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SOME CONCEPTS OF DEPENDENCE1 

E. L. LEHMANN 

University of California, Berkeley 

1. Summary and introduction. Problems involving dependent pairs of varia

bles (X, Y) have been studied most intensively in the case of bivariate normal 

distributions and of 2 X 2 tables. This is due primarily to the importance of these 

cases but perhaps partly also to the fact that they exhibit only a particularly 

simple form of dependence. (See Examples 9(i) and 10 in Section 7.) Studies in

volving the general case center mainly around two problems: (i) tests of inde

pendence; (ii) definition and estimation of measures of association. In most 

treatments of these problems, there occurs implicitly a concept which is of im

portance also in other contexts (for example, the evaluation of the performance 

of certain multiple decision procedures), the concept of positive (or negative) de

pendence or association. Tests of independence, for example those based on rank 

correlation, Kendall's t-statistic, or normal scores, are usually not omnibus tests 

(for a discussion of such tests see [4], [15] and [17], but designed to detect rather 

specific types of alternatives, namely those for which large values of Y tend to be 

associated with large values of X and small values of Y with small values of X 

(positive dependence) or the opposite case of negative dependence in which large 

values of one variable tend to be associated with small values of the other. Simi

larly, measures of association are typically designed to measure the degree of 

this kind of association. 

The purpose of the present paper is to give three successively stronger defi

nitions of positive dependence, to investigate their consequences, explore the 

strength of each definition through a number of examples, and to give some 

statistical applications. 

2. Quadrant dependence. For a first definition, we compare the probability of 

any quadrant X ~ x, Y ~ y under the distribution F of (X, Y) with the cor

responding probability in the case of independence. We say that the pair (X, Y) 

or its distribution F is positively quaiirant dependent if 

(2.1) P(X ~ x, Y ~ y) ~ P(X ~ x)P(Y ~ y) for all x, y . 

The dependence is strict if inequality holds for at least some pair (x, y). The 

family of all distributions F satisfying (2.1) will be denoted by ~I. Similarly, 

(X, Y) or F is negatively quaiirant dependent if (2.1) holds with the inequality 

sign reversed, and the totality of negatively quadrant dependent distributions 
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will be denoted by 81 . To simplify the notation we shall write (X, Y) £ 5" to mean 

that the distribution of (X, Y) belongs to 5". 

LEMMA 1. 

(i) (X, X) E n:1 for all X 

(ii) (X, Y) f 5"1 R (X, - Y) f b1 

(iii) (X, Y) £5"1 implies (r(X), s(Y)) £5"1 for all non-decreasing functions r 

and s. The concept of positive quadrant dependence is thus invariant under non

decreasing transformations (and similarly under non increasing transformations) 

of both variables. 

(iv) The set of inequalities (2.1) is equivalent to that obtained by replacing one 

or both of the inequalities X ;£ x or Y ;£ y by the corresponding X < x or Y < y . 

(v) 'l'he set of inequalities (2.1) is equivalent to each of the following, where 

again the equality signs inside the probabilities are optional: 

(2.1') 

(2.1") 

(2.1'") 

P(X ;£ x, Y ~ y) ;£ P(X ;£ x) P(Y. ~ y) 

P(X ~ x, Y ;£ y) ;£ P(X ~ x) P(Y ;£ y) 

P(X ~ x, Y ~ y) ~ P(X ~ x) P(Y ~ y). 

PROOF. (i), (ii) and (iii) are obvious. 

(iv) To see that (2.1) implies the corresponding inequalities with one or both 

of the equal signs omitted, replace x and/or y by x - 1/n and/or y - 1/n. To 

go in the other direction replace x and/or y by x + 1/n and/or y + 1/n. 

(v) The equivalence of (2.1) and (2.1') follows from (iv) and the fact that 

(X ;£ x, Y ~ y) = (X ;£ x) - (X ;£ x, Y < y). The equivalence with (2.1") 

follows analogously, and the equivalence with (2.1"') from the fact that the 

sets involved in the left hand sides of the four inequalities (with some of the 

equality signs omitted) add up to the whole space. 

An important class of examples of distributions with quadrant dependence is 

furnished by Theorem 1 below. Before stating this theorem, it is convenient to 

introduce the following definition. We shall say that two real-valued functions 

r and s of n arguments are concordant for the ith coordinate if, considered as 

functions of the ith coordinate (with all other coordinates held fixed), they are 

monotone in the same direction, i.e. either both non-decreasing or both non

increasing. Similarly r and s will be called discordant for the ith coordinate if 

they arc monotone in opposite directions. 

THEOREM 1. Let (X1 , Y1), · · · , (Xn, Yn) be independent pairs of random 

variables with joint distributions F1 , · · · , F n ·. Let rands be functions of n variables 

and let 

(2.2) X= r(Xt, ·· ·, Xn), Y = s(Y1, ···, Yn). 

'l'hen (i) (X, Y) £ n:1 if for each i one (not necessarily the same for all i) of the 

following conditions hold: (a) Fi £ ;r-1 and r, s are concordant for the ith coordinate 

or (b) F; E 81 and r, s are discordant for the ith coordinate; 
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(ii) similarly (X, Y) E S1 if far each i either FiE ~1 and r, s are discordant, or 

FiE S1 and r, s are concardant. 

(iii) Let U, V be independent and independent of (X1, YI), · · · , (X,., Y,.) 

and let 

(2.3) X= r(U, X1, ···,X,.), Y = s(V, Y1, · · · , Y,.). 

Then the conclusions of (i) and (ii) continue to hold under the assumptions made 

there without any assumptions concerning the behaviour of r and s as functions of U 

and V respectively. 

PROOF. This will be proved as a consequence of Theorem 2 in the next section. 

EXAMPLE 1. The following are some pairs of random variables (X, Y) with 

positive quadrant dependence; the property in each case follows from Theorem 

1 and the fact that (X, X) c ~1 for all X. 

(i) X, Y = s (X) for any random variable X and any non-decreasing functions. 

(ii) X = U + aZ, Y = V + bZ for any independent random variables U, V, 

Z if a and b have the same sign. 

(iii) X, Y = X + V for any independent X, V 

(iv) X = r(U, Z), Y = s(V, Z) where U, V, Z are independent and rands 

are non-decreasing in Z but otherwise arbitrary. 

Part (ii) of the example can be used to show that any bivariate normal distri

bution with positive correlation coefficient is in ~1 • We shall later give different 

proofs of this result in Example 5 (Section 5) and Example 10 (i) (Section 8). 

3. A property of quadrant dependent distributions. An important property of 

distributions in ~ 1 is given by Theorem 2 below, which is a generalization of an 

inequality of Chebyshev (cf. Hardy, Littlewood and Polya (1943), p. 43). I am 

grateful to Professors W. J. Hall and W. Hoeffding for providing me with a much 

simpler proof of the basic inequality (3.2) on which this theorem rests than my 

original proof. They point out that it is, in fact, an immediate consequence 

of the following Lemma 2, due to Hoeffding (1940), the proof of which was also 

communicated to me by Profe.c:;sor Hoeffding. 

LEMMA 2 (Hoeffding). IfF denotes the joint and Fx and Fy the marginal distri-

butions of X and Y, then 

(3.1) E(XY) - E(X)E(Y) = f~ao f~ao [F(x, y)- Fx(x)Fy(y)] dxdy 

provided the expectations on the left hand side exist. 

PROOF. Let (X1, Y1), (X2, Y2) be independent, each distributed according 

to F. Then 

2(E(XlYI)- E(X1) E(Y1)) = E[(X1- X2)(Y1- Y2)] 

= E f~ao f~ao [I(u, X1)- I(u, X2))[/(v, Y1) - I(v, Y2)] dudv 

where I (u, x) = 1 if u ;£ x and = 0 otherwise. Since EIXYl, ElXl and EIYI are 

assumed finite, we can take the expectation under the integral sign, and the re-
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suiting expression is seen to reduce to twice the right hand side of (3.1). This 

completes the proof. 

A simple consequence is the following 

LEMMA 3. If (X, Y) E ~1 and if the expectations in (3.2) exist, then 

(3.2) E(XY) ~ E(X) E(Y) 

with equality holding if and only if X and Yare independent. 

PRoOF. That (3.2) holds is obvious from (3.1). Suppose now that (2.1) holds 

and that equality holds in (3.2). Then F(x, y) = Fx(x) Fy(y) except possibly 

on a set of Lebesgue measure zero. From the fact that cumulative distribution 

functions are continuous on the right, it is easily seen that if two distributions 

agree almost everywhere with respect to Lebesgue measure, they must agree 

everywhere. Thus X and Yare independent, and this completes the proof. 

Lemma 3 is a special case of the following theorem. 

THEOREM 2. Throughout Theorem 1, the conclusion· (X, Y) E ~1 can be re

placed by (3.2), and the conclusion (X, Y) E 81 lJy (3.2) with the inequality sign 

rever sed, provided the expectations in (3 .2) exist. 

PROOF. (i) 

1. We begin by proving the theorem for the case that X and Yare given by 

(2.2) and that n = 1. Suppose that rand s are both non-decreasing and that 

(X1, Y1) is in ~1. Then (r(X1), s(Y1)) is in ~1 by Lemma 1 (iii), and the result 

follows from Lemma 3. 

If instead of non-decreasing, the functions r and s are non-increasing, the 

result follows if we replace them by -rand -s respectively. If one of them, say 

r, is increasing and the other decreasing and (Xr, Yr) is in Sr we put s' (yr) = 

s (- y1) and apply the result already proved tor and s'. This completes the proof 

of (i) for the case n = 1. 

2. To prove (i) for general n we proceed by induction. From the result for 

n = 1 it follows that for all fixed X2, · · · , x,. and Y2, · · · , y,. , 

E[r(Xr, X2, · · ·, x,.) s(Yr, Y2, · · ·, y,.)] 

~ E[r(Xr, X2, · · ·, x,.)J E[s(Yr, Y2, · · ·, y,.)J. 

Taking expectation of both sides we get 

E[r(Xr, X2, ···,X,.) s(Yr, Y2, ···, Y,.)) 

~ E[r*(X2, · · · , X,.) s*(Y2, · · · , Y,.)] 

where r* (x2 , · · · , x,.) = E r (Xr, X2, · · · , x,.) and s* is defined correspondingly. 

Now r* and s* have the same monotonicity properties in X2, · · · , x,. and 

y2 , • • • , y,. as do the functions rands, and the result therefore follows by induc

tion. 

(ii) This is seen by putting s' (Yr , · · · , y,.) = s (- Yr , · · · , -y,.) and applying 

(i) tor and s'. 

(iii) This is proved by applying (i) or (ii) to r (u, Xr, · · · , X,.) and 
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s(v, Y1, · · · , Yn) for fixed u and v and then taking expectations on both sides, 

and using the independence of U and V. 

We are now in a position to prove Theorem 1. 

PROOF OF THEOREM 1. Apply Theorem 2 with (X, Y) replaced by the varia

bles (X', Y'): x' = I(U, XI' ... 'Xn), y' = J(V, Yt' .. . ' Yn), where I 

and J indicate the events 

r(U, Xt, ···, Xn) ~X and s(V, Yt. ···, Yn) ~ y 

respectively. If r and s satisfy the assumptions of Theorem 1, so do I and J, 

and this completes the proof. 

For n = 1, Part (i) of Theorem 2 shows that if (X, Y) E ~t and r and s are 

non-decreasing, then 

(3.3) Er(X) s(Y) ~ Er(X) Es(Y). 

Equality in (3.3) may hold even when X and Y are not independent, since it 

requires only the independence of r(X) and s(Y). As an example, let X = ItT, 

Y = I2T where It, I2, T are independent, It and I2 take on the values ±1 

with probability ! each, and T is any positive random variable. Then (X, Y) E ~t 

by Example 1 (iv), and X and Yare dependent. However, if r(x) = s(x) = 
sgn (x), it follows that r(X) = It and s(Y) = I2 are independent, so that 

equality holds in (3.3). 

Lemma 3 states that if (X, Y) E ~t and the covariance of X and Y exists, then 

Cov (X, Y) ~ 0. Covariance is only one of a number of measures of association 

that have been proposed in the literature. (For a discussion of such measures 

cf. [14] and [16].) We shall now prove that several other such measures are non· 

negative for all distributions in ~t. 

CoROLLARY 1. If F is positively quadrant dependent, then Kendall's r, Spear

man's Ps and the quadrant measure q discussed by Blomqvist (1950) are all non

negative. 

PROOF. (i) Since Kendall's r is the covariance of X = sgn (X2 - Xt) and 

Y = sgn (Y2 - Yt) it is by Lemma 2 enough to show that (X, Y) E ~t. But this 

follows from Theorem 1 (i). 

(ii) Since p./3 is the covariance of X = sgn (X2 - Xt) and Y = sgn (Y3 - Yt) 

the result follows from Lemma 2 and Theorem 1 (i) by putting n = 3, 

r(x1, X2, X3) = sgn (x2- xt) and s(yt, Y2, y3) = sgn (y3- Yt). 

(iii) Let p. and v denote the medians of the marginal distributions of X and Y, 

and let r (X) and s (Y) indicate the events X > p. and Y > v respectively. Then 

q = E[rs + (1 - r) (1 - s) - r (1 - s) - s (1 - r)] 

= E[1 + 4rs - 2r - 2s]. 

By Theorem 2 (i), E (rs) ~ E (r) E (s) and hence 

q ~ [1 - 2E(r)] [1 - 2E(s)] ~ 0. 
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4. Application to slippage problems. The basic idea of this section is due to 

Cochran (1941). It was further developed by Paulson (1952), Halperin, Green

house, Cornfield and Zalokar (1955), Hartley (1955), H. A. David (1956). Doorn

bos (1956) and by Doornbos and Prins (1956 and 1958). 

Consider the testing of a hypothesis H against a number of different sets of 

alternatives K, (i = 1, · · · , s). Suppose His rejected in favor of Ki if 

(4.1) 

at level a; and that the tests are similar so that 

(4.2 ) 

Typical examples are the so-called slippage problems in which it is assumed of s 

parameters Br , · · · , B. that they are either all equal (H) or that exactly one of 

them has "slipped", i.e. is different from the others, and where then K; represents 

the possibility that 8; has slipped. In such situations, rather than controlling the 

individual error probabilities (4.2), it is frequently of interest to control the 

experimcntwise error rate, that is, the probability P of falsely rejecting H in 

favor of any of the alternatives K;. Applying Bonferroni's inequalities to the 

events (4.1 ), we obtain for P the inequalities 

(4 .3) La;- Li<i P(T;;?; C;, T; ~ C;) ~ P ~ La;. 

Suppose now that every pair (T;, T;) is negatively quadrant dependent, so that 

P(T; ~ C;, T; ~ C;) ~ a;ai. 

Then it follows from (4.3) that 

( 4.4) 

To see how close these bounds are, note that if a = La;, then Li<i a;a; ~ 
~(1- s- 1 )a2 so that 

(4.5) 

This shows a to be an excellent approximation for P whenever a is small. In 

the following examples, we shall consider some cases of negative quadrant de

pendence that have arisen in this context. 

ExAMPLE 2. The problem of m rankings. A number of objects, say n, are ranked 

independently by m observers. The hypothesis H to be tested is that there is no 

preference among the objects, so that each observer ranks them at random. 

Under the alternative K;, the ith object is typically preferred but there is no 

preference among the remaining objects. 

Let R;k be the rank assigned to the ith object by the kth observer, and let 

R; = L R;~c denote the rank sum for the ith object. Then His rejected in favor 

of K; if R; is sufficiently large. In [8], it is shown by induction over m that Ri, R; 

are negatively quadrant dependent, the result being obvious form = 1 from the 

formula 
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(4.7) P(Ri ;£ x, R; ;£ y) = [xy - min (x, y)Jin(n - 1). 

Instead of proving the result by induction, we here only need note that R, 

L R;k, R; = L R;k, the pairs (R,k, R;k) k = 1, · · · , n are independent, and 

each pair is in S1 by ( 4.7). The result now follows from Theorem 1. 

EXAMPLE 3. In connection with the Poisson slippage problem, Doornbos and 

Prins (1958) proved that (U,, U;) t: S1 where U, is the number of trials, in a 

sequence of n multinomial trials with s possible outcomes, resulting in outcome i. 

Their method is closely related to that of the next section. We note here that if 

uik = 1 when the kth trial results in outcome i and u.k = 0 otherwise, a simple 

calculation shows that (U;k' U;k) t: Sl and since u, = Lk'~l u,k' 

U; = L:k'-1 U;k, it follows from Theorem 1 that also (U,, U;) t: S1. 

EXAMPLE 4. Consider testing the nonparametric hypothesis of the equality 

of s distributions H: F1 = · · · = F. against the alternatives K 1 that F, has 

slipped to the right, on the basis of samples Xik (k = 1, · · · , n,) from F,. If 

the N = L: n, observations are ranked, and R,k denotes the rank of X,k and 

Ri = L R,k, a distribution free test rejects H in favor of K, when R, is suffi

ciently large. In this connection Doornbos and Prins [8} give a proof by Kesten 

of the fact that (R,, R1) t: S1. An examination of the proof shows that it car

ries over to the case in which an arbitrary set of numbers v1 , · · · , VN (rather 

than the set of integers 1, · · · , N) is divided at random into s groups 

of n1 , · · · , n, elements respectively, with R, denoting the sum of the v-values in 

the ith group. (Kesten's proof is by induction over N. The population size is 

reduced by conditioning on which of the groups contains the integer N. If in the 

extension the largest v is not unique, the proof applies if one conditions on the 

position of any one of the largest v's.) Another interesting special case of the 

generalized result is that in which all v's are zero or one. This proves negative 

quadrant dependence for the components of a multiple hypergeometric distribu

tion, which also follows from Example 10 (iii) of Section 8. 

6. Regression dependence. Definition (2.1) can be rewritten as 

(5.1) P(Y ;£ yiX ;£ x) ~ P(Y ;£ y) 

and in this form clearly expresses the fact that knowledge of X being small in

creases the probability of Y being small. It may be felt that the intuitive concept 

of positive dependence is better represented by the stronger condition. 

(5.2) P(Y ;£ y I X;£ x) ~ P(Y ;£ y I X;£ x') for all x < x' and all y. 

Rather than (5.2), we shall here consider the still stronger condition 

(5.3) P (Y ;£ y I X = x) is non-increasing in x, 

which was discussed earlier by Tukey (1958) and Lehmann (1959). If (5.3) 

holds, we shall say that Y is positively regression dependent on X; the family of 

all distributions F of (X, Y) for which (5.3) holds will be denoted by ff2. Simi-
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larly, Y is negatively regression dependent on X if P(Y ~ y I X = x) is non

decreasing in x; the associated family of distributions F will be denoted by g2 • 

EXAMPLE 5. Let Y = a + {3X + U, where X and U are independent. Then Y 

is positively or negatively regression dependent on X as {3 ~ 0 or ~ 0. This is 

obvious since the conditional distribution of Y given X = x is that of a + {3x + U 

and hence is clearly stochastically increasing in x if {3 > 0. In particular, it fol

lows from this example that the components of a bivariate normal distribution 

are positively or negatively regression dependent asp ~ 0 or p ~ 0. 

Before discussing further examples, we state formally the relationship between 

the different definitions of positive dependence given up to this point. 

LEMMA 4. The definitions (5.1) to (5.3) are connected by the implications 

(5.3) => (5.2) => (5.1) and hence ;r-1 c ;r-2. 

PuooF. That (5.2) => (5.1) is obvious. To show that (5.3) => (5.2), let 

h ( u) = P ( Y ~ y I X = u), so that 

P(Y ~ y, X~ x) = f~ h(u) dFx(u) 

where Fx denotes the marginal distribution of X. Under the assumption that h 

is non-increasing, we must therefore show that 

fc-..,.zJ h(u) dFx(u)/P(X ~ x) 

~ f<-..,.z'l h(u) dFx(u)/P(X ~ x') 

which is obviously true. 

for ' X< X, 

Lemma 4 frequently provides a convenient method of proving membership in 

;rl . As a first example, let us consider once more the dependence of two com

ponents from a multinomial distribution. 

ExAMPLE 3 (continued). If (U1, · · · , U.) have a multinomial distribution 

corresponding to n trials and success probabilities (p1 , · · · , p,), the conditional 

distribution of U; given Ui =xis a binomial distribution with success probability 

pd (1 - p,) and corresponding to n - x trials. Since P ( U; ~ y I U, = x) is 

thus a decreasing function of x, it follows that (Ui, U;) is in 82 and therefore in 

91 • (The proof of quadrant dependence for this case in [8] uses related ideas.) 

The case of a multiple hypergeometric distribution mentioned in Example 4 

can be treated similarly. 

EXAMPLE 6. An interesting example in which negative quadrant dependence 

was first stated by Cochran (1941) and proved by Doornbos (1956) permits a 

very simple treatment by the present method. The problem is that of testing H: 

u1 = · · · = u. in the case of s normal distributions N (~,, u/), on the basis of 

samples of equal size, say n. The hypothesis is rejected in favor of the alternative 

K; that the ith variance has slipped to the right if 

Ai = S/!LZ-l S/ > C 

where S/ = L (Xkz - Xk.) 2/ (n - 1). Cochran showed that the joint density 

of A i and A; is proportional to 
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with !1 = Jz = Hn - 1) - 1 and fa = ! (s - 2)(n - 1) - 1. The conditional 

distribution of Az given A1 = a1 under (5.4) is that of (1 - al)B where B has a 

beta distribution with density C b12 (1 - b )Ia. Since (1 - a1) B is clearly sto

chastically decreasing as a1 increases, this shows that (A1, A2) 1:: 82 for the general 

case (5.4). 

While in many standard examples of positive dependence, the distributions 

satisfy not only (5.1) but also (5 .3), the second of these conditions is much 

stronger than the first. The following are some examples, in which there is a strong 

intuitive feeling of positive or negative dependence, where there is quadrant de

pendence, but where the stronger condition of regression dependence is not satis

fied. 

ExAMPLE 4 (continued). As was stated in Section 4, the variables (Ri, R;) 

of Example 4 are in 81 for all values v1, · · · , VN. While they are also in 82 for 

the special case that the v's are all zero or one, this is not true in general, as is 

seen by putting v1 = 3, v2 = 3, va = 5, v, = 15; n1 = 2, nz = 1; and s = 2. It 

is easily checked that in this case P (R2 ~ 1 I R1 ~ x) is not increasing in x, and 

that therefore X = R1, Y = R2 do not even satisfy (5.2). 

This example also demonstrates the asymmetry in x, y of Definitions (5.2) 

and (5.3). For while P [R2 ~ y I R1 ~ xj and P [R2 ~ y I R1 = xj are not in

creasing functions of x for ally, P [R1 ~ xI R2 ~ yj and P {R1 ~ xI R2 = yj 

are nondecreasing functions of y for all x. In fact, consider any v1 , · · · , VN from 

which we draw first a sample of size n1 with sample sum R1 and then a sample of 

size nz = 1 with sample-value Rz . Then P { R1 ~ x I R2 = yj is an increasing 

function of y. This is easily seen by constructing from a random variable with 

the distribution of R1 given y, a variable with the distribution of R1 given y' > y, 

which is always at least as large as the first variable and with positive probability 

is actually larger. 

As a definition of positive dependence one might wish to symmetrize (5.2) or 

(5 .3) by adding to it the dual condition in which X and Y are interchanged. On 

the other hand, the asymmetric form is preferable as a tool for proving quadrant 

dependence since it is then enough to prove either (5.2) (or (5.3)) or the dual 

condition. 

It may seem surprising that a pair of random variables, which intuitively ap

pears to exhibit such strong negative dependence as that of the preceding exam

ple, does not belong toSz. However, the following example exhibits the same phen

omenon . 

EXAMPLE 7. If U, V are independent, then X = U + V, Y = U belong to 

;)'1 by Example 1 (iii). That they do not necessarily satisfy (5.2) or (5.3) is shown 

by the case in which both variables take on the values 0, 2, 3 with probabilities 

p, q, r, (p + q + r = 1). For it is then easily checked that 

P(Y ~ 21 X ~ 3) < P(Y ~ 21 X ~ 4). 
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Again, the example also exhibits asymmetry. Although (X, Y) does not even 

satisfy (5.2), we see that (Y, X) satisfies (5.3) since P(X ~ xI Y = y) = 
P (V ~ x - y) which decreases as y increases. 

It was shown by Efron (1965) that (U + V, U) c 5=2 if U, V are independently 

distributed according to P6lya frequency functions of order 2. A simple proof of 

this result will be given in Example 12 (Section 8). 

EXAMPLE 8 (Tukey). Let Xt, · · · , Xn be independently distributed with dis

tribution F, let the ordered sample be denoted by X(!) < · · · < x<n>, and sup

pose that F is subexponential to the right, i.e. that [1 - F (x + a) l/[1 - F (x) l 
is an increasing function of x for each fixed a > 0. Then it was shown by Tukey 

(1958) that x<•> - x<rl is negatively regression dependent on x<rl if r < s. 

For the sake of completeness, we conclude this section with an example in 

which (X, Y) satisfies (5.2) but not (5.3 ). 

EXAMPLE 9. Let the distribution of (X, Y) be given by the following 3 X 3 

table 

y 

1 2 3 

1 p 0 0 

X 2 0 q 0 

3 s 0 r 

Then it is easily checked that (X, Y) satisfies (5 .2) provided 

(5.5) qs ~ pr; 

on the other hand (X, Y) satisfies (5.3) only if s = 0. 

6. Unbiasedness of tests of independence. Let (Xt, Y1), , (Xn, Yn) be 

independently distributed with a common distribution F. Suppose that the mar

ginal distributions of F are continuous (so that the X's and the Y's will be dis

tinct with probability one) and consider the problem of testing the hypothesis 

H that X; and Y; are independent (without any further specification of F) 

against alternatives of positive dependence. Then any similar test (and hence 

any unbiased test) <P (xt , Y1 ; · · · ; Xn , Yn) is a permutation test. (See [18], Chap. 

5). Suppose without loss of generality that in addition <P is invariant under per

mutations of the pairs (x1, Y1), · · · , (xn, Yn). 

THEOREM 3. If under the above assumptions and for any real-valued non-decreas

ing functions ft, · · · , fn satisfying 

(6.1) 

it is true that 

(6.2) X1 < · · · < Xn and y/ = h(y;) for -z, = 1, · · · , n 
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implies 

(6.3) ' ' <p (XI , Y1 ; · · · ; X,. , Yn) ~ <p (xi , Y1 ; · · · ; X,. , Yn ) 

then 'P is unbiased against all alternatives F in 5"2 • 

PRooF. If a is the size of the test, <p satisfies 

(6.4) 

This implies that for any fixed x1 , · · · , Xn 

a= E <p(Xl, Y1; • · · ; Xn, Yn) 

\Yhenever Y1 , · · · , Y,. are identically, independently distributed. Consider now 

any alternative F c 5"2 . Since then the conditional distributions of Y given x; are 

stochastically increasing in i, there exist (see [18], p. 73) functions f; satisfying 

(6.1) and independent, identically distributed random variables V; such that 

Y/ = f; (V;) has the conditional distribution of Y given xi. Since a is the con

ditional expectation of 'P given x1 , · · • , x,. when Y; = V; independent of X;, it 

follows-if fJ (xi , · · · , x,.) denotes the conditional expectation of 'P under F-that 

f](x1, ··· ,x,.) = E<p(xi, Y/; ··· ,x,, Y,' lx1, ··· ,x,.) 

and hence by (6 .1) that 

a ~ fJ (x1, · · · , x,.) for all X1 , • · · , x,. . 

If fJ denotes the unconditional power of the test against <p, then 

fJ = EF fJ(Xl' ... X,.) 

and hence a ~ fJ as was to be proved. 

CoROLLARY 1. The theorem remains valid if <p satisfies (6.3) for all pairs of 

points (x1 , Y1 ; · · · ; x,. , y,.) and (x1 , y/ ; · · · ; x,. , y,.') satisfying 

(6.5) X1 < · · · < Xn, i < j, ' ' Yi < Y;::::} Y; < Y; · 

PROOF. It is easily seen that (6.2) and (6.5) are equivalent. 

CoROLLARY 2. The foll(YIJ)ing one-sided tests of independence are unbiased against 

all alternatives belonging to 5"2 . (For a discussion of these tests see for example 

[14].) 

(i) The difference sign covariance test based on 

t = Lil"';sgn (x;- x;) sgn (yi- Y;)/n(n- 1) 

or equivalently on the number of concordant pairs (xi, Yi), (x;, Y;) (i.e. patrs 

satisfying the condition (x; - x;) (Yi - y;) > 0). 

(ii) The test based on the unbiased grade correlation 

R' = _Lsgn (xi- x;) sgn (Yi- Yk)/n(n- 1)(n- 2) 

where the summation extends over all different subscripts i, j, k, or equivalently on 

the number of triplets (xi, y;), (x;, Y;), (xk, Yk) with at least two concordant pairs. 
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(iii) The test based on the rank correlation coefficient 

R = [(n- 2) R' + 3t]j(n + 1). 

(iv) The quadrant test discussed by Blomqvist (1950), which is based on the num

ber Q of points among (x1, yl), · · · , (xn, Yn) lying in quadrants I or III when the 

origin is taken as (mx, my) where mx is the median of the X's and my the median 

of the Y's (so that Q is the number of pairs (x,., y,.) concodrant with the 

pair (mx , my)). 

PRooF. (i) to (iii). Since (6.5) states that 

(6.6) (x,, y;), (xi, Yi) concordant ~ (x,., y/), (xi, y/) concordant 

it is obvious that (6.5) implies t (x, y) ~ t (x, y') and R' (x, y) ~ R' (x, y') and 

hence also R(x, y) ~ R(x, y') where (x, y) stands for (x1, y1), · · · , (xn, Yn). 

Thus in all three cases (6.5) implies (6.3) as was to be proved. 

(iv) We shall consider only the case n = 2m. Let (x1, y1), · · · , (xn, Yn) and 

(x1, y/), · · · , (xn, Yn 1
) satisfy (6.5 ), let m/ denote the median of the y/, and 

let k be the number of points among (x1, Y1), · · · , (xn, Yn) that are in quadrant 

I, so that there are also k points in III. Suppose that in moving from the un-

primed to the primed y's, at least one point (x,., yJ moved from III to II'. Then 

y/ > m/ and hence the y' coordinates of all points originally in I are greater 

than m/ (since they are greater than y/). Thus all k points which originally were 

in I will be in I'. Suppose now that exactly r ~ 1 points have risen from III to 

II'. By definition of m/ there must still be m points below m/. Since none of the 

points from I have dropped to IV', at least r must have dropped from II to III'. 

Thus the number of points in III' is ~ the number of points in III, and hence 

Q (x, y') ~ Q (x, y). 

7. Unbiasedness of tests of independence based on normal and other scores. 

In the present section we shall apply Theorem 3 to prove unbiasedness, against 

alternatives in ~2 with continuous marginals, of a class of rank tests for the hy-

pothesis H of Section 6 proposed by Bhuchongkul (1964). These tests are based 

on statistics of the form LA (r;) B (s,.), where (r1, · · · , rn) denote the ranks of 

(X1 , · · · , Xn) and (s1, · · · , sn) the ranks of (Y1, · · · , Yn). Let (t1 , · · · , t .. ) 

be the ranks of (Y; 1 , • • • , Y;") where (i1, · · · in) is the permutation for which 

X; 1 < · · · < X,." so that the ranks of (X,1 , • • • , X,.") are (1, · · · , n). Then 

the test statistics can be written equivalently as 

(7 .1) 

The purpose of the present section is to prove the following theorem. 

THEOREM 4. The tests with rejection region T .. ~ C, where Tn is given by (7.1), 

are unbiased against all alternatives belonging to ~2 provided the functions A and B 

are non-decreasing. 

Some important special cases are 

(i) A (i) = B (i) = i, in which case the test reduces to the test based on the 

rank correlation coefficient considered in Corollary 2 (iii) of the preceding section. 
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(ii) A (i) = B(i) = E(U(i)), where U(l) < · · · < u<nl denotes an ordered 

sample from a normal distribution. This leads to the normal scores test studied 
by Bhuchongkul. 

(iii) More generally A (i) = E[V<il], B(i) = E[W<il], where v<Il < ·. · < v<nl 

and w<l) < · · · < w <nJ are ordered samples from any two continuous distribu

tions J and K. 
To prove Theorem 4, we shall define the following partial ordering of permu

tations and establish some properties of this ordering. Let 

lil = (it' ... ' in) and {j) = Ut' ... ,jn) 

be two permutations of (1, · · ·, n). We shall say that !i) is better ordered than 

Ul if for all a, b 

(7.2) 

A more usual comparison defines I i} to be better ordered than lj} if it is possible 
to transform Ul into !i) by a number of steps, each of which consists in correcting 
an inversion. This definition neither implies nor is it implied by (7 .2) as is seen 
by the following two examples: 

(a) (132) is better ordered than (312) according to the second definition but 
not according to (7 .2). 

(b) ( 1324) is better ordered than (2413) according to (7 .2) but not according 

to the second definition. 

We shall here restrict use of the term "better ordered" to (7 .2) . It is clear that 
(7.2) does define a partial ordering among then! permutations of (1, · · · , n). 

The basic property required is contained in the following theorem. 

THEOREM 5. If (it, · · · , in) is better ordered than (jt , · · · , in) and if for any 

m~n 

(7 .3) 

denote the ordered m-tuples (it , · · · , im) and (jt , · · · , jm), then 

(7.4) .f < .f 
~bn = )km for all 1 ~ k ~ m and all 1 ~ m ~ n. 

PROOF. The proof will be by induction over m. 

We note first the following. Let the rank of i,. among (it, · · · , im) be rand 
that of jk among (jt, · · · , jm) be s. (For simplicity we suppress the subscripts 
km on r and s.) Then the number of i's to the right of im and less than ik is 

(ik - 1) - (r - 1) = ik - r; the number of j's to the right of im and less than 

jk is jk - s. If (it , · · · , i,) is better ordered than (j1 , · · · , i n), it follows that 

(7 .5) 

Applying (7 .5) to m = k = 1 (so that also r = s = 1) it follows that it ~ j 1 

and hence i~t ~ j~1 , so that the theorem is correct for m = 1. 

Suppose now that the result holds for m = 1, · · · , a - 1 and consider the 

situation form = a. Let rands denote the ranks of ia and ja among (it , · · · , ia) 

and 0"1, · · · , ja) respectively. Suppose first that r ~ s. Then it is an easy conse-
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quence of the induction hypothesis that i~a ~ j~a for all k = 1, · · · , a. Consider 

therefore the case r > s. Then it again follows easily from the induction hypothe

sis that i~a ~ j~a for k < s and k > r. It only remains to consider the cases ~ 

lc ~ r . Since ia = i;m , it follows that ia must exceed i~m by at least r - k so that 

ia ~ i~m + (r - k) and analogously Ja ~ j~m + (k - s). Hence, 

J~m - i~m ~ [ja + (k - S)] - [ia - (r - k)] 

(ia - S) - ( ia - r). 

The right hand side is ~ 0 by (7 .5), and this completes the proof. 

CoROLLARY 1. If { i} is better ordered than Ul and if h is non-decreasing, then 

(7.6) L;;'=l h(ik) ~ L;;'=l h(jk) for all 1 ~ m ~ n. 

PROOF. This is obvious since 

L;;'=lh(ik) = L;;'-lh(i~m) ~ L;;'-lh(j~m) = L;;'-lh(ik)• 

(Although we do not need it here, it is in fact easily seen that (7 .3) is equivalent 

to (7 .6) holding for all non-decreasing functions h.) 

CoROLLARY 2. If { i} is better ordered than {j}, if a1 < · · · < an and h is non

decreasing, then 

(7.7) 

PRooF. Since the inequality is not affected by the addition of a constant to h, 

we may assume without loss of generality that h is positive, and then further 

that L~=l h (i) = 1. 

Let us now interpret h(il), · · ·, h(in) and h(j1), · · ·, h(jn) as probability 

distributions over the integers 1, · · · , n. Then a random variable with the first 

of these distributions is, by Corollary 1, stochastically larger than one with the 

second distribution, and the result follows from a well-known property of sto

chastically ordered distributions. (See, for example, [18], Chapter 3, Lemma 2 

and Problem 11.) 

PROOF oF THEOREM 4. Consider the application of Corollary 1 of Theorem 3 

to a rank test. If (t/, · · · , tn') and (t!", · · · , tn'') denote the ranks of 

(y/, · · · , Yn 1
) and (y/', · · · , yn''), condition (6.5) states that (t/, · · · , tn') is 

better ordered than (t1", · · · , tn"). Thus Theorem 4 now follows from Theorem 

5 and Corollary 1 of Theorem 3. 

8. Likelihood ratio dependence. Condition (5.3) which defined regression de

pendence requires the conditional variable Y given x to be stochastically in

creasing. An even stronger condition is obtained by requiring the conditional 

density of Y given x to have monotone likelihood ratio. (For a discussion of the 

relation between these two conditions, see [18], p. 7 4). We shall then say that 

(X, Y) or its distribution F shows positive likelihood ratio dependence. The family 

of all distributions F satisfying this condition will be denoted by ff, . If f (x, y) 

is the joint density of X and Y with respect to some product measure, the con-
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clition may be written formally a~ 

(8.1) f(x, Y1
) f(x 1

, y) ~ f(x, y) f(x 1
, Y1

) 

I I 

for all x < x , y < y . 

If the inequality is reversed, F is negatively likelihood ratio dependent and be

longs to Sa. Like conditions (2.1) but unlike (5.2) and (5.3), condition (8.1) 

is symmetric in X and Y. Checking (8.1) is frequently the easiest way of proving 

positive dependence. 

EXAMPLE 10. The following are some bivariate densities with monotone likeli

hood ratio dependence: 

(i) a bivariate normal density is in 5'"a or Sa as p ~ 0 or p ~ 0; 

(ii) any two components of a multinomial distribution (considered earlier in 

Example 3) are in Sa ; 

(iii) the Dirichlet distribution with density (5.4) is in Sa . In each of these 

cases it is easy to verify that the density satisfies the required inequality. 

EXAMPLE 11. Consider the joint distribution F of anY two dependent indicator 

variables I o and !1 with, say, Pii = P (Io = i, !1 = j), i = 0, 1; j = 0, 1. (Such 

a distribution defines the random structure of a two by two table if Io and ! 1 

indicate the occurrence of the two characteristics in question). Then it is seen 

that F is in 5'"a (and hence in 5'"1 and 5'"2) if 

(8.2) PooPu f'; Pol P1o 

and in Sa if the inequality is reversed. As in the normal case, all distributions in 

this family therefore show likelihood ratio dependence. 

EXAMPLE 12. Let U, V be independently distributed with densities g and h 

respectively, and let X= U, Y = U + V. Then we saw earlier in Example 7 that 

Y is always positively regression dependent on X but not necessarily X on Y. 

Now the joint density of X and Y is g (x) h (y - x) and Condition (8.1) there

fore reduces to 

(8.3) h(y - X 1 )/h(y- x) ~ h(y 1
- x')/h(y1

- x). 

This condition is satisfied provided -log h is convex (see [18], p. 330). For such 

densities (X, Y) belongs to 5'"a and hence not only (X, Y) but also (Y, X) belongs 

to 5'"2 • This last result was proved earlier by Efron (1965 ). 

EXAMPLE 13. Let zl ' ... ' Zn be independently distributed according to a 

univariate distribution G, and let X and Y be two order statistics of the Z's, say 

X = z<'l and Y = z<•l with r < s. Then the joint distribution F of X and Y has 

density 

f(x, s) = [G(x)]'-1 [G(y) - G(x)]'-T-l [1 - G(y)t-•, X< y 

with respect to the product measure G X G. This density satisfies (8.1) so that 

F c 5'"a . That F c 5'"2 and hence Cov ( z<'l, z<•l) ~ 0 was proved by Bickel (19G5). 

EXAMPLE 14. Let fs (x), gs (y) be two families of univariate densities, each with 

monotone (increasing) likelihood ratio. Then for any mixing distribution A, the 

distribution with density. 
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h(x,y) = ffe(x)ge(y)dX(B) 

belongs to ::f3 • 

PROOF. The inequallty (8.1) in the present case may be written as 

J J fe(x) {Je(y) f~(x') g~(y') dA(B) dX(71) 

~ J J fe(x) {Je(y') f~(x') g~(y) dX(B) dX(77). 

Since the integrands on the two sides are equal for 8 = 77, it is enough to inte

grate over the region 8 ~ 77· Consider separately the contributions for 8 < 77 and 

8 > 7]. In the latter integrals interchange the variables of integration 8 and 77, so 

that all integrals extend over the region 8 < 77· On combining all four integrals 

into a single integral on the left hand side, the integrand is seen to factor into 

lfe(x)f~(x') - f~(x)fe(x')][ge(y)g~(y') - g~(y)ge(y')] 

whieh is non-negative. This completes the proof. 
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