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SOME CONDITIONAL LIMIT THEOREMS IN EXPONENTIAL
FAMILIES

By Lars HoLst!

Stanford University

Consider a sample from a p-dimensional exponential family and a random
vector whose distribution is the same as that of the sample given a sufficient
statistic. General limit theorems for functions of sum-type for such random
vectors are obtained; simple sums, linear combinations, m-dependent sums,
and U-statistics are considered. The results are illustrated by some examples.

1. Introduction. It is quite common in probability theory and statistics to come
across a random variable (rv) whose distribution is the same as that of a sum of rv’s
conditioned on a sum of i.i.d. rv’s. In this paper the asymptotic behavior of such rv’s are
studied in general situations for the exponential family. This situation covers many
problems which have been studied separately. The results obtained below unify and extend
those proved before by special methods for each case. Some general results for discrete
situations are obtained in Holst (1979a). General questions of convergence of conditional
distributions were studied by Steck (1957) and Chibisov (1972). Related problems are
investigated in von Bahr and Svensson (1978), Barndorff-Nielsen and Cox (1979), and
Michel (1979).

The organization of the paper is as follows. In Section 2 basic assumptions and notations
are introduced, some facts for the exponential family are given, and a formula for a
conditional characteristic function is obtained. Section 3 contains the symmetric situations
with the sums of the simple type Y7-: f.(X:). Linear combinations are considered in
Section 4. A limit theorem for random sums of the form Y =" f(Xz, - - -, X+m) is given in
Section 5. Conditional U-statistics both for the one and two sample cases are considered
in Section 6. Examples and illustrations of the results obtained are given in Section 7.

2. General assumptions and the exponential family. Throughout this paper the
assumptions and notations of this section will be used. First, recall some facts on exponen-
tial families. For proofs and a complete treatment see Barndorff-Nielsen (1978).

Let 2 be a sample space and denote by X, X', X;,X1, - .-, 1id. rv’s on £ with distribution
in a regular p-dimensional exponential family. That is, the probability measure on Q is of
the form

dPy(x) = exp(6’t(x) — K(6)) du(x),
where p is a given measure on  and the natural parameter space
®={0;|K(@)| <o} CRP

is an open set (all vectors are column vectors and ’ denotes transponation). The cumulant
generating function of #(X) is

In E(exp(u't(X))) = K(u + 0) — K(8).
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For § € O all moments of #(X) exist, and
Eot(X) = K'(0),
Var, t(X) = K”(6) > 0.
Let G be the minimal abelian subgroup in R” of support of #(X). It is assumed that either
G = R?, the continuous case,
or
G = ZP, the lattice case.

Set H = R? in the continuous case, and H = (— 7, 7} in the lattice case. In the continuous
case it is further assumed that

J' | Eg(exp(in't(X))) | ™ dn < oo,
RP

for all § € © and for some no (independent of #). The assumption is equivalent to that the
random vector

T,=tX1) + - + t(X,)

has a bounded density with respect to Lebesgue measure in R” for n sufficiently large; see,
e.g., Bhattacharya and Rao (1976), Theorem 19.1. The density of T, will in both the lattice
and the continuous case be denoted by f,.6(¢). It will be assumed that 7 is so large that it
exists.

For the sample X = (Xj, ..., X,,) the likelihood equation can be written

Et(X) = (X)) + - + (X)) /n=Th.

It has a unique solution 8 = 8 if and only if 7', € ©. In typical applications Py(T, € ©) =
1 for all § € O, at least for n sufficiently large. For a full discussion on this matter see
Barndorff-Nielsen (1978), Section 9.3. In the following, ¢, € R” denotes a possible value of
T, with ¢, = t,/n € ©. Thus there is a unique 6, € © such that

Eot(X) =t, = t./n.

For the sample X = (X, - - -, X,) a sufficient statistic is T, = ¥./-1 #X)). Thus (X | T,
= t,) defines a unique distribution on @*. Let Y = (Y3, .-+, Y,) be a rv on Q" having this
distribution, i.e.,

L) = LX | To = t,).

For any measurable function u on Q" having values in R? we have

Lu(Y)) = LwX) | To = tn).
Forn=n, £€ R?and n € R?
Yon(& 1) = Ey(exp(i€'u(X) + in'T.,)) =J exp(in't)E(exp(é'uX)) | Tn = t)fo(t) dr(2),

G

where v is the Lebesgue measure for G = R” and the counting measure for G = Z”.
Applying Fourier’s inversion formula we obtain the ch.f. (characteristic function) of u(Y).
Thus we have:

ProrposiTioN 2.1. If

J' | Yon(€, ) | dn < oo, e 0O,
H
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then
E(exp(i§'u(Y))) = (2m)™" j exp(—in't.)von (€, m) dn/foo(tn).
H

Note that the distribution of Y does not involve 6. Thus, this parameter can be chosen
arbitrarily in the above representation. It will be seen below that § = 6, with E, ¢(X) =
t, is a natural choice.

For a general discussion on conditional characteristic functions, see Zabell (1979).

3. Limit theorems for simple sums. In this section the asymptotic behavior of
distributions of the form
L(un(Y)) = L(F =1 fulY)y 1)) = LT =1 ol X), £)| 301 8(X)) = t,)

is studied when n — «. Here { f,} is a given sequence of real valued measurable functions.
The main results are Theorem 3.1 and the Corollaries 3.5 and 3.6.

THEOREM 3.1. Let X = (Xi, --+, Xa), Y = (Y4, +-+, V), T = Y11 £(X;) and 6, be
defined as in Section 2, and let the general assumptions of Section 2 be satisfied. Set

C. = Vary t(X) > 0.
Suppose that

(Al) forn',n— o withn'/n—> a,0<a<]l,
InCnll/Zf | Eq, (exp (in’¢(X)))|™ dn —>J' exp(—ann/2) dn,
H RP

(A2) forn— x

o (X, t) v
%(2“‘ ((ncf,)—w(t(xn - tl))) - $< V>

where the ch.f. of (U, V) is
E(exp(i¢U + in'V)) = h(§)exp(—(AE® + 2¢B'n + 1'1)/2),

with A, £ € R, B, 1 € R? and where h(§) is an infinitely divisible ch.f. without normal
component. Then, when n — o,

LET1 (V) ) = LT =1 (X)), 1) | T = 1) — L(W),
where the ch.f. of Wis
E(exp(i6W)) = h(¢)exp(—(A — B’B)£%/2).
ProoF. A method due to LeCam (1958) will be used for proving the assertion. For
Un,n'(X) = ¥ Jenset [, ta),

Proposition 2.1 yields for £ € R that

E(exp(iunn(Y))) = (27)"’J' exp(—in't,) Eq, (exp(in’ ¥ X1 €(X)))

H

“Eo,(exp(in’ ¥jen+1 H(X)) + ibttn,n (X)) dn/fn,(tn)
= (2'17)_”/2] Eq, (exp(in’(nC,)™? Y121 (8(X)) — 1))
(nC,)\2H

"Yé’,.,n,w’(g, 77) d’?/| 2mnC, |1/2ﬁ:,0,,(tn),
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where
Yo,n.07 (& 0) = Eg,(exp(in’(nCp) ™2 ¥ fanrsr (H(X;) — &) + it n (X))
From Assumption Al it follows by Proposition 3.2 below that
|27nCp | s, (ta) = 1, n— o,
By Assumption A2 we have
Yo,mn(§ 1) — (E(exp(EU + in'V)))'~.

By Assumption Al and the extended form of Lebesgue’s dominated convergence theorem,
see Rao (1973), page 136, it follows that

E(exp(ifun,n(Y))) = ga(£)
= @2m)"? | exp(—an'n/2)(h(£)exp(—(AE® + 26B'n + n'n)/2))' ™ dn.

RP

Now
&8.(§) = 1, atl,
&(£) > h(§)exp(—(A — B'B)n*/2), alo0.

Thus, by the argument of LeCam (1958), page 14, see also Billingsley (1968), page 25, it
follows that in fact

E(exp(i§ Y71 f(Y)))) = h(£)exp(—(A — B'B)£*/2), n— o,

which proves the assertion.

ProposITION 3.2. Suppose that Assumption Al of Theorem 3.1 holds and that
(A3) Lo, ((nCr)T2 T 1t (H(X;) — £1)) = N(O, I).
Then,

| 27nCn |6, (82) — 1, n— o,
Proor. Fourier’s inversion formula

fro,(tn) = (277)_”f exp(—in'tx) (Ey, (exp(in'¢(X))))" dn
H

and changing coordinates in this integral gives

|27nCp |V *fn.0,(tn) = (27) /2 J E,(exp(in’(nC,) ™2 ¥ 1ot (8(X;) — tn))) d.

(nC,)V2H

By Assumption A1l and Lebesgue’s theorem the last integral converges to
@m) 2f exp(—nn/2) dn =1,
RP

which proves the assertion.
In a similar way one obtains:

ProposiTION 3.3. Set
T5 = ¥ (((X)) — (X)),
If T has a bounded density f4(t). and A3 holds, then the Assumption Al is equivalent
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to
(A4) [27nCr | *f3,6,(0) = (a/2)?,

when n, n’ — o such that n’/n — a.
REMARK. In many cases it is easier to verify A4 than Al.

ProprosITION 3.4.  Suppose that {t,} is such that 6,— 6, € ©, n — . Then Assumption
(A1) holds.

ProOOF. As O is open there is a closed ball K, C ® and a number n, such that 8, € K,
for n = no. As Vary t(X) = K”(8) > 0 is a continuous function, there exists a positive
definite matrix Dy such that C, = Vary, ¢(X) = Do > 0. Using this uniformity the
conventional proof of the local limit theorem with characteristic functions gives the
assertion; see, e.g., Feller (1971), pages 516-517.

For most applications the following two corollaries are sufficient.

COROLLARY 3.5. Suppose that Assumption Al holds and that
(A5) L3, (X J-1 12X, 80)) = L(U),
where U has no normal component. Then,

L(X51 Y, t) = L(U).

Proor. From the classical limit theorems for independent rv’s it follows that the only
possible limits of subsequences of the form

fr (X5 tny)
%, | Lt _
(meCr) T 2(H(X)) — E5,)

have ch.f’s of the type h(£) exp(—(A¢® + 2¢B'y + 1/'n)/2), where A and B can depend on
the particular subsequence; see LeCam (1958), pages 9-10. But as U has no normal
component, A = 0 and thus B = 0. Therefore, every subsequence has the same limit ch.f.
h(§). The assertion follows now from Theorem 3.1.

COROLLARY 3.6. Suppose that {t,} is such that 6, — 6, € ©. Let f be a given function
with Var, f(X) < o for all § € ©. Set

Ao = Vary, f(X),
B, = Covy, (f(X), t(X)),
Co = Vary, t(X).
Then,
L7V Y0, (f(Y)) — Eg f(X))) > N(O, Ao — BoCi'By).

Proor. By Proposition 3.4 the Assumption A1l holds. From the conventional form of
the Central Limit Theorem it follows that

f(X;) — Eq f(X;) Ao Bj
L\ n T - N0, )
UX;) — t, B, C

recall Eg#(X;) = t,. Thus, Assumption A2 is satisfied with A(£) = 1. The assertion now
follows from Theorem 3.1.
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REMARK. It may be more natural to consider norming by Ef(Y;) instead of Eq, f(Xj).
By Portnoy (1977) it follows that

Ef(Y)) = E, f(X;) + O(1/n).
Thus, E,,f(X;) can be replaced by Ef(Y;) = E(f(X;) | T = t.) in the last corollary.

4. A limit theorem for linear combinations.

THEOREM 4.1. Let {ajn;j=1,---,n,n=1,2, ...} be a double array of real numbers
such that

i1 @jn =0,
Sy ak/n— 1, n— oo,
max;<j<n @/n — 0, n— oo,

Let the sequence {t,} be such that 8, — 6, € ©, n — . Suppose that there exists no such
that for all ¢ € R? and real numbers 81, - - - 0n,

J |exp(X 21 K(8 + i(n + §;€))) | dn < .
H

Then
LMV Lo aint(Y))) = L7 Tt aint(X;) | Bi-1 HX)) = ta) — N(O, Vary, (X)), n— .
ProoF. Consider for £ n € R” the characteristic function
exp(—in'tn/n"*)yo, n(&, n/n"?) = E, (exp (i’ Y71 @jnt(X;)n'/?
+ i’ Pt (HX)) — 8)/n'7?))
= exp(¥ia1 (K(On + i(@iné +m)/n'"?) — K(6,)
— i(@iné + n)'K’(6,) /n'"))

which by the assumptions is integrable in 7 for n = no. As 8, — 8, € 0 it follows for fixed
n € R? that, when n — o,

exp(—in'ta/n'*)ys,n(€, n/n''%) — exp(—(§'K" (60)¢ + 1'K" (Bo)n)/2).

By Proposition 2.1 we have

E(exp(it’ Y1 ant(Y;)/n*?)
= (27)/* exp(—in'ta/n'?)ye, n (& n/n"?) dn/@2mn)"*fo4, (t.).

nV/2H
Propositions 3.2 and 3.4 yield
2mn)P%fp,(8:) — | K" (80) | ~2.

Hence the assertion is proved if

27" | K”(6o) | sz exp(—in'tn/nl/z)yom,,(&, n/n*?) dy

nl/2H

— (2m) ™ | K" (60) | ZJ exp(—(§’K" ()¢ + n'K" (6o)n)/2) dn

RP

= exp(—¢'K”(00)€/2), n— .
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As the integrand of the left hand side converges pointwise to that of the right hand side,
it only remains to validate the interchange of integration and taking limits. This can be
done in the standard way by splitting the domain of integration n'/?H into different parts
and considering each part separately; for example, see Feller (1971), page 516 and Theorem
3 of Holst (1979a).

5. A limit theorem for m-dependence.

THEOREM 5.1. Let f be real valued and measurable with
Varg f(X1, +++, Xm) <, all§€0.

Suppose that {t,} is such that 8, -6, € ©, n — .

Then
L EEM (f(Y, -+, Yiam-1) — pa)) = N(O, 08),
where
pn = Eq,f(X1, ++ -, Xn)
0% = Ao — BiCy'Bo
with

Ao = Vary, f(Xy, «++, Xn) + 2 T2 Covy, (f(X1, +++, Xn), f(X), + -+, Kjim-1))
By = Covg, (f(X1, «++, Xm), #X1) + « -+ + (X))
Co = \’al‘o0 t(Xl).

Proor. By the central limit theorem for m-dependent sequences it follows for
n,n— owithn'/n—-a>0

f(AXJ) MY Xj+m—l) = MUn AO 36
% | 2y —>N|{0,a- ,
t(X]) - Zn Bo Co

where Ao, By and C; are given in the assertion. The rest of the proof proceeds in the same
way as in Corollary 3.6.

REMARK. Portnoy (1977) proves
Eo f(Xy, -+, Xn) =E(f(Xy, + -+, Xn) | Y1 (X)) = 8) + on™).
Thus u, can be replaced by E f(Y1, -+, Y,) in Theorem 5.

6. Limit Theorems for U-Statistics. Let fbe a given function with
Varaf(Xl, Xz) < o,

In this section asymptotic normality of U-statistics with kernel f, conditional on the
sufficient statistic T, = Y -1 ¢(X,) = t,, is obtained both for a two-sample and a one-sample
situation.

Define 10 and Yo through

Y1o(x) = Eo(f(Xl, X,) |X1 = x) — Eof (X3, Xo),
and
Yoi(x) = Eo(f(Xl, X) ]X2 =x) — Eaf(X1, Xz).
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THEOREM 6.1. Suppose that {t,} satisfies 0, — 6, € ©, n — =, Set
%o = Varyyro(X),
031 = Val’oo‘llm(X )
By, = Covg,(Yo:(X), t(X)),
B = Covg,(Y10(X), X)),
Co = Vargt(X).
Let n = n; + n; and n,, ny — © such that
ni/na— A, 0<A<oo,
Then, when n — o,
LN T Yiens1 (X, X5) — Eo f(X;, X)) /rans| Tie1 H(Xs) = tn)
— N(0, 6% + A 051 — A\/(1 + A))(Bio + Bo1)’ Co'(Bio + Bm)).

Proor. To facilitate notations set
Vij = f(X;, X)) — Eo f(X;, X)).
Let v — o so v/n; — a, 0 < a =< 1. By Proposition 2.1 one obtains for { € R
E(exp(ig ni”? $ i1 Yiener Vi/nine| To = t) = (2m) P (fu,(t:) 07?2
Ey (exp(in’ Yh-1 (¢(Xz) — £:)/n?)H, (£, ) dn,

nl/2H
where
H,(¢, ) = Eqg,(exp(if ni? ¥ 2,41 Y iens1 Vij/nina + i’ Yiepr1 6(Xa) — £)/n'75) .
As in Lehmann (1975), pages 363-365 one proves that, when n — oo,
Varg, (3,41 Y Jenr1 (F(Xs X)) = $10(X)) — Yor(X))) /n¥? ny) — 0.
By Propositions 3.2 and 3.4
(2m)P" | nCo| 2fop,(t:) — 1.
Thus in order to obtain convergence of the conditional characteristic function it is sufficient
to get convergence of
ALg) = )2 j Eg,(exp(in' (nCo) ™ Tia1 ((Xe) — 1)) - Go¢,m) dn,
n'2CYH

where
G.(£ ) = Eg,(exp(ini”® £(T 8,41 $10(XD) /11 + Tien, 41 Y1 (X)) (1 — ) /n1ng)

+in2 ) Thoprr CoV2 (6(Xn) — t2))).

By the Central Limit Theorem it follows that
G/ 1) = Gu(&, m) = exp(—((1 — &) (£? 00 + 2(\/(1 + N))*y" C3"? Bio& + (A/(1 + N))n'n)
+ (1 = a)®A&% 6§ + 2(1 — @) A/(1 + A)*y’ C5V2 Bk + (1 + M) 7'n'n)/2).
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The extended form of Lebesgue’s dominated convergence theorem yields

An(§) = Ad) = 2m) 2. J exp(—(Aa/(1 + A)n'n/2) Ga(§, m) dn.

Rp
Here
A8 — Ai§) =1 afl,
and
Ad(é) = Ao(§) = (277)"’/2] Go(§ ) dy
RP

= exp(—¢*(ofo + Ao§i — (A\/(1 + N))(Bwo + Bu)’ C5" (Bio + Bo))/2)

when a | 0. By the argument of LeCam (1958), c.f. the proof of Theorem 3.1; the assertion
follows.
Next the one-sample case is considered. Let f be symmetric. Set

Yo(x) = Yro(x) = Yoi1(x),
with E ¢o(X) = 0.

THEOREM 6.2. Suppose that {t,} satisfies 6, — 6, € 6, n — . Set
05 = Varsyo(X),
By = Covg,($o(X), H(X)),
Co = Vary t(X).
Then, when n — o,

L' Yy<icjznlf (Xi, X)) — Eo,f(Xi, Xj))/(’zl> | Th-1 H(Xz) = t,) > N(O, 4(65 — By C5" Bo)).

Proor. Set
Vij =X, X)) — E, f(X;, Xj)

and consider for 1 < n; < n the sums
n
Zin= n1/2 215i<j5n1 VL//<2)

Zon = 1" 3ity Bienier Vii/ ('5)

Z3p = n'/? En,<i<jsn "U/ (g) .

Suppose that n,, n — ® so n;/n — v, 0 < y < 1. In the same way as in the previous proof
one shows that

Lo T = ) > L(Zs) = N(O, 4(1 = )" 0} — 4(1 — y)* Bi C&" Bu).
and by symmetry we also have
P(Zin| Ty = t,) = LZy1,) = N(O, 4v° 65 — 4 y* B C5* By).
From Theorem 6.1 we obtain

Ll Zon| T = tn) = L(Z2,) = N(O, 4y(1 — y) (a5 — 4y(1 — v)B4Cs'Bo)).
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When y | 0,
Ziy,—p 0,
Z3,—p 0,
Zs,—p N(0, 4(68 — B; Co" Bo)).
Thus by LeCam (1958)
L Zin + Zon + Zsn| Ty = ta) — N(0, 4(a5 — B Cy"* Bo)),

proving the assertion.

REMARK. E,, (X1, Xo) can be replaced by E (f(X1, X3) | T = t.) in Theorems 6.1 and
6.2.

7. Examples. In this section the results of Sections 3-6 are illustrated by some
examples. More detailed analysis of specific applications will be and are given elsewhere.

ExampPLE 7.1. Let Xj, X, -+, X, be ii.d. with a Poisson distribution with expectation
m (corresponding to § = In m). The conditional distribution
A Xy, oo, X)) | D1 X =7) = L(Yy, -+, Ya)

is the multinomial (, 1/n, - .., 1/n)-distribution. Consider the classical occupancy prob-
lem, i.e., the number of empty cells, or

LEh=1 1Yy = 0)) = L(Xj=1 [(Xs = 0) | Ties X = 1),
Choose 8, = In(r/n). Now suppose that r, n — o« so
ne’/"—a,
which implies
%,(Ok=1 I(X;, = 0)) — Poisson (a).
As the limit has no normal component, Corollary 3.5 yields,
L(Th-1 I(Yr = 0)) — Poisson (a).

This result goes back to von Mises and can be proved by direct calculations; see Feller
(1968), page 105. In Holst (1979a), (1979b), and (1980b) problems related to discrete
situations, in particular urn models, are studied.

ExaMpPLE 7.2. Let X, Xj, --., X, be iid. from a gamma (a, 8) distribution, i.e., the
density with respect to Lebesgue-measure is
f(x) = (B°T(a)'x""e 5, x,a,8>0.

Various inference problems concerning the parameters a, 8 have been studied; see, e.g.,
Engelhardt and Bain (1977), Gross and Clark (1975), and the references therein. Corollary
3.6 is useful for obtaining approximations of the distributions involved as the following
may indicate. The gamma distribution with both parameters unknown defines a regular
exponential family with

9= (0, 86) = (a, — 1/BY, 0:.>0,6.<0,

t(X) = (In X, X)’,
Eﬁt(X) = (‘P(a) +In B, aﬂ),,

]
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where Y(a) = I'(a)/T'(a). Furthermore,
EX*

Var,X?

Covy(X?, t(X))

a(l + )82,

a(l + a)(6 + 4a)B8%,
(2a(1 + a)B%, (1 + 2a)B?).

Suppose that ¢,/n— (a, bo)’, with ap € R and b, > 0. It is easy to see that this is equivalent
to 8, = (an, —1/8») = 6o = (a0, —1/f0), where ao, Bo > 0. Thus, Corollary 3.6 yields for the
dispersion statistic

y(n—l/Z ZZ—I(XIZQ - an(l + an)ﬁ?z) | Tn = tn)
— N(0, B5(2a0(1 + o) — ao/ (a0 ¥/ (a0) — 1)), n— .

This can also be stated as: the ratio of the sample variance and the predicted variance
a2, given the sufficient statistic, obeys

(n— 1) Yii(Xe — Xo)2/anfB2 ~ AsN(1, 0% /n)
where X, is the sample mean and
on = (21 + &) — (e ¥(an) — 1)7")/atn.

This can be used to test the fit of the gamma distribution. Barndorff-Nielsen and Cox
(1979) gave the corresponding asymptotic result for the density function.

EXAMPLE 7.3. An experiment has two outcomes S and F and is repeated until n S’s
have occurred. Suppose that the probability for S is, p = 1 — ¢ (unknown) until S occurs
for the first time, 1 — Kq (0 < K =< 1) between the first and second occurrence of S,
1 — K?q between the second and third, etc. Otherwise, trials are independent. Let
X, ++-, X, be the number of F’s between the successive S’s. The log-likelihood-ratio
statistic for testing Ho:K = 1 against H;:K < 1 is essentially the linear combination
Y %=1 £X:. Under H, the X’s are independent with a geometric distribution with mean
p =q/p, and T, = Y% X, is a sufficient statistic. By the strong law of large numbers
Y%-1 Xi/n — p with probability one. Therefore, let us suppose that ¢./n — p > 0. Using
Theorem 4.1 it follows that

L1 kXp — £, - (n+ 1)/2)/(nta(n + £,)/3)*| T = t.) > N(O,1), n— o

The conditional distribution is the same as that of a linear transformation of the Wilcoxon-
statistic in the non-parametric two-sample problem (under the null hypothesis); c.f., Holst
(1979a), Example 2.

In general, conditional distributions of linear combinations occur in connection with
testing a hypothesis against specific local alternatives; c.f., Michel (1979). Thus, Theorem
4.1 is useful to obtain approximations of such test statistics under the null hypothesis. One
may also remark that the asymptotic distribution for simple random sampling without
replacement from a finite population follows from Theorem 4.1; see Holst (1979a), Example
3.

ExXaMPLE 7.4. Let Xj, -, X, be ii.d. from an exponential distribution with mean
—1/8 > 0. Consider the sum Y3-! X;Xz+1, conditional on T, = Y%= X, = n. Simple
calculations give

E—l(X1X2) =1,

Var_;(X1Xz) = 3,
Cov_1(X1Xe, XoX3) =1,
Cov_1 (X1 Xe, X1 + Xo) = 2,
‘ Var_, X, = 1.
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Theorem 5.1 yields
L Yri(XeXee1 — 1) | Tw = n) > N(O, 1).

Let Sy, - - -, S» be the spacings of n — 1 points from a uniform distribution on (0, 1), that
is the successive distances between the points including the endpoints 0 and 1. It is well
known that

L(Xy, + o0, Xn| YE=1 Xi = n) = L(nS,, ---, nS,).
Hence, the limit above can also be stated as
L2 Yol (028, Sk+1 — 1)) = N(O, 1).
Further aspects on spacings and their use can be found in Holst (1979c), (19802) and the

references therein.

ExampLE 7.5. Let Xj, ..., X, be one-dimensional random variables with the contin-
uous distribution F(x) belonging to an exponential family. For 1 < n; < n = n; + n
consider the distribution

LZy) = LM? T Yiony 1 U(Xi < X)) — Y) /nung| Tr = tn),
of the Wilcoxon-Mann-Whitney statistic conditioned on the sufficient "statistic: We have
Yo(x) = EI(x < X;) — % =% — F(x),
Yor(x) = EI(X; < x) — %o = F(x) — %.

Thus, Y10(X1) = —{01(X1) is uniformly distributed on (—%, %) and B1o = —Bo;. Theorem 6.1
yields

LA(Z,)— N, (1+7A)/12),

when n;, n — o« such that n;/n; — A. Hence, the asymptotic distribution for the
conditional statistic is the same as for the unconditional. We may remark that this can
also be seen in the following more straightforward manner.

Introduce

LY, oo0, Vo) = LUX, ooy Xa| To = ).

As the Y’s are continuous and exchangeable, the random variable} 2 ¥7-. +1 (I(Y:<Y})
— %) + ni(n + 1)/2 has the same distribution as the sum of the ranks {Y1, --- Y, } among
{Y1, -+, Y,}, that is the ordinary (null) distribution for the Wilcoxon statistic.

ExamPLE 7.6. Let Xi, ---, X, be iid. from an exponential distribution with mean
—1/6. Consider Dini’s index dispersion Yi<;<;<. | X; — Xj| conditional on T, = }}-1 Xi =
n (corresponding to 6, = —1). We have

E_ | X - X;]|=1,
Yox)=E_ (| Xi—x|—-1)=2"+x—2,
06 = Var_; $o(X;) = %,
By = Cov_1(X1, Yo(X1)) = Y%,
Co=Var_; X;=1.

Theorem 6.2 yields
n
,S,”(nl/z ZISstn (1Xi—X;| — 1)/<2>

T,,=n>-—>N(0,V3), n— o,
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The limit can also be stated as
i”(nl/z 2y ]S — S| - 1)/(’5)) — N(0, %),
when n — o, where Sy, ..., S, are spacings; c.f., Example 7.4 above.
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