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Summary

If the metric of an w-dimensional space is taken in the form ds2 =
u2dr2-\-da%, where dx2 and da2 are cartesian metrics of r and (n—r) dimen-
sions, respectively, the various forms of u for flat space are quite simple.

The study of accelerated motions in special relativity by various
authors has led to four dimensional metrics of this form. Those in which
M = ± 1 at the space origin for all values of time are of particular interest.
They are locally cartesian at the accelerated observer, and so the coordinates
in the neighbourhood of the observer correspond directly to physical meas-
urements. Hence, such metrics provide convenient means of describing
physical conditions experienced by accelerated observers.

If the r-space contains the time direction and is of one or two dimensions,
arbitrary rectilinear motions are allowed.

1. The metrics

Consider a metric of the form

ds2 = g^d^dx' = {u(xi)}2dxadxa-\-dx'ldx'1

x = 1, • • • , / / /i — r-j-1, • • •, n; i = 1, • • -, n.

This is a special case of the conformally separable metric. More general
cases have been used in discussing certain problems in geometry (Yano [10],
Wong [9]). However, it is simpler to derive from the beginning the particular
results required here than to use formulae from the more general treatments.

The condition for flat space is [8],

Riiki == -2\gil,jk.-\-gjk,il gik,il Sil.ik)

+gmn([jk, n][il, m] — [jl, n][ik, m]) = 0,
515

https://doi.org/10.1017/S1446788700006170 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006170


516 N. W. Taylor [2]

where, in the terms gil>ik, etc., the comma denotes partial differentiation
with respect to the coordinate.

Let A, B, C be different indices, each less than r, and let the summation
convention be suspended for indices denoted by capital letters. If the metric
(1) represents a flat space, then

/) ,BB> —« « « * —«2«/««, ^ = 0

(3) RABCB = «s(l/«)^c = 0

(4) RAHA» = —uu>fU, = 0

(5) RAB,B = - « » (log «),.!,, = 0.

All the other components of /?o t , vanish identically. The equations (2)
contain the (r— 1) equations

(6) (W.AA

These equations show that, as far as the value of r is concerned, there
are three cases to consider, namely, r > 2, r = 2, and r = 1.

THE CASE r > 2. From (3) —(6) it follows that

u= (2bJl

where b^, la, q, and p are constants. If this is substituted in any of the equa-
tions (2), it is found that p = b^b^. Hence

(7) u= (2b/

This is valid for any n—r, in particular for the case n—r = 0, where the
whole metric is conformal to a cartesian metric. There are then no /J, indices,
and so

(8) « = ?/{(3«+/") (*«+/«)}.

THE CASE r = 2. There are now no equations of the type (3) and only
one of the type (2). It can be written

(9) (log«)>1i+(log«)j2E+«/,«^ = 0.

The other equations are

(10) u „ = 0

and

(11) (log«),

From (10) and (11),

u= (
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[3] Some conformally separable metrics in flat space 517

where b^ and q are constants and </> is an arbitrary function of x1 and x2.
If this is substituted in (9), it gives

£ u £ M / = 0,

a form of Liouville's equation [1]. The solution is

•g'(xl-ix2)
bllb/lexp(2cf>) = - j - ^

where / and g are arbitrary functions and the dash denotes ordinary differ-
entiation. Hence, the complete solution is

(12) u* = ^

For the case where the whole metric is conformal to a cartesian metric
(n = r = 2), or for the special solution in the conformally separable system
where all the b^ vanish, the equation for the <f> reduces to Laplace's equation
so that

<f> = F{x1+ix2)+G(x1—ix2)
and hence

(13) u = f{xl+ix2) • g{xi—ix2).

THE CASE r = 1. For this case, the only set of equations is

(14) w ^ = 0

giving

(15) u = xrf^x^+bix1)

where /A and b are arbitrary functions.

2. Physical conditions on the metrics

In applications to Relativity theory, n = 4. For the inertial system in
which coordinates correspond directly to physical measurements,

ds* = dx'dx' = dx2+dy2+dzi-cidt2.

Only those accelerated frameworks will be considered in which the coordi-
nates at the space origin, 0, of the accelerated observer measure distance
and time directly. Hence, u(0, 0, 0, x*) = ± 1 . :

The 4-acceleration of a particle is

F* = &ailldsi*+{i
t
k}(d<iS'lds)(daPlds).
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At the accelerated origin, 0,

dxljds = dx2jds = dx3jds = 0, dxtjds = ± 1 .
Hence, at 0,

F\ = W o -

The components of acceleration are given by taking i = 1, 2, 3. These will
vanish in the present case unless gu = u2, and so the conformal and conform-
ally separable metrics for accelerated frameworks are

(16) ds2 = (u

(17) ds2 = (

(18) ds2 = (d&)*+ (dx2)2+ (u)2{(dx3)2+ (dx*)*}

(19) ds2 = (dx1)a+(dxi)3+(dxa)i+{u)2(dxi)2.

With the convention that xl corresponds to time, it is convenient at this
stage to number the [i before the a indices.

The metrics (16) and (17) belong to the type r > 2. In the case of (16),
the equation (8) gives

which cannot become ± 1 at (x1, x2, x3) — 0 for all x*. This gives the metric
used by Page [6], Page and Adams [7], and Gupta [2] in the study of uni-
formly accelerated motion.

In the case of (17), the p index is 1 and the a indices are (2, 3, 4). The
equation (7) then gives

which cannot be ± 1 at (x1, x2, x3) = 0 for all x*.
The metric (18) belongs to the type r = 2. Here, the /i indices are

(1, 2) and the a indices (3, 4). Hence, from (12),

= (2b1

where the dash denotes ordinary differentiation. So

where the substitution £ = ix*, t) = —ix* is made after the differentiation.
Let h{£) = g{—£). Then, since djd^ = —d[d£,

M(0, 0, 0, x*) =
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Thus, the conditions are satisfied if

(21) J V ' ( ! ) • *'(*) = {(&i)2+(&2)
2}{/(£)+M!)}2-

Therefore, there is one arbitrary function. If / is chosen, this equation
determines the corresponding g.

The cases where b1 and b2 both vanish must be treated separately.
From (13),

u = f(x3j
rix

i) • g(x3—ix*).
Then

«(0, 0,0, z*)=

Hence, w(0, 0, 0, x*) can take the values ± 1 if

In this case,

(22) u = ±f(x*+ix*)lf(-x*+ix*).

With the metric given by (18) and (20), the components of accelera-
tion of the origin in the x1- and ^-directions are constant, — 2bjq and — 2b2lq,
respectively. However, like the case (22), it allows an arbitrary acceleration
in the a:3-direction. In the investigation of arbitrary rectilinear motions it is
not necesssary to use (20). The simpler form (22) will serve.

For the metric (19), the \i indices are (1, 2, 3) and the a index is 4.
The equation (15) gives

u =

Hence, «(0, 0, 0, x4) = ±1 if b(x*) is a constant, ±1 . So,

(23) u =

In the accelerated framework, the components of acceleration of the origin
are ( - / l f —/„ - / , ) .

3. Some transformations

THE CASE (22). The transformation will now be determined which takes
the inertial metric

to
ds2 =

where

(24) u = ±f(z-ct)lf(-z-ct).
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Since the motions of interest here are those in the z-direction, a trans-
formation will be assumed in the form

z' = <f>(z, t)
f = y>(z, t).

The equation
dz'*-c2dt'2 = tt2(<fe2-cW)

for all z, t then gives

and
fitj) —C2y)'y, = 0,

where the dash denotes differentiation with respect to z and the dot differen-
tiation with respect to t.

Eliminate <f> from these:

Since M2 ^ 0,

Then

so that <f> and %p are each given by the one-dimensional wave equation with
velocity c. Write the solution for <f> as

Then
V = ±(l[c)0(z+ct)T(llc)F(z-ct)+l.

Hence,
M2 = 40'(z-\-ct) • F'{z-ct).

u will have the required form, (24), if

F'{z-ct) = -1 / (40 ' ( -z+c*) ) .

(The minus sign is introduced by the change in sign of z, while the dash
continues to denote differentiation with respect to z.) So

where the dash now denotes differentiation with respect to f. The required
transformation is

z' = $ = 0(z+ct)-ijz -etd£[0'(-£)+k

t' = V=±{ljc)0(z+ct)
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If z' = 0 and t' = 0 when z = 0 and t = 0, then

z' = <P(z-ct)-0(O)-i

f = ±(llc)0(z+ct)T(llc)0{O)±(ll4c)

Different motions are given by taking different functions, &(£). Lass [3]
treats the case of uniformly accelerated motion, for which

expfef/c*).
Then

Ma = _0'(z_c^<£'(_2_|_Cj() = eXp(2gz/c2)
and

z' = (c*lg) exp(gz/c2) • [cosh(^/c)-l]

t' = (c/^) exp(^z/c2) • sinh(gtjc).

THE CASE (23). The transformation which takes the inertial metric

ds2 = dx't+dy't+dz'z-ctdt'*
to

ds2 = dx2+dyi+dz2—c2u2dt2

where

is the transformation to an accelerated rigid system of reference (M0ller [5],
p. 253).

A special case of such a motion occurs when the space origin has an
arbitrary acceleration in the z-direction, and the space axes remain parallel.
The transformation in the form given by Marsh [4] is

z' =

f = zWlc2+ f*

where W is a function of t only. Then

u =
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