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The aim of this survey is to present some contribution of the study of two-party
communication protocols to other areas of computer science. Here, we concentrate
on the applications of communication complexity for the study of several funda-
mental computing models, for the comparison of the power of deterministic, and
probabilistic computations, and for the development of some kind of secure com-
munication protocols in the practice

1. INTRODUCTION

The communication complexity of two-party protocols has been introduced by Abel-
son [1] and Yao [13] in 1978-1979. The initial goal was to develop a method for
proving lower bounds on the complexity of distributed and parallel computations,
with a special emphasis on VLSI computations.

Informally, a two-party (communication) protocol consists of two computers
CI and CII computing a function1 f : X × Y → Z in the following way. At the
beginning CI obtains an input x ∈ X and CII obtains an input y ∈ Y . Then CI
and CII communicate according to the protocol by exchanging binary messages
until one of them knows the result f(x, y). The complexity of the computation on
input (x, y) is the sum of the lengths of messages exchanged. The complexity of
the protocol is the maximum of the complexities over all inputs from X × Y . The
communication complexity of f , cc(f), is the complexity of the best protocol
for f .

A protocol is one-way if, for every input, CI sends only one message to CII and
after that CII determines the result based on its input and the received message.
The one-way communication complexity of f , cc1(f), is the complexity of
the best one-way protocol for f .

In the 20 years of its existence communication complexity has brought much
more than one has expected at the beginning in the early eighties. Communication

1Usually f is considered to be a Boolean function, i.e., Z = {0, 1}
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complexity has established itself as a subarea of complexity theory due to the well
developed mathematical machinery to approximately determine the communication
complexity of concrete computing problems (see, for instance [2; 3; 4; 6; 7; 9]).

The main contributions of two-party communication complexity may be divided
into the following three main streams:

(1) The study of the relation between communication complexity and other com-
plexity measures of fundamental computing models. In this way communication
complexity becomes a very successful method for proving lower bounds in many
subareas of complexity theory.

(2) The comparison of the power of determinism, nondeterminism and random-
ness has been successful for communication complexity. This has essentially
contributed to the understanding of the nature of the fundamental modes of
computation.

(3) New concepts for communication protocols have been developed with significant
applications especially in cryptography.

The next three sections provide more details on the influence and the contributions
of communication complexity study to other areas of computer science.

2. CONTRIBUTIONS TO THE STUDY OF OTHER COMPUTING MODELS

Analogous to the applications of Kolmogorov complexity in the theory of sequential
computations, communication complexity has been developed as a method for the
study of the complexity of concrete computing tasks, especially (but not only) in
parallel information processing. Mainly, it has been applied to prove lower bounds
on required computer resources (i.e, time, hardware, memory size, etc.) in order
to compute a given task. For several computing models the method based on com-
munication complexity is the most successful one among the lower bound methods
used for these models.

The following, not exhaustive list shows fundamental complexity measures for
which communication complexity has been used to prove lower bounds:

—VLSI circuits
—trade-offs of area and time (also for three-dimensional circuits)
—area complexity
—area and other complexity measures of multilective VLSI circuits

—Boolean circuits
—depth of general Boolean circuits and monotone Boolean circuits
—combinational complexity of (multilective) planar Boolean circuits and circuits

with sublinear separators
—area complexity of Boolean circuits
—combinational complexity of unbounded fan-in circuits
—length of Boolean formulae

—Complexity trade-offs for interconnection networks with different topologies
—Size of finite automata
—Time and space complexity of Turing machines
—Size of linear programs
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—Size of distinct models of branching programs
—Depth of decision trees
—Data structure problems.

To illustrate the progress covered by the above list we mention two specific con-
tributions. The first superlinear lower bound on the size of planar Boolean circuits
computing a specific Boolean function and the first superpolylogarithmic lower
bounds on the depth of monotone Boolean circuits have been established.

The big success of communication complexity application should not to be sur-
prising because we have information transfer in all computing models (for instance,
between two parts of input data , between some parts (processors) of a parallel
computing model, between two time moments, etc.). So, you can cut hardware,
time, or both in your computing model, and then apply lower bounds on the com-
munication complexity of your computing problem. In this way you have a lower
bound on the information transfer that must be realized in the computing model
considered in order to compute the given task. The appropriate choice of the cut
is crucial for obtaining good lower bounds.

One of the perspectives is to extend the applications for proving lower bounds
for multilective and/or non-oblivious computing models. This is one of the hardest
tasks of special importance in complexity theory. The recent results show that
using Ramsey theory and communication complexity over overlapping (not disjoint)
partitions of inputs one has good chances to achieve progress in this hard topic too.

3. NONDETERMINISTIC AND RANDOMIZED COMPUTATIONS

One of the central principal questions of current theoretical computer science is
which computational power have nondeterministic and randomized computations,
especially in the comparison with the deterministic one. The fundamental questions
about polynomial time computations (like P versus NP, P versus ZPP, P versus
R) are long-stated open problems. For communication complexity the research
has been successful and the relation between determinism, nondeterminism and
randomness has been fixed. This has essentially contributed to the understanding
of the nature of randomness and nondeterminism. Some of the main results are the
following ones:

(1) There are exponential gaps between
—determinism and Monte Carlo randomness
—nondeterminism and bounded error probabilism.

(2) Deterministic communication can be bounded by at most twice the product
of nondeterministic communication of the language and its complement. This
implies an at most quadratic gap between determinism and Las Vegas random-
ization. A language having this quadratic gap has been found.

(3) There is a linear gap between determinism and Las Vegas randomness for one-
way communication complexity.

(4) O(log n) random bits are sufficient to reach the full power of randomized com-
munication for Las Vegas and Monte Carlo (error-bounded) protocols.

(5) In contrast to 4. there exist high thresholds on the amount of nondeterminism
(for some computing problems the deterministic communication complexity is
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almost the same as the nondeterministic one until one does not consider a large
number (for instance,

√
n) of nondeterministic guesses).

Because communication complexity is strongly related to other computing models
there are several consequences of the results above. To mention at least one of them
let us consider finite automata whose size is related to one-way communication
complexity. Applying (3) one obtains an at most quadratic gap (in the number of
states) between deterministic finite automata and Las Vegas ones. This is the first
proof of a polynomial relation between determinism and Las Vegas randomization
for a uniform computing model. One of the main research perspectives in this area
is to try to extend the obtained results and methods in order to understand the
possible difference between deterministic computation and randomized computation
for further computing models.

Completely another contribution is the fact that two-party communication pro-
tocols may be used to generate sequences of pseudo-random bits of high quality.

4. PRIVATE COMMUNICATION

A lot of effort has been done in order to achieve a secure communication2 between
two parties in cryptography. In communication complexity theory the following
question has been considered. For which functions f : X×Y → Z one can commu-
nicate in such a way, that after the communication the following situation appears:

(1) Both CI and CII know f(x, y) for the given input x of CI and y of CII .
(2) CI has no information about y, except for information one can learn knowing

only x and f(x, y).
(3) CII has no information about x, except for information one can learn knowing

only y and f(x, y).

This formulation of security has clearly a new dimension. To be protected against
adversaries is not sufficient, one wants protection against the counterpart in com-
munication too. It is really surprising how many practically interesting functions
may be evaluated in this way. For instance, a randomized private protocol for the
following task may be constructed.
CI knows a number x and CII knows a number y. After the communication

both CI and CII know whether x < y or not, but no additional information about
the input of the counterpart in communication. Popular variants of this problems
are for instance: two people want to find out who is older without disclosing any
other information about their ages or two millionaires want to find out who is richer
without disclosing any information about their wealth.

One can expect that we shall learn still a lot of surprising protocols in the study
of private communication.

5. CONCLUSION

There are several hundreds papers devoted to the study of communication protocols.
The previous chapters have presented some of the reasons why we believe that the
concept of communication protocols may be very fruitful for the theory and the

2protected against adversaries
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practice in computer science. More detailed information can be found especially in
two monographs [6; 4]. While [4] is mainly devoted to the topic of section 2, [6]
preferably deals with the topic of section 3. Further interesting partial overviews
can be found in [5; 8; 7; 10; 11; 12].
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