SOME CONSENSUS MEASURES AND THEIR APPLICATIONS IN GROUP DECISION MAKING

José Luis GARCÍA-LAPRESTA
Dep. de Economía Aplicada, PRESAD Research Group, Universidad de Valladolid, Valladolid, 47011, Spain
E-mail: lapresta@eco.uva.es
www2.eco.uva.es/lapresta/
David PÉREZ-ROMÁN
Dep. de Organización de Empresas y Comercialización e Investigación de Mercados, PRESAD Research Group, Universidad de Valladolid,
Valladolid, 47005, Spain
E-mail: david@emp.uva.es

Abstract

In this paper we consider that a group of decision makers rank a set of alternatives by means of weak orders for making a collective decision. Since decision makers could have very different opinions and it should be important to reach a consensuated decision, we have introduced indices of contribution to consensus for each decision maker for prioritizing them in order of their contributions to consensus. These indices are defined by means of a consensus measure which assigns a number between 0 and 1 to each subset of decision makers. For putting in practice this idea, we have introduced a class of consensus measures based on distances on weak orders and we have analyzed some of their properties. We have illustrated the weighted decision procedure with an example.

Keywords: Consensus; Distances; Group decision making.

1. Preliminaries

Consider a set of decision makers or voters $V=\left\{v_{1}, \ldots, v_{m}\right\}(m \geq 3)$ who show their preferences over a set of alternatives $X=\left\{x_{1}, \ldots, x_{n}\right\} \quad(n \geq 3)$. With $L(X)$ we denote the set of linear orders on X, and with $W(X)$ the set of weak orders on X. Given $R \in W(X)$, the inverse of R is the weak order R^{-1} defined by $x_{i} R^{-1} x_{j} \Leftrightarrow x_{j} R x_{i}$, for all $x_{i}, x_{j} \in X$.

A profile is a vector $\boldsymbol{R}=\left(R_{1}, \ldots, R_{m}\right)$ of weak or linear orders, where R_{i} contains the preferences of the voter v_{i}, with $i=1, \ldots, m$. Given a profile $\boldsymbol{R}=\left(R_{1}, \ldots, R_{m}\right)$, we denote $\boldsymbol{R}^{-1}=\left(R_{1}^{-1}, \ldots, R_{m}^{-1}\right)$. If π is a permu-
tation on $\{1, \ldots, m\}$ and $\emptyset \neq I \subseteq V$, we denote $\boldsymbol{R}_{\pi}=\left(R_{\pi(1)}, \ldots, R_{\pi(m)}\right)$ and $I_{\pi}=\left\{v_{\pi^{-1}(i)} \mid v_{i} \in I\right\}$, i.e., $v_{j} \in I_{\pi} \Leftrightarrow v_{\pi(j)} \in I$. Given a permutation σ on $\{1, \ldots, n\}$, we denote with $\boldsymbol{R}^{\sigma}=\left(R_{1}^{\sigma}, \ldots, R_{m}^{\sigma}\right)$ the profile that results of recalling in \boldsymbol{R} the alternatives according to σ, i.e., $x_{i} R_{k} x_{j} \Leftrightarrow x_{\sigma(i)} R_{k}^{\sigma} x_{\sigma(j)}$ for all $i, j \in\{1, \ldots, n\}$ and $k \in\{1, \ldots, m\}$. The cardinal of I is denoted by $|I|$. With $\mathcal{P}(V)$ we denote the power set of $V(I \in \mathcal{P}(V) \Leftrightarrow I \subseteq V)$. Moreover, $\mathcal{P}_{2}(V)=\{I \in \mathcal{P}(V)| | I \mid \geq 2\}$.

We now introduce a system for codifying linear and weak orders by means of vectors which represent the relative position of each alternative in the corresponding order. Similar procedures have been considered in the generalization of scoring rules from linear orders to weak orders (see Smith, ${ }^{1}$ Black ${ }^{2}$ and Cook and Seiford, ${ }^{3}$ among others).

Given a profile $\left(R_{1}, \ldots, R_{m}\right) \in L(X)^{m}$ of linear orders, consider the mapping $o_{i}: X \longrightarrow\{1, \ldots, n\}$ which assigns the position of each alternative in R_{i}. Thus, the vector $\left(o_{i}\left(x_{1}\right), \ldots, o_{i}\left(x_{n}\right)\right) \in\{1, \ldots, n\}^{n}$ determines the corresponding linear order.

There does not exist a unique system for codifying weak orders. We propose one based on linearizing the weak order and to assign each alternative the average of the positions of the alternatives within the same equivalence class. As an example, consider 7 alternatives arranged in the weak order: $x_{2} \sim x_{3} \sim x_{5} \succ x_{1} \succ x_{4} \sim x_{7} \succ x_{6}$. Then, this weak order is codified by the vector $(4,2,2,5.5,2,7,5.5)$. Taking into account this idea, given a profile of weak orders $\left(R_{1}, \ldots, R_{m}\right) \in W(X)^{m}$, the mapping $o_{i}: X \longrightarrow\{1,1.5,2,2.5, \ldots, n-0.5, n\}$ assigns the relative position of each alternative in R_{i}.

We now introduce a simple procedure for constructing a distance on $W(X)$ from a distance on \mathbb{R}^{n}.

Definition 1.1. Given a distance $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow[0, \infty)$, the distance on $W(X)$ induced by d is the mapping $\bar{d}: W(X) \times W(X) \longrightarrow[0, \infty)$ defined by $\bar{d}\left(R_{1}, R_{2}\right)=d\left(\left(o_{1}\left(x_{1}\right), \ldots, o_{1}\left(x_{n}\right)\right),\left(o_{2}\left(x_{1}\right), \ldots, o_{2}\left(x_{n}\right)\right)\right)$, for all $R_{1}, R_{2} \in W(X)$.

Example 1.1. Typical examples of distances in \mathbb{R}^{n} are the following:
(1) The discrete distance d^{\prime},

$$
d^{\prime}\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right)=\left\{\begin{array}{l}
1, \text { if }\left(a_{1}, \ldots, a_{n}\right) \neq\left(b_{1}, \ldots, b_{n}\right) \\
0, \text { if }\left(a_{1}, \ldots, a_{n}\right)=\left(b_{1}, \ldots, b_{n}\right)
\end{array}\right.
$$

(2) For every $p \geq 1$, the Minkowski distance d_{p},

$$
d_{p}\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right)=\left(\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

For $p=1$ and $p=2$ we have the Manhattan and Euclidean distances, respectively.
(3) The Chebyshev distance d_{∞},

$$
d_{\infty}\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right)=\max \left\{\left|a_{1}-b_{1}\right|, \ldots,\left|a_{n}-b_{n}\right|\right\} .
$$

(4) The cosine distance d_{c},

$$
d_{c}\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right)=1-\frac{\sum_{i=1}^{n} a_{i} b_{i}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}}
$$

Definition 1.2. A distance $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow[0, \infty)$ is neutral if for every permutation σ on $\{1, \ldots, n\}$, it holds

$$
d\left(\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right),\left(b_{\sigma(1)}, \ldots, b_{\sigma(n)}\right)\right)=d\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right)
$$

for all $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$.
Remark 1.1. The distances $d^{\prime}, d_{p}, d_{\infty}$ and d_{c} are neutral for every $p \geq 1$.

2. Consensus measures

Consensus measures have been analyzed by Bosch ${ }^{4}$ in the context of linear orders. We now extend this concept to the framework of weak orders.

Definition 2.1. A consensus measure on $W(X)^{m}$ is a mapping

$$
\mathcal{M}: W(X)^{m} \times \mathcal{P}_{2}(V) \longrightarrow[0,1]
$$

that satisfies the following conditions:
(1) Weak unanimity. For every $\boldsymbol{R} \in W(X)^{m}, \mathcal{M}(\boldsymbol{R}, V)=1$ if and only if $R_{1}=\cdots=R_{m}$.
(2) Anonymity. For all permutation π on $\{1, \ldots, m\}, \boldsymbol{R} \in W(X)^{m}$ and $I \in \mathcal{P}_{2}(V), \mathcal{M}\left(\boldsymbol{R}_{\pi}, I_{\pi}\right)=\mathcal{M}(\boldsymbol{R}, I)$.
(3) Neutrality. For all permutation σ on $\{1, \ldots, n\}, \boldsymbol{R} \in W(X)^{m}$ and $I \in \mathcal{P}_{2}(V), \mathcal{M}\left(\boldsymbol{R}^{\sigma}, I\right)=\mathcal{M}(\boldsymbol{R}, I)$.

We now introduce other properties that consensus measures can satisfy.
Definition 2.2. Let $\mathcal{M}: W(X)^{m} \times \mathcal{P}_{2}(V) \longrightarrow[0,1]$ be a consensus measure.
(1) \mathcal{M} satisfies strong unanimity if for all $\boldsymbol{R} \in W(X)^{m}$ and $I \in \mathcal{P}_{2}(V)$, $\mathcal{M}(\boldsymbol{R}, I)=1$ if and only if $R_{i}=R_{j}$ for all $v_{i}, v_{j} \in I$.
(2) \mathcal{M} satisfies maximum dissension if for all $\boldsymbol{R} \in W(X)^{m}$ and $v_{i}, v_{j} \in V$ such that $i \neq j, \mathcal{M}\left(\boldsymbol{R},\left\{v_{i}, v_{j}\right\}\right)=0$ if and only if $R_{i}, R_{j} \in L(X)$ and $R_{j}=R_{i}^{-1}$.
(3) \mathcal{M} is reciprocal if for all $\boldsymbol{R} \in W(X)^{m}$ and $I \in \mathcal{P}_{2}(V), \mathcal{M}\left(\boldsymbol{R}^{-1}, I\right)=$ $\mathcal{M}(\boldsymbol{R}, I)$.

Obviously, strong unanimity implies weak unanimity.
Definition 2.3. Given a distance $\bar{d}: W(X) \times W(X) \longrightarrow[0, \infty)$, the mapping $\mathcal{M}_{\bar{d}}: W(X)^{m} \times \mathcal{P}_{2}(V) \longrightarrow[0,1]$ is defined by

$$
-\frac{\sum_{\substack{v_{i}, v_{j} \in I \\ i<j}} \bar{d}\left(R_{i}, R_{j}\right)}{\binom{|I|}{2} \cdot \Delta_{n}},
$$

where $\Delta_{n}=\max \left\{\bar{d}\left(R_{i}, R_{j}\right) \mid R_{i}, R_{j} \in W(X)\right\}$.
Proposition 2.1. For every distance $\bar{d}: W(X) \times W(X) \longrightarrow[0, \infty), \mathcal{M}_{\bar{d}}$ satisfies strong unanimity and anonymity.

If $\mathcal{M}_{\bar{d}}$ is neutral, then we say that $\mathcal{M}_{\bar{d}}$ is the consensus measure associated with \bar{d}.

Proposition 2.2. If $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow[0, \infty)$ is a neutral distance, then $\mathcal{M}_{\bar{d}}$ is a consensus measure.

Corollary 2.1. If \bar{d} is the distance on $W(X)$ induced by d^{\prime}, d_{p}, with $p \geq 1, d_{\infty}$ or d_{c}, then $\mathcal{M}_{\bar{d}}$ is a reciprocal consensus measure.

Proposition 2.3. If \bar{d} is the distance induced by d_{p}, with $p>1$, or d_{c}, then $\mathcal{M}_{\bar{d}}$ satisfies the maximum dissension property.

Remark 2.1. If \bar{d} is the distance induced by d^{\prime}, d_{∞} or d_{1}, then $\mathcal{M}_{\bar{d}}$ does not satisfy the maximum dissension property.

3. Application to group decision making

Definition 3.1. Given a consensus measure $\mathcal{M}, \boldsymbol{c}: W(X)^{m} \longrightarrow[-1,1]^{m}$ is defined by $\boldsymbol{c}(\boldsymbol{R})=\left(c_{1}(\boldsymbol{R}), \ldots, c_{m}(\boldsymbol{R})\right)$ with

$$
c_{i}(\boldsymbol{R})=\frac{\sum_{I \in S(i)}\left(\mathcal{M}\left(\boldsymbol{R}, I \cup\left\{v_{i}\right\}\right)-\mathcal{M}(\boldsymbol{R}, I)\right)}{|S(i)|}, \quad i=1, \ldots, m
$$

where $S(i)=\left\{I \in \mathcal{P}_{2}(V) \mid v_{i} \notin I\right\}$.
Proposition 3.1. Let $\bar{d}: W(X) \times W(X) \longrightarrow[0, \infty)$ be a distance. For the consensus measure $\mathcal{M}_{\bar{d}}$, it holds $c_{1}(\boldsymbol{R})+\cdots+c_{m}(\boldsymbol{R})=0$, for every profile $\boldsymbol{R} \in W(X)^{m}$.

We can use the vector $\boldsymbol{c}(\boldsymbol{R})$ for prioritizing the decision makers in order of their contribution to consensus, as suggested by Cook, Kress and Seiford. ${ }^{5}$ In this way, we introduce a new index

$$
c_{i}^{\prime}(\boldsymbol{R})=c_{i}(\boldsymbol{R})-\min \left\{c_{1}(\boldsymbol{R}), \ldots, c_{m}(\boldsymbol{R})\right\}
$$

for every $i \in\{1, \ldots, m\}$. We now define a weight for each voter:

$$
w_{i}(\boldsymbol{R})= \begin{cases}\frac{c_{i}^{\prime}(\boldsymbol{R})}{c_{1}^{\prime}(\boldsymbol{R})+\cdots+c_{m}^{\prime}(\boldsymbol{R})}, & \text { if } c_{1}^{\prime}(\boldsymbol{R})+\cdots+c_{m}^{\prime}(\boldsymbol{R}) \neq 0 \\ \frac{1}{m}, & \text { if } c_{1}^{\prime}(\boldsymbol{R})+\cdots+c_{m}^{\prime}(\boldsymbol{R})=0\end{cases}
$$

for $i=1, \ldots, m$. Notice that $w_{i}(\boldsymbol{R}) \in[0,1]$ for every $i \in\{1, \ldots, m\}$, and $w_{1}(\boldsymbol{R})+\cdots+w_{m}(\boldsymbol{R})=1$.

Now, for each decision maker $v_{i} \in V$ we multiply the position of each alternative $o_{i}\left(x_{j}\right)$ by his/her weight $w_{i}(\boldsymbol{R})$ for assigning collective positions to the alternatives:

$$
\begin{equation*}
O\left(x_{j}\right)=\sum_{i=1}^{m} w_{i}(\boldsymbol{R}) \cdot o_{i}\left(x_{j}\right), \quad j=1, \ldots, n \tag{1}
\end{equation*}
$$

Thus, we can order the alternatives through the weak order \succeq on X defined by $x_{j} \succeq x_{k} \Leftrightarrow O\left(x_{j}\right) \geq O\left(x_{k}\right)$.

3.1. An illustrative example

In order to illustrate the above decision making procedure, we now consider the set of voters $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ that rank order the alternativas of $X=\left\{x_{1}, \ldots, x_{7}\right\}$ by means of the following weak orders:

6

R_{1}		R_{2}		R_{3}		R_{4}		R_{5}	
$x_{2} x^{\prime}$	x_{5}		5			x_{1}	x_{2}	x_{1}	x_{4}
x_{1}		x_{1}	x_{3}	x_{4}		x_{5}		x_{7}	
x_{4}	x_{7}	x_{2}		x_{1}		x_{3}		x_{2}	
x_{6}			$x_{6} x_{7}$	x_{2}	x_{5}	x_{4}		$x_{3} x_{5} x_{6}$	
		x_{6}		x_{7}	x_{6}	x_{7}			

Taking into account the consensus measure $\mathcal{M}_{\bar{d}}$ for d_{p} with $p=2$, d_{∞} and d_{c}, we obtain the following coefficients:

	$c_{1}(\boldsymbol{R})$	$c_{2}(\boldsymbol{R})$	$c_{3}(\boldsymbol{R})$	$c_{4}(\boldsymbol{R})$	$c_{5}(\boldsymbol{R})$
d_{2}	0.05938261	0.04309471	-0.01037855	0.06547564	-0.15757441
d_{∞}	0.08080808	0.02020202	-0.06060606	0.10101010	-0.14141414
d_{c}	0.05114639	0.03468305	0.01296238	0.07872037	-0.17751219

These coefficients induce the following weights:

	$w_{1}(\boldsymbol{R})$	$w_{2}(\boldsymbol{R})$	$w_{3}(\boldsymbol{R})$	$w_{4}(\boldsymbol{R})$	$w_{5}(\boldsymbol{R})$
d_{2}	0.27537088	0.25469759	0.18682711	0.28310441	0
d_{∞}	0.31428571	0.22857143	0.11428571	0.34285714	0
d_{c}	0.25762578	0.23907680	0.21460449	0.28869292	0

We now weight the position of each alternative $o_{i}\left(x_{j}\right)$ by the individual weight $w_{i}(\boldsymbol{R})$. Then, taking into account the collective positions $O\left(x_{j}\right)$ defined in (1), we have for each distance the following orders on X :

$$
\begin{array}{ll}
d_{2} & x_{5} \succ x_{3} \succ x_{1} \succ x_{2} \succ x_{4} \succ x_{7} \succ x_{6} \\
d_{\infty} & x_{5} \succ x_{2} \succ x_{1} \sim x_{3} \succ x_{4} \succ x_{7} \succ x_{6} \\
d_{c} & x_{3} \succ x_{5} \succ x_{1} \succ x_{2} \succ x_{4} \succ x_{7} \succ x_{6}
\end{array}
$$

Because of each distance has a different sensitiveness towards heterogeneity, the election of the distance can be crucial for determining the outcome. This is the reason why the outcomes in the previous example have been different.

References

1. J. Smith, Econometrica 41, pp. 1027-1041 (1973).
2. D. Black, Public Choice 28, pp. 1-15 (1976).
3. W. D. Cook and L. M. Seiford, Management Science 28, pp. 621-637 (1982).
4. R. Bosch, Ph. D. Dissertation, Tilburg University (2005).
5. W. D. Cook, M. Kress and L. M. Seiford, European Journal of Operational Research 96, pp. 392-397 (1996).
