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Summary. — Let T(M) be the tangent bundle over a Finslerian manifold I of n-dimension en-
dowed with the Cartan conmection V. One makes T(M) into a 2n dimensional affinely con-
nected manifold by assigning a connection VO to T(M). The cross-section B of a vector field V
defined in M reveals in T(M) an n-dimensional submanifold and its geometry is developed
by means of the affine subspace theory and of the affine collineations in the base Fimsler
manifold.

Introduction.

K. Yaxo and OxuBo made an attempt to construct the geometry of Finslerian
manifold by regarding it to be that of its tangent bundle itself [7]. In the theory
of fibre bundles the notion of cross-section that provides the links between any object
defined in base space and its image «—* in its bundle space plays the important role
and this paper tries to discuss the geometrical properties of the cross-section of a
vector field defined in the base FINSLER manifold.

§ 1 is devoted to the introduction of the tangent bundle 7(M) over a Finsler
manifold M with the CARTAN connection V. Herein endowing T(M) with the vector
fields X7, X” and X° derived directly from the theory of connection and also by
assigning the connection V°, T(M) is made into an affinely connected manifold.
§ 2 deals with the infinitesimal affine collineations in FINSLER manifolds, which together
with § 1 serves the main discussion presented in § 3. Since the condition of complete
integrability of affine collineations defined in Finslerian manifold is in our know-
ledge hard to find in any extant texts on the theory of Lig derivatives, it would
not be less noteworthy to leave it in record (cf. (2.4)).

§ 3 discusses the geometry of the cross-section B in 7{M) with respect to an ar-
bitrary vector field V(#) defined in M along its differentiable curve ¢. % reveals itself
in T(M) a submanifold with the dimension same ag that of M and along which we
define the wvertical, horizontal and complete vector fields denoted respectively by
X", X7 and X°. Then we prove that X" lies in the plane normal to ¥ and X7 is

(*) This work was supported by the National Research Council of Canada, 1970-1971,
A-4037.

(**) Entrata in Redazione il giorno 8 maggro 1971.
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tangential to B if B is a horizontal submanifold of 7(M), while X° is so if 8 is hori-
zontal and the Lre derivative of X with respect to the vector field V(z) vanishes.
After establishing the subspace theory on 8 we present the condition for the curva-
ture vector field of B to be tangential to LB (cf. Theorem 9).

1. — Tangent bundle 7(M) over a Finslerian space.

Let M be an n-dimensional manifold of class ¢ and 7', be the tangent plane
at a point P of M. Then T{(M)= {J T,(M) is by definition the tangent bundle
Pear

over the base space M. A point P of T(M) is an ordered pair (P, y,) of a point P
of M and a vector y,eT (M). x is the projection of T(M) into M defined by
P->P. The set z~*(P) is the fibre over P. On supposing that M satisfies the second
axiom of countability we introduce in T'(M) the local coordinate system z* = (2, y’) (')
in gz {U; (2%)} where U is a local coordinate neighbourhood of P in M and y* denote
the components of vector y at p having the expression y = y‘c; with respect to the
natural frame 0;= o/0x’. Then, corresponding to the coordinate transformation
(@') — (&¥) at Pe{U@)} N {U'(@)}, (') obeys the law of transformation

(1.1) a* =o' (a”) (V)
such that
xi = o (7)), det. (0,27) %0,

(1.2) o =y = (%) y'= (,a) @ .

and its Jacobian maftrix is given by

0,2 0
(1.3) (0,a%) = [ ) ] .
Yo 0,0, 8"  0,a

We now take the direction #= dz/dt of any curve C:x=x(t) of class C", r=2,
as the fibre y of T(M) over P and suppose that there is in T(M) a differentiable
function L(x, #) which is positively homogeneous of degree one in the ’s. On put-
ting

Pz, ) = L2z, £)/2

() We adopt the following conventions for indices
A, B,C,D=12,..,n, 1,32, ..,7,

a, b, e, h, 1,7, k=12,..,n.



T. OxuBo - C. 8. HOUH: Some cross-section theorems, ete. 131

and denoting ©¢/02‘ by 0,, we obtain n® symmetric functions g,,(z, ) which are ho-
mogeneous degree zero in the #'s. If we assume that the quadratic form g(4, A)

defined for ¥ 4747=1 is positive definite, we call the base manifold M a Finslerian

space ([2], f?:]) Then T(M) is the tangent bundle over o Finslerian space M.

Since T(M) is a 2n-dimensional manifold, we can inftroduce two complementary
n-dimensional distributions ¥ and H at z—* P, called the vertical and horizontal sub-
spaces. V and H are respectively spanned by n independent base (8,) and

(1.4) 0;= 0, —I'o5,

where 1= I,y and I',’(w, #) are »* functions defined in »~{U; (#)} and undergo
the law of tranformation subject to (1.1):

T, == (0,07 ){0;: 0,20 + (8;,07)(0p ) ;) .

We say that if there are given such »® functions in T(M), the manifold is endowed
with a non-linear connection V and A. KaAwacucHI called §; the operator of basie
connection. 1t was E. CArTAN who provided M with V which is torsion-free and
keeps the metric g covariantly constant [7]

h
(1.5) I (@, @) = {3%} — g (0, + 170, — 120, ,
h
where {} is the CHRISTOFFEL symbol formed with g,; and C,; is defined by 0;g,,
J .

and satisfies
Cpy B == Oy B = Oy, 87 =0 .
Hence we have for (1.5)

(1.6) I adi == {} IE,
44
Also we have from (1.4)

(885 — 8,0 H(z, &) = — K., 2, f(a, %)
for any function f(z, £) defined in =1 U, where

Kl = 6,15, — 0,15+ I, =1, Iy,

ka ™ ji

and it is called the component of the curvature tesor of the CARTAN connection V.
Let X, 2) be any » functions that obey the law of transformation

(1.7) X¥ (o, &) = (Bu0") XM(a, &) .
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We define in 7'(3) the vertical, horizontal and complete vector fields denoted re-
spectively by X7, X7 and X° by [7]

0 X* X
X — Iy’ X! 96, X

with respect to the natural frame ©,==(¢,, 0;) in a(T).
Likewise, we define for » functions w;(z, ) satisfying

o (@', &')= (0, 2) w,{z, ),

their vertical, horizontal and complete vector fields by

of = (N 0}, o = {*I?iijm wi)? o’= (?/i (Sja)iy W),

Let P and @ be the two sets of n+* and » *+* functions having in 7~ U) respecti-
vely the expression

P=2Pp ;

. holg—r.e iy . 3 ) Eykymten by
fipyrody ’ Q Q’tft—x""x

and obeying the law of transformation

Py bt == (D) ... (D07) (8, @%5) ... (D @) Py 2o

Qs H = (B008) oo (D11) - (B, W) ov (B, @40) Q)21

subject to (1.1). Denoting by P x@Q the formal functional product of P and @, we
define the vertical, horizontal and complete tensor fields respectively by

(PxQ) =P R97,
(PxQ)=P'®Q"+ P" ®@Q"
(PxQ)’=P R+ P ®¢°.
By the use of the CARTAN connection V we introduce in 7(M) the affine connection

V° so that T(M) is now made into an affine manifold. V° is supposed to have in a—'U
the components of the form [6]

fin o h__ PR
Fa'i““ ii’F?fw gi a‘«'""‘o’

(1.9) I=yes r, [2=1"=1",t=0.

a’t 33?7 I3
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Let X(z, 2) and Y{=, £} be any vector flelds in T(M).

XV, ¥
(1.10) Vi Y¥’= [ } —

£ 0.(X7V;y7)

0 0
B [Km@X’ﬂ;éfx'iaa yn] h L?; VX 0,0,7" + & ag(r;aéy’»}]

where V;Y* is defined by

(1.11) V,Y=06,Y"+ 1} Y,
and as we have by (1.8),
XV, Y
(1-12) (Vx Y)G = ]
225, ( XV, Y")

we can state

THEOREM 1. — V°.cY° coincides with (V,Y)° if Y does not depend upon the i's.
The curvature tensor K° of V is by definition given by

KX, 7 =ViVeZ -V

o oe
X'y

where X, ¥ and Z are any vector fields in T(M), and for the variable range of indices
K’ is found to have in n-*(U) the components of the form given by

K t= Kt Lo — 10T,

kje

K~ h:___K_hz o

Tt ikt k" ogi?

R, 3 =i6 K +—#a K, o I+ &a K, "o T, +

kit e kji mo ki

+ @038, — P 3,0,

5" it (3l T

PR

(1.13) B = —KJ'E’?: K.+ iuaaaﬁrfi—mmaaa?r)fiw Iie. Iz,
Kkiiﬁ: KM+ anarfi""r?aarzfa ’
Kmi= ozl — o, Ih

3§ ER T

K__.‘_?&: —ng:;z: 8-fk ’

2 AN £ 4

K;‘.—Ah: B—Fh

i ki ?

all other being zero.
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On computing the BrawcHI identities

KX, W2+ KV, )X+ K2, X)7 =

PO

VK (X YW=

Z,

ViEXY, )W + VL K°(Z, HW v =
we have

THEOREM 2. — The curvature tensor K of the Cartan connection satisfies

(1.14) Kyt K+ Kyt =0

VK4 Vi Kb VK = "“Kllcbaxbaii]—% — Ko a? aa Koo B—rh

The formulas (1.14) and (1.15) are called the BIANCHI identities of the first and se-
cond Finds respectively [2].

2. — Infinitesimal affine collineations.

Since T(T(M)) is spanned by V and H determined respectively by (2:) and (4,),
the cotangent plane ‘T'(T(M)) is spanned by the two planes dual to ¥ and # and their
bage are respectively given by (dx‘) and (do’), where

(2.1) o' = da* + I'lo’ .

Let O: 2= a(f), be a curve of class €7, »=2, and Z be ifs direction. If in (M)
the 1-form (2.1) vanishes along € so that we have

d2zt » o’ Ao’

“ar “dt PR

we call C the geodesic of M. Let V(x) be any vector field defined along C in M and
consider the infinitesimal transformation

(2.2) Tt = wi-- Vi(z) ou
Bo= g @20, Vidu .

Then we say that if (2.2) sends the geodesic ¢ to a geodesic, the vector field V(x)
generates an affine collineation [7], and its necessary and sufficient condition is given
by the vanishing of the Lim derivative ,I7, that is,

(2.3) QI =V VV+ K, Vi 2V, V)0 I"=0
V=g S kit b e ji
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and the condition of integrability of the equations is found by a straightforward
computation to be
(2.4 V&I —V. I =8, K "+ ("8, 1) 0 1 — (@8, 1) 0, 17=0.

a” i

Henee we have by taking account of (2.3)

THEOREM 3. — The condition of integrability of Q,I7,=0 is given by the va-
nishing of &, K, " .
3. — Crosse-section of V(x).

Let V{z) be a vector field of M defined along a curve C: 2= z(f), of class 7,
=2, that lies in {U; (#°)}. The coordinates z* of m}(PeC) in YU} corre-
sponding to the vector V(x) issuing from P is then given by

(3.1) ot = (o, Vi),

which we call the cross-section of V(z) [1], [4] and it reveals itself in 7(M) an n-di-
mensional submanifold. Hereafter we express it by 8. Along ¥ we have from (3.1)

B = (@, 340,V

and with those & involved in «* the »® functions I (x, £) of T'(M) are well defined
throughout V. Subject to these I'}(x, %) if the vector field V(») satisfies

(3.2) V,Vt= 8,V + I (2, &) V=0,

we say that B is the horicontal submanifold of T(M).
The base B of the tangent plane of B has in a~Y(U) the expression

o
{3.3) BA= g,0*= ,
oV

and serves to map any vector field defined in B into a vector in T(M) tangent to B.
In order to obtain the WHITNEY sum of frames at each point of 8, we choose n af-
fine normals O defined by

0
(3.4) O =003V = [ } :
&
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Then the coframe (B';, O*,) dual to the frame (B, ;') has the expression
(8.5) BhB: (6Zh) 0), GZB: (— az vt 6?) .

Let X*(w, ) be any »n functions in T(M) defined along B satisfying the law of
transformation given in (1.7), and by the use of which we construct X”. If we de-
compose X" into the directions tangent and normal to B, we have

B (X7)i=0, (F(X")i=X"
in virtue of (3.5). Hence we have

(3.6) X'=0/X,

and thus

THEOREM 4, — Any vertical vector field defined along B is ontained in the normale
plane of L.

Along B we define X” and X° by using the above stated » functions X'z, &)
and »® functions I":(», £) by

X» X
3.1 X = , X°= { } s
— (@, 5)ViX Vi Xn

respectively. Then we have

BX) =X O X =— (V7 X,
from which we get
(3.8) (X*)*= B X' — C(V,V) X'.
and hence we have by taking aceount of (3.2)

THEOREM 5. — Any horizontal vector field defined along B is tangential to B if B
is an horizontal submanifold of T(M).

As for X° we have
B (X9)*= X", C (X°)V=8,X" — @V, V)5,X"
from which we get
(3.9) X)'=BAX 4 CA{L, X' — (@ v, V90, X} .
Thus we have

THEOREM 6. — Any complete vector field X° defined along B is tangential to B if
the Low derivative &, X vanishes and % is a horizontal submanifold of T(M).
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We have introduced in T(M) the affine connection V° whose components in
a-{U) were given in (1.9). Then we have for ¥ the van der WAERDEN-BORTOLOTTIE
equations

(3.10) V3 BY=B'V.Y+ H(X,Y)C,

where X and Y are arbitrary vector fields of & and 'V is the connection of B, induced
from V¢ which is symmetric and is called the induced connection of B. H* are n sym-
metric tensor fields of type (0.2) and are called the second fundamental tensor fields
of B. We say that B is a totally geodesic submanifold of T(M) if H? vanish identically.
In terms of the local coordinates 'V has the components

T, ) = (0, B* -+ (I'5;) °B,°B*) B*,

where (I'7,)° denote the components of V° with respect to (2*) of m~3(U). Then
taking account of (1.9), (3.3) and (3.5) we find

(3.11) =TT
and (3.10) is reducible to
(3.12) VB = {&, I, — @V, V)0, I} 0* .
Hence we have by taking account of (2.3) and (3.2)
THBOREM 7. — The eross-section B of a vector field V(x) is a totally geodesic sub-

manifold, if V(x) generates an affine collineation in M and B is o horizontal submanifolds
in T(M).

The local expression of the WEINGARTEN equations of % is given by
'V, 08 = 8,0+ (I5,) B, 0013'_ T, CZA
and by taking account of (1.9), (3.3) and (3.11) we find

(3.13) 'V,04=0
Thus
THEOREM 8. — The affine normal vector fields O are transporied parallel along B.

Since we have (3.10) the structure equations of B will only be given by

VsV BL — VOV, BZ —N°, - . BZ— K°BX, BY)BZ,
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and it has the loeal expression
(3.14) 'V.'V;B*—'V,;'V, B = (K)}.*B,”BfB”— K,;»B,*
in virtue of (3.10) and (3.11). If we take account of the components (K)°, * of K°

given in (1.13) and also of (3.3), the right hand side of (3.14) is found to have the
form

(3.15)  [& K+ (@, [0 I — (28, %o, It —

a7 ki
— 240, K (Ol yae o I — (0 17)2° 0. I3V, VP —

b7 ke
— (81 V,V, V> — (2, V,V, V] 0,4

ki'lr

Hence we have by taking account of (2.3), (3.2), (3.14), (3.15) and also of Theo-
rem 4:

THEOREM 9. - Let X, Y and Z be any vector fields in B, then the curvature vector
K°(BX, BY)BZ is tangential to B, if B is a horizontal submanifold in T(M) and V(w)
defines an affine collineation in M.
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