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We shall use the model of authentication theory as described by Simmons in [Sl], [S2] ,  and 
[S31. In this model. there are three participants: a transmitter, a receiver, and an opponent. The 
transmitter wants to communicate some information to the receiver, whereas the opponent wants to 
deceive the receiver. The opponent can either impersonate the receiver, making him accept a 
fradulent message as authentic; or, modify a message which has been sent by the transmitter. 

More formally, we have a set of source states S, a set of messages M, and a set of encoding 
rules E. Axource srate s E S is the information that the transmitter wishes to communicate to the 
receiver. The transmitter and reciever will have secretly chosen an encoding rule e E E beforehand. 
An encoding rule e will be used to determine the message e(s) to be sent to communicate any source 
state s. It is possible that more than message can be used to determine a particular source state (this 
is called splifn'ng). However, in order for the receiver to be able to uniquely determine the source 
state from the message sent, there can be at most one source state which is encoded by any given 
message m E M. 

We assume that the opponent will play either impersonation or substitution. When the 
opponent plays impersonation, he sends a message to the receiver, attempting to have the receiver 
accept the message as authentic. When the opponent plays substitution, he waits until a message m 
has been sent, and then replaces m with another message m' so that the receiver is misled as to the 
state of the source. 

There will be a probability dismbution on the set of source states S .  Given the probability 
distribution on S, the reciever and mnsmitter will determine a probability distribution on E, called 
an encoding strategy. If splitting occurs, then they will also determine a splitting strategy to 
determine m E M, given s E S and e E E. The transmitter / receiver will choose the encoding and 
splitting strategies to minimize the chance that the opponent can deceive them. 

This defines two possible games, which we refer to as the impersonation game and the 
substitution game. Each game has a value, which is the possibility that the opponent can decieve 
the transmitter / receiver, given that they are using the optimal encoding and splitting strategies. WZ 
denote the values of these games by vI (for impersonation) and vs (for substitution). 

Many of the bounds on the values of the games vI and vs depend on entropies of the various 
probability distributions. For a probability distribution on a set X, we define the entropy of x, 
H(X), as follows: 
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H(X) = - c x E x p(x).log P W .  

As well, the conditional entropy H(X I Y) is defined to be 

An authentication code is said to be Cartesian if any message uniquely determines the source 
state, independent of the particular encoding rule being used. In terms of entropy, this is expressed 
by the equation H(S I M) = 0. Note that in a Cartesian authentication code, there can be no secrecy. 

In this paper, we primarily consider authentication systems without splitting. We shall use the 
following notation. Denote the number of source states by k, and let S = ( si: 1 I i I k )  . Denote 
the number of messages by v, and let M = [ m,: 1 I j 5 v] .  Denote by b the number of encoding 
rules, and write any encoding rule e E E as e = (ei: 1 I i I k), where ei is the message used to 
communicate source state si, for 1 I i I k. Then, the authentication system can be represented by 
the b x k matrix A, where row e of A consists of the entries e,, ... , ek. Given an encoding rule 
e E E, we define M(e) = [ei: 1 I i I k ) ,  where e = (ei: 1 I i I k). Also, for any encoding rule e, 
define fe(m) = s if and only if e, = m (if message m does not occur in encoding rule e, then fe(m) is 
undefined). 

2. Bounds on the values of the impersonation and substitution games 

Theorem (Simmons [S2, Theorem 11) In an authentication system without splitting, vI 2 k / V. 

Theorem (Simmons [S2, Theorem 01) In any authentication system, vI t 2HmES)-H(E)- H(") = 

2H(M ' ES) + H(S) - Hm). In an authentication system without splitting, H(M I ES) = 0, SO VI 2 
2HW - H(M). 

Theorem (Simmons, Brickell [B 1, Theorem 31) vs 2 2- H(E ' W  = ZHW) - H(E) - H(S) + 

an authentication system without splitting, H(M I ES) = 0, so vs 2 2H@'l)- H(E)-H(S). 

' ES). In 

Given any encoding rule e', and given any m, m' E M(e'), define 

Then, let 6 = min{ 6(e', m, m'): m, m' E M(e'), m f m'l 

Theorem In an authentication system without splitting, vs 2 6.2- H(E ' 
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Given any message m, define rm = I(e E E: m E M(e)}l. 

Theorem In an authentication system without splitting, vs 2 6 / r, where r = max{r,,,: m E M).  

Given any encoding rule e', and given any m, m' E M(e'), define 

fie', mr m'> = c (e  E E: m m' E M(e)] p(e)'p(S = fe(m)) 1 p(e'>* 

Then, let y = m i n [ ~ e ' ,  m, m'): m, m' E M(e'), m # m']. 

Theorem In an authentication system without splitting, vs 2 y2H(-C')-H(E). 

Theorem In an authentication system without splitting, vs 2 (k - 1) / (v - 1). 

3. Constructions for authentication systems 

Our interest is in constructing authentication systems which meet one or more of these bounds 
with equality. We are interested in the existence of authentication codes with a specified number of 
source states, and specified upper bounds on the number of encoding rules, messages, vI, and vs. 
Therefore, we define an AC(k, v, b, a, p) to be an authentication code without splitting, having k 
source states, at most v messages, at most b encoding rules, and where vI S a and vs I p. Then, 
we defme 

&(k, a, p) = min( b: there exists an AC(k, v, b, a, p)}, 

and 

u(k, a, p) = min(v: there exists an AC(k, v, b, a, p)} 

That is, we are attempting to minimize the number of encoding rules (or messages) required in an 
authentication code for k source states, with upper bounds a and p on the impersonation and 
substitution games, respectively. 

First, observe that we have an easy lower bound on u(k, a, p). 

Theorem u ( k , a , p ) ? m a x ( k / a ,  1 + ( k -  I ) / p ] .  
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Next, we mention a lower bound on &(k, a, p) due to Brickell ([Bl, Theorem 41). 

Theorem &(k, a, p) 2 1 / (ap). 

This bound can be strengthened, using the quantity 6 defrned earlier. 

Theorem If an AC(k, v, b, a, p) exists, then b L 6 / (a.p). 

In the remainder of this paper, we shall be describing constructions for authentication codes, 
which will enable us to put upper bounds on E and 2). For our first construction, we require the 
following definition. A transversal design TD(k, h; n) is a mple (X, G, A), which satisfies the 
following properties: 

1) X is a set of k.n elements called points 
2) G is a partition of X into k subsets of n points, called groups 
3) A is a set of h.n2 subsets of X (called blocks) such that a group and a block contain 
at most one common point 
4) every pair of points from distinct groups occurs in exactly h blocks. 

We usually denote a TD(k, 1; n) by TD(k, n). It is well-known that a TD(k, n) is equivalent 
to k - 2 mutually orthogonal Latin squares of order n. 

Theorem (Brickell [B 1 ,  Theorems 5 and 61) Lf there is a transversal design TD(k, n) then there is a 

IMI = k.n, and IEl = n2, with no splitting. Conversely, the existence of such an authentication 
system implies the existence of a transversal design TD(k, n). Hence, if there exists a TD(k, n). 

2 then there is an AC(k, k.n, nz, 1 / n, 1 / n}, and we have the upper bounds c(k, 1 / n, 1 / n) 5 n 
and u(k, 1 / n, 1 In) 5 k.n. 

2- WE IM) = 1 / n, y - 2H(S) -H(M) = 1 / n, IS1 = k, Cartesian authentication system with vs = I -  

We can prove a generalization of this result, using transversal designs with h 2 1. 

Construction 1 If there is a transversal design TD(k, h; n) then there is a Cartesian authentication 
system with vs = 1.2- H(E I") = 1 / n, v I -  - 2H(S) - H@f) = 1 / n, IS1 = k, IMI = k a ,  and IEl = h.n2, 
with no splitting. Conversely, the existence of such an authentication system implies the existence 
of a transversal design TD(k, h; n). Hence, if there exists a TD(k, h; n), then there is an 
AC(k, k ,n ,  h.n2, 1 / n, 1 / n } ,  E(k, 1 / n, 1 / n) I h.n2, and u(k, 1 / n, 1 / n) I k a .  
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Suppose our desire is to consmct an authentication code AC(k, k.n, b, 1 / n, 1 / n). We can 
construct such a code if a TD(k, h; n) exists forb = h.n2. (Note that this satisfies the bound b 2 
6 / (wp) with equality, where a = p = 1 / n and 6 = 1.) Thus, given k and n, we are interested 
in the smallest h such that a TD(k, h; n) exists. First, we observe. that there is a simple numerical 
bound on k in terms of 1 and n. 

Theorem (Hanani [Hl]). If a TD(k, h; n) exists, then k 2 (ha2 - 1) / (n - 1). 

Consequently, if we use a TD(k, h; n), then we have a lower bound on b, namely 

b = h . n 2 2 k n - k +  1. 

We present an infinite example of transversal designs which meet this bound with equality. 

T h e o r e  m For all prime powers n 2 2 ,  and for any d 1 1, there is an 
A C ( k ,  k . n ,  n d ,  1 / n ,  1 / n )  , where k = (nd  - 1) / (n  - 1);  hence 
&((nd - 1) / (n - l),  1 / n ,  1 / n) I nd and v( (nd  - 1) / (n - 1), 1 / n, 1 / n) 2 k.n. 

Proof In  [Hl], Hanani shows that for any prime power n, and for any d 2 1, there is a 
TD((nd - 1) / (n - I), nd-*; n). 

Corollary For any a > 0, &(k, a, a ) is O(k / a2) and v(k, a, a ) is O(k / a). 

Proof: Let n = 23', where 2j 2 1 / a 2 2j-l. Then n is 0(1 / a). Now, choose d so that n d 2  
k(n - 1) + 1 > nd-' . Since k I (nd - 1) / (n - l), we have &(k, a ,  a ) I nd. But, nd 5 
k(n2 - n) + n = O(k.n2). Since n is 0(1 / a), therefore E(k, a, a ) is O(k / or2). Also, k.n is 
OOc / a). 

As another example of the use of transversal designs with h > 1, let's consider codes with 
parameters AC(k, v, b, 1 / 6, 1 / 6). For k = 4, we cannot construct such a code from a 
TD(4,6), since this TD does not exist (this is the famous 36 officers problem of Euler, i.e. a pair 
of orthogonal Latin squares of order 6). In [Bl], Brickell constructs an example of an 
AC(4, 30, 36, 1 / 6 ,  1 / 6 )  with splitting. However, we can employ a TD(7, 2, 6) ,  which is 
constructed in [Hl, p. 491, to obtain an AC(7, 42, 72, 1 / 6 ,  1 / 6). 

MOE generally, we have the following class of authentication codes with 7 source states. 

Theorem For all n 2 2, there is an AC(7,7.n, 2n2, 1 / n, 1 / n); hence ~ ( 7 ,  1 / n, 1 / n) I 2n2. 
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Proof For these n, there is a TD(7,2; n) (see [HI]). 

The authentication codes obtained from Consmction 1 are Cartesian. Hence, the opponent, 
on seeing a message being sent, knows the source state. Therefore, no secrecy is possible in such 
an authentication system. We also want to be able to construct good authentication codes with 
secrecy. Ideally, we would like to have H(S I M) = H(S); i.e. the message gives absolutely no clue 
as to the state of the source. If this happens, then we say that the authentication code is perfectly 
non-Cartesian. 

Our main construction for perfectly non-Cartesian authentication codes uses group-divisible 
A group-divisible design designs, which are a generalization of transversal designs. 

GD(k, h, n; v) is a mple (X, G ,  A), which satisfies the following four properties: 

1) 

2)  
3) 

4) 

X is a set of v elements calledpoints 
G is a partition of X into v / n subsets of n points, called groups 
A is a set of subsets of X (called blocks), each of size k, such that a group and a 
block contain at most one common point 
eveq pair of points from distinct groups occurs in exactly h blocks. 

Note that a TD(k, k n) is equivalent to a GD(k, h, n; k.n). Also, a (v, b, r, k, 1)-BIBD 

We have the following construction. 
(balanced incomplete block design) is equivalent to a GD(k, 1, 1; v). 

Construction 2 Suppose there exists a GD(k, h, n; v). Then there is a perfectly non-Cartesian 
AC(k, v, h.v.(v - n) / (k - l), k / v, (k - 1) / (v - n)). 

Proof: Let (X, G ,  A )  be a GD(k, h, n; v). By simple counting, each point occurs in r = 

h.(v - n) / (k - 1) blocks, and the total number of blocks is h.v.(v - n) / (k.(k - 1)). What we 
do is construct k encoding rules from every block of the group-divisible design: for each block A 
= (xl, ... , xk] of the group-divisible design, and for each i, 0 I i I k - 1, we define an 
encoding rule e(A, i) = (ej: 1 I j I k), where ej = xci + i) 

There are h.v.(v - n) / (k - 1) encoding rules in the resulting authentication code. We shall 
use each encoding rule with probability (k - 1) / (h.v.(v - n)). It is not difficult to verify that vI = 
k / v a n d v s =  (k -  l ) / ( v - n ) .  

Finally, the authentication code is perfectly non-Cartesian since p(s I m) = p(s) for every s E s 
and every m E M. 

k’ 

It is interesting to note that this code has H(M) = log v, H(E) = log(h.v.(v - n) / (k - I)), and 

vs = H(E), where y = h. 
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Corollary Suppose there exists a (v, b, r, k, h)-BIEiD. Then there is a perfectly non-Cartesian 
AC(k, V, k.b, k / V, (k - 1) / (V - 1)). 

Proof: This is the case where every p u p  of the group-divisible design has size 1. Note that here 
we have vs = (k - 1) / (v - 1). 

Corollary 
AC(k, n.k, h.k.n2, 1 / n, 1 / n). 

Suppose there is a TD(k, h; n). Then there is a perfectly non-Cartesian 

Consequently, &(k, a, a)  is O(k2 / a2) and v(k, u, a ) is O(k2 / a), even if we restrict 
ourselves to perfectly non-Cartesian codes. 

These two constructions for auth&tication codes both have two very nice properties which we 
have not yet emphasized. First, the encoding strategy in each case is uniform: each encoding rule 
is used with equal probability 1 / b. Second, this encoding strategy yields the stated game values 
for any source distribution. 

The final topic we consider is the construction of authentication codes for uniform source 
distributions (p(s) = 1 / k for any source state s). As before we consider only codes without 
splitting. The best we could hope for is to attain the bounds vi = k /  v and vs = (k - 1) / (v - 1). 
So, we shall study AC(k, v, b, k / v, (k - 1) / (v - 1)); such authentication codes will be called 
optimal. 

We have the following characterization of authentication codes which are optimal with respect 
to the uniform probability distribution on the source states. 

Lemma An authentication system is optimal with respect to the uniform probability distribution on 
the source states if and only if the following properties are satisfied: 

ii) for every m f m', c,, E: m, mj p(e) = (k2 - k) / (v2 - v). 

In many authentication codes, the optimal encoding strategy is to choose every encoding rule 
with probability 1 / b. If we assume that this encoding strategy is in fact optimal, then the 
properties above are of a purely combhatorial nature. We have the following 

Theorem An authentication system is optimal with respect to a uniform encoding strategy and a 
uniform probability distribution on the source states if and only the following properties are 
satisfied: 
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i) foreveryme M,I(eE E: m e  e]I=k.b/v. 

ii) foreverym#m',I[ee E: m,m'E e}l= b.(k2-k)/(v2-v). 

This says that the rows of E, considered as unordered sets, form a balanced incomplete block 
design with parameters (v, b, r, k, A), where r = k-b / v and h = b.(k2 - k) / (v2 - v). So, we can 
produce optimal authentication codes from BJBDs when the source states are equiprobable. 

Using known families of BIBDs, we can obtain many authentication codes for uniform source 
dismbutions. For example, using projective geometries, we have the following. 

Theorem For any prime power n, and any integer d 2 2, there is an optimal authentication code for 
the uniform source dismbution on n + 1 source states, for v = (nd+l - 1) / (n - 1) and h = 1. 
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