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The finite coherence time of the driving field plays an important role in the rates of en-
ergy exchange taking place in nonlinear processes. As a typical example, the problems
of the quantum parametric amplifier and frequency converter driven by a fluctuating
pump are considered. A closed hierarchy of equations for the moments of the fields is
given, which in turn is used for evaluating the average number of photons per mode and
the relative variance as functions of time. Significant deviations from the case where
the pump field is coherent are found.

The exchange of power between three optical fields in an asymmetric crystal' when the “pump” is a
random field may deviate significantly from the case in which the coherence time of the driving field
is infinite. This occurs, in particular, in the cases of parametric amplification and frequency conver-
sion. These phenomena, which form the basis for a new class of optical devices, have been investigat-
ed extensively by assuming as driving pump a well-prescribed harmonic function of time.*® Despite
its experimental relevance, no attention has been paid to the fact that the complex amplitude of the la-
ser field, used as a pump, is a centered stochastic process with a finite coherence time which can be
considerably shorter than the relevant interaction time. The aim of this Letter is to show that the
rate of energy exchange as well as the fluctuations of the two processes mentioned above depend strong-
ly on the coherence time of the pump.

The starting point of our analysis is an equation of motion for the P representation, which has been
recently derived.**> Whenever the Hamiltonian of N interacting modes is a polynomial in the creation
and annihilation operators whose generic terms are of the form

N
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For the parametric amplifier and frequency converter,*® these operators are given in the interaction
representation, respectively, by
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where k(t) is the coupling coefficient induced by the pump between the modes 1 and 2. We assume that
k(t) is a centered stationary stochastic process inducing a small change of the P function during its
correlation time. In view of this, the Born approximation for the evolution of the I_D[averaged with re-

spect to the k(¢) realizations®] applies to Eq. (1) which for times f longer than the k() correlation time
is superceded by

dP(0,*, a,%, 0,0, 8) /0t = —K (AN = sHP(a,*, a,*, a,,a,;t —s)ds. (4)
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From Eq. (4) it follows that the moments
(m,n;ty= [dPa d?a, "0, * 0, "0, P(a,*, a,*, a,, ay;t) (5)
obey the relation
dlm ,n;t)/dt = - fotdsfdzozldzot2 Pla*,a*, a,, 0, t XA - SIAE) Ta

where (A(t - s)A(t))" defines an operator which is obtained from (A(f —s)A(¢)) by the substitution 8/
- - 9/8a;. Because of the structure of our Hamiltonians, Eq. (6) defines a closed hierarchy of integro-
differential equations,

d{m ,n;ty/dt = fotdsg(s)[mznz(m -1,n-1;t —=s)+m?@2n+1)Xm - 1,n;t =) +n*(2m + 1Xm,n-1;t - s)

lmal*ma2na2*n’ (6)

+m¥m —-1,n+1;t —=s)+n¥m +1,n=1;t =s)+ Cmn+m +n)m,n;t —=s)], (7a)
for the parametric amplification, and
d(m ,n;t)/dt = f()tdsg(s)[m"’(m -l,n+l;t=s)+n¥m+1,n=1;t - s) = Cmn+m +n)¥m,n;t —s)] (7b)

for the frequency conversion, g(s) standing for 2{k(¢)e*( —s)). This system of equations can be solved
by applying the Laplace-transform technique whenever the spectral profile of the pump is known. In
the following we shall consider a Lorentzian laser profile [g(s) =2k e” ¥s]. and we shall give the ex-
pression for the first two moments. We note that in practical situations we can have n=k,/y <1 (i.e.,
a small fractional change during a “coherence interval” y™'). To the lowest significant order in n we
have for the parametric amplifier (assuming (n,, = 0)

(n, () =2(n,p +1) exp(4nk) + z{n,o) - z, (8a)

2@ = £(2(n,02 = 5(n,) + 5) + 2((n,2) — 3) exp(dnkyt) + % (1,03 + 5(n, ) +2) exp(12nk ), (8b)
and for the frequency converter (assuming (nm) =0)

(n,(t)) = 2(nyp)[1 — exp(dnkyt)], (9a)

(2#) = 3 (20,2 = (ny0)) = 3(ny02) exp(— 4nkt) + 3 (162 +(n,0)) exp(~

having introduced {n(t)) ={a Ta) and (#*(t)) = {aTaaa).
Equations (8) and (9) can be compared with the

12nk¢), (9b)

| curring in Egs. (8) and (9) can be approximated

corresponding ones for the coherent pump (7
>1),2 which for (n(¢)) read

(n,(t)) ={n,y cosh®k} + sinh®k} (10a)

and
(n, () ={nyy sink (10p)

A general consequence of the pump randomness
is a reduction of the growth rate by a factor n<«1
so that all the processes are significantly slowed
down. For what concerns the frequency convert-
er, it is interesting to note that only one half of
the power in the signal can be converted asymp-
totically into the idler, in accordance with the
statistical equipartition principle. In the “coher-
ent-pump” case complete power exchange be-
tween the idler and signal fields occurs periodi-
cally.

With the use of Egs. (8) and (9) the normalized
variance v = ((#? - (n)?)/{n)? can be calculated.
Since time intervals of physical interest often
satisfy the condition nk¢ <1, the exponential oc-
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by linear functions of time, thus giving for the
frequency converter (in the limit {n,, >1)

ma?) = (m | (npg®) an
#20)° <"20

Equation (11) shows that v changes from 0 to 1 if
the signal is initially coherent ({n,,2) =(n,y) +{n,)?)
or from 1 to 3 if the signal is initially Gaussian
(1562 = (1p0) + 2(n,)%). In the same limit ((n,p) > 1)
the v for the parametric amplifier can be shown
not to change appreciably during the time inter-
val of interest.

We thank Professor R. J. Glauber for an en-
lightening discussion.
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The thermal-lens effect is used to study the dynamics of heat diffusion in transparent
media. Values of the thermal diffusivity and thermal conductivity are obtained for sev-

eral liquids.

A beam of light passing through a transparent
medium modifies its index of refraction. Four
different mechanisms are mainly responsible for
this: (a) the Kerr effect, related to molecular
reorientation; (b) electrostriction; (c) the elec-
trocaloric effect, which is a thermodynamical
consequence of the existence of a nonvanishing
de/dT term; and (d) nonradiative absorption,
which creates heating all along the path of the
light beam in absorbing dielectrics.

The relative importance of these mechanisms
depends on both the nature of the dielectric and
the time scale considered. For instance, at times
of the order of 107 sec or less, only the Kerr
effect, which does not involve density modifica-
tion, needs be considered. On the other hand for
a dielectric having an absorption coefficient a of
the order of 107 to 10™® cm ™! and for times
z 107! sec, the nonradiative absorption gives an
effect 10 to 10® times greater than the three
other mechanisms. We conclude that for the

times considered in the following experiments,
which are typically from 1 to 20 sec, only this
last mechanism needs to be considered.

As shown by Gordon et al., the nonradiative
absorption gives rise to the so-called thermal-
lens effect. Indeed the laser beam yields local-
ized heating along its path and a consequent
transverse gradient of the index of refraction n,
which is usually minimum at the center of the
beam, thus creating a diverging lens in the di-
electric. Leite, Morre, and Whinnery? have used
this effect for the measurements of very low ab-
sorbancies. We try to use it to study the dynam-
ics of heat diffusion in transparent media and
eventually measure their absorbancies.

Theoretical background and experimental setup.
—As shown in Ref. 1, when an infinite medium
is illuminated at time #=0 along the z axis with
a light beam of Gaussian intensity P=P,(2/7w,?)
X exp(- 272/w,?), in the limit of small absorben-
cies and local heating, the temperature distribu-
tion is given in terms of exponential integrals by

_aP, -<__2ﬁ>_ (=27 \]g-ee
0702, 0= x| B\ - 07 )~ Bil - 5zaenr ) ¢ 7

where a is the absorption coefficient, A the thermal conductivity, and D=ApC, the coefficient of ther-
mal diffusion, with C, the specific heat and p the density.
This temperature distribution gives a corresponding distribution of refractive index,

dan_ aP, dn

on(r,z,t) = aT

4\ dT X

where ¢, = w,?/8D is a characteristic time.

5T(r, 2, 1) = 20 92 [Ei(-iﬁ,,)- Ei(‘W(ztriZT)]e sae

As stressed in Ref. 1, this model has the weakness that 67—« when ¢ ~«. This is because the heat
dissipation on the cell boundaries has not been taken into account. However we may expect that the
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