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In this paper we consider that a group of decision makers rank a set of alterna-
tives by means of weak orders for making a collective decision. Since decision
makers could have very different opinions and it should be important to reach a
consensuated decision, we have introduced indices of contribution to consensus
for each decision maker for prioritizing them in order of their contributions to
consensus. These indices are defined by means of a consensus measure which as-
signs a number between 0 and 1 to each subset of decision makers. For putting
in practice this idea, we have introduced a class of consensus measures based
on distances on weak orders and we have analyzed some of their properties.
We have illustrated the weighted decision procedure with an example.
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1. Preliminaries

Consider a set of decision makers or voters V = {v1, . . . , vm} (m ≥ 3) who

show their preferences over a set of alternatives X = {x1, . . . , xn} (n ≥ 3).

With L(X) we denote the set of linear orders on X, and with W (X) the

set of weak orders on X. Given R ∈ W (X), the inverse of R is the weak

order R−1 defined by xi R−1 xj ⇔ xj R xi, for all xi, xj ∈ X.

A profile is a vector R = (R1, . . . , Rm) of weak or linear orders, where

Ri contains the preferences of the voter vi, with i = 1, . . . ,m. Given a pro-

file R = (R1, . . . , Rm), we denote R−1 = (R−1
1 , . . . , R−1

m ). If π is a permu-
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tation on {1, . . . ,m} and ∅ 6= I ⊆ V , we denote Rπ = (Rπ(1), . . . , Rπ(m))

and Iπ = {vπ−1(i) | vi ∈ I}, i.e., vj ∈ Iπ ⇔ vπ(j) ∈ I. Given a

permutation σ on {1, . . . , n}, we denote with Rσ = (Rσ
1 , . . . , Rσ

m) the

profile that results of recalling in R the alternatives according to σ, i.e.,

xi Rk xj ⇔ xσ(i) Rσ
k xσ(j) for all i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}.

The cardinal of I is denoted by |I|. With P(V ) we denote the power set

of V ( I ∈ P(V ) ⇔ I ⊆ V ). Moreover, P2(V ) = {I ∈ P(V ) | |I| ≥ 2}.

We now introduce a system for codifying linear and weak orders by

means of vectors which represent the relative position of each alternative

in the corresponding order. Similar procedures have been considered in the

generalization of scoring rules from linear orders to weak orders (see Smith,1

Black2 and Cook and Seiford,3 among others).

Given a profile (R1, . . . , Rm) ∈ L(X)m of linear orders, consider the

mapping oi : X −→ {1, . . . , n} which assigns the position of each alterna-

tive in Ri. Thus, the vector (oi(x1), . . . , oi(xn)) ∈ {1, . . . , n}n determines

the corresponding linear order.

There does not exist a unique system for codifying weak orders. We

propose one based on linearizing the weak order and to assign each al-

ternative the average of the positions of the alternatives within the same

equivalence class. As an example, consider 7 alternatives arranged in the

weak order: x2 ∼ x3 ∼ x5 ≻ x1 ≻ x4 ∼ x7 ≻ x6. Then, this weak order

is codified by the vector (4, 2, 2, 5.5, 2, 7, 5.5). Taking into account this

idea, given a profile of weak orders (R1, . . . , Rm) ∈ W (X)m, the mapping

oi : X −→ {1, 1.5, 2, 2.5, . . . , n − 0.5, n} assigns the relative position of

each alternative in Ri.

We now introduce a simple procedure for constructing a distance on

W (X) from a distance on R
n.

Definition 1.1. Given a distance d : R
n × R

n −→ [0,∞), the distance

on W (X) induced by d is the mapping d̄ : W (X) × W (X) −→ [0,∞)

defined by d̄(R1, R2) = d
(

(o1(x1), . . . , o1(xn)), (o2(x1), . . . , o2(xn))
)

, for all

R1, R2 ∈ W (X).

Example 1.1. Typical examples of distances in R
n are the following:

(1) The discrete distance d′,

d′
(

(a1, . . . , an), (b1, . . . , bn)
)

=

{

1, if (a1, . . . , an) 6= (b1, . . . , bn),

0, if (a1, . . . , an) = (b1, . . . , bn).
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(2) For every p ≥ 1, the Minkowski distance dp ,

dp

(

(a1, . . . , an), (b1, . . . , bn)
)

=

(

n
∑

i=1

|ai − bi|
p

)
1

p

.

For p = 1 and p = 2 we have the Manhattan and Euclidean distances,

respectively.

(3) The Chebyshev distance d∞,

d∞
(

(a1, . . . , an), (b1, . . . , bn)
)

= max
{

|a1 − b1|, . . . , |an − bn|
}

.

(4) The cosine distance dc ,

dc

(

(a1, . . . , an), (b1, . . . , bn)
)

= 1 −

n
∑

i=1

ai bi

√

√

√

√

n
∑

i=1

a2
i

√

√

√

√

n
∑

i=1

b2
i

.

Definition 1.2. A distance d : R
n × R

n −→ [0,∞) is neutral if for every

permutation σ on {1, . . . , n}, it holds

d
(

(aσ(1), . . . , aσ(n)), (bσ(1), . . . , bσ(n))
)

= d
(

(a1, . . . , an), (b1, . . . , bn)
)

,

for all (a1, . . . , an), (b1, . . . , bn) ∈ R
n.

Remark 1.1. The distances d′, dp, d∞ and dc are neutral for every p ≥ 1.

2. Consensus measures

Consensus measures have been analyzed by Bosch4 in the context of linear

orders. We now extend this concept to the framework of weak orders.

Definition 2.1. A consensus measure on W (X)m is a mapping

M : W (X)m × P2(V ) −→ [0, 1]

that satisfies the following conditions:

(1) Weak unanimity. For every R ∈ W (X)m, M(R, V ) = 1 if and only if

R1 = · · · = Rm.

(2) Anonymity. For all permutation π on {1, . . . ,m}, R ∈ W (X)m and

I ∈ P2(V ), M(Rπ, Iπ) = M(R, I).

(3) Neutrality. For all permutation σ on {1, . . . , n}, R ∈ W (X)m and

I ∈ P2(V ), M(Rσ, I) = M(R, I).
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We now introduce other properties that consensus measures can satisfy.

Definition 2.2. Let M : W (X)m ×P2(V ) −→ [0, 1] be a consensus mea-

sure.

(1) M satisfies strong unanimity if for all R ∈ W (X)m and I ∈ P2(V ),

M(R, I) = 1 if and only if Ri = Rj for all vi, vj ∈ I.

(2) M satisfies maximum dissension if for all R ∈ W (X)m and vi, vj ∈ V

such that i 6= j, M(R, {vi, vj}) = 0 if and only if Ri, Rj ∈ L(X) and

Rj = R−1
i .

(3) M is reciprocal if for all R ∈ W (X)m and I ∈ P2(V ), M(R−1, I) =

M(R, I).

Obviously, strong unanimity implies weak unanimity.

Definition 2.3. Given a distance d̄ : W (X) × W (X) −→ [0,∞), the

mapping Md̄ : W (X)m × P2(V ) −→ [0, 1] is defined by

Md̄(R, I) = 1 −

∑

vi,vj∈I
i<j

d̄(Ri, Rj)

(

|I|

2

)

· ∆n

,

where ∆n = max{d̄(Ri, Rj) | Ri, Rj ∈ W (X)}.

Proposition 2.1. For every distance d̄ : W (X) × W (X) −→ [0,∞), Md̄

satisfies strong unanimity and anonymity.

If Md̄ is neutral, then we say that Md̄ is the consensus measure asso-

ciated with d̄.

Proposition 2.2. If d : R
n × R

n −→ [0,∞) is a neutral distance, then

Md̄ is a consensus measure.

Corollary 2.1. If d̄ is the distance on W (X) induced by d′, dp, with

p ≥ 1, d∞ or dc, then Md̄ is a reciprocal consensus measure.

Proposition 2.3. If d̄ is the distance induced by dp, with p > 1, or dc,

then Md̄ satisfies the maximum dissension property.

Remark 2.1. If d̄ is the distance induced by d′, d∞ or d1, then Md̄

does not satisfy the maximum dissension property.
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3. Application to group decision making

Definition 3.1. Given a consensus measure M, c : W (X)m −→ [−1, 1]m

is defined by c(R) =
(

c1(R), . . . , cm(R)
)

with

ci(R) =

∑

I∈S(i)

(

M
(

R, I ∪ {vi}
)

−M(R, I)
)

|S(i)|
, i = 1, . . . ,m,

where S(i) = {I ∈ P2(V ) | vi /∈ I}.

Proposition 3.1. Let d̄ : W (X) × W (X) −→ [0,∞) be a distance. For

the consensus measure Md̄, it holds c1(R) + · · · + cm(R) = 0, for every

profile R ∈ W (X)m.

We can use the vector c(R) for prioritizing the decision makers in

order of their contribution to consensus, as suggested by Cook, Kress and

Seiford.5 In this way, we introduce a new index

c′i(R) = ci(R) − min{c1(R), . . . , cm(R)},

for every i ∈ {1, . . . ,m}. We now define a weight for each voter:

wi(R) =















c′i(R)

c′1(R) + · · · + c′m(R)
, if c′1(R) + · · · + c′m(R) 6= 0

1

m
, if c′1(R) + · · · + c′m(R) = 0,

for i = 1, . . . ,m. Notice that wi(R) ∈ [0, 1] for every i ∈ {1, . . . ,m}, and

w1(R) + · · · + wm(R) = 1.

Now, for each decision maker vi ∈ V we multiply the position of each al-

ternative oi(xj) by his/her weight wi(R) for assigning collective positions

to the alternatives:

O(xj) =

m
∑

i=1

wi(R) · oi(xj) , j = 1, . . . , n. (1)

Thus, we can order the alternatives through the weak order � on X defined

by xj � xk ⇔ O(xj) ≥ O(xk).

3.1. An illustrative example

In order to illustrate the above decision making procedure, we now consider

the set of voters V = {v1, v2, v3, v4, v5} that rank order the alternativas of

X = {x1, . . . , x7} by means of the following weak orders:
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R1

x2 x3 x5

x1

x4 x7

x6

R2

x5

x1 x3

x2

x4 x6 x7

R3

x3

x4

x1

x2 x5

x6 x7

R4

x1 x2

x5

x3

x4

x6 x7

R5

x1 x4

x7

x2

x3 x5 x6

Taking into account the consensus measure Md̄ for dp with p = 2,

d∞ and dc, we obtain the following coefficients:

c1(R) c2(R) c3(R) c4(R) c5(R)

d2 0.05938261 0.04309471 −0.01037855 0.06547564 −0.15757441
d∞ 0.08080808 0.02020202 −0.06060606 0.10101010 −0.14141414
dc 0.05114639 0.03468305 0.01296238 0.07872037 −0.17751219

These coefficients induce the following weights:

w1(R) w2(R) w3(R) w4(R) w5(R)

d2 0.27537088 0.25469759 0.18682711 0.28310441 0

d∞ 0.31428571 0.22857143 0.11428571 0.34285714 0
dc 0.25762578 0.23907680 0.21460449 0.28869292 0

We now weight the position of each alternative oi(xj) by the individual

weight wi(R). Then, taking into account the collective positions O(xj)

defined in (1), we have for each distance the following orders on X:

d2 x5 ≻ x3 ≻ x1 ≻ x2 ≻ x4 ≻ x7 ≻ x6

d∞ x5 ≻ x2 ≻ x1∼x3 ≻ x4 ≻ x7 ≻ x6

dc x3 ≻ x5 ≻ x1 ≻ x2 ≻ x4 ≻ x7 ≻ x6

Because of each distance has a different sensitiveness towards hetero-

geneity, the election of the distance can be crucial for determining the out-

come. This is the reason why the outcomes in the previous example have

been different.
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