
SOME C O M P U T A T I O N A L P R O P E R T I S S
O F T R E E A D J O I N I N G G R A M M . ~ . S *

K . V i j a y - S h a n k ~ " a n d A r a v i n d K . J o u h i

D e p a r t m e n t o f C o m p u t e r a n d I n f o r m a t i o n ~ e i e n c e
R o o m 288 M o o r e S c h o o l / D 2
U n i v e r s i t y o f P e n n s y l v a n i a

P h i l a d e l p h i a ~ P A 1 9 1 C t

ABSTRACT
Tree Adjoining Grammar (TAG) is u formalism for natural

language grammars. Some of the basic notions of TAG's were
introduced in [Jo~hi,Levy, mad Takakashi I~'Sl and by [Jo~hi, l ~ l .
A detailed investigation of the linguistic relevance of TAG's has been
carried out in IKroch and Joshi,1985~. In this paper, we will describe
some new results for TAG's, espe¢ially in the following areas: (I)
parsing complexity of TAG's , (2) some closure results for TAG's, and
(3) the relationship to Head grammars.

1. I N T R O D U C T I O N

lnvestigatiou of constrained grammatical s y s t e m from the
point of view of their linguistic &leqnary and their computational
tractability has been a mnjor concern of computational linguists for
the last several years. Generalized Phrase Structure grammars
(GPSG), Lexical Functional grunmmm (LFG), Phrm~ Linking
grammars (PLG), and Tree Adjoining grammars (TAG) are some
key examples of grammatical systems that have been and still
continue to be investignted along theme lines.

Some of the bask notions of TAG's were introduced in [Joahi,
Levy, and Takahashi,1975] and [Jo~hi,198,3 I. Some pretiminav/
investigations of the linguistic relevance and some computational
properties were also carried out in [Jo~hi, l~S3 I. More recently, a
detailed iuvestigution of the linguistic relevance of TAG's were
carried out by [Kro~h and Joshi, 19851.

In this paper, we will des¢ribe some new results for TAG's,
especially in the following areas: (I) parsing complexity of TAG's , (2)
some closure results for TAG's, and (3) the relationship to Head
grammar*. These topics will be covered in Sections 3, 4, and $
respectively. In section 2, we will give an introduction to TAG's. In
section 6, we will s ta te some properties not discussed here. A detailed
exposition of these results is given in [V i j a y - S b u h ~ and Joahi,1985[.

This work w u p t r t i s J~ su.~ported by NSP Gr~u~ Mk'TS-4~IOII6.~'~R,
MCS42-07.~94. We wta t to thank Cl r | Pol!ard. Kelly Rozeh, David S e ~ t ad
David Weu'. We have beDeflt~l enormously I:y v*/uablo di~*eo~iotc with them.

82

2. T R E E A D J O I N I N G G R A M M A R S - - T A G ' s

We now introduce tree adjoining grammars (TAG's). TAG's
are more powerful than CFG's, botb weakly and strongly, l TAG's
were first introduced in [Joshi, Levy, and Takahashi,1975J and

[Joehi,1983 I. We include their description in this ~*ction to make the
paper ~lf-contalned.

We can define a tree adjoining grammar as follows. A tree
adjoining grammar G is a paw (i,A) where i is a set of initial trees,
and A is a set of auxiliary trees.

A tree a ls an initial tree if it is of the form

GI I

S
I \

I \ e E . r~
l \

I \

l

That m, the root node of a is labelled S and the frontier nodes
are all terminal symbob. The internal nodes are ~11 non-terminals.
A tree ~ is an acxiliar? tree if it is of the form

~ = X
I \

I \
I \ wle= E

I \
. X

V ! V~

That is, the root node of ~ is labelled with a :on-terminal X
and the frontier nodes are all labelled with terminals symbols except
one which is labelled X. The node labelled by X on the frontier will
be c~dl~l the foot node of ~. The frontiers of initial trees belong to
r-*, whereas the frontiers of the auxiliary trees belong to ~ N ~ U
~'+ N '-'*.

~/e will now define a compoeition operation called adjoining,
(or adlunetion) which compo6es an auxiliary tree ~ with a tree 3'.
Let 3' be a tree with a node n labelled X and let ~ be an auxiliary
tree with the root labelled with the same symbol X. (Note that
mnst have, by definition, a node (and only one) labelled X on the
frontier.)

I G r ~ n m ~ u Ol tad G2 mm w*aJtly equivuJ*a* if the forint ItaCU*ll* of GI ,
I~Gi } m tim J~in¢ lua¢un4pD ot G ~ ~G2b G I tad G:I *.,,* , t roo¢ly *quivuJeot
they m mmkl7 eq~,ivuJeIt tad for etch w UI E,(GI) ~e L(G2), both G i tad G2

the strne itI~l~urld delleriptioll to v . A ~ m r G is ~ l y u leqoa~
for t IPtriD|l llMl~ql~ ~* if U G I am L G ~1 Itt'OO¢~ I~deql]otdl for b if L(G) m h
tad for elg'b w is I~ G *~iglm am ° * p p m p d m e , t tuctural description to m. The
8oti~a 0(ItrOu¢ *dequtcT ~ undoobtodlY not pmciN becsmn it deport ,4* o l the
notion 0~ zpp~pfiato * t n t t t u ~ de~.*riptioml

Adjoining can now be defined as follows. If # is adjoined to
at the node n then the resulting tree "Tt' is as shown in Fig. 2.1

below.

7 = ~ :
$ X

/ \ / \
/ \ / \

node / X \ / \
n I I \ \ - - - X - - -

t

3" =
S

/ \ 3'
/ \~ '~vi thout

I X \ t
- - / \ - -

/ \
- - x - -

/ \
/ \ + - -

FiKure 2.1

The tree t dominnted by X in 3' is excised, ~ is inserted at the
node n in "7 and the tree t is attached to the foot node (lab*lled X) of
~, i.e., ~ is inserted or adjoined to the node n in 3' pushing t
downwards, Note that ~ljoinmg is not a suJmtitutioa operation.

We will now define

T(G): The set of alJ trees derived in G starting from initial
trees in I. This set will be called the tree set of G.

L(G): The set of all terminal s t r i n p which uppe'mr in the
frontier of the trees in TIG). This set will be called the string
language (~r langtiage) of G. If L is the string language of s TAG G
then we say that L is a Tree-Adjoinin~ I.angllage (TAL). The
relationship between TAG's , context-free grammmm, and the
corresponding string languages can be summarised as follows ([Joehi,
Levy, and Takahashi, 1975], [Joshi, 19831).

Theorem 2.1: For every context-free grammar, G', there is so
equivalent TAG, G, both weakly and strongly.

Theorem 2.2: For every TAG, G, we have the following
sitoatious:

a. LeG) is context-free 3nd there is a context-free grammar
G' that is strongly (cud therefore weakly) equivalent to
G.

b.

C.

L(G) is context-free and there is 4o coutext~free gramma~
G' that is equivalent to G. Of course, there must be n
context-free grmmmar that is weakly equivalent to G.

L(G) is strictly context-sensitive. Obviously in this cue ,
there is no context-freo grammar that is weakly
equivalent to G.

Part8 Ca) ~ d (e) of Theorem 2.2 appear in ([Jushi, Levy, and
Tskahacbi, 19T5]). Pact (b) is implicit im that paper, but it is
i m p o r * u t to state it explicitly as we have done here because of it8
linguistic significance. ~ m m p l e 2.1 illustrates part Ca). We will now
illustrate p,1~ (b) and (e).

Example 2.2: Let G J (I,A) where

! :

A •

~t =

~ t :
5
I
e

$ T
I\ I\

n T t S
I \ I \
l b Ib
S T

Let us look s t some d e r t v t t l o n s tn G.

"TO : ~ :
Se

I
e

3'2 =

S

a / T \
/ I \

/ n S \ ~ =
' I \ \
I I b \
¢ T __~ I ~

I b
S
I
e

~t

$
/ \

u T
I \
$ b
i
U

~t

71 == 3'0 with ~I 3'= =* 3'1 with ~
adjoined at S am indicated in "f0. adjoined at T as indicated in ~..

Clearly. L(G), the string language of G is

L-- { , . e b . / Q > o }
which is a context-free language. Thus, there must exist a context-
tree grammar, G', which is at least we~tkly equivalent to G. [t cam be
shown however that there is no context.flee grammar G' which is
strongly equivalent to G, i.e., T(G) I - T(G'). This follows from the
f a t that the set T(G) (the tree ~et of G) is non-r~o,~nizable. *.e.,
there is an finite s t ~ e bottom-up tree automaton that can recognize
precisely T(G). Thus s TAG ma~" ~ _z context-free language,

~ i g n structural de~riptious to the strinAs that cannot be
usi~ned by ~ context-free ~rammnr.

F.~xample 2.3: Let G ,m (I,A) where

$
I
@

#t = #= =
S T
I\ I\

m T a S
II\ II\
II\ II\

b S c b T c

8,3

The precise definition of L(G) is as follows:

L(G) =- L t =. { w • ca / n > o , w is a string of a 's and b's such tha t

(1) the number o(u's I=, the number o(b's - - n, and

(2) for any initial subetriag of w, the number
of a's > the number o(b's. }

L I is a strictly context-sensitive language (i.e., s context,,
sensitive language that i, not context-free). This can be shown as
follows. Intersecting L with the regular language a* b* • c* results in
the language

1~== { a a b n e c a / n>>_o } = - L t N a ' b ' e c "

i~ i~ well-known strictly context-sensitive language. The result
of intersecting a context-free language with a regular language is
always a context-free language; hence, L t is not a context-free
language. It is thus a strictly context-feusitive language. Example
2.3 thus illustrates part (e) of Theorem 2.2.

TAG's have more power than CFG's. However, the extra
power is quite limited. The language L t bag equal number of a's, b's
a~d c's; however, the s ' s and b's are mixed in a certain way. The
Itmguage I~ is similar to Lt, except tha t a 's come before all b's.
TAG's as defined so far are not powerful enough to generate L t.
This can be seen as follows. Clearly, for any TAG for I.~, each
initial tree must contain equal number of a's, b's and c's (including
sero), sod each auxiliary tree must also contain equal number of a's,
b's and c's. Further in each c u e the a 's must precede the b's. Then
it i~ easy to see from the grammar of Example 2.3, that it will not be
po~ible to avoid getting the a's and b's mixed. However, L t can be
generated by a TAG with local constraints (see Section 2.1} The so-
called copy language.

t . - { w e w l w , { ~ b } " }

also cannot be generated by s TAG, however, again, with local
constraints. It is thus clear that TAG's can generate more than
context-free languages. It can be shown that TAG's cannot generate
all context,-sensitive languages [Jmhi ,lg84J.

Although TAG's are more powerful than CFG's, this extra
power is highly constrained and apparently it is just the right kind
for characterizing certain structural descriptions. TAG's share almost
all the formal properties of CFG's (more precisely, the corresponding
classes of language,). ~. we shalJ see in Netin* 4 of this paper and
[Vijay-Shankar and Joehi,1985J. In addition,the string languages of
TAG's can also be parsed in polynomial time, in par tkular is O(nS}.
The parsing algorithm is described is detail in section 3.

| . 1 . T A G ' s w i th Lanai C o n s t r a i n t s on Ad, J o l n l n |
The adjoining operation as def'med in Seetion 2.1 is "context-

free ' . Au auxiliary tree, say,

X
/ \

I \
I \
- - - X - - -

is adjoinable to s tree t at a node, say, n, if the label of tha t
node is X. Adjoining does not depend on thn context (tree context)
around the node n. In this sense, adjoining is context-free.

In [Jmhi ,19831, I~a l constraints on adjoining similar to those
investigated by [Joshi and Levy ,1977] were considered.These are a
generalization of the context-sensitive constraints studied by [Peters
and Ritchie ,1~9]. It was soon recognized, however, that the full
power of these constraints was never fully utilized, both in the
linguistic context as well as in the "formal languages ' of TAG's.
The so-called proper analysis contexts and domination contexts (as
defined in [Jmhi and Levy ,197T]) as used in [Joshi ,1983J always
turned out to be such that the context elements were always in a
specific elementary tree i.e., they were further localized by being in
the same elementary tree. Based on this observation and a
suggestion in [Jaehi, Levy and Takahashi ,1975], we will deseribe a
new way of introducing local constraints. This approach not only
captures the insight stated above, but it is truly in the spirit of
TAG's. The earlier approach was not so, although it was certainly
adequate for the investigation in [Jmhi ,1983J. A precise
characterization of tha t approach still remains an open problem.

G - - (I,A) be a TAG with local constraints if for each
elementary tree t E l t.J A, and for each node, n, in t, we specify the
set ~ of auxiliary trees tha t nan be adjoined at the node n. Note
that if there is no constraint then all auxiliary trees are adjoinable at
n (of course, only those whose root has the same label as the label of
th* node s). Thus, in general, ~ is a subset o(the set of all the
auxil iary trees adjoiuable at n.

We will adopt the following conventions.

1. Since. by definition, no auxiliary trees are adjoinable to a
node labelled by a terminal symbol, no constraint has to
be stated for node labelled by a terminal.

2. If there is no constraint, i.e., all auxiliary trees (with the
appropriate root label} are adioinable at a node, say, u,
then we will not state this explicitly.

3. if no auxiliary trees are adjoinable at a node n, then we
will write the constraint as ($~, where $ denotes the null
set.

We will alE.~ allow for the possibility that for a node at
least one adjoining is obligatory, of course, from the set
of all ixxmible auxiliary trees adjoiuable at that node.

Hence, a TAG with Meal constraints is defined as follows. G =
(I, A) is a TAG with local constraints dr for each node, n. in each tree
t, be speeify one (and only one) of the fol lowing constraints.

1. S, Ioetive Adjoinin~ ~.qA:) Only u specified subset of the
set of all auxiliary trees are adjoinable at u. SA is
w-linen aa (C), where C is u subset of the set of all
auxiliary trees adjoisable at n.

If C equals the set of all auxiliary trm adjoinable at n,
then we do not explkitly state this at the node n.

2. Null Adjoining; (NA:) No auxiliary tree ia adjoinable at
the ,,ode N. NA will be written u (~).

3. Obli~atin~ Adjoining; {OA:) At least one (out of all the
auxiliary trees adjoissble at a) must be adjoined at n.
OA is written as (OA). or as O(C) where C is a subeet of
the set of all suxifiacy trees adjoisable at u.

I~--~amp~ 2.4: Let G == (I~.) be u TAG with I ~ constraints where

I: a I t

S C~)
/ \

~ t s S (B2)
I I
a b

84

s (~ t) s (~=)
I \ I \

I \ I \
a S (¢~) (¢~) S h

In a t no anxiliary trees can be adjoined to the root node. Only
~t is adjoinable to the left S node at depth 1 and only ~= is
adjoinable to the right S node at depth 1. In ~t only BI is adjoinuhie
at the root node and uo auxiliary trees ate adjoinable at the ~.~,~'

node. Similarly for ~2.

We must now modify our definition of adjoining to take care o(
the local constraints, given a tree "7 with a node, say, is, labelled A
and given an auxiliary tree, say,/J, with the root node labelled A, we
define adjoining as follows. ~ is adjoinable to "y at the node n if B E
~, where ~ is the constraint associated with the node u in "7. The
result of adjoining d to ~ will be as defined in earlier, except that the
constraint C ~.~sociated with u will be replaced by C', the constraint
•ssociated with the root node orb and by C ' , the constraint
associated with the foot node of ~. Thus, given

"T: ~ =
S

/ \ node n
I k (C)

I / \
I / \ \

I I \ \

The resultant tree "7' is

k (C ')
/ \

/ \
/ \

/ \
/ \

(C')

q,' I

S
/ \

/ \
/ \

/ k CC')
/ / \ \
- - - / \ - - -

/ \
/ A (C')

/ / \ \
- - . / \ - - -

/ \

We abo adopt the convention that any derived tree with a node
which has an OA constraint associated with it will not be included in
the tree set associated with a TAG, G. The string language L of G is
then defined as the get of all terminal strings at all trees derived in G
(starting with initial tre~) whkh have on OA constraints left-in
them.

Example 2.5: Let G == (I,A) be a TAG with local constraints
where

: Of --

A : 8 =

S (~)
/ I

/ I
a S

/1 \
/ 1 \

h I ¢
S (¢~)

There are no constraints in a t. In ~ no auxiliasT trees are adjoinabie
at the root node and the foot node and for the center S node there
are an constraints.

Starting with a t and adjoining ~ to a t at the root node we
obtain

? =

S (~)
I I

I I
a S

I I \
I I \

b I c
S (¢)
I
S

Adjoining ~ to the ceuter S node (the only node at which
adjunction can be made) we have

" I ' :am

S (~)
I I

I I
,~ ..~j" (~,)
, ' / I "

t a S ~ ~

/ I t \
; / 1 \

/ b I ¢ / t

' - - - - ? '1~ - -
/ 1 \

h I e
S (¢~)
I
l

It ia easy to ~.e that G generates the string language

L = { a ° b ' e c ' l u > O }

Other languages such as L'=={a al In ~_~1}, L" == {a a= I n ~__ 1}
aim cannot be generated by TAG's. This is because the strings of a
TAL grow linearly (for a detailed definite of the property called
"contact growth" property, see [Jmhi ,1983 I.

For those familiar with [Joehi, 19&3], it is worth pointing out
that the SA constraint is only abbreviating, i.e., it does not affect the
power of TAG's. The NA and OA constraints however do affect the
power of TAG's. This way of looking at local constraints has only
greatly simplified their statement, but it has also Mlowed us to
capture the insight that the 'locality' of the constraint in statable in
terms of the elemental/ trees themselves!

S.2. Simple Llngulntle Exmmphm

We now give a couple of Unguistie examples. Readers may refer
~o [Krocb and Joshi, 1985] for detads.

I, Starting with ~fl ~m at which is an initial tree and then adjoining

~1 (with appropriate lexieaJ insertions) at the indicated node in at,
we obtain "~:~.

85

"~t = O t =
S

/ \
~ . VP

/ \ l \
DET ~1 V IP

I I I I \
I I I I \

~hn g i r l I DET I
tm I I

n s e a l e r

the gXrl ~n t s e n / o r

~1 =
mid
/ \

MP $
/ \

/ \
~P VP
I / \
• Y Mp

I I
ant, l

I
BL11

$
/ \

/ \

~Mp~ VP
/\ ~ I\

~\\ ~ I \
MP \ \ V ~P
/ \ , S ~ I / \

DET 11 ; / \ ~ t s VET !
I i t l m S \ I I

the g i r l I lVp/ \ \ \ a s en /o r
VP \

I I / \ x

I I \
not I x ~ " p t \

\ I I

The g l r l who net BLl l t,* n s ea l e r

2. Starting with the initial tree 3't =a ~ and adjoining 0~ at

the indicated node in a , we obtain 7~-

3'1 = (~2 =

"~2 =

02 =
* S 0(02) S ,
/ \ / \

MP ~p liP VP
I / \ I / 1 \

PRO TO ~P W / I \
/ \ I V MP S (h)

V h'P John I \
I I l \

tnvlr, n I persuaded g
I I

Iltry B111

PRO to i n v i t e

" 1 \ \
I Np yp ~

I

/ ! I I \ ',
I I V MP, ~ ' (@)
J J o i n I I . 7 \
i I g ~ w v~
I persuaded I . ~ I / \
X I~ I TOVP
\ i~PRO / \ %

.. Bill~ V l(P
. . . . I I

Lnvtt, 1
I

iltr~

John p o m a d e d eLI1 ~o XnvLte M~ry

John persuaded B211 S

Note that the initial tree cz 2 is not a matrix sentence. In order
for it to become a matrix sentence, it must undergo am adjuuction at
its root node, for example, by the auxiliary tree ~2 as shown above.
Thus. for a 2 we will specify a local constraint O(~2) for the root
node, indicating that a 2 requires for it to undergo am adjuuction at
the mot node by an auxiliary tree 02. In a fuller grammar there will

be, of course, some alternatives in the scope of O() .

3 . P A R S I N G T R E E - A D J O I N I N G
L A N G U A G E S

a . l . l)eflnltlonm

We will give a few additional definitioM. These sre not
necessaW for defining derivations in a TAG as defined in section 2.
However, they are introduced to help explain the parsing algorithm
and the proofs for some of the closure properties of TAL's.

D E F I N I T I O N 3.1 Let 3',3" be two tre~.We say "r [--" 3" if in 3' we
adjoin an auxiliary tree to obtain 3".
I'-* is the reflexive,transitive closure of]---.

D E F I N I T I O N 3.2 3" is called a derived tree if 7 I--* 3" for some
elementary tree %

' We then say "~' E D('I).

The frontier of any derived tree 3' belongs to either ~ ~ ~ U
N ~ if 7E D(,~) for some auxiliary tree 0. or to ~ if 3' E Dqcr)

for some initial tree a. Note if ";, E D(a) for some initial tree ~, then
3' is aim a sententtal tree.

If 0 is an auxiliary tre~, "7 E D(0) and the frontier of 3' is w I X

w 2 {X is a nooterminsJ.wl.w 2 E ~ r~') then the le~ node having this
non-terminal symbol X at the frontier is called the foot of 3'.

Sometimes we will be loosely using the phrase "adjoining with
a derived tree" "7 E D(~) for some auxiliary tree 0. What we mean is
that suppose we sdjoin d at some nc~le and then sLdjoin within t~ and
so on, we can derive the desired derived tree E D(0) which uses the
same adjoining sequence and use this resulting tree to "adioin" at
the original node.

3.3. T h e P s r s i . s A l s o r l t h m

The ~igorithm, we present here to parse Tree-Adjoining
Languages {TAL~), is s modification of the CTK algorithm (which is
described in detail iu [Abe and UIIman,1073 D, which uses ,, dynamic
programming technique to parse CFL's. For the sake of making our
description of the parsing algorithm simpler, we shall present the
algorithm for parsing without considering local constraints. We will
later show how to handle local constraints.

We shall s.~ume that any node in the elementary trees in the
grammar has atmos¢ two children. Thm assumption c~m be made
without any loss of generality, because it can be easily shown that
for any TAG G there m an equivalent TAG G I such that amy node in
amy elementary tree in G t has a tmmt two children. A similar
assumption is made in CYK algorithm. We use the terms ancestor
rand descend~at, throughout the paper ms & transitive and reflexive
relation, for example, the foot node may be called the ancestor of the
foot ands.

The ~lgoritbm works am follows. Let st... % be the input to be
posed. We use a fom~limeoaioaal array A; each element of the
srrny cont4uiu a subset of the nodes o(derived t r m . We say a node
X of a derived tree 3" belongs to A(i,j.k,lJ iJr X dominates a sub-tree o(
3' whose frontier m given by either =q+a...aq Y ak+i... ~ (where the
foot node of 3' ~ labelled by Y) or ~q+t--.~ (i.e., j ,,- k. ~ ; -

8 6

corresponds to the case when T is a sentential tree). The indices
(i,j,k,I) refer to the positions between the input symbols and range
over 0 through u. If i == 5 say. the,, it refers to the gap between a s

and a s.

Initially, we fill A l i , i + l , t + l , i + l] with those nodes in the
frontier of the e lementary trees whose label is the same as the input
ai+ t for 0 < i < n- l . The foot nodes of auxiliary trees will belong to
MI A(i,i,j,jl, such that i _< j.

We are now in a position to fill in 311 the e lements of the array
A. There are five c~mes to be considered.

Case 1. We know that if a node X in a derived tree is the
ancestor of the foot node, and node Y is its right sibling, such that X
E A[i,j,k,II and Y E A[l,m.m,nJ, then their parent, say. Z should
belong to A(i,j,k,n[, see Fig 3.1a.

Case 2. If the right sibling Y is the ancestor of the foot node
such that it belongs to All,m,n,pJ and its left sibling X belongs to
A i.j.j.lJ, then we know that the parent Z of X and Y belongs to
A i ,m,n .p , see Fig 3.1b

Case 3. If neither X nor its right sibling Y are the ancestors of
the foot node (or there is no foot node) then if X E A[i,J,j,ll and Y E
A[I.m.m,nJ then their parent Z belongs to A[ioj,j,n[.

Came 4. If • node Z has only one child X, and if X E A[i,j,k,l],
then obviously Z E A{i,j,k,ll.

Ca~e 5. If 3 node X E AIi.j,k,ll, and the root Y of a derived
tree "7 having the same label as that of X, belongs to A[m,i,l.u I, then
adjoining "t at X makes the resulting node to be in AIm,Lk,nl, see Fig
3.1c.

(,) X"
I \

I \
I \

I \
I Z' \

/ / \ \
I / \ \

I I \ \ •
/ V' Y' \

/ / \ / \ \
/ / \ / \ \

I I \ I \ \

I ! I I I I
t j k 1 • •

(b) x'
I \

I \
I \

I \
I Z' \

/ / \ \
/ / \ \

/ / \ \
/ V' Y' \

/ / \ I \ \
/ / \ / \ \

I / \ I \ \
. X '

I I I I I J
i J 1 a n p

(c) Y
/ %

/ \
/ \

/ \
/ \

/ \
/ \

/ \
. X

/ \
I / \ I
n / \ •

/ \
/ \

I I I I
i J k I

Pi l l • re 3._~I

Although we have stated that the elements of the array
contain 3 subset of the nodes of derived trees, what really goes in
there ape the addresses of nodes in the e lementary trees. Thus the
the size of any set is bounded by a constant , determined by the
grammar. It is hoped that the presentation of the sdgorithm below
will make it clear why we do so.

3.3. T h e ad l~or i thm

The complete algorithm is given below

Step I For i=O to n - I s t e p I do

Step 2 put a l l node• i n the f r o n t i e r o f e l e m n n t s r y
t r ~ whoso l~bel 18 ~ * t In A [i . i ÷ l . i * l . i * l] .

Step 3 For i :O to n-I s top t do

Step 4 f o r J : l t o n - I s t o p 1 do

Step 8 put f o o t nodes o f a l l a u x i l i a r y t r e e s i n

X t t . : . J . J]

Step 6 For 1:0 to n s t e p I do

Step 7 For i : l to 0 s t ep - I do

Step 8 For J=i to 1 s t e p I do

Step 9 For k=l to J s t ep -1 do

Step I0 do C u e 1

Step I t do C u e 2

Step 12 do C~O 3

Step 13 do C u e 5

Step 14 do C u e 4

Step 1S Accept i f root of somn i n i t i a l t ree E A [O . J , j , n] ,
0 ~ J ~ _ n

where,

(a) Case I corresponds to s ituation where the left sibling is the
ancestor of the foot node. The parent is put in A[i,j.k.l I if the left
sibling is in A[i,j.k.m I and the right sibling is in A|m.p,p,l | , where k
~_ m < I, m _~ p, p ~_ I. Therefore Came I m written as

For ask to 1-I ~top I do

f o r p= a to I s t e p I do

i f t h e r e i s • l e f t s i b l i n g in A [t . J . k . n] and the
r i g h t s i b l i n g in A[n .p .p .1] s a t i s f y i n g a p p r o p r i a t e
r e s t r i c t i o n n then put t h e i r pa rent
in A[i,j,k.i].

(b) Case 2 corresponds to the case where the right sibliog is the
ancestor ,~f the foot node. If the left sibling is in A[i,m.m.pl and the
. g h t sibling is in A(p,j,k.I I, i -- m < p and p ~ j, then we put their
parent in A[i,j,k,l I. This may be written as

For n : l to J - t s top 1 do

For p=u-t to J s t ep 1 do

for •11 l e f t 8 i b l i n p in A (t . n . n , p] and r i K h t
8 i b l i n p
i n A [p . J . k . l] s a t l s f y i n s • p p r o p r l a t n r H C r l c t l o n 8 put
~heix p a r e n t s
in A { £ , j , k . 1] .

8 7

(c) Case 3 corresponds to the cane where •either children ate
ancestors of the foot •ode. If the left sibling E A[i,j,j,ml and the right
sibling E A(m,p,p01[then we can pat the parent in A[i,j,j,lJ if it is the
c ~ , . t h a t (i < j _< m o r i ~ j < m) a n d (m < p ~ l o t m _< p <
|) , T h i s may be written ae

fo~ s : J t,o l - t st,up I do
fo r p : J to 1 •~*p t do

f • r .11 le f t , sLblLnKg in A [i . J , J , n] and

r ight , s i b l i n g s i • A(n ,p ,p ,1] •at1•fy1.nlg t, he app rop r i a t e
rant,rXcCio•• pot t h e i r pgwuat, Xa A (/ . J . J . I] .

(e) Came 5 correspo•ds to adjoining. If X is n node in A[m,j,k,pJ and
Y is the root of a a•xiliary tree with same symbol as tha t of X, such
that Y is in A[i,m,p,I] ((i <_ m _< p < i o r i < m_< p < _ l J a n d (m
< j < k ~ p o r t o ~ j ~_k < p)J. This may be writ te• as

for • = £ co J 8t*p t do
for p = u ~o I s top t do

t f t node X E A [a . J . k . p] and t, he root, of
t ux l lXa ry t r e e ~.• In k [t , a . p , l] t, heu put, X Xn A (i . J , k , l]

Case 4 corresponds to the case where s •ode Y has only one child X
If X E A~i,j,k,ll then put Y in A[i,j,k,l[. Repe~t Case 4 again if Y has
us siblings.

3.4. C o m p l e x i t y o f t h e A l s o r l t h m

It is obvious tha t steps I0 through 15 (cases a-e) are completed
in 0(•-*), beta•an the different cases have at most two nested for
loop statements, the iterating variables taking values in the range 0
thro•gh u. They are repeated utmost 0 (• 4) times, because o(the
four loop s ta tements i• steps 6 through 9. The initialization phase
(steps 1 through 5) has a time complexity of 0 (• + • :) == 0(•2).
Step 15 is completed in O(•). Therefore, the time complexity of the
parsing algorithm is O(•S).

3.5. C o t , ~ . e t n e m of t h a A l l o r l t h m

The main issue in proving the algorithm correct, is to show
that while computing the contents of an element of the array A, we
must have already determined the contents of other elements of the
array needed to correctly complete this entry. We can show this
inductively by considering each cue individually. We give an
;.uformal argument below.

Case h We need to know the co•tents of A[i,j,k.m[, A[m,p,p,I]
where m < I, i < m. when we are trying to compute the co•tents or
Aii.j,k,l [. Since I is the y&riable itererated i• the outermost loop (step
6), we can assume (by indnctio• hypothesis) that for all m < I and
for all p,q,r, the coate• ts of A[p,q,r,mJ are already computed. Hence,
the contents of A[i,j,k,mJ are known. Similarly, for all m > i, and
for all p,q, and r <_. l, A[m,p,q,rJ would have been computed. Thus,
A[m,p,p,i I would also have bee• computed.

Case 2: By s similar ream•lag, the co•tents of A(i,m,m,pJ and
A[p,j,k,l I are known since p < I and p > i.

Case 3: Woe• we are trying to camp•re the contents of some
Aii,j,j,lJ, we need to know the nodes in A(i,j~i,pJ and A[p,q,q,l[. ,Note j
> i or j < I. tlence, we know that the co•tents of A[i,j.i,pj and

A(p,q,q,l] would have bee• compared already.

Came 5: The co•tents of A[i,m,p,iJ and A(m,j,k,pJ must be
k•own i • order to compote A(i,j,k,l[, where (i _< m ~ p < I or i <
m < p _ < l) a a d (m _ < j _ < k < p o r t o < j _ < k _ < p) . Since
either m > i or p < I, contents of Alm,j,k,pl will be know•.
Similarly, since either m < j or k < p, the co•re•re of A(i,m,p,l I
would have been comp•tcd.

3.S. P m m l u g w i t h Loead Cons t~mlnt4

So far,we have a~,samed that the give• grammar has •o local
constraints, If the grammar has local constraints, it is easy to modify
the above algorithm to take care of them. Note that in Ca~e 5, if an
adjunctio• occurs at a •ode X, we add X again to the element of the
array we are computing. This seems to be in co• t rus t with our
definition of how to associate local constraints with the •odes in a
se• te• t ia l tree. We should have added the root of the auxiliary tree
instead to the element of the array being computed, since so far u
the local constraints are concerned,this •ode decides the local
constraints at this node in the derived tree. However, this scheme
cannot be adopted in oar algorithm for obvious reasons. We let pairs
of the form (g,C) belong to elements of the array, where g is - -
before and C represents the local constraints to be associated with
this •ode.

We then alter the algorithm as follows. If (X,CI) refers to a
uode at which we attempt to adjoin with an auxiliary tree (whose
root is denoted by (Y,Cs)). the• adi •nct io• would determined by C I.
If adjunctio• is allowed, then we can add (X,Cs) in the corresponding
element of the array. In cases I through 4, we do not a t tempt to add
a new element if any one of the children has an obligatory
constraint.

Once it has bee• determined that the given string belongs to
the language, we ca• find the parse i• a way similar to the scheme
adopted i• CYK algorithm.To make this process simpler and more
efficient, we can use pointers from the new clement added to the
elements which caused it to be put there. For example, consider
Case i of the algorithm (step 10). If we add a node Z to A(i.i,k,I I,
because of the p r ~ n c e of its children X and ¥ i• A[ij,k,m i and
A(m,p,p.q respectively, then we add pointers from this node Z i•
A[i,j,k,l] to the nodes X, Y i• A{i,j,k,mj and A[m,p,p,l[. Once this has
been done, the parse c,m be found by traversing the tree formed by
these pointers.

A paner based o• the techniques described above is currently
being implemented mad wiU be reported at time of presentation.

4. CLOSURE PROPERTIES OF T A G ' s

I• this 6ectio•, we present some closure resoits for TALe. We
now informally sketch the proofs for the closure properties.
interested readers may refer to [Vijay-Shaakas mad Jo6hi,1985] for
the eL, replete proofs.

4.1. C l o s u r e undem U n i o n

Let G t and G. z be two TAGs generating L I and l.~ respectively.

We c~• eonstrnct '~ TAG G snch that L(G)m'L t U L-a-

Le* G I =- { 11, At, NI, S), and G 2 = (I~, A=, N~., S)
Without Io~ of senerality, we may assume that the N I N N:e =" h.
Let G - - (I l U 12 , At LJ A=, N t U N=, S). We claim that L(G) :~ L l

Let x E L t U L-z. Then x E L I or x E I~. If x E L I , then it
must be possible to generate the string x in G , since 11 , A t are in
G. Hence x E L(G). Similarly if x E [q , we can show that x E L(G).
Hence L t U L~ C L(G). If x E L(G), then x is derived using either
only Ij, A t or only l~,A:tsince N I I"1 N,j =,, ~. Hence, x E L t or X E
t ~ Thus, L(G} '-- Lt U I ~ Therefore, L(G) =- Lt U L~

88

4.2. C l m u r e u n d e r C o n c a t e n a ~ o n

Let G t - - (l t , A t , N ~ , S t) , G , ,,, ([~.~=,N~,S~) be two TAGs
generating Lt, I~ respectively, such that N I I'1 N= =- ~. We cam
construct • TAG G =- (I, A, N, S) such that L(G)=,, L! . !~. We
c h o o ~ S such that S is not in Ns t,J N=. We let N - - N t IJ N , U
{S}, A ,m A t U An. For all t t E !1, t~ E I,, we add tl:~ to I, as shown
in Fig 4.2.1. Therefore, ! =- (tl= / t! E It, t~ ~ l~), where the nodes
in the subtrees t t and t~ of the tree t~= have the same coustra~atm
mmocinted with them us in the original g rammars G ! and G=. it is
easy to show that L(G) ,m L I . L~, once we note that there are no
N x i f i a ~ trees in G rooted with the symbol S, and that N I f3 N , ,m
d).

s~ s~
s t = I \ t ~ = I \

I \ I \
I \ I \

f"t2 :
S

/ \
/ \

/ \
/ \

s, s~
I X I X

/ *,t \ / ~s \

Fib, u rn 4 2. t

4 .3 . C l o e u r u u n d e r K le~ne gt.m~

Let G t =, (iI,At,NI,S1) be a TAG generating L t. We can show
that we can construct a TAG G such that L(G) - . Lt*. Let S be a
symbol not in N t, and let N m N I U {S}. We let the set [of initial
trees of G be (re} . where t e is the tree shown in Fig 4.3~. The set o(
auxiliary tree, A is defined u

A = {t~A / t t ¢ It} UAt .

The tree tlA is u shown in Fig 4.3b, with the coustraintm on
the root of each tlA being the null adjoining constraint, an
constraint~ on the foot, and the constraints on the nodes of the
snbtreee t t of the t re~ ttA being the same sm thee for the
corresponding nodes in the inithd tree t t of G I.

To see why L(G) ,m Lt*, consider x ~ L(G). Obviously, the tree
derived (whose frontier is given by x) must be of the form ~howu in
Fig 4.3¢, where each t t' is a sententinJ tree in GI~UCh t I' E D(ti), for
zn initial tree t i in G t. Thus, L(G) C LI*.

On the other hand, if x E Ls*, then x =- Wl...wu, w i ~ L t for 1

_< i < n. Let e,u'h w| then be the frontier of t~Je sententiai tree t i' of

G t such that t i' ~ D(t ;) , t I ~ I t. Obviously, we ca8 derive the tree T,
using the initial tree t, , and have • sequence of adjoining operations
using the auxiliary trees tl, ~ for I _< i _ n. From T we c , - , obviously
obtain the tree T ' the same am given by Fig 4.3¢, using only the
mtxifimry t r e ~ in A t. The fruntiee of T ' is obviously wl...w =. Henee, x

I~G). Therefore, LI* E L(G). Thus L(G) =~ Us*.

(*) % = S
I

n

(b) ~IA :
$

I X
/ \

S St
/ \

/ \ , r t,t
/ \

(c)
/

/

S
I X

/ X
/ ~ \ * ' ~ ' t

$

I St
S I \

I I \ . - c ' ,
e

T °

FIgure 4.3

4.4. Cloeulm u n d e r In t emm~t lon w i t h R elgul~ur ImaKuNlem

Let L T be a TAL and L R be a regular language. Let G be •
TAG generating L T and M = (Q , ~ , 6 , q0 , QV) be a finite s ta te
au tomaton recognizing Lit. We can construct a 8 ramma: G and will

show that L(GI) u L T N L R.

Let a be an elementary tree in G. We shall associate with each
node a quadruple (qt,q2,%,q4) where qt,q2,q.l,qi E Q Let (qt,%,q.~,q4)
be mare)tinted with a node X in (~. Let us assume that a is an
auxiliary tree, and that X is an ancestor of the foot node of a. and
hence, the ancestor of the foot node of any derived tree "r in D(a).
Let Y be the label of the root and foot nodes of (~. If the frontier of
7 ('T in D(o)) is w t w 2 Y w s w 4, and the frontier of the snbtree of
rooted at Z, which corresponds to the node X in a is w= Y w~. The
idea of amso~iating (qt,q~,q3,q~) with X is that it must be the case

that 6°(qz, w~) =- q~, and ~(q~, w=) =, qs. When ~ becomes a part of
the seutenti ~I tree ~" whose frontier is given by u w I w 2 v w s w4 w,

then it must be the case that 6*(q~, v) == cut. Following this
remmoing, we must make q= == q~, if Z is not the ancestor of the foot
node of % or if "~ is in D(o) for some initial tree (~ in G.

We have assumed here, as in the case of the parting algorithm
presenf~ed earlier, that =ny node in ~ y elementary tree has ~tmost
two children.

From G we cam obtain GI u follows. For each initial tree a,
mmociate with the root the quadruple (q0, q, q, qr) where qe is the
initial state of the ~qni~ state automaton M, and ~ E QF. For each
auxiliary tree # of G, associate with the root the quadruple
(ql,q~,qa,q4), where q,ql,q=,ch,q4 a~e some variables which will later
be given values from Q. Let X be some node in some elementary tree
cL Let (ql,q=,o.s,q4) be ~umociaU~l with X. Then, we have to consider
the fol~)'~iag cues

Cans I" X hi- two chUdreu Y and Z. The left child y is the
ancestor of the foot node of a. Then zuoeiste with V the quadruple (
p, q~, o..I, q), and (q, r, r, s) with Z, and ~ssociate with X: the

constraint that only throe trees whoue root has the quadruple (qt, P,

s, q4), among Shone which were allowed in the orism~ grmmmus,
may be adjoined at this node. If qt pd p, or q4 ~,i s , then the
constraint associated with X must be made obligatory. Lf in the
origin.l g r u a m a r X had an obligatory constraint associated with it
then we retmm the obligatory constraint regarcllelm of the relationship
between qt and p, mud q4 and s. if the constraint amsccinted with X
is a null adjoining constraint, we seaociate (qt, qt, CL,, q), and (q, r,
r, q4) with Y and Z resp~tively, and aamcinte the nuU adjoining
enustramt with X. If the label o(Z is a. where s E ~, then we cboous
s ~ q such that 6 (q, a) I s. In the nu II adjoining constr~nt c~ule,
q is cheeeu such that 6 (q, a) == q4.

8 9

CaN 2: This corresponds to the case where • node X h u two
childlt~ Y and Z, with (qt,q~,ql0qt) asm¢inted at X. [s t Z (the right
child) be the aucestor of the the foot node the tree a. Then we shall
smucinte (p,q,q,r), (r,qs,qa,s) with Y and Z. The am•slated cottstraiat
with X shaft be that only those trees amour those which were
allowed in the n e p a l f~nmlmar may be adjoined provided their root
has the quadruple (ql,p,s,q4) aaso¢inted with it. If qt ~ P or q4 ~ r
then we make the constraint obligatory. If the original grammar had
obfiptory constraint we wifl r e t m the obfiptory constraint. NaB
constraint in the original grammar will force us to use null constraint
u d not consider the cases where it is not the case that qt I p and
q4 m s. If the label of Y is • terminal 'a' then we chouse r such that

6*(p,a) m r. If the constraint at X is s nuU adjoining constraint, then

• ¢ (q t , a) - r.

Case 3: This corresponds to the c u e where •either the left
child V nor the right child Z of the node X is the ancestor of the foot
node of a or if a is a initial tree. Then qs ~ q8 I q. We will
ammeiate with Y and 7. the quadruples (p,r,r,q) and (q,u,t) reap. The
constraints are assigned as before , in this cuse it is dictated by the
quadruple (ql,P,t,qt). [f it is not the c u e that ql " P and q4 um t,
then it becomes an OA constraint. The OA and NA constraints at X
are treated similar to the previous eMes, and so is the c u e if either
Y o1' Z is labelled by a terminal symbol.

Cuss 4: If (ql,qt,q~bqt) is assort•ted with a node X, which hun
only one child Y, then we can de~ with the various cusee as follows.
We will annotate with Y the q•adruple (p,qs,qa~t) and the constraint
that root of the t~,e which can be adjoined at X should have the
quadruple (qt,P~,qt) amucinted with it amen8 the trees which were
aflowed in the original grammar, if it is to be adjoined s t X. The
c m where the original grammar bad null or obligatory constraint
amocinted with this node or Y is labelled with a terminsi symbol, are
treated similar to how we dealt with them in the previous cuses.

Once this has been done, let ql,---,qm be the independent
variables for this elementary tree o, then we produce as many c o ~
of a so that ql,..-,qm take ad possible value8 from Q. The only
diHerenee • m e a l the varions copies of cs so produced will be
eonsteaint8 u ~ with the nodes in the trees. Repeat the p rose •

for aft the elementary trees in G a. Once this has been dome and each
tree | lynn ~ unique name we can write the constraints in terms of
them names. We will now show why L~G1) m U T ~ L R.

Let w E I~GI). Then there is a sequence of adjoining
operations starting with uu inithd tree a to derive w. Obviowdy, w E
L.F, also since corresponding to ensh tree used in deriving w, there is

n corresponding tree in G, which diffem only in the constraints
asm¢inted with its nodes. Note, however, that the coutra ints
aloeinted with the nodes in t r e~ in G z are just a reatriction of the
corresponding o m in G, or an obligatory constraint where there w u
noes in G. Now, if we can amume (by induction hypothesis) that if
after n adjoining operat ion we cam derive "/' E D(a'). the• there is a
corresponding tree ~, E D(a) in G, which bus the same tree structure
as 7' but differm| only in the constraints aasociated with the
corl~sponding nodes, then if we adjoin at some ..ode in "7' to obtain
~t'. we can adjoin in "T to obtain "ft (corresponding to "it').
Therefore, if w can be derived in Gt, then it e u definitely be derived
inG.

If we can abe 8bow that l,(Gt) ~ 14, then we ean conclude
that L(GI) ~ L T /'1 Lm. We can use induction to prove this. The
induction hypothesis is that if all derived trees obtained after k <_ n
adjeininlg operations have the prepethy P then so will the derived

after n + 1 adjoininp where P is defined as,

Property P: If any node X in a derived tree -f bus the foot-node of
the tree 0 to which X belongs labeDed Y as • descendant sucb that
w z Y w= is the fro•tier of the s•btree of ~ rooted at X, then if

(ql,q~,q.l,q4) had bee• as•oct•ted with X, 6*(qt,wl) m q= and

6"(q3,ws) m q4, and if w is the fro•tier of the subtree under the foot

node of 0 i• "/is then 6*(q~,w) ~ q8- if X is not the ancestor of the
foot •ode of 0 then the subtree of 0 below is of the form wtw s.

Suppme X has aso~inted with it (ql,q,q,q2) the• 6*(qt,wl) - - q,

5*(q,w,) = q,.

Actually what we mean by an adjoining operation is not
•eeessarily just one adjoining operation but the minimum number so
that no obligatory constraints are am•tinted with any nodes in the
derived trees. Similarly, the base ease need not consider only
elementary trees, but the smalleat (in terms of the number of
adjoining operations) tree starting with elementary trees which h,m
no obligatory constraint annotated with any o(its nodes. The base
c u e can be see• easily considering the why the grammar wse built
(it can be shown far•ally by induction on the height of the tree) The
inductive step is obvious. Note that the derived tree we are gong to
use for adjoining will have the property P, and so will the tree s t
which we adjoin; the former because of the way we dreig•ed the
grammar and amiped coaatraints, and the latter because of
induction hypothesis. Thus so will the new derived tree. Once we
have proved this, all we have to do to show that L(GI) C_ L R is to
consider those derived trees which axe soots•tint trees and observe
that the roots of these trees obey property P.

Now, if n string x E LT f3 Lit, we can show that x E L(G). To
do that, we make use of the following claim.

l e t ~ be sn anxilinry tree in G with root labelled Y and let "r E
D(B). We claim that the~ is a B' in Gt with the same structure u 0,
such 'that there is n ~,' in D(beta~))') where q' h u the same structure
as % such that there is no OA constraint in ~'. l e t X be a node in
~t which w u used in deriving ~,. The• there is n node X' in ~' such
that X' be lo•p to the anxilliary tree 0 f (with the same structure as

01- There are several rMes to consider -

Case 1: X is the ancestor of the foot node of 01, such that the
fro•tier of the subtree of 0t rooted at X is wsYw 4 and the fro•tier of

the subtree or 7 rooted at X is W|WlZW~W t. Let 6~(qt,w|) an q,
6*(q,wt) - - q,, 6*(qa,w2) n r, and 6*(r,wt) - - q4. Then X' will have
(ql,q,r,qt) aseocinted with it, and there will be no OA constraint in

Case 2: X is the ancestor of the foot node o(Of and the frontier of
the subtree of 0t rooted at X is wsYw 4. l e t the frontier of the
subtree of "I rooted at X is WsWlW=W t. Then we claim that X' in 7'

will have amucinted with it the q•adl~tple (qt,q,r,qt), if 6*(ql,wl) m

q, 6*(q,wl) me p, 60(p,w2) me r, and 6*(r,wt) u q4-

Case 3: l e t '.he frontier of the subtree of 0t {and aJeo ~) rooted at X

is WlW =. Let 6*(q,wl) a p, ~(p,ws) I r. Then X' will have
associated with it the quadruple (q,p,p,r).

We shall prove o• r claim by induction o• the number of
ucljoi•ins operations used to derive "T. The buse case (where -~ == 0} is
obvious from the way the I rammar (i t w u built. We shall now
amume that for all derived trees % which have bee• derived from 0
using k or less adjolnins operatiou, have the property u required ia
o•r claim, l e t "f be a derived tree in 0 after k adjuuctious. By our
inductive hypothesis we may ass•me the existence of the
corresponding derived tree "T' (E D(0') derived in G t. Let X be n node
in -y as show• in Fig. 4.4.1. The• the •ode X' in 7' corresponding to
X will have associated with it the q•adruple (ql',cht',qs',qt"). Note we
are n a n • i n n here that the left child Y' of X' is the ancestor of the

9 0

foot node of ~', The quadruples (qt',ql',q~',P) and (P,Pl,Pl,q4") will
be asao¢inted with ¥ ' and Z' (by the induction hypothesis). Let "h be
derived from ~ by adjoining ~1 at X as in Fig. 4.4.2. We have to
chew the existence of ~t' in G 1 such that the root of this auxiliar7
tree h u saso¢iatod with it the quadruple (q,qt',q4",r). The exmtence
el the tree follows from induction hypothesis (k =ffi 0). We have also
got to show that there exists "/t' with the same structure us "f but
one that allows ~1' to be adjoined at the required node. But this
should be 8o, since from the way we obtained the tree, in G1, there
will exist ~t" such that X I' has the quadruple (q,q~',qa',r) and the
constraint* at X l' are dictated by the quadruple (q,qt',q4e,r), bat
such that the two children.of X t' will have the same quadruple as in
7'. We can now adjoin ~I' in ~I" to obtain "h'. It can be shown that
~t' has the required property to establish our clam.

/ \
/ \

/ \
/ \

/ x \
/ / \ \

/ / \ \ x / \ y
/ / \ \ / \

/ / \ \ / \
/ / \ / \ \ / \

/ / \ / \ \ / \ / \
/ / \ / \ \ / \ / \

. / \ I \
v'~ T v'= w* t n'= / \ / \

/ x/ \
lr '! ~ W' 2 e°1 e* 2

~* (q' t . v ' t)=q'=~* (p,v° t)--'pt

&*(q'a.w'~)---p ~*(Pt .e '=)=q ' ,

Fl~furn 4.4.1

/ \
/ \

/ \
/ \

/ \
/ \

/ \
/ \

/ / \ \
/ / \ \

/ / \ \
/ / \ \

. / \

I \
I \

I \
. / \

~*(q.x) f q ' t &*(q's.y)--r

Fi?~urn 4.4.2

Flatly, any node below the foot of Dr' in 74' will satisfy our

requieement~ as they are the same as the corresponding nodes in 71 *.
Since BI' satisfies the requirement, it is simple to obasrve that the
nodes in ~1' will, even after the adjunctiou of ~1' in "at'. However,
because the quadruple associated with X I' are different, the
quadruples of the nodes above X t" must reflect this cbuge . It is easy
to check the existence of an anxKinr? tree such that the nodes above
X t' satisfy the requirements as s t a ~ l above. It can alan be argued am
the basis of the design of g r a m m e GI, that there exisu trees which
ailow this new auxiliary tree to be adjoined ~t the appropriate place.
This then allows us to conclude that there exmt a derived tree for
etch derived tree beiongin to D(~) as in our claim. The next step is
to extend our claim to take into --count all derived trees (i.e.,
including the sentential trees). This can be done in a manner similar
to our treatment of derived trees belonging to D(~) for some
~d l in ry tree ~ as above. Of course, we have to consider only the
c u e where the finite state automaton start8 from the ini¢i~d s t a~ q0,
and rez~bes some final state qr ou the input which is the frontier o(
some esnten*ial tree in G. This, then allowu us to conclude that L~ rl

'L R C L(G1). Hence, L(Gt) - - L T ~l Lit.

5. HEAD G ~ S A N D T A G ' s

In this section, we attempt to show that Head Grmmmmm (HG)
are remarkably similar to Tree Adjoining Grammars. It appesn that
the basic intuition behind the two systems is more or less the same.
Head Grammars were introduced in (Pollard,1084], but we follow the
notations used in [Roach,10841. It has been observed that TAG's and
HG's share a lot of common formal properties such as almost
identical closure results, similar pummping lemma.

Consider the basic operation in Head Grammars - the Head
Wrapping operation. A derivation from n non-terminal produces a
pair (i,a1...ai...a~) (a more convenient representation for this pan is
al...~ilLl+l...a~). The arrow denotes the head of the string, which in
turn determines where the string is split up when wrapping operation
takes place. For example, consider X->LL~(A,B), and let A=*whlx

and B=~*uglv.Then we say, X=*whuglvx.

We shall define some functions used in the HG formalism,
which we need here. If A derives in 0 or more steps the headed string
whx and B derives ugv, then q, q,
l) i f X -> LLI(A.B) L8 a ru le ~u the gTtmmmx ~hen

X dsrlveu vhugvx

2) L! X -> LL~(A.B) t s * ruln £n ~he grammar ~hnu
X der lves vhugvx

4.
3) i f X -> LCt(A.B) Ls a rulo In the grammar then

X dertvnu vhxugv

4) i f X -> LC~(A.B) in a ru le [n the granm~r then

X durlvee vhxtt~r
4 b

Nov consider hoe u d e r t v . t l o n Ln TAGs proceeds -

Let ~ be an auxilliary tree and let ~ be n sentential tree as in
Fig 5.1. Adjoining ~ at the root of the sub-tree ~ gives us the
senteutiaJ tree in Fig 5.1. We eros, now see how the string whx has
• wrapped around* the sub-tree i.e,the string ugv. This seems to
suggest that there is something similiar m the role played by the foot
in an auxilliary tree and the head in a Head Grammar how the
adjoining operations and head-wrapping operations operate on
strings. We could say that if X is the root of ~ auxilliary tree t~ and
al...x i X a~+t...a ~ is the frontier o(a derived tree ~ E D(~}, then the
derivation of 7 would correspond to a derivation from a non-terminal
X to the string al...a 4 1ai÷t...a~ in HG and the use of 7 in some
senteutial tree would correspond to how the strings al... a 5 and
~÷t...a~ are used in der iving, string in HL.

a= S
/ \

/ \
/ X \

/ / - \ \
/ / - - - \ \~_~_'7

u g v
$

/ \
/ \

! \
/ x \
,hT-~-x

u~

~ = X
/ \

/ \
/ \

/ X \
v h •

ri~r , s.J1

91

Based on this observation, we attempt ¢4) show the close
relationship of TAL'o and HL's. It is more convin/ent for us to think
of the headed string (i,at...sl) as the string • t . - -~ with tbe head
pointing in between the symbok I 4 and 14+t rather than at the
symbol 14. The defmition of the dehvation •per• tom can be extended
hi ~ stra/ghtforward manner t4) take this into account. However, we
c'~" •cheers the S2rne effect by considering the dermitions of the
S l im ier • LLJ~C,ete. Pollard suggests tha* cases such as I J ~ , ~) be
IcR u"dermed. We shrift -'~,ume thai if ~" -- , .by then L I ~ . ~) ~,
• , h ~ , L C ~) - - ~, L C ~ , ~) - - ~ , ' -C,~L;) - - ~, ~C,(;,X) - - ~,
=.~ Lc,(~,;) = ~.
~'e, the~ say that if G is n He~d Grammar, then w I -= w bx belongs
¢4) L(G) if and only if S derives the headed string wbx'ror whXx.
With this new definition, we shsil show, without givin~ the proof,
~hat the c i ~ of TAL's is ensnared hi the chum of HL's. by
systematically coeverthiS any TAG G to n HG G'. We shaft assume,
without loss of general/t)', that the constra/nts expressed at the nodes
of elementary trees of G ~re -

I) Nothing can be •de•heed s t • node (NA),

2) Any appropriat~ tree (~mbob at the node and root of the
~*uxillimry tree must marsh) can be adjoined (AA), or

3) Adjoining at the node is •brig•tory (OA).

It is ea~ ¢4) show that these constra/nts are enough, and that
selective adjoinhig can be expressed in terms of these and additiomd
non-terminals. We know give • protednrzi deseriptioe of obtaining
an equivalent Head Crammat from • Tree*Adjoining Grammar. The
procedure works u follows. It k a reeumve procedure
(Couve r t_ to_HG) which takes in two patametsrs, the first
representing the node oe which it k being •pplied and the ~e~ood the
label appearing on the left-hand side of the HG productions for this
node. ff X is a ~onterminal, for each auxiliary tree ~ whose root h u
the label X, we obtain • sequence of production- such that the rmst
one has X on the left-hand side. Using these productions, we can
defoe the string Wl~W ~ where n derived tree in D(~) has • frontier
wiYw ~. ff Y is •Ysode with with IsJ)ei X in some tree where
adjoining is allowed, we introduce the productions

T' -> L ~ (x . r) {so then. s derived t.ree with root
lnbel X nny wrl~ 8~'ovad the 8t.rin4| derived from the nb t . r eo
below •.hie node~

r -> L~t(A 1 Aj) {anmu*4q tha t there
exo J chi ldren of th is node and the Ink ch i ld t • the
ancestor of the foot node. By cedl lng t.he procedure
r ecu r s tve ly fo r i l l the J chLldren of T with At.k
r~nlrlng frox I throuKh J, ve cns derive from I1' the
front.£er of the subt reo belo~ Y}

T' -> I ' { th in iu t~ handle t*hn c u e where no
adJuc~on ~d~ns place • t T)

If G is s TAG then we do the following -

Repeat for every In£t182 t ree

Convert to RG(root ,S ') (S" wi l l be the 8t4u-t symbol of
the nov Heed (;re=,--,'}.

Repe&t* for o~¢h Amctllta~-y t r ~

Conret~ m J~ (roo t . r o o ~ l m l o l)

where Ccarez~ ~o HG(n~te.nwso) In det tnsd -.. f o l lmm

L! undo 18 an index.aLl node tJmn

cnsn I I ! tJm ~ m s t r ~ t n t n~ ~hn node t8 A&

add product, ions $~I->LLu(node s y u b o l . I ') .

| ' ->LC t (At ' , At ' , Aj ')

S]m->LCt (At ' A t ' , A| ')

• here I I ' .A t ' , ~ ' A | ' are ,,mr •ou-tenLtna~
synbole,A ! A| correspond t.o the J ch l ld ren
ot the node sad l = l I f foot, node i s not* • descund..mt*
of node e l se =1 •uch t*h&t* the 1 ~ chi ld of •ode i s
ancan~r of foot* node,J=uQber of chiZdreu of •ode

fo r Im-I co J s u p I do

Convert, to HG(k ~ ch i ld of •ode.At ') .

Cue 2 The conet.r~tnt* •t* ~bn node Ls JUt.

S u e u C u e 1 except don't* add the product*lone
S~m->LL t (node 8~mbo l . r) .
II*->LCt (AI ' A| ') .

C u e 3 The c o n s t r n i n t st, the node l • 0A.

Stse an Cue I except, that* we don't, a4d
Syx->t.C t (At',...Aj')

e l se i f *.he node h u • ternl•s3, synbol • .

then add the production gyx ->~,

el •e { i t 1• • foot* node }

i t the cons&taint* at, the foot. node i s AA then
,dd the product*ionn _ _
Syx ->ill(node syxbol ,~) /~

i t the con•t.rx.iat* t • 0A then add onXy the
product.ion
Syu ->l.t1(node s l n t ~ I . ~)

L! the c gnetl"~nt* i l gA add the product.ion
S~w ->.~

We sh~dl now xive so example of converting • TAG C to s
HG. G coeta~s • single initiaJ t r ~ o, and • single suxiliar7 tree
as in Fig. 5.2.

$

a = I ~ =

Ftf~ur. S..~2

I\
I \

a S

It\
I I \

/ I \
b s(~) c

ObviouS, L(Cl - - {so~c- / • _> 01

92

Appbying the procedure Convert t o _ H G to this grammar we
obtain the HG whose productions are given by-

s'-~ LL~(S,A)
A ->
s -> L%(B.¢)
B -> I[
c -> LL~(S,D)/O
0 -> I.Ct(Z.F.G)

- > ' ~

F -> "~
-) -~-

vh tch can be r e ~ r ~ t t e n u
s' -> s/~
S-> LCt(a,X')
~' -> LL~(S,~c) or ~' ->u~(s,~c)

I t can be vur i f t e~ Chat Chin g r u m s r genera tes exac t ly
L(G).

It is worth emphasising that the main point of this exercise wU
to show the ~imilarities between He~J Grammars and Tree Adjoining
Grammars. We have shown how a HG G' (using our extended
definitions) can be obtained in a systematic fashion from a TAG
G. It is our belief that the extension of the definition may not
necessar/. Yet, this conversion process should help us understand the
similarities between the two formalisms.

6. O T H E R M A T H E M A T I C A L P R O P E R T I E S
OF T A G ' s

Additional formal properties of TAG's have been discussed in
{Vijay-Shankat and Joshi,1085]. Some of them are listed below
t) Pumping lemmn for TAG's
2) TAL's are closed under sub6titution and homomorphisms
3) TAL's are not closed under the following operations

a) in tersect ion vtth TkL'8
h) |.ntnrsoct~.on n t th CFL'n
c) coapleMnt, a t ton

Some other properties that have been considered in [Vijay-
Shank~r ~d Joshi,1985j •re u follows

t) clomsrn under the f o l l o e t n g p roper t t an
a) t nve r l e hosollorphtei
b) ~ m ~ p t n ~

2) 8eLt l tnnLr t ty tad PartlrJ~-bouadndaan8.

R e f e r q e n e ~

1. Aho,A.V., and Ullman,J.D., 1073 "Theory nf Parsing, Translation t
an__{d Compiling, Volume 1: Pxrsinp;, Prentice-Hall, Englewood Cliffs,
N.J., 1973.

2. Joshi,A.K., 1983 "How much context-sensitivity is necessary for
chare~terising structural descriptions - tree adjoining g ramman" in
Natural Lanpiua~ie ~ - Th#oretieal v Computational I and
~ o g i e a l Perspectives (ed. "D.~owty, L.Karttunen, A.Zwick~,
Cambridge University Press, New York, (originally presented in
1983) to appear in 1985.

3. Joshi,A.K., and LevyJ~.S., 1977 "Constraints on Structural
Dc,seriptinns: Local Transformations s, SIAM]ourual of Computinlt;
June 1977.

4. Joshi,A.K., Levy :..S., and Takahashi, M., 1975 "Tree adjoining
gramm=rs' , Jo, rual of Comout~r ~"~'ems and Sc.;enees March 1975

5. Kroch, T , and Joshi, A.K., I~85 °Linguistic relevance of tree
adjoining grammars', Technical Report i MS-CIS-g.5-18, Dept. of
Computrr and Á~.formation Scteuee I University of P~nnsvlvania, April

6. Poll:zrd, C, t984 "Generalized Fhruse Structure Grammars, Head
Grammars, and Natural l"nggagea, Ph.D dissertation t Stanford
Univer~itz, August 1984

7. Ro~h. !<., 1084 "Form~J P.-operties of Head Gra:,~m~rs',
unpublbhed manu~'ript, Stanford University, also presented at the
M-.th~.mir~ ,ff l,anguage~ workshop zt the University of Michigan,
Ann Arbor, Oct. lg~.l.

8. Vijay-S~',ankar,K., Jnshi.A.K.. 1935 "Formal Properties ot Tree
Adjolmug Grammars ' . Tm'hni~.'il Report, D~pt. hi' Cnmp,,ter nail
hzformation Srit,~rf.~ Univ@r~ttv of Peoesvlvant~, July 1985.

93

