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ABSTRACT. For 1 ≤ k ≤ n − 1, the k-plane transform Tk,n carries

functions f defined on Rn to functions Tk,nf defined on the set of

affine k-planes in Rn. It is known that Tk,n maps Lp into Lq for cer-

tain values of p and q. In this article we formulate conjectures for

the exact values of the norm of the Tk,n, and state also a conjecture

asserting that the Lq norm of Tk,nf changes monotonically when f

is replaced by its symmetric decreasing rearrangement.

1 Introduction

For 1 ≤ k ≤ n − 1, let Gk,n denote the Grassmann manifold of all k-

dimensional subspaces of R
n, and Mk,n the set of all affine k-planes in

R
n. As explained, for example, in [M 1995, p.53], there is a unique Borel

probability measure γk,n on Gk,n which is invariant under the action of the

orthogonal group O(n) on Gk,n. Each π ∈ Mk,n has a unique representa-

tion of the form π = x + θ, with θ ∈ Gk,n, x ∈ R
n ∩ θ⊥. Define a measure

µk,n on Mk,n by

µk,n(A) =

∫

Gk,n

Ln−k({x ∈ θ⊥ : x + θ ∈ A})dγk,n(θ), A ⊂ M,

where Ln−k denotes n-k dimensional Lebesgue measure on θ⊥, and m-

planes in R
n are identified with R

m in the natural way. Then µk,n is in-

variant under the action onMk,n by rotations and translations of R
n, and is
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the unique such measure, up to multiplication by positive constants. When

the context is clear, we’ll write dx for Lebesgue measure of the appropriate

dimension, dπ for dµk,n(π), and dθ for dγk,n(θ). For nonnegative func-

tions g on Mk,n, we have

∫

Mk,n

g(π)dπ =

∫

Gk,n

dθ

∫

θ⊥
g(θ +w)dw, (1.1)

where π = θ +w with θ ∈ Gk,n, w ∈ θ⊥.

For functions f : R
n → R, the k-plane transform Tk,nf : Mk,n → R is

defined by

Tk,nf(π) =

∫

π
f(x)dx, π ∈ Mk,n.

T1,n is called the x-ray transform, and Tn−1,n the Radon transform. Oberlin

and Stein [OS 1982], for k = n − 1, Drury [D 1984] for k ≥ 1
2(n − 1), and

Christ [C 1984], for 1 ≤ k ≤ n− 1, found that for each q ∈ [1, n+ 1] there

is a unique p ∈ [1, (n+1)/(k+1)] such that Tk,n maps Lp(Rn) boundedly

into Lq(Mk,n, µ). The relation between p and q is given by the equivalent

formulas

p′ =
n

n− k
q′, p =

nq

n− k+ kq
, q =

p(n− k)

n− pk
, (1.2)

where 1 ≤ q ≤ n + 1, 1 ≤ p ≤ qn+1
k+1 , and the primes denote Hölder con-

jugation. For k = 1, 1 ≤ p < n+1
k+1 the result had been found by Drury [D

1983]. These authors actually found more complete results involving mixed

norms, but we’ll consider here only the Lp − Lq theorems. For q > n + 1,
that is p > n+1

k+1 , there is no p such that Tk,n is bounded from Lp(Rn) to

Lq(Mk,n).

For 1 ≤ q ≤ n + 1, let ||Tk,n||p,q denote the corresponding operator

norm. This note is devoted to discussion of the following problem:

Can one determine the exact value of ||Tk,n||p,q, or the associated ex-

tremal functions?

Here is a conjecture. The numbers a and b denote positive constants.

Conjecture 1 Let f0(x) = (a+ b|x|
2)
−

1
2
n−k
p−1 . Then f0 is extremal for

||Tk,n||p,q.

The statement means, of course, that

||Tk,nf0||Lq(Mk,n)/||f0||Lp(Rn) = ||Tk,n||p,q.
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We’ll use analogous language when discussing other operators and the

possible functions at which the operators achieve their norms. If Conjec-

ture 1 is true, then functions of the form cf0(x − x0) are also extremals.

The wording of Conjecture 1 is chosen for expositional simplicity; we’ll

make no attempt in this article to characterize all extremals, or to consider

uniqueness questions of any kind.

Conjecture 1 will follow if Conjectures 2 and 3 below are true. Conjec-

ture 2 proposes a symmetrization inequality for k-plane transforms; Con-

jecture 3 is an extremal problem for a one-dimensional integral transform.

In Conjecture 2, f denotes a nonnegative function on R
n, and f # its sym-

metric decreasing rearrangement. In Conjecture 3, f denotes a nonnegative

function on R
+.

Conjecture 2

||Tk,nf ||q ≤ ||Tk,nf
#||q, 1 ≤ q ≤ n+ 1.

To state Conjecture 3, define, for α > 0, the operator Uα by

Uαf(x) =

∫∞

x
f(y)(y − x)α−1 dy, x ∈ (0,∞),

The operators Uα are known variously as Riemann-Liouville operators,

Weyl operators, or fractional integral operators.

Take β > α. Let p,q ∈ [1,∞), and assume the parameters are related

by the equivalent formulas

p′ =
β

β−α
q′, p =

βq

β−α+αq
, q =

p(β−α)

β− pα
. (1.3)

Let ||Uα||α,β,p,q denote the norm of Uα acting as an operator from

Lp(R+, xβ−1 dx)→ Lq(R+, xβ−α−1 dx).

A theorem of Flett [F 1958] implies that the norm is finite when (1.3) is

satisfied.

Conjecture 3 Let f0(x) = (a+bx)
−
β−α
p−1 . Then f0 is extremal for ||Uα||α,β,p,q.

In sections 2 and 3 we’ll discuss background and partial results for Con-

jectures 2 and 3, respectively. Among other facts, we’ll see that Conjecture

1 is a consequence of Conjecture 2 together with the cases α = k/2, β =
n/2 of Conjecture 3. We’ll also see, in Theorem 1, that Conjecture 1 is

known to be true when k = 2 and q is an integer, or when q = 2. Once

the extremal functions are known, the sharp constants can be explicitly

determined in some cases, but we will not present them here.

The search for sharp constants and extremal functions is also of interest

when 0 < q < 1. Section 4 contains a brief discussion.

We are grateful to Carlo Morpurgo for calling our attention to [C 1984],

and to Elliott Lieb for useful discussions.
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2 A symmetrization question for k-plane transforms.

Throughout this section, all functions are understood to be nonnegative

and measurable Let f be a function on R
n. Its symmetric decreasing re-

arrangement is the unique function f # on R
n such that f # is radial, i.e.

f #(x) = f1(|x|) for a function f1 on R
+, f1 is decreasing (=nonincreasing)

on R
+, f1 is continuous from the right (a normalization), and f # has the

same distribution as f , i.e

Ln(f # > t) = Ln(f > t), ∀t > 0.

From the equidistribution property it follows that f and f # have the

same Lp norms for every p. Information about symmetric decreasing re-

arrangements can be found, for example, in [BS 1988], [LL 1997], and [B

1994]. There are numerous results which assert that various functionals

change monotonically when functions f are replaced by their symmetric

decreasing rearrangements. One of the basic such theorems concerns three

functions f1, f2, f3 on R
n.

Riesz-Sobolev Inequality

∫

R2n
f1(x)f2(x −y)f3(y)dy dx ≤

∫

R2n
f1

#
(x)f2

#
(x −y)f3

#
(y)dy dx.

(2.1)

For n = 1 (2.1) was discovered by F.Riesz in 1930. It was extended to

n ≥ 1 by Sobolev in 1939. A proof may be found in [LL 1997].

Let ∗ denote convolution on R
n. Then, for p ≥ 1 and (nonnegative)

functions f and K on R
n,

||f ∗K||Lp(Rn) = sup {

∫

R2n
g(x)K(x −y)f(y)dx dy : ||g||Lp′ = 1}.

From (2.1), it follows that if K is symmetric decreasing, i.e. K = K#, then

||K ∗ f ||Lp(Rn) ≤ ||K ∗ f
#||Lp(Rn). (2.2)

The k−plane transform Tk,n resembles a convolution operator whose

kernel is Lebesgue measure on R
k ⊂ R

n. In this spirit, the proposed in-

equality ||Tk,nf ||q ≤ ||Tk,nf
#||q of Conjecture 2 can be viewed as an in-

equality in the same family as (2.2). However, the differences are likely

more prominent than the similarities: To compute Tk,nf requires both ro-

tation and translation of the kernel, and Lebesgue measure on R
k does not

much resemble a symmetric decreasing function on R
n. Nevertheless, it is

possible to prove Conjecture 2 when q is an integer. It is a special case of

the following result.
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Proposition 1 Let q be an integer in [1, ..., n+1] and f1, ..., fq be functions

on R
n. Then

∫

Mk,n

q
∏

i=1

Tk,nfi dπ ≤

∫

Mk,n

q
∏

i=1

Tk,n(fi
#
) dπ. (2.3)

From (1.1) and Fubini’s theorem, it follows that
∫

Mk,n
Tk,nf dπ =

∫

Rn fdx.

Thus, for q = 1 (2.3) holds with equality. For q = n+1 (2.3) is due to Christ

[C 1984, Theorem D]. For 2 ≤ q ≤ n, (2.3) can be proved using the same

ideas, or can be deduced from the q = n + 1 case by appropriate special-

ization of fq+1, ..., fn+1 and passage to limits. Here is an outline of a proof

of Proposition 1 whose elements come from [C], but whose presentation is

somewhat different.

The point of departure is an integral identity of Blaschke [Bk 1935].

For points x0, ..., xk ∈ R
n, 1 ≤ k ≤ n − 1, let det(x0, ..., xk) denote the

(unsigned) Lk measure of the convex hull of {x0, ..., xk}. Let F : R
n(k+1) →

R
+.

Blaschke’s identity [Bk 1935]

∫

Mk,n

dπ

∫

πk+1
F(y0, ..., yk)dy0...dyk

= c

∫

Rn(k+1)
F(x0, ..., xk)detk−n(x0, ..., xk)dx0...dxk. (2.4)

The integral on the left is taken over k+1 copies of π. Here, and later, c
will denote a constant depending on the parameters which can change from

line to line. Blaschke’s identity has appeared often in works on integral

geometry and "geometric probability". A nice history, and a proof, can be

found in [Mi 1971]. See also [S 1976] and [SW 1992]. The identity is not

well-known among analysts at large. Its application to Lp problems for k-

plane transforms stems from its rediscovery by Drury [D 1984]. The proofs

in [Mi 1971], [S 1976], and [D 1984] use induction on k starting with k = 1.
In Section 5 we shall present a noninductive proof of (2.4).

Returning now to k-plane transforms, let us take in (2.4) F =
∏k
i=0 fi(yi),

where fi are functions on R
n. Write T = Tk,n. Then (2.4) gives

∫

Mk,n

k
∏

i=0

Tfi(π)dπ

= c

∫

Rn(k+1)

k
∏

i=0

fi(xi)detk−n(x0, ..., xk)dx0...dxk. (2.5)



14 A. BAERNSTEIN II - M. LOSS

Let m ≥ k+ 1. For almost all x0, ..., xk ∈ R
n, the xi are in general posi-

tion, that is, they span a k-dimensional simplex. For suchxi, letπ(x0, ..., xk)
denote the unique k-plane which contains them. Given f0, ..., fm, set

gi(x0, ..., xk) =

∫

π(x0,...,xk)
fi(yi)dyi.

Using again (2.4), we obtain

∫

Mk,n

m
∏

i=0

Tfi(π)dπ

= c

∫

Rn(k+1)

k
∏

i=0

fi(xi)

m
∏

i=k+1

gi(x0, ..., xk)detk−n(x0, ..., xk)dx0...dxk. (2.6)

Next, let’s convert the gi to integrals over R
k. Select a regular k + 1

simplex S in R
k whose vertices P0, ..., Pk satisfy |Pi| = 1. Then

∑k
i=0 Pi = 0.

Given x0, ..., xk ∈ R
n, denote by A = A(x0, ..., xk) the affine map of R

k into

R
n which sends Pi to xi, i = 0, ..., k. If the xi are in general position and we

identify π(x0, ..., xk) with R
k, then

|det A| = c det(x0, · · · , xk), c = det−1 (P0, ..., Pk).

Thus, for i = k+ 1, ...,m,

gi(x0, ..., xk) = c det(x0, ..., xk)

∫

Rk
fi(A(x0, ..., xk)wi)dwi,

and (2.6) may be written

∫

Mk,n

m
∏

i=0

Tfi(π)dπ = c

∫

Rk(m−k)
H(wk+1, ...,wm)dwk+1...dwm, (2.7)

where

H(wk+1, ...,wm) =

∫

Rn(k+1)

k
∏

i=0

fi(xi)

m
∏

i=k+1

fi(A(x0, ..., xk)wi)detm−n(x0, ..., xk)dx0...dxk.

(2.8)

From the relation Pi · Pj =
k+1
k δij −

1
k , it follows that, for w ∈ R

k,

A(x0, ..., xk)w =
k+ 1

k

k
∑

j=0

(w · Pj)xj +
1

k+ 1

k
∑

j=0

xj , (2.9)
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since the right hand side is affine, and agrees with the left hand side when

w is one of the Pi.
Suppose next that l is an integer with 1 ≤ l ≤ k, and that F : R

n(l+1) →

R
+. We claim that

∫

Mk,n

dπ

∫

π l+1
F(y0, ..., yl)dy0...dyl

= c

∫

Rn(l+1)
F(x0, ..., xl)detk−n(x0, ..., xl)dx0...dxl. (2.10)

This can be proved by induction. For l = k (2.10) coincides with (2.4).

Suppose that (2.10) has been established for some integer l ∈ [2, k]. Let us

show that (2.10) also holds when l is replaced by l−1. Given F(x0, ..., xl−1),
take ε > 0, and apply (2.10) to the function F(x0, ..., xl−1)G(x0, ..., xl),
where G is the characteristic function of the set E ⊂ R

n(l+1) defined thus:

(x0, ..., xl) ∈ E if the distance δ from xl to π(x0, ..., xl−1) is less than 1, and

the distance from the center of mass of x0, ..., xl−1 to the orthogonal pro-

jection of xl onto π(x0, ..., xl−1) is less than ε. Then detk−n(x0, ..., xl) ≈
c detk−n(x0, ..., xl−1)δ when (x0, ..., xl) ∈ E. Integrate on the left with re-

spect to yl, on the right w.r.t. xl, divide by εl−1, and let ε → 0. The result

is (2.10), with l replaced by l− 1.
Given f0, ..., fl with 1 ≤ l ≤ k, (2.10) implies that

∫

Mk,n

l
∏

i=0

Tfi(π)dπ = c

∫

Rn(l+1)

l
∏

i=0

fi(xi)detk−n(x0, ..., xl)dx0...dxl.

(2.11)

Proposition 1 follows from (2.11) (for 2 ≤ q ≤ k + 1) and (2.7) - (2.9)

(for k + 2 ≤ q ≤ n + 1), together with the following generalization of the

Riesz-Sobolev inequality.

Symmetrization Theorem Let f0, ..., fM be functions on R
n, K be a non-

negative decreasing function on R
+, ,1 ≤ N ≤ n, and aij be real constants.

Then

∫

Rn(N+1)

M
∏

i=0

fi(

N
∑

j=0

aijxj),K(det(x0, ..., xN))dx0...dxN

≤

∫

Rn(N+1)

M
∏

i=0

fi
#
(

N
∑

j=0

aijxj)K(det(x0, ..., xN))dx0...dxN . (2.12)

For K ≡ 1, this theorem is due to to Brascamp, Lieb, and Luttinger [BLL

1974]. Their theorem does not require an upper bound on N. Christ [C,
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1984] showed that the BLL proof could be adapted to prove results for

multiple integrals which contain certain types of functions involving det .
WhenK is decreasing, the BLL-Christ arguments work for the integral (2.12).

The proof can be reduced ultimately to proving that ifA0, ..., AN are subsets

of R and B is a convex centrally symmetric set in R
N+1, then

LN+1((A0 × ...×AN)∩ B) ≤ L
N+1((A0

# × ...×AN
#)∩ B), (2.13)

where A# denotes the interval (−a,a) such that L1(A) = L1(A#). (2.13)

can be proved by application of the Brunn-Minkowski inequality, as in the

proof of Theorem 1.2 of [BLL 1974].

As pointed out to us by Lieb, when K has the form K(t) = t−ν with ν
a nonnegative integer, the inequality in (2.12) can be easily deduced from

the “K ≡ 1" case proved in [BLL 1974]. To accomplish this, one removes

the det terms in (2.12) by means of the formula

det−1(x0, ..., xN) = c

∫

RN
exp(−|

N
∑

i=1

ti(xi − x0)|
2)dt1...dtN .

Inequality (2.13) appears also in a paper by Pfiefer [P 1990, Theorem

3] about “random simplex" inequalities. From (2.13), Pfiefer deduced the

special case of (2.12) when K is an arbitrary decreasing function and each

fi(
∑N
j=0 aijxj) = χE(xi) for some compact E ⊂ R

n. Pfiefer was apparently

unaware of [BLL 1974] and [C 1984]; he cites a paper of T.W. Anderson [A

1955] as a source for his work in this direction.

Let us return to Proposition 1, and contemplate the hypothesis q ≤

n + 1. If m ≥ n + 1 then K(t) = tm−n is no longer decreasing. Thus, if

in Proposition 1 we take q ≥ n + 2, we can no longer be sure that the

integral in Proposition 1 will increase under symmetrization. And indeed,

it sometimes does not. Take n = 2, k = 1, and let f be the characteristic

function of the interior of an ellipse. The integrals in Proposition 1 are equal

when q = 3. When q > 3, the integral with the symmetrized functions is

strictly smaller than the original integral, unless the ellipse is a circle.

Consider now the case q = 2. From (2.11), we have

∫

Mk,n

Tf Tg dπ = c

∫

R2n
f(x)g(y)|x −y|k−n dx dy. (2.14)

For real k ∈ (0, n), not necessarily an integer, it was shown by Hardy and

Littlewood when n = 1, and by Sobolev when n ≥ 1, that if p = 2n
n+k , then

the right hand side is bounded by C(k,n)||f ||p||g||p. Lieb [L 1983] found

the best constant and the extremal functions. Among them are f(x) =

g(x) = (a + b|x|2)−
n+k

2 . We’ll refer to this as the sharp HLS inequality.

Another proof appears in [CL 1990] and [LL 1997].

Specializing to integers k, the sharp HLS inequality and (2.14) give
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Proposition 2 Conjecture 1 is true when q = 2.

3 A class of integral operators

Suppose that f is a nonnegative radial function on R
n.Then f(x) = f1(|x|),

where f1 is a nonnegative function on R
+. Let 1 ≤ k ≤ n−1. For π ∈ Mk,n,

write π = x + θ, with θ ∈ Gk,n, x ∈ θ
⊥. Then Tk,nf(π) depends only on

|x|. Write r = |x| and Tk,nf(π) = f2(r). Then

f2(r) = c1

∫∞

0
f1((r

2 + s2)1/2)sk−1 ds, c1 = |S
k−1|.

Put g(u) = f1(u
1/2), G(r) = f2(r

1/2). Then

G =
1

2
c1U k

2
g, (3.1)

∫

Rn
fp dx =

1

2
c2

∫

R+
gp(x)x

n
2−1 dx, c2 = |S

n−1|, (3.2)

∫

Mk,n

(Tk,nf)
q dµk,n =

1

2
c3

∫

R+
Gq(x)x

n−k
2 −1 dx, c3 = |S

n−k−1|. (3.3)

We remind the reader that the operators Uα were introduced in section

1. Formula (3.3) is proved with the aid of (1.1).

Recall that the parameters p,q,n, k are related by (1.2), and p,q,α,β
by (1.3). From (3.1)-(3.3), one sees that for a pair n,k, Conjecture 1 for

radial functions is equivalent to the truth of Conjecture 3 when α = k
2 and

β = n
2 . If Conjectures 2 and 3 are both true for some pair n,k, then so is

Conjecture 1 for that pair.

The determination of extremals for ||Uα||α,β,p,q seems to be interest-

ing for other values of the parameters α, β as well. Since it is a problem

about simple one-variable integral transforms, one figures that its solution

ought to be known. But this seems to be so only in two special cases, to be

discussed below.

For α > 0, let Vα denote the operator

Vαf(x) =

∫ x

0
f(y)(x −y)α−1 dy, x ∈ R

+.

Let 1 ≤ p ≤ q < ∞, and w1,w2 ∈ R. Suppose that the 5 parameters

α,p, q,w1,w2 satisfy the relation

w1

p
−
w2

q
= α. (3.4)
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Flett [F 1958, Theorem 2] proved that if the parameters also satisfy

certain inequalities, then Vα is a bounded mapping of

Lp(R+, xw1−1 dx) -→ Lq(R+, xw2−1 dx).

If F = Uαf and we set g(x) = f(x−1)x−α−1, G(x) = F(x−1)xα−1, then

G = Vαg. This enables one to deduce boundedness results for Uα from

those for Vα, and vice-versa. When α < β and (1.3) is satisfied, then, after

transformation, Flett’s hypotheses are satisfied. Thus, with the hypotheses

of Conjecture 3, we have ||Uα||α,β,p,q <∞.Observe that Flett’s theorem con-

tains 4 free parameters, whereas Conjecture 3 contains only 3. Of course,

Flett’s theorem is equivalent to a 4-parameter boundedness theorem for the

U -operators, but for the extremals to possibly have the form (a + bx)−λ

the parameters, at least in some cases, need to satisfy a second equation.

Let now α = 1. Write F = U1f . From (1.3), it follows that

β =
p(q − 1)

q − p
,

p − 1

β− p
=
q

p
− 1,

β− 1

p − 1
=

q

p − q
. (3.5)

Define G(x) = F(x
−
q−p
p )

and g = G′. Then G = V1g and

||f ||Lp(R+,xβ−1 dx) = c||g||Lp(R+,dx),

||F||Lq(R+,xβ−2 dx) = c||G||
Lq(R+,x

q
p −q−1

dx)
.

The problem of finding extremals for

V1 : Lp(R+, dx) -→ Lq(R+, x
q
p−q−1

dx)

was raised by Hardy and Littlewood [HL 1930], who proposed a candidate,

but remarked that a proof that it did extremize seemed to require more

knowledge of calculus of variations than they possessed. A proof was sup-

plied soon after by Bliss [Bl 1930], who indeed did use ideas from calculus

of variations. According to Bliss’s theorem, the extremizers have the form

g(x) = (a+ bx
q−p
p )

−
q
q−p , so that G(x) has the form (a+ bx

−
1
p (q−p))

−
p

(q−p) .
(The skeptical reader may check that G′ = g.) It follows that extremals

for ||U1||p,q, β, β−1 have the form F(x) = (a + bx)
−

p
q−p , f (x) = −F ′(x) =

(a+ bx)
−

q
q−p . From the third equation in (3.5), we obtain

Proposition 3 Conjecture 3 is true when α = 1.

Thus, Conjecture 1 is true for radial functions when k = 2.
Bliss’s theorem with α = 1 plays a role in the proof by Talenti [T 1976]

that extremals for the Sobolev inequality ||f ||Lnp/(n−p)(Rn) ≤ C||∇f ||Lp(Rn)

1 < p < n are furnished by f(x) = (a+ b|x|p
′

)
1−

n
p .
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Next, let us consider Conjecture 3 when q = 2. Suppose also that α =
k/2 and β = n/2, where k and n are integers with 1 ≤ k ≤ n − 1. Given

g : R
+ → R

+, write G = U k
2
g, and define f on R

n by f(x) = g(|x|2). Then

(3.2) and (3.3) hold. From Proposition 2, it follows that whenp = 2n/(n+k)

extremals for ||U k
2
||
p,2, n2 ,

n−k
2

are furnished by g(x) = (a+bx)
−

1
2
n−k
p−1 . Thus,

Conjecture 3 is true when q = 2, α = k
2 , β =

n
2 .

In fact, more is true.

Proposition 4 Conjecture 3 is true when q = 2, β = n
2 with n a positive

integer, and α is any real number with 0 < α < n
2 .

Proof. Let g : R
+
-→ R

+, and let 0 < α < β be real numbers. Write G = Uαg.
Then

∫∞

0
G2(x)xβ−α−1 dx =

∫

R+×R+
g(y)g(z)K1(y, z)dy dz, (3.6)

where

K1(y, z) =

∫∞

0
(y − x)+

α−1(z − x)+
α−1xβ−α−1 dx. (3.7)

For an integer n ≥ 1, define again f on R
n by f(x) = g(|x|2). Then, by

passing to polar coordinates and changing variables, we obtain

∫

Rn×Rn
f(x)f(y)|x −y|2α−n dx dy =

∫

R+×R+
g(y)g(z)K2(y, z)dy dz,

(3.8)

where, denoting integration over Sn−1 with respect to surface measure by

du and dv,

K2(y, z) =
1

4
y

n
2−1z

n
2−1

∫

Sn−1×Sn−1
|y1/2u− z1/2v|2α−n dudv. (3.9)

Apart from a constant multiple, the kernelsK1 andK2 are identical when

β = n
2 . One proof makes use of the identities

∫

Sn−1
|e1 − ru|

2α−n du = c F(
n

2
−α, 1−α;

n

2
; r 2)

= c

∫ 1

0
tβ−α−1(1− t)α−1(1− tr 2)α−1 dt, 0 < r < 1, (3.10)
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where e1 = (1,0, ...,0) ∈ R
n and F denotes a hypergeometric function. To

prove that each of the two integrals equals the middle term, the reader may

consult, for example, Chapter 9 of [Le 1965], especially (9.6.16) (quadratic

transformation of hypergeometric functions) and (9.12) (symmetry of hy-

pergeometric functions in their first two parameters.)

By (3.6) and (3.8), when β = n
2 , we have

∫∞

0
G2(x)x

n
2−α−1 dx = c

∫

Rn×Rn
f(x)f(y)|x −y|2α−n dx dy. (3.11)

The conclusion of Conjecture 3 now follows from (3.2), (3.11), and Lieb’s

sharp HLS inequality with p = 2n
n+2α .

The proofs of the sharp HLS inequality in [L 1983], [CL 1990], and [LL

1996] rely on the fact that the right hand side in (3.11) can be represented

as a fractional integral expression on Sn as well as on R
n. This introduces

a new set of symmmetries, which can be played off against the symmetries

of R
n, to show in the end that extremals on R

n must have the form

(a+b|x|2)−
2α+n

2 . Thus, an attempt to extend Proposition 4 to the case when

β is an arbitrary real number larger than α could lead to contemplation of

spheres of fractional dimension, and their possible symmetries.

Here is a summing up of the current state of our knowledge of Conjec-

ture 1:

Theorem 1 Conjecture 1 is true when k = 2 and q is an integer between 1

and n+ 1, inclusive, or when q = 2.

The first statement follows from Propositions 1 and 3;, the second is a

restatement of Proposition 2.

The only other situations we know of in which extremals or best con-

stants are known for theU and V operators occur in the limiting case q = p.
If p = q = 1 then Fubini’s theorem implies that ||Uαf ||L1(R+,xβ−α−1 dx) =

c||f ||L1(R+,xβ−1 dx) for all nonnegative f and β > 0. For p = q ∈ (1,∞)
and α > 0 there are inequalities of Hardy, Littlewood and Pólya [HLP 1934,

Theorem 329]:
∫∞

0
(Uαf)

p dx <
(

Γ

( 1

p

)

Γ(α)

Γ( 1
p +α)

)p
∫∞

0
(xf(x))p dx.

∫∞

0
x−αp(Vαf(x))

p dx <
(

Γ

(

1−
1

p

)

Γ(α)

Γ(1− 1
p +α)

)p
∫∞

0
fp dx.

The constants are best possible, but equality is not achieved unless f ≡
0. For α = 1, the second inequality becomes Hardy’s inequality:

∫∞

0
(x−1 V1(x))

p dx <
( p

p − 1

)p
∫∞

0
fp dx.
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These and a large number of kindred inequalities are catalogued in the

book [MPF].

4 Symmetrization for Lq, 0 < q < 1.

For 0 < q < 1, it is possible that the inequality in Conjecture 2 might

reverse:

Conjecture 4 For f : R
n
-→ R

+, ||Tk,nf ||q ≥ ||Tk,nf
#||q, 0 < q < 1.

Let E be a compact subset of R
n, and 1 ≤ k ≤ n − 1. For θ ∈ Gk,n,

denote by Lk(E|θ) the Lebesgue k-measure of the orthogonal projection of

E on θ. Recall that dθ denotes the invariant probability measure on Gk,n.
Mattila [M 1990], [M 1995] conjectured an isoperimetric property for the

mean value ofLk(E|θ):

Mattila’s Projection Conjecture

∫

Gk,n

Lk(E|θ)dθ ≥

∫

Gk,n

Lk(E#|θ)dθ, 1 ≤ k ≤ n− 1 (4.1)

Mattila proved (4.1) when k = n − 2. In [M 1995, p.132], Mattila writes

that for k = 1 (4.1) has been proved in unpublished work of M. Chlebík. For

other values of k the problem is open.

Let g = Tn−k,n(χE). Using (1.1), one can show that

∫

Gk,n

Lk(E|θ)dθ = Ck,n µn−k,n (g > 0) = Ck,n lim
q→0

∫

Mn−k,n

gq dµ.

Thus, if Conjecture 4 is true, then so is Mattila’s conjecture.

When E is convex, (4.1) is true for all k. See, for example, [G]. For k = n−1

and E convex, “Cauchy’s area formula" tells us that the integrals in (4.1)

are constant multiples of the n − 1 dimensional Hausdorff measures of

∂E and ∂(E#), respectively. Thus, (4.1) reduces in the convex case to the

classical isoperimetric inequality between volume and surface measure in

R
n. For other values of k the proof of (4.1) for convex E makes use of A.D.

Alexandrov’s theory of mixed volumes.

5 A proof of Blaschke’s identity

We restate the identity (2.4) to be proved, and relabel it (5.1).

∫

Mk,n

dπ

∫

πk+1
F(y0, ..., yk)dy0...dyk
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= c

∫

Rn(k+1)
detk−n(x0, ..., xk) F(x0, ..., xk)dx0...dxk. (5.1)

To prove (5.1), we will first prove a similar identity when the left hand

integration is over Gk,n : For F : R
k → R

+ holds

∫

Gk,n

dθ

∫

θk
F(y1, ..., yk)dy1...dyk

= c

∫

Rnk
detk−n(0, x1..., xk) F(x1, ..., xk)dx1...dxk. (5.2)

The first step in the proof of (5.2) is to lift the integral over Gk,n to an

integral over R
n,k. For xi ∈ R

n, i = 1, ..., k, let θ(x1, ..., xk) denote the k-

dimensional subspace in R
n spanned by the xi. Then, for each k-tuple of

fi : R
+
-→ R

+ with
∫

Rn fi(|x|)dx < ∞ there is a constant c such that for

each g : Gk,n -→ R
+ holds

∫

Gk,n

g(θ)dθ = c

∫

Rn,k
g(θ(x1, ..., xk))

k
∏

j=1

fj(|xi|)dx1...dxk.

This is true because neither side changes when g is changed to g ◦ R
for R ∈ O(n). Hence, each side is an O(n)-invariant integral on Gk,n, and

such invariant integrals are unique up to multiplicative constant. [M 1995,

p.49].

In particular,

∫

Gk,n

g(θ)dθ = c

∫

Rk
g(θ(x1, ..., xk))e

−
∑k
j=1 |xj |

2

dx1...dxk. (5.3)

Given x1, ..., xk ∈ R
n, y1, ..., yk ∈ R

n, andw1, ...,wk ∈ R
k, let X, Y , and

W denote the matrices whose i’th row vectors arexi, yi andwi respectively.

Then X and Y are k×n, and W is k× k. Write also

|X|2 =

k
∑

j=1

|xj|
2, dX = dx1...dxk, det X = det(0, x1, ..., xk),

and use analogous notation for the yi and wi. Then (5.3) can be restated

as

∫

Gk,n

g(θ)dθ = c

∫

Rn,k
e−|X|

2

g(θ(X))dX. (5.4)
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By our definitions, det W is the k-volume of the simplex in R
k spanned

by w1, ...,wk and the origin. Using det(0, e1, ..., ek) = 1/k!, it follows that

our det W is 1/k! times the determinant of the matrix W. We can factor X
as X = SR∗, where S is a k × k symmetric matrix and R ∈ O(k,n). Then

it is easy to see that det X = det S = 1/k! times the determinant of the

matrix S. Of course, the same considerations apply to Y . A good source for

the linear algebra we use here is [EG 1992, §3.2].

Consider now the mapping from R
k2
×R

n,k
-→ R

n,k defined by Y = WX.
Then

det Y = k! det W det X. (5.5)

For fixed X of rank k the map W -→ Y carries R
k2

1-1 onto θk(X). For

fixed nonsingular W, the map X -→ Y carries R
n,k 1-1 onto itself. By con-

siderations left to the reader, the volume distortion factors of these maps

are given by

dY = (k! det X)k dW, dY = (k! det W)n dX. (5.6)

Here now is the proof of (5.2). For brevity, we’ll omit the changing mul-

tiplicative constant that belongs in front of each factor. The first equal-

ity is from (5.4). The second, fourth, and sixth equalities are obtained by

the respective variable changes Y = WX with X fixed, X = W−1Z with W
fixed, and W = SV with Z = SR∗ fixed, where S is k × k symmetric and

R ∈ O(k,n).
∫

Gk,n

dθ

∫

θk
F(Y)dY =

∫

Rnk
e−|X|

2

dX

∫

θk(X)
F(Y)dY

=

∫

Rnk
e−|X|

2

dX

∫

Rk
2
F(WX) (detkX)dW

=

∫

Rk
2
dW

∫

Rnk
F(WX)e−|X|

2

(detkX)dX

=

∫

Rk
2
dW

∫

Rnk
F(Z) e−|W

−1Z|2(detk Z)(det−k−nW)dZ

=

∫

Rnk
F(Z) (detk Z)dZ

∫

Rk
2
e−|W

−1Z|2(det−k−nW)dW

=

∫

Rnk
F(Z)(detk Z)dZ

∫

Rk
2
e−|V

−1|2(det−k−n Z)(det−k−n V) (detk Z)dV

=

∫

Rnk
F(Z) (detk−n Z)dZ.

Proof of (5.1). We shall transform the right hand side of (5.1) into the left

hand side. The third equality comes from (5.2), and the last equality from

(1.1). In the fifth equality, for fixed θ, x0 = z0 +w is the orthogonal de-

composition of x0 into z0 ∈ θ, w ∈ θ⊥. Again, the multiplicative constants

in front of each term will be omitted.
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∫

Rn(k+1)
detk−n(x0, x1, ..., xk)F(x0, x1, ..., xk)dx0 dx1...dxk

=

∫

Rn
dx0

∫

Rnk
detk−n(0, x1 − x0, ..., xk − x0)F(x0, x1, ..., xk)dx1...dxk

=

∫

Rn
dx0

∫

Rnk
detk−n(0, z1, ..., zk)F(x0, x0 + z1, ..., x0 + zk)dz1...dzk

=

∫

Rn
dx0

∫

Gk,n

dθ

∫

θk
F(x0, x0 + z1, ..., x0 + zk)dz1...dzk

=

∫

Gk,n

dθ

∫

Rn
dx0

∫

θk
F(x0, x0 + z1, ..., x0 + zk)dz1...dzk

=

∫

Gk,n

dθ

∫

θ⊥
dw

∫

θ
dz0

∫

θk
F(z0+w,z0+w+z1, ..., z0+w+zk)dz1...dzk

=

∫

Gk,n

dθ

∫

θ⊥
dw

∫

θ
dz0

∫

θk
F(z0 +w,z1 +w, ..., zk +w)dz1...dzk

=

∫

Gk,n

dθ

∫

θ⊥
dw

∫

θk+1
F(z0 +w,z1 +w, ..., zk +w)dz0...dzk

=

∫

Gk,n

dθ

∫

θ⊥
dw

∫

(θ+w)k+1
F(y0, ..., yk)dy0...dyk

=

∫

Mk,n

dπ

∫

πk+1
F(y0, ..., yk)dy0...dyk.
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