SOME COMPUTATIONAL PROPERTES OF TREE ADJOINING GRAMMARS*

K. Vijay-Shankar and Aravind K. Juahi

Department of Computer and Information Science
Room 288 Moore School/D2
University of Pennsylvania
Philadelphia, PA 191C4

Abstract

Tree Adjoining Grammar (TAG) is a formalism for natural language grammars. Some of the basic notions of TAG's were introduced in (Joshi,Levy, and Takahashi 1975| and by |Joshi, 1983]. A detailed investigation of the linguistic relevance of TAG's has been carried out in (Kiroch and Joshi, 1985). In this paper, we will describe some new results for TAG's, especially in the following areas: (1) parsing complexity of TAG's. (2) some closure results for TAG's, and (3) the relationship to Head grammars.

1. INTRODUCTION

lovestigation of constrained grammatical systems from the point of view of their linguistic adequacy and their computational tractability bas bees a major concern of compucational linguists for the last several years. Generalized Pbrase Structure grammars (GPSG), Lexical Functional grammars (LFG), Phrase Liaking grammars (PLG), and Tree Adjoiniog grammars (TAG) are some key examples of grammatical systems that have been and still continue to be investigated aloog these lines.

Some of the basic notions of TAG's were introduced in (Jobhi, Levy, and Takabasbi, 1975) and [Joshi, 1983). Some preliminary investigations of the linguistic relevance and some computational properties were also casried ous in [Joshi,1983|. More receatly, a detailed investigation of the linguistic relevance of lisci's were carried out by (Kroch and Joshi, 1985).

In this paper. we will describe some new resulta for TAG's, especially in the following areas: (1) parsing complexity of TAG's, (2) some closure results for TAG's, and (3) the relationship to Head grammars. These topics will be covered in Sections 3, 4, and 5 respectively. In section 2, we will give an introduction to TAG's. In section 6, we will state some properties not discussed bere. A detailed exposition of these results is given in [Vijay-Sbaskar and Joshi,1985].

[^0] David Wetr. We have bebefited enormously ty valuable diseugsiona with thern

2. TREE ADJOINING GRAMMARS--TAG's

We now introduce tree adjoining grammars (TAG's). TAG's are more powerful than CFG's, both weakly and strongly. ${ }^{1}$ TAG's were first introduced in (Joshi, Levy, and Takahashi, 1975) and |Joshi, 1283]. We include their description in thin section to make the paper self-contained.

We ean define 2 tree adioining grammat as follows. A tree adjoining grammas G is 3 pair $(1, A)$ where l is a set of initial trees, and A is a set of auxiliary trees.

A tree α is 2 an initial tree if it is of the form

That is, the root node of a is labetled S and the frontier nodes are all terminal symbols. The internal nodes are all non-terminals. A tree A is an acxiliary tree if it is of the form

That is, the root sode of β is labelled with a con-terminal X and the froatier nodes are all labelled with tepminals symbols except one which is labelled X. The node labelled by X oa the frontier will be called the foot node of B. The frontiers of initial trees belong to Σ°, whereas the frontiers of the auxiliary trees belong to $\Gamma^{\circ} N+U$ $5+115$

We will now defise a composition operation called adjoining, (or adjuaction) which composes an anxiliary tree β with a tree γ. Let γ be a tree with a node a labelled X and let β be an auxiliary tree with the root labelled with the same symbol X. (Note that β must bave, by defiaition, a node (and oaly ove) labelled X on the Proatier.)
${ }^{1}$ Grammare $G 1$ and $\mathbf{G 2}$ are weakly equivilent it the atring language of G1.

 they are mently equivaleat and for ench wis UG1)

 notion of appropriat etrectaral descriptioas

Adjoining can now be defined as follows. If β is adjoined to γ st the node n then the resulting tree $\boldsymbol{\gamma}_{\mathrm{g}}$ ' is as show in Fis. 2.1 below.

$\boldsymbol{r}^{\cdot}=$

Figare 2.1
The tree t dominated by X in γ is excised, β is inserted at the node a in γ and the tree t is attached to the foot node (labelled X) of θ. i.e., \mathcal{A} is inserted or adjnined to the aode a in 7 pushing t downwards. Note that adjoining is not a substitution operation.

We will now define

$T(G):$ The set of all trees derived in \mathbf{G} starting from initial trees in I. This set will be called the tree set of G.

L(G): The set of sll termias strings which appear in the frontier of the trees in $T(G)$. This set will be called the string language (op language) of G. If L in the string language of a TAG G then we say that L is a Tree-Adjoining Language (TAL). The relationship between TAG's , context-free grammars, and the corresponding string langoages can be summarized as follows (|Joshi, Levy, and Takahashi, 1973|, (Joshi, 1083|).

Theorem 2.1: For every concext-free grammar, G ', there is an equivatent TAG, G, both weakly and strongly.

Theorem 2.2: For every TAG, G, we have the following situations:
2. $L(G)$ is context-free and there is a context-free grammar G' that is strongly (end therefore weakly) equivaleot to G.
b. $L(G)$ is context-free and there in no context-free grammar G^{\prime} that is equivaleat to G. Of course, there must be a context-free grammar that is weakly equivalent to G.
c. $L(G)$ is strietly context-sensitive. Obviously in this case, there is no context-free grammar that is weakly equivaleat to \mathbf{G}.

Parts (a) and (c) of Theorem 2.2 appear in ([Jonhi, Levy, and Takahashi, 1975|). Part (b) implicit is that paper, but is is important to state it explicitly as we have dose here because of its linguistic significance. Example 2.1 illustrates part (a). We will now illustrate parts (b) and (c).

Example 2.2: Let $G=(1, A)$ where

Let us look at sone derivations in 6 .

\boldsymbol{T}_{1}

$\gamma_{1}=\gamma_{0}$ with $\beta_{1} \quad \gamma_{2}=\gamma_{1}$ with β_{2} adjoised at S as indicated in γ_{0}. adjoined at T as indicated in γ_{3}

Cleariy, $L(G)$, the string language of G is

$$
L=\left\{a^{a} \in b^{a} / a \geq 0\right\}
$$

which is a context-free language. Thus, there must exist a context free grammar, G^{\prime}, which is at least weakly equivalent to G. It cas be showe however that there is no context-free grammar G ' which is strongity equivaleat to G, i.e., $T(G)=T(G)$. This follows from the fact that the set $T(G)$ (the tree set of G) is non-frecognizable. s.e., there is no linite state bottom-up tree automaton that can recognize precisely $T(G)$. Thus a TAG may generate a context-free language, yet annign atructural descriptions to the strings that cannot be assigned by any context-rree grammar.

Example 2.3: Let $\mathrm{G}=(\mathrm{I}, \mathrm{A})$ where
! : $\alpha_{1}=$

A: $\quad \beta_{1}=$

The precise definition of $L(G)$ is as follows:
$L(G)=L_{1}=\left\{\mathrm{wec}^{0} / \mathrm{n} \geq 0\right.$, w is a string of a's and b's such that
(1) the number of $a^{\prime} s=$ the nomber of $b ' s=n$, and
(2) for any initial substring of w, the aumber of $\mathrm{a}^{\prime} \mathrm{s} \geq$ the number of b 's. \}
L_{1} is a strictly contexthensitive language (i.e., a context sensitive language that is not context-(ree). This can be shown as follows. Intersecting L with the regular language $a^{*} b^{*}$ e c^{*} results in the language

$$
L_{2}=\left\{a^{0} b^{a} \text { ec } c^{a} / n \geq 0\right\}=L_{1} \cap a^{0} b^{0} \text { ec } c^{0}
$$

L_{2} is well-known strictly coatext-sensitive language. The result of intersecting a context-free language with a regular language is always a context-free language; bence, L_{1} is not a cootext-free language. It is thus a strictly context-sensitive language. Example 2.3 thus illustrates part (c) of Theorem 2.2.

TAG's have more power than CFG's. However, the extra power is quite limited. The language L_{1} bas equal aumber of $a^{\prime} s, b$'s and c 's; bowever, the a 's and b's are mixed in a certain way. The lasiguage L_{2} is similar to L_{1}, except that a's come before all b's. TAG's as defined so far are not powerful enough to generate L_{2}. This cas be seen as follows. Clearly, for any TAG for L_{2}, each initial tree must contain equal aumber of a's, b's and c's (including sero), and each auxiliary tree must also costain equal number of $\mathrm{a}^{\prime} \mathrm{a}$, b's and c's. Further in each case the a's must precede the b's. Then it in easy to see from the grammar of Example 2.3, that it will oot be posaible to avoid getting the a's and b's mixed. However, L_{2} can be generated by a TAG witb local constraints (see Sectiva 2.1) The socalled copy language.

$$
L=\left\{w \in w / w \in\{a, b\}^{*}\right\}
$$

also cannot be generated by a TAG, bowever, again, with local constraints. It is thus clear that TAG's eas generate more than context-free languages. It cas be shown that TAG's cannot generate all context-sensitive languages (Joshi, 1984).

Although TAG's are more powerful than CFG's, this extra power is bighty conatrained and apparenty it is just the right kiod for characterizing certain structural descriptions. TAG's share almost all the formal properties of CFG's (more precisely, the corresponding clacees of languagen), as we shall see in section 4 of this paper and [Vijay-Shankar and Joshi, 1985|. In addition, the string languages of TAG's can also be parsed in polyoomial time, in particular in $O\left(n^{8}\right)$. The parsing algorithm is described in detril in section 3.

2.1. TAG's with Local Conatralate on Adjoining

The adjoining operation as defined in Section 2.1 is rontext free*. An auxiliary tree, say,
$\rho=$

is adjoinable to a tree t at a oode, say, n , if the label of that aode is X . Adjoiaing doen sot depend on the context (tree context) around the node a. In this sense, adjoiniag is coatext-free.

In |Joshi ,1983|, local constraints on adjoining similar to those investigated by [Joshi and Levy, 1977] were considered.Tbese are a generalization of the context-sensitive constraints studied by [Peters and Ritchie, 1969]. It was soon recognized, however, that the full power of these coastraints was never fully utilized, both in the linguistic context as well as in the "formal languages" of TAG's. The so-called proper analysis contexts and domination contexts (as defined in (Joshi and Levy ,1977|) as used in (Joshi ,1983| always turned out to be such that the context elements were always in a specific elementary tree i.e., they were further localized by being in the same elementary tree. Based on this observation and a sagsestion in |Joshi, Levy and Takahashi, 1975), we will deseribe a sew way of introducing local constraints. This approsch not only captures the iasight stated above, but it is truly in the spirit of TAG's. The earlier approach was not so, although it was certainly adequate for the inventigation in [Joshi ,1083]. A precise characterization of that approach still remains an open problem.
$\mathrm{G}=(\mathrm{I}, \mathrm{A})$ be 3 TAG with local constraints if for each elementary tree $t \in I \cup A$, and for each node, n, in t, we specify the set β of auxiliary trees that eas be adjoined at the node a. Note that if there is no constraint then all auxiliary trees are adjoinable at - (of course, only those whose root thas the same label as the label of the node a). Thus, in general, β is a subset of the set of all the auxiliary treet adjoinable ata.

We will adopt the following conventions.

1. Since, by definition, no auxiliary trees are adjoinable to a node labelled by a terminal symbol, no constraint has to be stated for node labelled by a terminal.
2. If there is no constraint, i.e., all auxiliary trees (with the appropriate root label) are adjoinable at a node, say, a, then we will not state this explicitly.
3. If no auxiliary trees are adjoinable at a node n, then we will write the coastraint as (ϕ), where ϕ deaotes the aull set.
4. We will aks., ailow for the possibility that for a node at least one adjoining is obligatory, of course, from the set of all possible suxiliary trees adjoinable at that node.

Hence, a TAG with local constraints is defined as follows. $G=$ (I, A) is a TAG with local constraints if for each node, a . in each tree t, be specily one (and ooly one) of the following constraints.

1. Seleetive Adioining (SA:) Oaly a specified subset of the set of all auxiliary trees are adjoinable at n. SA is written as (C), where C is 2 subset of the set of all auxiliary trees adjoiable at a.

If C equals the set of all auxiliary trees adjoinable at a . then we do not explicitly state this at the node a.
2. Null Adjoining (NA:) No auxiliary tree is adjoinable at the aode N. NA will be written as (ϕ).
3. Obligating Adjoiniag (OA:) At least one (out of all the auxilary trees adjoinable at al must be adjoined at n . $O A$ is written as (OA), or as $O(C)$ where C is a subset of the set of all auxiliary trees adjoinable at a.
Example 2.4: Let $\mathrm{G}=(\mathrm{I}, \mathrm{A})$ be a TAG with local constraints where I: $\alpha=$

In α_{1} ao auxiliary trees can be adjoined to the root aode. Oniy β_{1} is adjoinable to the left S node at depth 1 and only β_{2} is adjoinable to the right S node at depth 1 . In β_{1} onily β_{1} is adjoinatie at the root node and no auxiliary trees are adjoinable at the in...is node. Similarly for $\boldsymbol{\beta}_{2}$.

We must now modify our definition of adjoining to take care of the local constraints. given a tree γ with a node, say, in, labelled A and given an auxiliary tree, say, β, with the root node labelled A, we define adjoining as follows. θ is adjoinable to γ at the node a if $\theta \in$ 3 , where j is the constraint associated with the aode n in 7 . The result of adjoining of to γ will be as defined in earlier. except that the constraint C associated with a will be replaced by C^{\prime}, the constraint associated with the root node of β and by C^{\prime}, the coastraint associated with the foot node of θ. Thus, given

$s=$

The resultant tree γ^{\prime} is
$\boldsymbol{q}^{\boldsymbol{\prime}=}$

We also adopt the convention that any derived tree with a node which has an OA constraint associated with it will not be included in the tree set associated with a TAG, G. The string language L of G is then defined as the set of all terminal strings of all trees derived in G (starting with initial trees) which bave so OA constraints leftis them.

Example 2.5: Let $G=(I, A)$ be a TAG with local constraints where

I: $\quad a=$

There are no constraints in α_{1}. In β no auxiliary treen are adjoinable at the root node and the foot node and for the center S node there are no constraints.

Starting with α_{1} and adjoining β to α_{1} at the root node we obtain
$\gamma=$

$S^{(\phi)}$	
11	
S	
	11
11	
b	1 c
	(ϕ)

Adjoining θ to the center S oode (the only node at which adjunction ran be made) we bave
$\boldsymbol{r}^{\prime}=$

It is easy to see that G generates the string language

$$
L=\left\{a^{a} b^{a} e c^{a} / a \geq 0\right\}
$$

Other languages such as $L^{\prime}=\left\{a^{a^{2}} \mid 0 \geq 1\right\}, L^{\prime}=\left\{a^{n^{2}} \mid n \geq 1\right\}$ also cannot be generated by TAG's. This is because the strings of a TAL grow linearly (for a detailed definite of the property called ${ }^{\text {chentact growth" property, see [Joshi ,1983]. }}$

For those familiar with [Joshi, 1983], it is worth pointing out that the SA constraint is onty abbrevinting, i.e., it does not affect the power of TAG's. The NA and OA constraints bowever do affect the power of TAG's. This way of looking at local constraints has ooly greatly simplified their statement, but it has also allowed us to capture the insight that the 'locality' of the constraint is statable in terms of the eiementary trees themselves!

2.2. Simple Lingulatie Examples

We now give a couple of linguistic examples. Readers may refes wo |Kroch and Joshi, 1985| for details.

1. Starting with $\gamma_{1}=a_{1}$ which is an initial tree and then adjoining θ_{1} (with appropriate lexical insertions) at the indicated aode in a_{1}, we obtain $\boldsymbol{\gamma}_{\mathbf{2}}$.

$\gamma_{2}=$

The girl tho ast Bill is sonior
2. Startiag with the initial tree $\gamma_{1}=\alpha_{2}$ and adjoining θ_{2} at
the indicated node in a_{2} we obtain γ_{2}.

PRO to invite Mary
John persuaded B111 S

Joha perausded Bill to iapite Mary

Note that the initial tree α_{2} is not a matrix sentence. In ordet for it to become a matrix sentence, it must undergo an adjuaction at its root node, for example, by the auxiliary tree \mathcal{B}_{2} as shown above. Thus, for α_{2} we will specify a local constraint $O\left(\beta_{2}\right)$ for the root node, indicating that α_{2} requires for it to undergo an adjunction at the root node by an auxiliary tree β_{2}. In a fuller grammar there will be, of course, some alternatives in the scope of $O()$.

3. PARSING TREE-ADJOINING LANGUAGES
 3.1. Definitions

We will give a few additional definitions. These are not necessary for defining derivations in a TAG as defined in section 2. However, they are introduced to help explain the parsing algorithm and the proofs for some of the closure properties of TAL's.

DEFINITION 3.1 Let γ, γ^{\prime} be two trees. We say $\gamma \vdash \gamma^{\prime}$ if in $\boldsymbol{\gamma}$ we adjoin an auxiliary tree to obtain $\boldsymbol{\gamma}^{\prime}$.
\vdash^{-}is the reflexive, transitive closure of \vdash.
DEPINITION a.2 γ^{\prime} is called a derived tree if $\gamma \vdash^{\bullet} \gamma^{\prime}$ for some elementary tree γ.
We then say $\gamma^{\prime} \in \mathrm{D}(\gamma)$.
The frontier of any derived tree $\boldsymbol{\gamma}$ belongs to either $\boldsymbol{F}^{6} \mathrm{~N} \Sigma^{+}$U $\Sigma+N \sum^{6}$ if $\gamma \in D\left(,^{4}\right)$ for some suxiliary tree β. or to Σ^{6} if $\gamma \in D(\alpha)$ for some initial tree α. Note if $\gamma \in D(\alpha)$ for some initial tree α, then 7 is also a seotential tree.

If β is an auxiliary tree, $\gamma \in \mathrm{D}(\beta)$ and the froatier of γ is $w_{1} \mathrm{X}$ $w_{2}\left(X\right.$ is 3 nooterminal, $w_{1}, w_{2} \in \boldsymbol{5}^{\text {م }}$) then the leaf node having this non-terminal sy mbol X at the frontier is called the foot of 7 .

Sometimes we will be loosely using the phrase adjoining with a derived tree ' $\gamma \in D(\phi)$ for some auxiliary tree θ. What we mean is that suppose we adjoin θ at some nole and then adjoin within B and so on, we can derive the desired derived tree $\in D(\theta)$ which uses the same adjoining sequence and use this resulting tree to "adjoin" at the original ocde.

3.2. The Parning Algorithm

The algorithm, we present here to parse Tree-Adjoiniog Languages (TAls), is a modification of the CYK algorithm (whict is described in detail in (Aho and Ullman, 1973|), which uses a dynamic programming terhnique to parse CFL's. For the sate of makiog our descriptino of the parsing aigorithm simpler, we shall preseat the algorithm for parsing without considering local constraints. We will later show how to handle local constraints.

We shall assume that any node in the elementary treen in the grammar bas atmost iwo childres. This assumption can be made without asy lose of generality, because it cas be easily shown that for aoy TAG G there is an equivalent TAG G_{1} such that any node in asy elementary tree in G, bas atmost two children. A similar asumption is made in CYK algorithm. We use the terms ancestor and descendaot, throughont the paper as a transitive and reflexive relation, for example, the foot node may be called the ancestor of the foot aode.

The algorithm works as follows. Let $a_{1} \ldots a_{n}$ be the input to be parsed. We use a lous-dimensional array A; each element of the array coatains a subeet of the nodes of derived trees. We say a node X of a derived tree γ belongs to $A(i, j, k, 1]$ if X dominates a sub-tree of
 foot node of $\boldsymbol{\gamma}$ is labelled by Y) or $a_{i+1} \ldots \mathbf{a}_{\mathbf{2}}$ (i.e., $j=k$. This
corresponds to the case when γ is a sentential tree). The indices (i, j, k, l) refer to the positions between the input symbols and range over 0 through a . If $\mathrm{i}=5$ say, then it refers to the gap between \mathbf{a}_{5} and a_{6}.
lnitially, we fill $A \mid i, i+1,1+1, i+1\}$ with those nodes in the frontier of the elementary trees whose label is the same as the input a_{i+1} for $0 \leq i \leq n-1$. The foot nodes of auxiliary trees will belong to all $A[i, i, j, j]$, such that $\mathrm{i} \leq \mathrm{j}$.

We are now in a position to fill in all the elements of the array A. There are five cases to be considered.

Case 1. We know that if a node X in a derived tree is the ancestor of the foot node, and node Y is its right sibling, such that X $\in A \mid i, j, k, \|$ and $Y \in A(1, m, m, a \mid$, then their pareat, say, Z should belong to $A[i, j, k, a]$, see Fig 3.12 .

Case 2. If the right sibling Y is the ancestor of the foot node such that it belongs to $A|1, m, 0, p|$ and its left sibling X belongs to A i.i.j.i.), then we know that the parent Z of X and Y beloags to A $\mathbf{i}, \mathrm{m}, \mathrm{n}, \mathrm{p} \mid$, see Fig 3.1b

Case 3. If neither X nor its right sibling Y are the ancestors of the foot node (or there is no foot aode) theo if $X \in A(i, j, j, \|$ and $Y \in$ A|l.m.m.a| then their parent Z belongs to $A\{i, j, j, n \mid$.

Case f. If a node Z has only one child X, and if $X \in X[i, j, k, \|$, then obviously $Z \in A|i, j, k, l|$.

Case 5. If a node $X \in A|i . j, k, I|$, and the root Y of a derived tree γ having the same label as that of X, belongs to $A|m, i, l, a|$, then adjoining γ at X makes the resulting node to be in $A|m, j, k, n|$, see Fis 3.le.

Finure 3.1

Although we have stated that the elements of the array contain a subset of the nodes of derived trees, what really goes in there are the addresses of nodes in the elementary trees. Thus the the size of any set is bouaded by a constant. determined by the grammar. It is hoped that the presentation of the algorithm below will make it clear why we do so.

3.3. The algorithm

The complete algorithm is given below
Step 1 For $1=0$ to $\mathrm{a}-1$ stop 1 do
Step 2 put all nodes in the frontior of olementary trees whose label ts 401 in $\mathrm{A}(1,1+1,1+1,1+1)$.

Step 3 for $1=0$ to $n-1$ step 1 do
Stap 4 for $j=1$ to $0-1$ step 1 do
Step 5 put foot nodes of sll auxiliary trees in
A(1, i, j.j]
Step 6 for $1=0$ to a step 1 do
Step 7 For $i=1$ to 0 step -1 do
Step 8 For $1=1$ to 1 step 1 do
Step $0 \quad$ For $\mathrm{r}=1$ to 1 step -1 do

Step 10	do Case 1
Step 11	do Case 2
Step 12	do Case 3
Step 13	do Case 5
Step 14	do Case 4

Step 16 Accept if root of some initial tree $\in A[0,1, j, a]$.
$0 \leq 1 \leq 0$
where.
(a) Case 1 corresponds to situation where the left sibling is the ancestor of the foot oode. The parent is put in $A \mid i, j, \underline{L}, I]$ if the left sibling is in $A|i, j, k, m|$ and the right sibling is in A(m.p.p.l|, where k $\leq m<\mathrm{I}, \mathrm{m} \leq \mathrm{p}, \mathrm{p} \leq \mathrm{I}$. Therefore Case I is written as

For $\mathrm{m}=\mathrm{k}$ to $\mathrm{l}-\mathrm{l}$ step 1 do
for $p=a$ to 1 step 1 do
if there is a loft sibling in $A[i, f, k, n]$ and the right siblisg in A(n.p.p,1) satisifing appropriate restrictions then put eheir peront in $A[i, j, k, 1]$.
(b) Case 2 corresponds to the case where the right sibling is the apcestor of the foot node. If the left sibling is in $A|i, m, m, p|$ and the raght sibling is in $A|p, j, k$,$| , i \leq m<p$ and $p \leq i$, then we put their parent in $\mathrm{A}(\mathrm{i}, \mathrm{j}, \mathrm{k}, \boldsymbol{y}$. This may be writtea as
for $\mathrm{m}=1$ to $\mathrm{j}-1$ atep 1 do
For $p=n+1$ to 1 step 1 do
for all left ablinge in $A[i, n, n, p]$ and right
siblings
ia A[p.j.z.1] satiafying appropriste restrictions put eheis pareata
in $A(1, j, \mathbf{x}, 1]$.
(c) Case 3 corresponds to the case where neither childrea are ancestors of the foot node. If the left sibling $\in A|i, j, j, m|$ and the right sibling $\in \mathbf{A}(m, p, p, 1 \mid$ then we can put the parent in $A|i, j, j, j$,$| if it is the$ case that ($\mathrm{i}<\mathrm{j} \leq m$ or $\mathrm{i} \leq \mathrm{j}<\mathrm{m}$) and ($\mathrm{m}<\mathrm{p} \leq 1$ or $\mathrm{m} \leq \mathrm{p}<$ 1). This may be writtea as

```
\(105=1\) to \(1-1\) step 1 do
    for \(p=j\) to 1 step 1 do
        for al leit aiblinge in \(A(1, j, j\), n] and
```

right siblinge in $A[\mathrm{~m}, \mathrm{p}, \mathrm{p}, 1]$ satistying the appropriste reatrictions put thair parent is $A(1, j, 1.1]$.
(e) Case 5 corresponds to adjoining. If X is a node in $A|m, j, k, p|$ and Y is the root of a auxiliary tree with same symbol as that of X, such that Y is in $A(i, m, p, l)(i i \leq m \leq p<1$ or $i<m \leq p \leq 1)$ and (m $<j \leq k \leq p$ or $m \leq j \leq k<p$). This may be written as
for $=1$ to j step 1 do
for $p=$ to 1 step 1 do
if a node $x \in A[\mathbf{m}, \mathrm{j}, \mathrm{k}, \mathrm{p}]$ and the root of
suxilisery tree is in $A[1, \mathrm{~m}, \mathrm{p}, 1]$ then put X in $A(1, j, k, 1]$

Case 4 corresponds to the case where a sode Y has only one child X If $X \in A[i, j, k, l \mid$ then put Y in $A \mid i, j, k, 1]$. Repeat Case 4 again if Y bas no siblings.

3.4. Complexity of the Algorlithm

It is obvious that steps 10 through 15 (cases $2-$) are completed in $O\left(\mathrm{a}^{2}\right)$, because the different cases have at most two aested for loop statements, the iterating variables takiag values in the range 0 through n . They are repeated atmost $\mathrm{O}\left(\mathrm{n}^{4}\right)$ times, beeause of the lour loop statements in steps 6 through 9. The initialization phase (steps 1 through 5) has a time complexity of $O\left(a+0^{2}\right)=O\left(0^{2}\right)$. Step 15 is completed in $O(a)$. Therefore, the time complexity of the parsing algorithm is $O\left(0^{8}\right)$.

3.5. Corpectnem of the Alsorithm

The main issue in proving the algorithm correct, is to show that while computing the contents of an eiement of the array A, we must have already determined the contents of other eiements of the array needed to correctly complete this entry. We can show this inductively by considering each case individually. We give an informal argument below.

Case 1: We need to know the contents of $A[i, j, k . m], A|m, p . p .| |$ where $m<1, i<m$, when we are trying to compute the contents of Aii.j,k,Il. Since 1 is the variable itererated in the outermost loop (step 6), we can assume (by induction hypothesis) that for all $m<1$ and for all p, q, r, the contents of $A(p, q, r, m \mid$ are already computed. Hence, the contents of $A[i, j, k, m]$ are known. Similariy, for all $m>i$, and for all p, q, and $r \leq 1, A|m, p, q, y|$ would have been computed. Thus, A|m.p.p.l| would also have been computed.

Case 2: By a similar reasoning, the conteats of $A|i, m, m, p|$ and $A \mid p, j, k, 1]$ are knowa since $p<1$ and $p>i$.

Case 3: When we are trying to compute the contents of some $A\{i, j, j, l \mid$, we deed to know the nodes in $A|i, i, j, p|$ and $A|p, q, q, 1|$. Note j $>\mathrm{i}$ or $\mathrm{j}<\mathrm{I}$. Hence, we know that the contente of $\mathrm{A} \mid \mathrm{i}, \mathrm{j}, \mathrm{j}, \mathrm{pl}$ and A $(p, q, q, 1]$ would have bees computed already.

Case 5: The coatents of $A \mid i, m, p, \|$ and $A|m, j, k, p|$ munt be knowa in order to compute $A(i, j, h, i)$, where ($i \leq m \leq p<1$ op $i<$ $m \leq p \leq I)$ and ($m \leq j \leq k<p$ or $m<j \leq k \leq p)$. Siace either $m>i$ or $p<1$, comtents of $A|m, j, k, \bar{p}|$ will be knowe. Similarty, since either $\mathrm{m}<\mathrm{i}$ or $\mathrm{k}<\mathrm{p}$, the contente of $\mathrm{A}|\mathrm{i}, \mathrm{m}, \mathrm{p}, \mathrm{l}|$ would have been computed.

3.6. Paring with Loeal Constralnte

So far,we have assumed that the given grammar hat no local constraints. If the grammar has local constraints, it is easy to modify the above algorithm to take care of them. Note that in Case 5 , if an adjunction oceurs at a aode X, we add X again to the element of the array we are computing. This seems to be in contrast with our defiaition of how to associate local constraints with the nodes in a sentential tree. We should have added the root of the auxiliary tree instead to the element of the array being computed, since 80 far as the local constraints are concerned, this node decides the local constraints at this node in the derived tree. However, this scheme cannot be adopted in our algorithm for obvious reasons. We let pairs of the form (X,C) belong to elements of the array, where X is as before and C represents the local constraints to be associated with this node.

We then aller the algorithm as follows. If (X, C_{1}) refers to a node at which we attempt to adjoin with an auxiliary tree (whose root is denoted by (Y, C_{2}) , then adjunction would determined by C_{1}. If adjusction is allowed, then we can add ($\mathrm{X}, \mathrm{C}_{2}$) is the corresponding element of the array. In cases I through 4, we do not attempt to add a new element if any one of the children has an obligatory constraist.

Once it has been determined that the given string belongs to the language, we can find the parse in a way similar to the scheme adopted in CYK algorithm. To make this process simpler and more efficient, we can use pointera from the new element added to the elements which raused it to be put there. For example, consider Case 1 of the algorithm (step 10). If we add a oode Z to $A(i, j, k, \|$, because of the presence of its children X and Y in $A|i, j, k, m|$ and Alm,p.p.l| respectively, then we add pointers from this node Z in A $i, j, 1,1 \mid$ to the nodes X, Y in $A|i, j, k . m|$ and $A|m . p, p, 1|$. Once this has beea done, the parse can be found by traversing the tree formed by these pointers.

A parzer based on the techniques described above is currently being implemented and will be reported at time of presentation.

4. CLOSURE PROPERTIES OF TAG's

In this section, we present some closure results for TALs. We aow informally sketch the proofs for the closure properties. laterested readers may refer to |Vijay-Shankar and Joshi, 1985| for the complete prouls.

4.1. Cioaure under Union

Let G_{1} and G_{2} be two TAGs generating L_{1} and L_{2} respectively. We can coantruct a TAG G such that $L(G)=L_{1} \cup L_{2}$.
l.et $G_{1}=\left(I_{1}, A_{1}, N_{1}, S\right)$, and $G_{2}=\left(I_{2}, A_{2}, N_{2}, S\right)$. Without loss of generality, we may asoume that the $N_{1} \cap N_{2}=\phi$. Let $G=\left(I_{1} \cup I_{2}, A_{1} \cup A_{2}, N_{1} \cup N_{2}, S\right)$. We claim that $L(G)=L_{1}$ $\cup L_{2}$.

Let $x \in L_{1} \cup L_{2}$. Then $x \in L_{1}$ or $x \in L_{2}$. If $x \in L_{1}$, then it must be possible to generale the string x in G, siace I_{1}, A_{1} are in G. Hence $x \in L(G)$. Similarly if $x \in L_{2}$, we can show that $x \in L(G)$. Heace $L_{1} \cup L_{2} \subseteq L(G)$. If $x \in L(G)$, then x is depived using either only I_{1}, A_{1} or ouly I_{2}, A_{2} since $N_{1} \cap N_{2}=\phi$. Hence, $x \in L_{1}$ or $x \in$ L_{2}. Thus, $L(G)=L_{1} \cup L_{2}$. Therefore, $L(G)=L_{1} \cup L_{2}$.

4.3. Clonure under Concatenation

Let $G_{1}=\left(I_{1}, A_{1}, N_{1}, S_{1}\right), G_{2}=\left(I_{2}, A_{2}, N_{2}, S_{2}\right)$ be two TAGs generating L_{1}, L_{2} respectively, such that $N_{1} \cap N_{2}=\$$. We cas coustruct a TAG $G=(I, A, N, S)$ sach that $L(G)=L_{1} \cdot L_{2}$. We choose S such that S is not in $N_{1} \cup N_{2}$. We let $N=N_{1} \cup N_{2} \cup$ $\{S\}, A=A_{1} \cup A_{2}$. For all $t_{1} \in I_{1}, L_{2} \in I_{2}$, we add t_{12} to I, as shown in Fis 4.2.1. Therefore, $I=\left(t_{12} / t_{1} \in I_{1}, t_{2} \in I_{2}\right)$, where the nodes in the subtrees t_{1} and t_{2} of the tree t_{12} bave the same coastraints associated with them as in the original grammars G_{1} and G_{2}. It is esay to show that $L(G)=L_{1} . L_{2}$, oace we note that there are no auxiliary trees in G rooted with the symbol S, and that $N_{1} \cap N_{2}=$ \oplus.

Figure 4.2.1

4.3. Closure under Kloens Skar

Let $G_{1}=\left(I_{1}, A_{1}, N_{1}, S_{1}\right)$ be a TAG generating L_{1}. We cas show that we can construct a TAG G such that $L(G)=L_{1}{ }^{\circ}$. Let S be a symbol not in N_{1}, and let $N=N_{1} \cup\{S\}$. We let the set I of initial trees of G be $\left\{t_{\mathrm{e}}\right\}$, where t_{s}, is the tree shown in Fis 4.3 a . The set of suxiliary trees A is defined as

$$
A=\left\{t_{1 A} / t_{1} \in I_{1}\right\} \cup A_{1} .
$$

The tree $t_{1 A}$ is 20 shown in Fig 4.3b, with the constrainte on the root of each ita being the null adjoining constraint, no constraints on the foot, and the constraints on the nodes of the subtrees t_{1} of the trees $i_{1 A}$ being the same an thooe for the correaponding nodes in the initial tree t_{1} of G_{1}.

To see why $L(G)=L_{1}{ }^{*}$, coasider $x \in L(G)$. Obviously, the tree derived (whose frontier is gives by x) must be of the form shown in Fig 4.3e, where each t_{i}^{\prime} is a sentential tree ia G_{1},such $t_{i}^{\prime} \in D\left(t_{i}\right)$, for 20 initial tree t_{i} in G_{1}. Thus, $L(G) \subseteq L_{1}{ }^{*}$.

On the other band, if $x \in L_{1}{ }^{*}$, then $x=w_{1} \ldots w_{1}, w_{i} \in L_{1}$ for 1 $\leq i \leq a$. Let each w_{i} then be the frontier of tie sentential tree t_{i} of G_{1} such that $t_{i}^{\prime} \in D\left(t_{i}\right), t_{i} \in I_{1}$. Obviousty, we can derive the tree T, using the initial tree t_{0}. and have a sequeace of adjoinias operationa using the auxiliary trees t_{iA} for $\mathrm{I} \leq \mathrm{i} \leq \mathrm{a}$. From T we can obviously obtain the tree T^{\prime} the same at given by Fig 4.3 c , using ooly the suxiliary trese in A_{1}. The fronties of T^{\prime} is obviousiy $w_{1} \ldots w_{n}$. Hepee, x $\in L(G)$. Therefore, $L_{1} \cdot \in L(G)$. Thua $L(G)=L_{1}$.

Let L_{T} be a $T A L$ and L_{R} be a regular language. Let G be a TAG generatiog L_{T} and $M=\left(Q, \Sigma, \delta, q_{0}, Q_{F}\right)$ be a finite state automaton recognizing L_{R}. We cas construct a grammar G and will show that $L\left(G_{i}\right)=L_{T} \cap L_{R}$.

Let α be an elementary tree in G. We shall associate with each node 2 quadruple $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ where $q_{1}, q_{2}, q_{8}, q_{4} \in Q$. Let $\left(q_{1}, q_{2}, q_{8}, q_{4}\right)$ be associated with a node X in α. Let us assume that α is an auxiliary tree, and that X is an ancestor of the foot node of α, and beace, the ancestor of the foot node of any derived tree γ in $D(a)$. Let Y be the label of the root and foot oodes of α. If the frontier of $\gamma(\gamma$ in $D(a))$ is $w_{1} w_{2} Y w_{3} w_{4}$, and the froatier of the subtree of γ rooted at Z, which corresponds to the aode X in a is $w_{2} Y w_{3}$. The idea of associating ($q_{1}, q_{2}, q_{3}, q_{4}$) with X is that it must be the case that $\delta^{\circ}\left(q_{1}, w_{2}\right)=q_{2}, \operatorname{and} \delta^{\circ}\left(q_{3}, w_{3}\right)=q_{4}$. When γ beeomes a paft of the sentential tree γ^{\prime} whose froatier is given by $u w_{1} w_{2} v w_{3} w_{4} w$, then it must be the case that $\delta^{\circ}\left(q_{2}, v\right)=q_{2}$. Following this reasoning, we must make $q_{2}=q_{3}$, if Z is not the ancestor of the foot node of γ, or if γ is in $\mathrm{D}(\alpha)$ for some initial tree α in G .

We bave assumed here, as in the case of the parsing algorithm presented earlier, that any node in any elementary tree has atmost two children.

From G we can obtain G_{1} as follows. For each initial tree α, amociate with the root the quadruple (q_{0}, q, q, q_{f}) where q_{0} is the initial atate of the finite state automaton M, and $q_{f} \in Q_{F}$. For each auxiliary tree B of G, associate with the root the quadruple $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$, where $q, q_{1}, q_{2}, q_{3}, q_{4}$ are some variables which will later be given yalues from Q. Let X be some oode in some clementary tree a. Let $\left(q_{1}, q_{2}, q_{8}, q_{4}\right)$ be associated with X. Then, we have to coasider the followiag eases

Case I: X bas two children Y and Z. The teft child Y is the ancestor of the foot node of α. Then associate with Y the quadruple (p. q_{2}, q_{3}, q), and (q, r. r. s) with Z. and associate with X the constraint that only those trees whose root has the quadruple (q_{1}, p, A, q_{4}), amoag those which were allowed in the original grammar, may be adjoined at this node. $\mathbb{U f}_{1} \neq p$, or $q_{4} \neq \mathrm{s}$, then the constraint associated with X must be made obligatory. If in the original grammar X bad an obligatory constraint asoociated with it thea we retain the obligatory constraint regardless of the relatioaship between q_{t} and p, and q_{4} and s. If the constraist associated with X is a aull adjoining constraint, we asoociate ($\left.q_{1}, q_{2}, q_{3}, q\right)$, and (q, r, r, q_{4}) with Y and Z respectively, and ascociate the aull adjoining constraint with X. If the label of Z is a, where $a \in \Sigma$, then we choose a and q such that $\delta(q, 2)=s$. In the aull adjoining conatraint care, q is chosen such that $\delta(q, a)=q_{4}$.

Case 2: This corresponds to the case where a node X has two childrea Y and Z, with $\left(q_{1}, q_{2}, q_{3}, q_{1}\right)$ associated at X. Let Z (the right child) be the ancestor of the the foot aode the tree α. Then we shall acoociate (p, q, q, i), $\left(r, q_{2}, q_{4}, s\right)$ with Y and Z. The amociated constraiat with X shall be that only those trees amoug those which were allowed is the orignal grammar may be adjoined provided their root has the quadruple $\left(q_{1}, p, n, q_{4}\right)$ associated with it. $I f q_{1} \neq p$ or $q_{4} \not{ }^{\prime}$ r then we make the constraiat obligatory. If the original grammar had obligatory constraiat we will retain the obligatory constraint. Null constraint is the origial grammar will force un to use null constraist and not consider the cases where it is not the case that $q_{1}=p$ and $q_{1}=s$. If the label of Y in a terminal 'a' thea we choose r such that $f^{\circ}(\mathrm{p}, \mathrm{a})=\mathrm{r}$. It the constraint at X in a aull adjoining constraiat, then $\delta\left(q_{1}, z\right)=$.

Case 3: This correspouds to the case where neither the teft child Y nor the right child Z of the node X is the ancestor of the foot node of a or if a is a initial tree. Then $q_{2}=q_{s}=q$. We will asociate with Y and Z the quadruples (p, r, r, q) and ($q, 8, s, t$) resp. The constrainta are assigned as before, is this case it is dictated by the quadruple $\left(q_{1}, p, t, q_{4}\right)$. If it is not the case that $q_{1}=p$ and $q_{4}=t$, thee it becomes an OA constraint. The OA and NA constraints at X are treated similar to the previous cases, and so is the case if either Y or Z is labelled by a terminal symbol.

Case 4: II $\left(q_{1}, q_{3}, q_{3}, q_{4}\right)$ is associated with a node X, which has onty one child Y, then we cas deal with the various casen as follow. We will amociate with Y the quadruple (p, q_{2}, q_{1}, s) and the conatraint that root of the tree which can be adjoised at X should have the quadruple (q_{1}, p, s, q_{4}) ansociated with it amons the trees which were allowed in the original grammar, if it is to be adjoined at X. The cases where the original grammar had null or obligatory constraint recociated with this node or Y is labelled with a termiaal aymbol, are treated similar to how we dealt with them in the previous cases.

Once thia has been done, let $q_{1}, \ldots, q_{\text {ve }}$ be the independent variables for this elementary tree α, then we produce as many copice of a so that q_{1}, \ldots, q_{m} take all possible valaes from Q. The oath differeace among the varions copies of α so produced will be constraints associated with the uodes in the trees. Repeat the process for all the elemeatary trees in G_{1}. Once thim has been doae sad each tree given a anique name we can write the coastraints in terms of these names. We will now show why $L_{(}\left(G_{1}\right)=L_{T} \cap L_{R}$.

Let $\left.w \in L_{(} \mathbf{G}_{1}\right)$. Then there is a equence of adjoining operations startiag with an initial tree a to derive w. Obvionsty, $w \in$ iT, also since enrreapoading to each tree used in deriving w, there is a correspoading tree in G, which differs ouly in the constraints asociated with its nodes. Note, however, that the coantraints aesociated with the nodea in trees in G_{1} are jurt a restriction of the corresponding osem is \mathbf{G}, or an obligatory conatraint where there was nose in G. Now, is we can aseume (by induction hypotherin) that if after as adjoining operations we can derive $\gamma^{\prime} \in D\left(a^{\prime}\right)$. thes there is a correapondiag tree $\gamma \in D(a)$ in G, which bas the same tree structure $2 s \tau^{\prime}$ but differiag oaty is the coastraints meociated with the correaponding nodes, then if we adjoin at some sode in γ^{\prime} to obtain $\boldsymbol{\gamma}_{1}$. we can adjoin is $\boldsymbol{\gamma}$ to obtain $\boldsymbol{\gamma}_{1}$ (corresponding to $\boldsymbol{\gamma}_{1}{ }^{\prime}$). THerefore, if wean be derived in G_{1}, then if ean defisitely be derived is \mathbf{G}.

If we can aho show that $L\left(G_{1}\right) C_{5} L_{R}$, then we can conclude that $L\left(G_{1}\right) \subseteq L_{T} \cap L_{R}$. We eat ase induction to prove this. The indection hypotbesis in that if all derived crees obtaiaed after $k \leq n$ adjoiniag operation have the propersy P them will the derived treee after $n+1$ adjoinings where P is defised as,

Property P: If any node \mathbf{X} in a derived tree $\boldsymbol{\gamma}$ has the foot-node of the tree β to which X beloags labelled Y as a descendant such that $w_{1} \mathrm{Y} w_{2}$ is the frontier of the subtree of B rooted at X, then if $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ had been associated with $X, \delta\left(q_{1}, w_{1}\right)=q_{2}$ and $\delta^{*}\left(q_{s}, w_{2}\right)=q_{4}$, and if w is the frontier of the subtree under the foot node of β in γ is then $\delta^{*}\left(q_{2}, w\right)=q_{3}$. If X is not the ancestor of the foot node of β then the subtree of β below is of the form $w_{1} w_{2}$. Suppose X bas associated with it $\left(q_{1}, q_{1}, q_{2}\right)$ thea $\delta^{\circ}\left(q_{1}, w_{1}\right)=q_{1}$ $\delta\left(q_{1}, w_{2}\right)=q_{2}$.

Actually what we meso by an adjoining operation is not aecessarily just one adjoining operation but the minimum number so that no obligatory constraints are associated with any nodes in the derived trees. Similarty, the base case need not consider only elementary trees, but the smallest (in terme of the number of adjoiniog operations) tree starting with elementary trees which has no obligatory constraist associated with any of its nodes. The base case can be seen easily considering the way the grammar was built (it eas be shown formally by induction on the height of the tree) The iaductive step is obvious. Note that the derived tree we are going to use for adjoining will have the property P, and so will the tree at which we adjoin; the former because of the way we designed the grammar and assigned constraiats, and the latter because of induction hypothesis. Thus so will the new derived tree. Once we have proved this, all we bave to do to show that $L\left(G_{1}\right) \subseteq L_{R}$ is to consider those derived trees which are sentential trees and observe that the roots of these trees obey property P.

Now, if a striag $x \in L_{T} \cap L_{R}$, we cas show that $x \in L(G)$. To do that, we make use of the following claim.

Let β be an auxiliary tree in G with root labelled Y and let $\gamma \in$ $D(\theta)$. We clain that there is a θ^{\prime} is G_{1} with the same structure as β, suct 'that there in a γ^{\prime} in $D($ beta ()$)$) where γ^{\prime} has the same structure as γ, such that there is no OA constraint in γ^{\prime}. Let X be a node in A_{1} which was used in deriving 7 . Then there is a aode X ' in γ^{\prime} such that X ' belongs to the auxilliary tree $\beta_{1}{ }^{\prime}$ (with the same strocture as θ_{1}. There are several cases to consider -

Case 1: X is the ancestor of the foot node of β_{1}, such that the frostier of the subtree of β_{1} rooted at X is $w_{2} Y w_{4}$ and the frontier of the subtree of γ rooced at X is $w_{2} w_{1} Z w_{2} w_{4}$. Let $\delta^{\phi}\left(q_{1}, w_{1}\right)=q$, $\delta^{\circ}\left(q_{1}, w_{1}\right)=q_{2}, \delta\left(q_{3}, w_{2}\right)=r$, and $\delta^{\circ}\left(r, w_{4}\right)=q_{4}$. Then X will have $\left(q_{1}, q, r, q_{4}\right)$ associated with it, and there will be 00 OA constraint in 7^{\prime}.

Case 2: X is the ancestor of the foot aode of β_{1}, and the frostier of the subtree of θ_{1} rooted $26 X$ is $w_{2} \gamma_{w_{4}}$. Let the froatier of the subtree of γ rooted at X is $w_{3} w_{1} w_{2} w_{4}$. Thes we claim that X ' in γ^{\prime} will have associated with it the quadraple $\left(q_{1}, q_{1}, q_{4}\right)$, if $\delta^{*}\left(q_{1}, w_{1}\right)=$ $q_{1} \delta^{d}\left(q, w_{1}\right)=p, \delta^{\circ}\left(p, w_{2}\right)=p$, and $\delta^{0}\left(t, w_{4}\right)=q_{4}$.

Case 3: Let the frontiep of the anbtree of β_{1} (and also r) rooted at X is $w_{1} w_{2}$. Let $\delta\left(q, w_{1}\right)=p, \delta^{\circ}\left(p, w_{2}\right)=r$. Then X will have associated with it the quadruple (q, P, p, r).

We shall prove our claim by induction on the number of adjoining operations used to derive γ. The base case (where $\gamma=\beta$) in obvious from the way the grammar G_{1} was built. We shall now assume that for all derived trees γ, which have been derived from \boldsymbol{p} using t of less adjoining operations, have the property as required in oup claim. Let γ be a derived tree in β after k adjunctions. By our inductive hypothesis we may asoume the existence of the corresponding derived tree $\gamma^{\prime} \in D\left(\beta^{\prime}\right)$ derived in G_{1}. Let X be a node in $\boldsymbol{\gamma}$ as shown in Fig. 4.4.1. Then the node X ' in γ^{\prime} corresponding to X will have asoociated with it the quadruple $\left(q_{1}{ }^{\prime}, q_{2}^{\prime}, q_{3}{ }^{\prime}, q_{4}{ }^{\circ}\right)$. Note we are asouming here that the left child Y^{\prime} of X^{\prime} is the ancestof of the
foot node of β^{\prime}. The quadruples ($q_{1}{ }^{\prime}, q_{2}^{\prime}, q_{3}{ }^{\prime}, p$) and ($p, p_{1}, p_{1}, q_{4}{ }^{*}$) will be associated with Y^{\prime} and Z^{\prime} (by the induction hypothesis). Let γ_{1} be derived from γ by adjoining β_{1} at $X 2 s$ in Fig. 4.4.2. We have to chow the existence of β_{1} ' in G_{1} such that the root of this auxiliary tree has associated with it the quadruple ($q, q_{1}{ }^{\prime}, q_{4}{ }^{\circ}, r$). The existeace of the tree follows from induction hypothesis $(k=0)$. We have also got to show that there exists $\gamma_{1}{ }^{\prime}$ with the same structure as γ^{\prime} but one that allows β_{1}^{\prime} to be adjoined at the required sode. But this should be so, since from the way we obtained the trees in G_{1}, there will exist $\gamma_{1}{ }^{\prime \prime}$ such that $X_{1}{ }^{\prime}$ has the quadruple ($\left.q, q_{2}{ }^{\prime}, q_{1}{ }^{\prime}, r\right)$ and the cosatraints at X_{i} ' are dictated by the quadruple $\left(q, q_{1}, q_{4}{ }^{\circ}, r\right)$, but sech that the two childres of $X_{1}{ }^{\prime}$ will have the same quadruple as in $\boldsymbol{\gamma}^{\prime}$. We can now adjoin $\theta_{1}{ }^{\prime}$ in $\boldsymbol{\gamma}_{1}{ }^{*}$ to obtain $\boldsymbol{\gamma}_{1}$. It can be shown that $7_{i}{ }^{\prime}$ has the required property to establish our claim.

Figure 4.4.2
Figure 4.4.1

Firatly, any sode below the foot of $\beta_{1}{ }^{\prime}$ in 7_{1} ' will satisfy oup
requirements as they are the same as the correaponding nodes in $\gamma_{1}{ }^{\circ}$. Since β_{1} ' satisfies the requirement, it in simple to observe that the aodes is $\beta_{1}{ }^{\prime}$ will, even after the adjunction of $\beta_{1}{ }^{\prime}$ in $\gamma_{1}{ }^{\circ}$. However, because the quadruple associated with $X_{1}{ }^{\prime}$ are different, the quadrupien of the sodes above $X_{1}{ }^{\prime}$ must reflect thin chacge. It in eany to check the existence of 20 anxiliary tree such that the codes above $\mathrm{X}_{\mathbf{1}}$ ' satisfy the requirements as stated above. It can also be argued an the basis of the design of grammar G_{1}, that there exists trees which allow this new auxiliary tree to be adjoined at the appropriate place. This thea allows us to coaclude that there exiss a derived tree for each derived tree belongin to $\mathrm{D}(\theta)$ as in our claim. The next scep is to extead ous elaim to take into account all derived trees (i.e., including the senteatial trees). This can be done in a manner similar to our treatment of derived trees beloaging to $D(S)$ for some auxiliary tree β as above. Of course, we bave to coasider only the case where the finite state antomatom starta from the initial state qop and reaches some final stace of on the inpat which is the froatier of some sentential tree in G. This, then allows us to conelede that $L_{T} \cap$ $L_{R} \subseteq L\left(G_{1}\right)$. Heace, $L\left(G_{i}\right)=L_{T} \cap L_{R}$.

5. HEAD GRAMMARS AND TAG's

In this section, we attempt to show that Head Grammars (HG) are remartably similar to Tree Adjoining Grammars. It appears that the basic intuition behiad the two systems is more or less the same. Head Grammars were introduced in (Pollard,1984], but we follow the notations used in [Roach, 1084]. It has been observed that TAG's and HG's share a lot of common formal properties such as almost identical closure results, similar pummping lemma.

Consider the basic operation in Head Grammars - the Head Wrapping operation. A derivation from a non-terminal produces a pair ($i, a_{1} \ldots a_{i} \ldots a_{n}$) (a more convenient representation for this pair is $\left.a_{1} \ldots a_{i} a_{i+1} \cdots a_{n}\right)$. The arrow denotes the head of the string, which in turn determines where the string is split up when wrapping operation takes place. For example, consider $X->L_{2}(A, B)$, and let $A \Rightarrow{ }^{\circ}$ whp x and $B \Rightarrow{ }^{\text {© ug, }}$, . Then we say, $X \Rightarrow{ }^{*}$ whug, vx.

We shall define some fuactions used in the HG formalism, which we need here. If A derives in 0 or more steps the headed string whan and B derives ugy, then

$$
\begin{aligned}
& \text { i) if } X \rightarrow L_{1}(A . B) \text { is a rule in the gramar then } \\
& X \text { derivee vaugrx } \\
& \text { 2) if } X \rightarrow L_{2}(A, B) \text { is a rule in the gramar then } \\
& X \text { derives bugyx } \\
& \text { 3) if } X \rightarrow L C_{1}(A, B) \text { is a rule in the gramar then } \\
& X \text { derives vhxugy } \\
& \text { 4) if } X \rightarrow L_{2}(A, B) \text { is arule in the gramar then } \\
& X \text { derivee vaxugt }
\end{aligned}
$$

Nov coasider hove derivation in taGe proceode -
Let β be an auxilliary tree and let a be a sentential tree as in Fig 5.1. Adjoining B at the root of the sub-tree 7 gives us the seatential tree in Fig 5.1. We cas, now see how the string whx has "wrapped around" the sub-tree i.e.the string ugy. This seems to suggest that there is something similiar in the role played by the foot in an auxilliary tree and the head in a Head Grammar how the adjoining operations and head-wrapping operations operate on strings. We could say that if X is the root of an auxilliary tree θ and $a_{1} \ldots a_{i} X a_{i+1} \ldots a_{0}$ is the frontier of a derived tree $\gamma \in D(\theta)$, then the derivation of γ would correspond to a derivation from a aon-terminal X to the string $\left.a_{1} \ldots a_{i}\right|_{a_{i}+1 \ldots a_{0}}$ in HG and the use of 7 in some sentential tree would correspond to how the strings $a_{1} \ldots a_{1}$ and $a_{i+1} \ldots a_{0}$ are used in deriving a string in $H L$.
$a=$

$\beta=$

Finure 6.1

Based on this observation, we attermpt to show the close relationship of TAL's and HL's. It is more convinieat for us to think of the headed string ($i, a_{1} \ldots a_{n}$) as the string $2_{1} \ldots a_{n}$ with the head pointiag in between the symbols a_{i} and a_{i+1} rather thas at the symbol ay. The definition of the derivation operators cas be extended is a straightforward manner to take this into acconat. However, we cat acheive the same effect by considering the definitions of the operators LL,LC,etc. Pollard suggente that casea such as $L_{2}(\overline{\bar{x}}, \bar{\lambda})$ be left uadefined. We shall assume that if $\bar{x}=w h y$ then $L_{2}(\bar{x}, \bar{\lambda})=$
 and $L C_{1}(\lambda, \bar{x})=\lambda x$.
We, then say that if G is a Head Grammar, then $W_{1}=$ whx beloags to $L(G)$ if and oaly if S derives the beaded string whx or whix. With this aem definition, we shall show, without giviat the proof, that the class of TAL's is contained in the clans of HL's, by systematically cooverting any TAG G to a HG G'. We shall assame, without loss of generality, that the constraints expressed at the nodes of elementary trees of G are -

1) Nothing ean be adjoined at a node (NA),
2) Aay appropriate tree (symbole at the aode and root of the auxilliary tree must match) can be adjoined (AA), or
3) Adjoining at the aode is obligatory (OA).

It is easy to show that these constrainta are enough, and that selective adjoining can be expressed in terma of these asd additional nos-terminals. We know give a procedural description of obtaining $2 a$ equivalent Head Grammar from a Tree-Adjoining Grammar. The procedure works as follows. It is a recursive procedure (Convert_to_HG) which takes in two parameters, the first represeatiag the node on which it in being applied and the second the label appearing on the left-basd side of the HG productions for this oode. If X is a gonterminal, for each auxiliary tree A whose root has the label X . we obtain a sequence of productions such that the first oae han X on the left-band side. Using these productions, we can derive the atring $w_{1} \lambda w_{2}$ where a derived tree in $D(\beta)$ ban a frontiep $w_{1} Y_{w_{2}}$. If Y is 2^{\dagger} node with with label X in some tree where adjoining is allowed, we introduce the productions
$Y^{\prime}->L_{2}\left(X, H^{\prime}\right)$ (so that a derived tree vith root
label X asy \quad rap around the etring derived fron the subtree below this nodet
$\| \rightarrow C_{1}\left(A_{1}, \ldots, A_{j}\right)$ (amanian that there
are J children of thia node and the $i^{\text {th }}$ child is the ancestor of the foot aode. By calling the procedure recuraively for all the j childrea of Y Eith Ak, k rangicg irom 1 through f. ve can derive from I' the irentier of the subtree belor Y\}
$Y^{\prime} \rightarrow H^{\prime}$ (this is to handle the case Fhere ao adjunction takes place st Y \}

If G is a TAG then we do the following -
Repent for overy Initial tree
Convart to HG(root. S^{\prime}) (S^{\prime} vill be the start aybol of the nev Head Gramar\}.

Repact for each Auxdlliary tree
Convert_to_HG(root. rootaymbol)

Thore Convert_to hG (node, name) in defined an follove
if rode is as internal node thea
case 1 If the constraint te the aode in A
add productions Sym->LI (node symbol, ${ }^{\prime \prime}$).

$$
\begin{aligned}
& \because \cdot->L C_{1}\left(A_{1} \cdot \ldots . A_{1}{ }^{\prime} \ldots . A_{j}{ }^{\prime}\right) \\
& S y=>L C_{1}\left(A_{1}, \ldots . A_{1}, \ldots \ldots, A_{j}^{\prime}\right)
\end{aligned}
$$

There $Y^{\prime}, A_{1}{ }^{\prime}, A_{2}{ }^{\prime}, \ldots A_{j}{ }^{\prime}$ are net aon-terniaal
syabols, A_{1}, \ldots, A_{j} correspoed to the j children of the node and $i=1$ if foot node is not a descendent of sode else $=1$ such thet the $1^{\text {th }}$ child of node is ancontor of foot node.j=number of children of node

> for $k=1$ to j stap 1 do
> Convert_to HG (kth child of node, $\left.A_{z}^{\prime}\right)$.

Case 2 The constraint st the aode is MA.

> Same as Case 1 excopt don't add the productiona Sym $\rightarrow L_{1}$ (oode sybol, ${ }^{\prime}$). $n^{\prime} \rightarrow L_{1}\left(A_{1}, \ldots, A_{j}{ }^{\circ}\right)$.

Case 3 The constraint st the node is OA .
Sam as Case 1 except that ve don't add $S_{y=}>$ LC $_{1}\left(A_{1} \cdot \ldots A_{1}{ }^{\prime}\right)$
elie if the node hat tarninal syabol a.
then add the production Sy , $\rightarrow \mathbf{8}$
-lse (it is a ?oot node)

```
if the conatraint st the foot sode is MA then
        sdd the productions
        Sym >> \L_2
If the conatraint is OA then add only the
        production
        Sym -\LL_2
        if the egagtraint is MA add the production
        Sym
```

We shall now give an example of converting a TAG G to a HG. G contains a single initial tree a, and a single auxiliary tree p 23 in Fig. 5.2.

$$
a=l_{0}^{5} \quad \theta=/\left._{1}^{s}\right|_{1} ^{s}
$$

Firare 5.2

Obviously, $L(G)=\left\{a^{a} b^{p^{a}} / \mathrm{a} \geq 0\right\}$

Applying the procedure Coavert _to_HG to this grammar we obtain the HG whose productions are gives by-

```
    \(S^{-} \rightarrow L_{2}(S, A)\)
    \(A \rightarrow \bar{\lambda}\)
    \(\mathrm{S} \rightarrow \mathrm{LC}_{2}(\mathrm{~B}, \mathrm{C})\)
    B \(\rightarrow \mathbf{I}\)
    \(C \rightarrow L_{2}(S, D) / D\)
    \(D \rightarrow L C_{2}(E, F, G)\)
    \(E \rightarrow \bar{b}\)
    \(F \rightarrow \bar{\lambda}\)
    \(G \rightarrow \tau\)
which can be retritten 25
    \(S^{\prime} \rightarrow s / \lambda\)
    \(5 \rightarrow L C_{2}\left(a, A^{\prime}\right)\)
    \(A^{\prime} \rightarrow L_{2}(S, b \lambda c)\) or \(A^{\prime} \rightarrow L_{2}(5, b c)\)
```

It can be verified that this gramar geaerates exactly $\mathrm{L}(\mathrm{G})$.

It is worth emphasising that the main point of this exercise was to show the similarities between Head Grammars and Tree Adjoining Grammars. We have shown bow a HG G' (usiag our extended definitions) can be obtained in a systematic fashion from a TAG G. It is our belief that the extension of the defiaition may not necessary. Yet, this conversion process should belp us understand the similarities between the iwo formalisms.

6. OTHER MATHEMATICAL PROPERTIES OF TAG's

Additional formal propesties of TAG's bave been discussed is |Vijay-Shankar and Joshi, 1985|. Some of them are listed below 1) Pumping lemma for TAG's
2) TAL's are closed under substitution and homomorphisms
3) TAL's ase not closed under the following operations
a) intersection Tith TAL's
b) interaection vith Crie
c) complenentation

Some other properties that have been cousidered in |VijayShaokar and Joshi, 1985| are as followe

1) closure uader the folloving properties
a) inverse homomorphitu
b) gin amping
2) seanilinearity and Parikh-boundedness.

Reference:

1. Aho,A.V., and Uliman,J.D., 1073 'Thenry nf Parsing. Translation, and Compiling, Volume 1: Parsing, Prentice-Hall, Englewood Cliffs, N.J., 1973.
2. Joshi,A.K., 1983 •How much context-sensitivity is necessary for charecterizing structural descripticas - tree adjoining grammars" in Natural Language Proressing : Theoretical Computational and Psychological Perspertives (ed. D.Dowty, L.Karttunen, A.Zwicky), Cambridge University Press, New York, (origially presented in 1983) to appear in 1985.
3. Joshi,A.K., and Levy,L.S., 1977 -Constraints on Structural Descriptinns: Local Trassformetions". SIAM Joural of Computing June 1977.
4. Joshi,A.K., Levy.f.S., and Takahashi, M., 1975 "Tree adjoining grammars ", Jonraal of Computer Sustems and Sciences, March 1975
5. Ǩroch, T., and Joski, A.K., 1835 'Linguistic relevance of tree adjoining grammars ${ }^{\circ}$, Terhniral Repnrt, MS-CIS-8.-18, Dept. of Computre and Information Science, University of Pennsvivania, April 1485
6. Follard, C. $1984{ }^{\circ}$ Geqeralized Chrase Structure Grammars, Head Grammars, and Naiural lagouage", Ph.D dissertation, Stanford University August 1034
7. Roach, ǐ.. 1984 -Formal P-oprrties of Head Granmars*, unpubtisbed manusrtipt, Stanford University, also presented at the' M-thematies of Languages workshop at the Uoiversity of Michigan, Ano Arbor, Oet. 1984.
8. Vijay-Stankar,K., Joshi,A.K., 1985 'Formal Properties of Tree Adjoinang Grammars'. Terhniral Report. Dent. of Compilter and haformation Srimene U'niversty of Peprsviviana, July 1085.

[^0]: Tbis wort was partiaily sunported by NSP Graate MCS-az19116-CER, MCS-82-07294. We wast to thank Capl rollard, Kelly Roarh, David Searl, and

