Spatial and material co-ordinate system 

contravariant components of Cauchy stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcap are equal to the contravariant components of 
the second Piola-Kirchhoff stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS*'. The covariant components of the variations in strain Semp 
are related to the Cartesian components of the variations in displacement through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S E a p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= & x k , a  auk,' + x k , p  8 U k . a )  (3) 

Using the symmetry of cap, the virtual work equation can be written as 

V 
(4) 

At the end of the increment, the spatial position of the body is described by a different function 
of the convected co-ordinates, with the incremental displacement function as the difference: 

xi = xi( 6") = Xj (6" )  + A u ~ (  6") ( 5 )  

The virtual work (=equilibrium) equation at the end of the increment takes the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fv (Sap + AS"') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEnp d V = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, (Pi + APJ Sui dS 

and the variations in Green's strain 6Eap are related to the variations in displacement by 

sEap = & X k , ,  + A u k , o l ) s u k , ~  + ( x k , p  f A U k , p ) s u k , a }  (7) 

Note that the integrations in (6) are still carried out with respect to the state of the body at the 
start of the increment and that AS"' is therefore the increment in the second Piola-Kirchhoff 
stress. 

Using the symmetry of Sap and AS"', one finds the equilibrium equation expressed in the 
displacements: 

The integrations in (4) and (8) are carried out with respect to the same state of the body. 
Subtraction yields the incremental virtual work equation, which is also referred to as the 
equation of continued equilibrium: 
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So zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfar, the equilibrium equations have been formulated in terms of the stresses and displace- 
ments (strains). 

This system of equations is complimented with the incremental constitutive equations: 

AEya (10) 
ASa@ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 @ Y S  

The correct definition of the contravariant components 2'maya of the moduli, which is of major 
importance for accurate analysis,will be discussed in detail in the next section. The increment in 
Green's strain is related to the displacement increment by 

AEya = % % c , ~  A U k , a  + x k , s  A u k , y  A u k . 6 )  (1 1) 

Since the moduli zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2'upys are symmetric with respect to the last two indices, the combination of 
(10) and (11) leads to the expression for the stress increment in terms of the displacement 
increment: 

Asup = 2 a p y s ( x k , y  A u k , *  + i A U k , y  A u k , * )  (12) 

Equations (9) and (12) are the governing equations for the increment. If the co-ordinate system 
is Cartesian at the start of the increment, the equations are simplified to 

and 

A s i j  = R j k r ( A U k , l  + $ A u m , k A u m , l )  (14) 

The moduli 2 j j k l  are not the usual classical 'small strain' moduli. See the next section for details. 
At the end of the increment, the state variables need to be updated. Here an important 

difference arises between a formulation in terms of a general convected cirvilinear co-ordinate 
system and a convected co-ordinate system which is Cartesian at the beginning of each 
increment. For the curvilinear system, the contravariant components of second Piola-Kirchhoff 
stress need only be corrected for volume changes in order to become the contravariant 
components of Cauchy stress: 

= (s*@ +AS"@)IJ  (15) 

where J is the Jacobian of the deformation increment. Note that if the material behaviour is 
(approximately) incompressible, no transformation is needed. 

In the initially Cartesian approach, the second Piola-Kirchhoff stress must be transformed to 
true (Cauchy) stress in the Cartesian co-ordinate system: 

C i j  = ( 8 i k  + A U i , k ) ( S k l +  A S k l ) ( S j l  + A u j , l ) l J  (16) 

Again the Jacobian will be equal to unity if the material behaviour is (approximately) 
incompressible. If at the start of each increment the co-ordinate system is curvilinear but 
distance-measuring, as is usually the case in beam and truss problems, other transformation 
rules apply, which, for brevity, will not be discussed here. 

CONSTITUTIVE EQUATIONS 

In this section the moduli that relate the increment in the (contravariant) components of second 
Piola-Kirchhoff stress to the increment in the (covariant) components of Green's strain will be 
derived. 
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For an elastic-plastic material, the total strain rate must be separated into an elastic and a 
plastic part: 

As was demonstrated by Hutchinson7 and Wang and Budiansky,* a suitable expression for the 
relation between rate of stress and elastic strain rate is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP - Z P w i e ) g . ( e )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(+a- a YP 

with &: the rate of the mixed tensor components of Cauchy stress. The yield criterion can also be 
written in terms of the mixed components of Cauchy stress: 

Eaa = Ek",: + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE$; (17) 

(18) 

f((+,") = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (19) 

and the associated flow rule is readily derived as 

where g,, is the covariant metric tensor. The rate quantity A depends on the work-hardening 
properties of the material. Inversion of equations (17)-(20) yields an elastic-plastic relationship 
of the type 

When the material is not at yield or is unloading, the constitutive equation has the form 
(21) 

(22) 

- P - c p Y P ' " - p '  * 
(+a - a E,P 

P?wie) c$? =Ye Eyp 

The remaining problem is to transform this equation into one of the type (10). This is achieved 
by transformation of the rate of Cauchy stress into the rate of second Piola-Kirchhoff stress with 
the relation 

s: = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu: + g y p E p y c + :  (23) 

where gyp is the contravariant metric tensor. Next the rate of the mixed stress components is 
converted into the rate of the contravariant stress components. The relation between the stress 
components itself can be written as 

S"@ = (24) 

( 2 3  

or, alternatively, in order to obtain a symmetric expression for Sap, 

S"* = + ( g a 3 C  + gP's;) 

The rate form of this relation is 
S a B  = $(g "YsC + gP 's ;  + gay(+':  + gs,(+;> 

where S: is replaced by & because the current state is also the reference state. With the 
relations 

gaygyp = 6," (27) 
and 

gal3 = 2Ea@ (28) 

where 6: is the Kronecker delta, equation (26) yields 

S"@ = + ( f Y S f :  + ghp) - (g"P(+pB +g @ y ( + P a ) L j y p  (29) 
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Combination of (22), (23) and (29) and use of the symmetry of (25) then leads to the final 
relation 

(30) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS a P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p 3 Y P f i Y P  

CJaSYP - - 2(garkJP7YP(=-n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + g P y ? ; Y P ( e - - P )  

with 

(31) 

This equation is a generalization of the equation presented in Reference 4. Equation (3 1) can be 
multiplied by a time increment At to form an incremental constitutive relation, which introduces 
an approximation. The relative error is of the same order of magnitude as the increment in 
strain. Since the strain increment is limited by accurate integration of the plasticity equations, 
this does not impose a new restriction. See also the next section. 

If the co-ordinate system is Cartesian at the start of the increment, equation (31) takes the 
simplified form 

- g a Y f f P P  - g P Y f f P a  - gaPf fvB - g P P a Y a )  + aaPgvP 

Zikt = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs$’) - %aikg,lI + a j k f f z l  + ail(+ik f a i l f f t k )  + (+rlaklI (32) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5?$ek;” are the elastic-plastic moduli for the usual small-strain analysis. 
The presence of the last term in (31) and (32) causes the constitutive equations to be 

non-symmetric. However, if the deformations are (nearly) incompressible, which is usually the 
case for metal plasticity, the last term can be neglected and the constitutive equations remain 
symmetric. 

INTEGRATION OF THE RATE EQUATIONS 

As has become clear in the previous sections, three sources of nonlinearity may be distinguished 
in the large strain plasticity problem: 

1. Geometric nonlinearities (large rotational effects), resulting in equations (9) and (12). 

2. Material nonlinearities, as present in the usual constitutive equations (22). 

3. Constitutive nonlinearities (large strain effects) which cause the additional terms in equations 

In order to obtain the solution to the finite element problem in an efficient way, the solution 
technique has to be well chosen. There are two main aspects to the solution process of the 
nonlinear finite element equations: 

(a) the integration of the rate equations to (eventually nonlinear) incremental equations, which 

(b) the solution of the nonlinear incremental equations, which will be discussed in the next 

The difference between the elastic-plastic rate equations used here and the usual small strain 
elastic-plastic rate equations is formed by the terms proportional to the stress in (31)/(32). 

These terms are readily added in an existing elastic-plastic finite element program. Use was 
made of the standard plasticity algorithms of the MARC program, as described in Reference 6. 
The large strain terms were added in explicitly linearized incremental form. 

Some simple single-element tests were carried out to test the correctness of the integration 
procedures. The first test carried out was a uniaxial tensile test on a plane stress element. The 
element dimensions, the boundary conditions and the material properties are shown in Figure 2. 

(31) and (32). 

will be discussed in this section; 

section. 
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LOGARITHMIC STRAIN 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

Figure 2. Uniaxial tension test, plane stress element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The usual Jz-flow theory was used to form the elastic-plastic constitutive equations. The test 
was displacement-controlled, with equal displacement increments of 5 per cent of the original 
length. In Figure 3 the calculated true (Cauchy) stress is plotted as a function of the logarithmic 
strain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe = In (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu/lo),  where lo is the element length in the undeformed state. The drawn line in 
Figure 3 is the analytic solution for a rigid-plastic material with the same work-hardening 
characteristics: 

a=ay+h ln ( l+u/ lo)  (33) 
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A 

A 
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I A 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArigid - plastic workhardening solution 
A displacement increment 5% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 sl 0.00 0.16 0.32 0.08 0.60 0.60 0.96 

LOGARITHMIC STRAIN 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Uniaxial tension test, stress-strain diagram 

The calculated stress differs slightly from the analytic solution, specifically for larger strains. This 
is attributable to the approximate integration of the rate forms (31)/(32) over finite increments 
of strain. As second test, the uniaxial tensile analysis was repeated with the same element, but 
now with controlled load, the load increments being equal to 5 per cent of the load to first yield. 
The results are shown in Figure 4, compared with the rigid-plastic analytical solution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F = Ao[c+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ h  In (1 + u/Eo)]/(l + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu/Zo) (34) 

The test results are in good agreement with the analytical solution, except in the last increment, 
where the load actually increases to above the theoretical maximum. The last part of the analysis 
was subsequently repeated with load increments of 2.5 per cent. The results are also plotted in 
Figure 4, and an improvement in accuracy clearly shows. 

In order to check the consistency of the formulation, the uniaxial test on the plane stress 
element was repeated with the stressed direction at 45 degrees to the X-axis (Figure 5). A plot of 
maximum principal stress vs. the logarithmic strain in two different integration points shows 
strong fluctuations of the stress (Figure 6), although the strain histories at the points are identical 
to at least four-digit accuracy. This clearly indicates some form of (numerical) instability. The 
test was repeated with a generalized plane strain element, where the strain perpendicular to the 
plane of the element was left free, and in this analysis no instability developed (Figure 6). This is 
due to different procedures for integration of the plasticity equations. For problems charac- 
terized by a three-dimensional stress state (such as the generalized plane strain analysis), the 
MARC program uses the so-called ‘mean-normal’ method as described by Rice and Tracey.’ In 
this method the flow law is chosen such that the yield criterion is satisffied exactly at the end of 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArigid - plastic workhardening solution 
A load increment 5% 
+ load increment 5% (above 1.4 2.5%) 

0 
0 ~~1 ... 0.00 0.16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.32 0.U8 I 0.64 I I 0.80 I I 0.96 I 1  

LN (1 + u/Lo) 

Figure 4. Uniaxial tension test, load-displacement diagram 

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y 

X 

Figure 5. Uniaxial tension test, stressed direction 45 degrees 
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0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.. 

0 (D - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m N  

a -  
v) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W 

I- 
* z  - 

N 

0 m 

rl 

0 

=, ” 

0 0 

+ ti_ 
- rigid - plastic workhardening solution 
A gen. plane strain element 
+ plane stress element integr. point 1 
X plane stress element integr. point 2 

d .  1 1 1 1 1 1 1 1 1 l 1  
0.00 0.16 0 .32  0.48 0.84 0.80 0.96 

LOGARITHMIC STRAlN 

Figure 6. Uniaxial tension test 45 degrees, stress-strain diagram 

the increment for a given increment in strain. For a state of plane stress, this method cannot be 
applied directly and the explicit tangent modulus method (with subsequent stress correction) is 
used. It is readily proved that the ‘mean-normal’ procedure is unconditionally stable, whereas 
the tangent modulus procedure has a clear stability limit for the strain increment. For a 
non-hardening material the proof is particularly simple. The elastic-plastic rate equation for 
such a material has the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAujj is the deviatoric stress: 

and oo the equivalent (deviatoric) stress: 

uo = J($u:jG-Q) (37) 

From the rate equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 3 ,  the tangent modulus method is obtained by substituting incre- 
mental values for the rates 

Now consider a loading path for which the increment in strain is proportional to the deviatoric 
stress. Since the elastic strain increment vanishes, the flow rule yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A&.. = (39) 
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Consider an imposed strain increment that deviates slightly from (39): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa (ail + a:) (40) 

where a: is a deviatoric stress tensor which is small compared to the equivalent stress and which 
is orthogonal to a:, : 

a:lff:: = 0 (41) 

hall = 2 a G 4  (42) 

Substitution of (40) in (38) yields 

If another increment of the form (40) is applied, this increment may be written with respect to 
the stress at the start of the increment as 

Acy = a ( ( ~ ~ ~ + h u , ~ + a ~ )  (43) 

(44) 

a > 1/G (45) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AslI d I / G  (46) 

where the deviation a t  is given by 

U ;  = U: -ha;, = (1 - 2aG)a: 

The absolute value of the deviation increases and hence instability occurs if 

or, when substituted in (39), 

The stability limit for the strain increment in this procedure is thus equal to twice the elastic 
strain up to yield. In the ‘mean-normal’ procedure, the incremental equations are formed in a 
different manner. In this procedure, a fictitious elastic mid-increment stress is defined: 

@:, = a:, + G AclI (47) 

and this stress is used in the formation of the incremental constitutive equation: 

where cTo is the equivalent elastic mid-increment stress: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a. = J($@;j@;) (49) 

Let the strain increment again be defined by (40) and (41), and let a; be small compared to 
u Q ;  it then readily follows that 

For the next increment, the stress deviation a; is given by 

Clearly, for all values of a between zero and infinity the absolute value of the deviation 
decreases. Hence, the ‘mean-normal’ procedure for integration of the elastic-plastic constitu- 
tive equations is unconditionally stable. The above derivations explain why, in the tensile test 



26 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.  C. NAGTEGAAL AND J. E. DE JONG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
carried out under 45 degrees, the generalized plane strain formulation is stable and the plane 
stress formulation is unstable. 

The apparent stability in the first test turned out to be due to the complete absence of initial 
deviations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr;. The instability also occurs in the stress history in a plane stress element subjected 
to pure shear (Figure 7). The calculation was first carried out with the tangent modulus method, 
and after a few increments the stresses started to oscillate violently (Figure 8). The analysis was 
then repeated using the mean-normal method. As is clear from Figure 8, no instability develops 
in this calculation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h 
Figure 7. Pure shear test, plane stress element 

The previous discussion has shown that a stability limit of twice the elastic strain exists for the 
strain increment in the explicit integration of the elastic-plastic constitutive equations. This 
stability limit does not exist for the ‘mean-normal’ integration procedure. For typical meraB 
forming problems, the total strains are two to three orders of magnitude larger than the elastic 
strains, With a straightforward explicit tangent modulus procedure this means that several 
hundreds of increments have to be calculated, with in most cases very high computing costs. 

literature.’O’l‘ The stability limit does not necessarily dictate the ‘global’ increment size; 
sub-incre~ental techniques presumably may be used successfully to overcome the stability 
problems. The disadvantage of such a procedure (and of the ‘mean-normal’ procedure) is its 
nonlinear nature, which requires an iterative solution scheme. A more elaborate study concern- 
ing the integration of the constitutive equations is certainly desired, and is planned by the 
authors. 

SOLUTION OF THE INCREMENTAL EQUATIONS 

In the previous section, the transformation of the rate equations into incremental equations was 
discussed. The nonlinearity of the incremental finite element equations depends strongly on this 
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- rigid - plastic workhardening solution 
A load incr. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5% mean normal formulation 
+ load incr. 5% explicit formulation 

GAMMA 

Figure 8. Pure shear test, stress-strain diagram zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
transformation. If the equations are formed by explicit linearization, the nonlinearity in the 
incremental equations is the same as the nonlinearity in the rate equations, and is only caused by 
the elastic-plastic loading/unloading effects. The disadvantage of such a simple linearization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 
the limited increment size due to accuracy and stability requirements. 

In the present study, the incremental equations have been derived in a more accurate, but 
more nonlinear form. In particular, nonlinearities appear in the equations due to: 

(a) elastic-plastic loading/unloading effects; 
(b) the implicit ‘mean-normal’ formulation for plastic flow (48); 
(c) the exact implementation of the incremental virtual work equations (9), (13). 

The solution of a system of nonlinear equations is a mathematical topic which can be discussed 
without reference to the methods used to generate the equations. Methods such as successive 
s u ~ $ t i ~ ~ t i o ~ ,  Newton(- aphson) iteration, modified Newton iteration, quasi-Newton iteration, 
( con~u~a te )  gradient method, etc., are described in textbooks on numerical analys i~. ’~  It is 
examined which of these methods are suitable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto solve the finite strain plasticity equations. The 
elastic-plastic loading/unioading phenomena are treated effectively with a ‘direct’ iteration 
procedure. An initial guess is made as to which regions are loading and which regions are 
unloading. Subsequently the displiacement increments are calculated and the actual load- 
ing/unloading regions are determined. If necessary, this calculation serves as the next guess, etc. 
Experience has shown that this procedure is straightforward and effective for problems with this 
type of n o n l i ~ i e ~ ~ ~ ~ ~ .  

The ‘direct’ iteration method is readily extended to cover the implicit ‘mean-normal’ 
formulation for plastic loading as well. An initial guess is made of the expected strain increment 
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and the corresponding (fictitious) elastic mid-increment stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACr, is calculated with 
equation (47). This stress is used in the formation of the incremental constitutive equation (48) 
that is used to calculate the incremental solution. This calculation provides the next guess, etc. 
Again, this procedure has proved to be quite effective for plasticity problems. Hence, a 
satisfactory solution has been obtained for problems (a) and (b). 

Since two of the three nonlinear effects have been handled with a 'direct' iteration procedure, 
it appears logical to take care of the third effect in the same way. The formulation of this iterative 
procedure is derived from equations (9) and (12). If the superscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n' denotes the results from 
the previous iteration, the results of the next iteration are obtained from the equations 

(xk,,+&.lt~) A U t 2 1 )  (52b) ASa@'"+')-Z'a@Ys zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

This method turns out to be not particularly effective, and performs rather poorly for slender 
structures, which is a disadvantage in the analysis of sheet metal forming problems. Instead of 
the direct iteration method, a full Newton-Raphson iteration can be included, and better 
performance may be expected for most practical problems. However this procedure is also only 
moderately effective for slender structures. The reason is the presence of nonlinear terms in the 
calculation of the strain increments (1 1). In slender structures, such as beams, the rotation 
increments are usually much larger than the strain increments, and hence the nonlinear terms in 
(1 1) may dominate the linear terms. Since the iteration procedures start with a fully linearized 
calculation of the displacement increments, the nonlinear contributions yield strain increments 
inconsistent with the calculated displacement increments in the first iteration. These errors give 
rise to either incorrect plasticity calculations, or, in the case of elastic material behaviour, yields 
erroneous stresses. These stresses in their turn have a dominant effect on the stiffness matrix for 
subsequent iterations or increments, which then causes the relatively poor performance. 

The remedy to this problem is as simple as it is effective. The linear and nonlinear part of the 
strain increments are calculated separately and only the linear part of (1 1) 

AEg' =+(xk,, ALlk.8 + x k , s  Auk,,) 

is used for calculation of the stresses. The nonlinear part of (1 1) 

AEt?' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Auk,, Auk,* 

(53)  

(54) 

is used as 'initial strain' in the next iteration or increment, which leads to an additional residual 
load vector P?) defined by 

Since the displacement and strain increments are now calculated in a consistent way the 
plasticity and/or equilibrium errors are greatly reduced. Therefore it may be expected that the 
performance of the 'strain correction' method is better than the performance of the previously 
mentioned methods. The performance of the strain correction method is less if the displacement 
increments are (almost) completely prescribed, which is not usually the case. Finally note that 
the strain correction method can be considered as a Newton method, in which a different stiff- 
ness matrix is used. A mathematical examination of the strain correction method may provide 
better insight in its advantages and limitations. 
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As an illustration of the above methods consider the simple elastic cantilever beam in Figure 

9. The beam is loaded by a bending moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, to obtain a total rotation of the tip of 0.6 rad in 
six equal loading steps. With the direct iteration method no convergence is obtained, the full 
Newton method needs three iterations per step, and the strain correction method needs no 
iterations at all. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c L/h = 500 
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0 .2 .4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-Y 
Figure 9. Cantilever beam subjected to bending moment 

In order to test accuracy and stability of the implemented formulation two test problems, for 
which rigid-plastic workhardening solutions could be obtained, were calculated with different 
increment sizes. In both problems the ‘mean-normal’ formulation for plasticity and the strain 
correction method for geometric nonlinearity were used. 

The first test problem was a thick-walled tube with inner radius 1 and outer radius 2 under 
internal pressure, with no strain in the axial direction. The material behaviour was assumed to be 
identical with the behaviour in the simple single-element tests. Five 8-node quadrilateral 
elements with reduced integration were used to model the tube. The total internal load 
Ei = 277ripi, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri is the current internal radius, was increased in equal increments. In the first 
analysis, the load was increased in steps of 5 per cent of the load to first yield. The result, 
presented as a pressure vs. internal radius diagram, is shown in Figure 10, together with the 
analytical solution for the rigid work-hardening material. The agreement obtained between 
theory and finite element calculations is excellent. 

In the second analysis, the increment size was chosen four times as large as in the first analysis. 
From Figure 11 it is clear that the larger load steps do not cause a significant decrease in 
accuracy. It should be noted, however, that for the analysis with large increments the number of 
iterations for convergence of the (plasticity) equations has increased somewhat (average from 
2.4 to 3.4 per increment). 

Although this first test gives a good impression of the accuracy and stability of the integration 
of the constitutive equations in particular, it does not yield information about the nonlinear 
virtual work equations, since no rotations occur. 
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Figure 10. Thick-walled cylinder, &node quadrilateral elements. Diagram of pressure vs. internal radius, moderate load 
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Figure 11. Thick-walled cylinder, 8-node quadrilateral elements. Diagram of pressure vs. internal radius, large load 
increments 
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A better evaluation of this aspect is made in the second test, the calculation of the in-plane 
torsion pr0b1em.l~ The problem, the material properties and the finite element model are shown 
in Figure 12. The finite element model consists of a three degree fan of 4-node constant 
dilatation quadrilateral elements. Appropriate constraint conditions are enforced to ensure 
circular symmetry. The analysis was first run with small rotation increments (less than 3 degrees, 
Figure 13) and later repeated with large rotation increments (up to 6 degrees, Figure 14). Again 
the results are excellent in both cases, although some instability develops at the end of the large 
increment analysis. The in-plane torsion test is quite simple to analyse theoretically and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s= 0.33 

LOG. STRAIN 

Figure 12. In-plane torsion test, 4-node quadrilateral plain strain element 
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Figure 13. In-plane torsion test. Diagram of shear stress vs. rotation, small rotation increments 
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Figure 14. In-plane torsion test. Diagram of shear stress vs. rotation, large rotation increments 
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numerically, but it is actually a severe test for the algorithms used. The algorithms have to handle 
a combination of large strain, large rotation and a continuous changing stress state. At the end of 
the analysis, the shear strain at the inner radius is 105 per cent, and the directions of the principal 
stresses have rotated over 60 degrees. The fact that the deformations are indeed severe can be 
seen from the deformation history of the finite element mesh, shown in Figure 15. 

Figure 15. In-plane torsion test. Deformation history, rotation 10, 20, 32,45,60 degrees 

SOME NOTES ON FINITE ELEMENT TYPES 

Of considerable importance for the accurate calculation of large strain plasticity problems is the 
selection of adequate finite element types. In addition to the usual criteria for selection, two 
aspects need to be given special consideration: 

1. The element types selected need to be insensitive to (strong) distortion. 
2. For plane strain, axisymmetric and three-dimensional problems the element mesh must be 

The last aspect has been discussed in detail in a paper by Nagtegaal, Parks and Rice,' where it 
was shown that most finite element meshes tend to lock in the case of fully plastic material 
behaviour. As a remedy, a modified variational principle was introduced which effectively 
reduces the number of independent dilatational modes (=constraints) in the mesh. This 
procedure proved to be quite successful for plasticity problems in the conventional 'small' strain 
formulation. Zienkiewic~'~ points out the positive effect of reduced integration for this type of 
problem, and demonstrates the similarity between modified variational procedures and reduced 
integration. 

To test the performance of various element types, several problems are analysed with more 
than one element type. The first test problem was the thick-walled cylinder problem discussed in 
the previous section. The results with five 8-node quadrilateral reduced integration elements 
were shown in Figures 10 and 11. The analysis was repeated with five 8-node elements with full 
integration, and the results were found to be virtually indistinguishable from those obtained by 
means of reduced integration. 

Subsequently the analysis was carried out with five 4-node quadrilaterals, both in the 
usual displacement formulation and in the constant dilatation formulation as presented in 

able to represent non-dilatational deformation modes. 
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Reference 5. The results are shown in Figure 16; the usual formulation behaves poorly for 
this problem, whereas the constant dilatation formulation follows the analytical solution 
exactly. 

The second test problem was the axisymmetric upsetting of a disk. The dimensions of the disk 
and the meshes used ares shown in Figure 17; the material properties are the same as in the 
uniaxial tension test (Figure 2). Fully sticking conditions were assumed between disk and tool. 
The analysis was carried out with the four element types used in the previous problem. The 
calculated load-displacement curves are shown in Figure 18. Again, the usual 4-node quadri- 
laterals show an excessively stiff behaviour. The deformed meshes after 18 per cent height 
reduction are shown in Figure 19(a, b). Note that with the usual displacement method no strain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- rigid - plastic workhardening solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A displacement formulation 
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Figure 16. Thick-walled cylinder, 4-node quadrilateral elements, load increment 20 per cent 

concentration forms near the edge of the disk, although such a strain Concentration is observed 
in experiments. Of the 8-node quadrilateral elements, the fully integrated mesh also shows a 
(presumably) too stiff behaviour, although not as excessive as the 4-node element mesh. The 
reduced integration element mesh behaves less stiffly, but becomes as stiff as the fully integrated 
mesh in a later stage of the analysis. This effect can be explained from the deformed meshes after 
18 per cent height reduction, Figure 20(a, b). 

Whereas the fully integrated element mesh shows a similar lack of strain concentration as the 
4-node quadrilateral mesh, the reduced integration element mesh shows a very peculiar 
deformation pattern near the edge. This strange pattern is due to dominance of the singular 
mode of the reduced integration element. Since an updated Lagrange method is used, the 
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element stiffness is formed in the distroted configuration of the element. The 8-node iso- 
parametic elements are sensitive for the positions of the mid-side modes. If these mid-side nodes 
are not in the middle between the corner nodes, linear strain variations over the element are not 
possible and the convergence rate decreases. This property is advantageous in the application of 
the so-called quarter-point node technique used to model the l / J r  singularity in fracture 

but is a disadvantage in the current application. This automatically leads to the 
first additional requirement mentioned, the insensitivity to distortion. On the basis of the above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PRESCRIBED DISPLACEMENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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< 

GEOMETRY AND BOUNDARY CONDITIONS 

MESH FOR 8-NODE ELEMENTS: 197 d.0.f 

Figure 17. ''ixisymmetric upsetting, geometry and element meshes 

experiences, it is concluded that for large strain plasticity calculations low-order elements are 
preferable to high-order elements. Consequently, all further calculations were carried out with 
4-node isoparametric quadrilateral elements with constant dilatation. 

Of course, in the case of excessive local distortion even the 4-node elements may fail to give 
good results; locally, the elements may even turn inside-out. In such excessive cases a periodic 
redefinition of the mesh seems to be the only possible solution to the problem. As yet, such 
techniques have not been explored. Finally it should be noted that the conclusions concerning 
the advantage of low-order elements only hold for continuum situations. Whether similar 
conclusions apply to shell or membrane problems remains an open question. 
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Figure 18. Axisymmetric upsetting, load-deflection diagram 

COMPARISON WITH EXPERIMENTAL RESULTS 

In order to compare the numerical results with experiments, two analyses were carried out for 
which recent experimental results were available. The first calculation concerned the axisym- 
metric upsetting of an aluminium disk. The disk, made of 99.7 per cent pure aluminium 
(specifications according to DIN code 3.0255.10), initially had a height of 0.8 mm and a 
diameter of 4-8 mm. 

The stress-strain diagram is shown in Figure 21. In a paper by Brouha, de Jong and van der 
Weide17 detailed experimental results were presented, including displacement histories of 
numerous points on the disk-tool interface as well as the hydrostatic stress distribution on the 
interface at various stages of the process. The maximum height reduction was 64 per cent. Since 
no experimental data were available concerning the frictional behaviour between tool and 
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Figure 19. Axisymmetric upsetting, deformed meshes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 4-node elements: (a) displacement formulation; (b) constant 

dilatation formulation 

specimen, the displacements in both the axial and the radial direction were prescribed along the 
interface. When the material deforms homogeneously, the increase in radius of a point with 
initial radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAro is equal to 

where ho is the initial height and Ah the height reduction of the disk. The experimentally 
observed displacement curves on the interface were approximated with the equation 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b 

Figure 20. Axisymmetric upsetting, deformed meshes of 8-node elements: (a) fully integrated mesh; (b) reduced 
integrated mesh 
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Figure 21. Axisymmetric upsetting with prescribed slip, stress-strain diagram 

The best fit was obtained for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.87. The deformed shape at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 per cent height reduction is 
shown in Figure 22. The mesh shows strong distortion near the edges, which is in agreement with 
experimental observations. Experimentally and numerically obtained curves of the hydrostatic 
pressure are shown in Figure 23. The following differences clearly exist: 

1. The overall level of the hydrostatic pressure in the analysis was higher than in the experiment. 
2. In the experiment a local increase in pressure was measured near the centre of the specimen 

for reductions higher than 50 per cent. The analysis does not show this characteristic. 

As yet, it is not possible to provide a satisfactory explanation for these differences; it is expected 
that the effects of friction are very important. A more elaborate study of this problem will be 
carried out in the near future. 

The second problem deals with an actual manufacturing process. It concerns a flat plate in 
which a relatively small circular area is reduced in height. In this process, which is termed ‘local 
upsetting’ or ‘coining’, the maximum height reduction is 60 per cent. The ratio of tool radius to 
(initialj height is equal to three. The plate is made of CrNi steel with an initial yield stress of 
52 MPa. Dry friction was assumed between tool and specimen, with the coefficient of friction 

Figure 22. Axisymmetric upsetting with prescribed slip, deformed mesh at 50 per cent height reduction 
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calculated 

experiment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- _ _ _  

R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[mml  

Figure 23. Axisymmetric upsetting with prescribed slip, hydrostatic pressure distribution at disk/tool interface 

equal to 0.1. Perfect sliding conditions were assumed at the bottom of the plate. The experi- 
mental data available for this problem were considerably less extensive than for the previous 
problem, therefore the comparison between analysis and experiment is much less detailed. 

The main results are displayed in Figure 24. There is a clearly noticeable bulging somewhat 
outside the tool radius. The shape and height zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAh of this bulge are in good agreement with the 

Figure 24. Coining, deformed mesh and pressure distribution on the tool 
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actual shape and height observed in the process. The average value of the stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuav on the tool of 
3-8 GPa agrees well with the value deduced from the measured forging force. 

In this process a substantial amount of energy is needed for the bulge formation. This results in 
a relatively high radial stress at the tool edge, which prohibits the development of a local strain 
concentration. Therefore the results of this calculation probably do not depend strongly on the 
assumptions made about the frictional behaviour between tool and plate. This may well explain 
the better agreement obtained between analysis and experiment in this second problem. 

APPENDIX: LIST OF SYMBOLS 

Latin indices refer to spatial (Cartesian) components. 
Greek indices refer to material (convected) components. 
Subscripts denote covariant components. 
Superscripts denote contravariant components. 

8* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Convected material co-ordinates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Xi 
Xi 
ui = Total displacement. 
Aui = Incremental displacement. 
a i j y  8: = Kronecker delta. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gmPY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg = Metric tensor. 
Seij, S E , ~  = Small strain variations. 
Eij, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEup = Green (Lagrange) strain. 
J = Jacobian of the deformation-increment. 
Pi = Surface loads. 
u- Jl, cap = Cauchy stress. 
Sij, Sap = Second Piola-Kirchhoff stress. 
Zijkl, Zap’’ = Elastic-plastic moduli 
f(&) =Yield function. 

= Spatial position at start of increment. 
= Spatial position at end of increment. 
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