
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SOME CONCLUSIONS FROM AN EXPERIMENT

IN SOFTWARE ENGINEERING TECHNIQUES

David L. Parnas
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pa.

This work was supported by the Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44620-70-C-0107) and is moni
tored by the Air Force Office of Scientific Research. This document
has been approved for public release and sale; its distribution is
unlimited.

ABSTRACT

This paper describes the outcome of a small experiment to test the

validity of some proposed software engineering techniques. The experiments

showed that it was possible to combine the work of many programmers to produce

systems which could exist in many versions. Major changes in the system's

implementation could be made by replacing well defined small subsets of the sys

tem. The experiment seems to support (1) the validity of the techniques

being tested and (2) some new conclusions about project management and the

focussing of effort in software projects.

In two earlier reports [l,2] we have suggested some techniques to be
used in producing software with many programmers. The techniques were
especially suitable for software which would exist in many versions due to
modifications in methods or applications. These techniques have been
taught in an undergraduate course [3] and used in an experimental project
in that course. The purpose of this report is to describe the results
that have been obtained and to discuss some conclusions which we have reached.
The experiment was completely uncontrolled, the programmers generally in
experienced and poor, and the programming system used was not designed for
the task. The numerical data presented below have no real value. We
include them primarily as an illustration of the type of result that can
be obtained by use of the techniques described in the earlier reports.
We consider these results a drastic improvement over the state of the art.
Major changes in a system can be confined to well-defined, small, sub
systems. No intellectual effort is required in the final assembly or
"integration" phase.
The Project

The class was asked to produce the KWIC index system described in [2].
The project was divided into six modules, but two were combined because
they were clearly simpler than the remaining four* For each of the five
assignments we specified four distinct types of implementation. Each
student was given one of those to program. Had the experiment been a
complete success, any combination of one version of each assignment would
have run correctly; we would have had 4~* working versions (five indepen
dent selections from sets of four elements). In addition, each student
was assigned to write a program which would "checkout" some module other
than his own. Because of the billing policies of our University Computing
Center, the programs were to be written and run in WATFIV - a version of
FORTRAN. All the defined functions were to be made available as either
subprograms or FORTRAN functions.

*See Appendix 1 for a brief description

-4-

any measure,two of the poorest students in the class.)
4. This program was clearly incorrect, but still did not violate

the restrictions specified for the modules which it called. Thus combi
nations involving this program would run but would produce incorrect out
put. It produced the same incorrect output in every combination tested.
The program was "completed11 by the student well past the due date and the
"checker" was not able to do his job.

5. This program simply failed to terminate in any case. The error
was found by the checker.

Combination
Tested

1A 2B 3B
1A 2D 3D
1A 2D 3A
IB 2E 3A
1A 2E 3A
IB 2A 3E
1A 2A 3B
1A 2A 3B
1A 2A 3B
1A 2A 3D
1A 2B 3D
1A 2A 3B
1A 2D 3B
1A 2D 3B
1A 2E 3B
1A 2E 3B
1A 2B 3B
1A 2B 3D
1A 2B 3D
1A 2B 3D
1A 2B 3B
1A 2B 3E

TABLE II

4B 5A
4B 5A
4C 5A
4C 5A
4B 5D
4C 5B
4B 5B
4B 5A
4C 5A
4C 5A
4C 5A
4E 5A
4E 5A
4E 5D
4E 5D
4C 5D
4C 5D
4C 5D
4C 5B
4B 5B
4C 5B
4C 5D

Execution Time (sec.)
(includes compilation
of 6-8 sec.)

37.26
11.42
10.87
10.31
8.53
21.79
302.99
50.16
36.69
11.07
10.99
43.30
43.61
19.17
19.16
28.48
27.23
8.43
76.34
113.32
238.88
10.06

-5-

Further Experimentation

1. When an earlier version of this note was circulated privately
early this year, Mr. Thibault of IRIA, Rocquencourt, France studied the
data and suggested trying the combination 1B,2B 3D,4E and 5D which he
believed would be significantly faster than any of those tested. [4] .
It ran in 4.4 seconds.

2. We have just repeated the whole experiment with a somewhat
larger class. The results were essentially the same. We estimate that the
family of programs has 1100 members, more than 40 of these were tested.
Performance improves somewhat^ ranging between 3 and 13 seconds. The
only interesting distinction between the two experiments was that the
instructor (project leader) changed from intensely interested to bored
and unconcerned with no noticeable effect. We also eliminated the problem
with storage limitations mentioned above.
Conclusions

1. We cannot avoid stating our conclusion that the experiment has
revealed some validity in the comments of our earlier papers (2,3$.
Clearly one purpose of this paper is to draw your attention to those
earlier ones.

2. Our most significant new conclusion comes in the area sometimes
called "project management". Recent papers (e.g. [5]) have suggested that
the project manager must devote a significant part of its best manpower
to the "integration phase". In our experiment the "integration phase",
while not mechanised, was so simple that it could have been mechanised.
Even in the few cases where errors did occur, the system had been struc
tured in such a way that diagnostic messages automatically indicated the
module making the error. We had no need for anyone who had a thorough
knowledge of the whole system. Our experience indeed suggests that the
integration phase is a very poor place to invest one's manpower. The
limited capacity of our minds makes us more efficient when our job de
pends on a relatively small amount of knowledge. Moreover, if we plan our
project management around a large "integration phase"^we will have to
invest that manpower agah whenever we change some part of the system.

-6-

Our experiment suggests that manpower can be much more profitably
invested in the "pre-programming" or "design" phase. The success of- our
project depended largely upon the precisely written module specifications
described in [l]. The "cost" or intellectual effort required to produce
one of these module specifications was comparable to the cost of producing
an implementation of the module. Such predesign work therefore appears to
many as unjustifiable overhead. When we amortize this cost over the num
ber of versions of the system which are finally built, and consider the
savings realized in the final "integration" phase, it appears to us that
the overhead is well justified.

Efforts in the industry to invest heavily in a "pre-design" or
"concept" phase have often proven fruitless because the ourcome was a
set of natural language documents which were so general that they pro
vided almost no decisions to guide the development groups. When this
predesign phase produces precise module specifications the payoff is much
more significant.

Additional amortisation of the "pre-design" effort can occur when
the modules or their specifications are used (either unchanged or slightly
modified) in a later project.

3. Another important conclusion lies in the area of documentation.
Several firms have invested heavily in formalized documentation standards
intending to make all information easily available to everyone on the pro
ject. Our experiment suggests that the effort in these projects can be
focussed. Precise documentation of the external characteristics of each
module is essential and should be in a standard notation. Our project
had minimal documentation about the internals of the one-man assignments.
Industrial practice would require more effort in the area than we put into
it, but much less effort than is now common. More significant, the
specifications produced in the pre-design phase were the only external
documentation required throughout the project. These documents were
updated several times as errors were discovered, but no additional de
scriptive material was needed. This is yet another way that the effort
invested in the pre-design phase can be amortized.

4. Our experience demonstrated the importance of careful attention -
to the possibility of errors in the running program during the "pre
programming" phase. Because of our careful attention to the errors in
the design phase, errors which did occur when the systems were assembled

-7-

were quickly traced to their source and meaningful diagnostic information
was produced with almost no effort on the programmer's part. A paper
reporting what we have learned in this area is in preparation.

5. Our experience has indicated the great value of independant
module tests (by persons other than the module author) before integration.
In an earlier effort of this sort we required each programmer to test his
own module before integration. In the two experiments which we discuss
here, we required an additional person to test the module against the
formal specifications (another use of our predesign efforts). Our
success rate increased drastically and there were apparently two reasons:

(1) Sloppy programmers do sloppy tests.
(2) The specifications, although precise, can be misinterpreted by

human programmers. A misinterpretation by the programmer which resulted
in an error in his module often results in a corresponding error in his
tests. An independently written test was unlikely to share the same mis
conceptions .

We are well aware that, as E #W # Dijkstra has put it (VI /'Program
testing can be used to show the presence of bugs, but never to show their
absence.11 Showing the presence of bugs however is a very valuable service.

We eagerly await the day that professional programmers habitually
produce programs which are written so that they can be carefully proven to
be error free. In the meantime we suggest that effort invested in inde
pendent pre-integration testing is well worthwhile.

Our experience also suggests that both the hierarchical structure
which can be found in the system [2] and the abstract nature of the mo
dules themselves greatly ease the building of the "scaffolding" required
for independent module tests. To test a given module one needs simulate
only those modules immediately below it in the system hierarchy. Further,
the nature of the modules means that many of them can be directly simulated
by arrays for testing purposes.

NON-CONCLUSIONS
The reader of this paper and the references might be led to some

conclusions which those closer to the project would not draw. We mention
them here to avoid midleading our readers.

1. The KWIC index structure given in [2] is the best known. FALSE!

-8-

Our experiment showed us a number of faults in the design which we are

now trying to remedy.
2. Writing a system in a higher level language such as FORTRAN

helps to produce a better structured system. FALSE (or at least not
supported by our experiment) ! We used FORTRAN because of the billing
and priority policies of our computation center. Use of the language
actively interfered with some of our efforts imposing quite unnecessary
restrictions on what we did. This was especially apparent in the area of
error handling. The secret of our success seems to lie in the module
specifications which were language independent,

3. D.L. Parnas is a good project manager. FALSE! Experience has
shown him to be absent minded, inattentive to details, unaware of the
passage of time, forgetful, etc.,etc. The project succeeded in spite
of his being in this role.

4. The students in the course were good professional programmers.
FALSE! Most of the programs written were horrid by any professional
standards. The experiment succeeded in spite of the programmers as well.
(There were a few good programs but they were notable exceptions).

5. Communication between modules should always be by subroutine call
as it was in the sample system. FALSE! If one divides a system into mod
ules according to the criteria given in [2] the use of subroutine calls
imposes a terrible overhead.

Two more non-conclusions
Several writers (e.g. Dennis [7]) have suggested that a hardware

supported virtual memory and a language with the ability to pass complex
data structures are necessary conditions for well structured or "modular"
programs. Neither of these "necessary conditions" were met in the ex
perimental system we are discussing.

We did not need the ability to pass data structures as parameters
(all parameters were integers) between modules because of the nature of the
way that our system was divided into modules. Data structures were
always operated upon within a single module. W<e suggest that there is
often a false identification of the modular structure seen at design time
with characteristics of a program when if is running. This however is
a very complex issue and we cannot discuss it further here.

-9-

Our programs were written in FORTRAN and could have run either with
or without the virtual memory mechanism. This however is begging the
question because we built a small system where overlays were not necessary.
Memory assignment could be done at compile time or assembly time and would
be fixed while the program was running. It is definitely true that memory
assignments are data which should not be shared between modules but should
be hidden from all but one [8]. This allows (in fact requires) programs
to be written for a virtual memory. However, the implementation of the
one virtual memory module can be done in many ways (hardware mapping, run
time software, or assembly time software.) The choice between these
implementations is determined by performance considerations not by
"modularity" considerations. Thus we can agree with the virtual memory
recommendation only if it is stated more carefully indicating that the
necessary condition is that memory allocation considerations be hidden
from all but one "module". As a historical note we might mention, that
one well*structured system, the T.H.E. operating system,(which made
heavy use of the virtual memory concept) was implemented without mapping
hardware using the run-time software option mentioned earlier.

Final Conclusions
We believe that the small scale experiment described above has

provided us with some valuable insights into methods of software production.
We recognize the danger of applying small scale results to larger
scale projects. We hope however that some organization with the facilities
for carrying out larger scale projects will cautiously attempt to apply
these results to larger scale projects so that we may refine them further.

REFERENCES

[i]
Parnas, D. L., "A Technique for Software Module Specification with
Examples,11 Communications of the ACM (Programming Techniques Department).
May 1972

[2] Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into
Modules," to appear in Communications of the ACM (Programming Techniques
Department)•

[3] Parnas, D. L. "A Course on Software Engineering", Proceedings ot the
SIGCSlil Second Technical Symposium, March 1972.

[4] Depeyrot, M., Private conversations.

[5] Smith, Don, "An Organisation for Successful Project Management,"
Proceedings of the 1972 SJCC, (p. 129).

[6] Dijkstra, E. W., "Structured Programming," Report on a conference on
Software Engineering Techniques held in Garmish.

[7] Dennis, Jack B., "Modularity," Course notes form an advanced study
institute held at Technical University of Munich, February 1972.

[8] Parnas, D. L, "Information Distribution Aspects of Design Methodology",
Proceedings of IFIP Congress 1971. August 1971

APPENDIX I

A Brief Description of the System(s) Built in the Experiment

This appendix is intended for those who have not yet read [2].

The system being built was intended to read in a set of titles and

produce an alphabetized listing of all circular shifts of those titles

(a KWIC index).

The six modules were:

1. Input - The only module which knew the input format. Programs

in this module read the input but called other modules to actually store

the data.

2. Output - The only module to know the output format. This program

took the information to be printed from other modules, but selected the

format of the information on paper.

3. Line-Holder - The only module to know how the titles were stored

in memory. The module offered programs which both stored and retrieved

the information from memory.

4. Circular-Shifter - The only module to know how the circular shifts

were represented in memory. Some versions actually stored all shifts

explicitly, others stored only relatively small directory tables.

5. Symbol Table - This module was hidden within some versions of line

holder. Programs calling line holder were unaware of the existence of

symbol table.

6. Alphabetizer - The only module to know the sorting method which

was used. Some versions did all sorting initially, others sorted only as

needed.

Security C l a s s i f i c a t i o n

DOCUMENT CONTROL DATA - R & D
1 . O R I G I N A T I N G A C T I V I T Y (Corporate author)

Computer Science Department
Carnegie-Mellon university
Schenley Park
Pittsburgh, Pa. 15213

2 a . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
1 . O R I G I N A T I N G A C T I V I T Y (Corporate author)

Computer Science Department
Carnegie-Mellon university
Schenley Park
Pittsburgh, Pa. 15213

2b. G R O U P

3 . R E P O R T T I T L E

SOME CONCLUSIONS FROM AN EXPERIMENT IN SOFTWARE ENGINEERING TECHNIQUES

4 . D E S C R I P T I V E N O T E S (Type of report and inclusive dates)

Scientific Final
5 - A U T H O R I S) (First name, middle initial, last name)

David L. Parnas

6 . R E P O R T D A T E

June, 1972
7 a . T O T A L N O . O F P A G E S

14
lb. N O . O F R E F S

8
8 a . C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b . P R O J E C T N O . 9769

«• 61102F

* 681304

9 a . O R I G I N A T O R ' S R E P O R T N U M B E R (S) 8 a . C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b . P R O J E C T N O . 9769

«• 61102F

* 681304

9 b . O T H E R R E P O R T N O (S > (Any other numbers that may be assigned
this report)

1 0 . D I S T R I B U T I O N S T A T E M E N T

A. Approved for public release; distribution unlimited

1 1 . S U P P L E M E N T A R Y N O T E S

TECH OTHER

1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Rsch (NM)
1400 Wilson Blvd.
Arlington, Virginia 22209

1 3 . A B S T R A C T

This paper describes the outcome of a small experiment to test the validity
of some proposed software engineering techniques. The experiments showed that it
was possible to combine the work of many programmers to produce systems which could
exist in many versions. Major changes in the system's implementation could be
made by replacing well defined small subsets of the system. The experiment seems
to support (1) the validity of the techniques being tested and (2) some new con
clusions about project management and the focussing of effort in software projects.

DD F

N°oR

v

Me51473
S/N 0 1 0 1 - 8 0 7 - 6 8 0 1

(P A G E 1)

Security C l a s s i f i c a t i o n

