
S o m e  Cross -Sect ion  T h e o r e m s  

o n  t h e  T a n g e n t  B u n d l e  over  a F i n s l e r i a n  M a n i f o l d  (*)(**). 

TA~JI~O OKUBO (~ontreM, Canada) 
C. S. H o ~  (Detroit ,  Michigan) 

Summary. - Let T(M) be the tangent bundle over a Einslerian maJ~i]old M o/n-dimension en- 
dowed with the Cartan connection V. One mat~es T( M) into a 2n dime~sional a]/inely con- 
nected maul/old by assigning a connection V e to T(M).  The cross.section ~ o / a  vector ]ield V 
de]ined in  M reveals in T(M) an n-dimensional submani]old and its geomet~°y is developed 
by means o] the a]]ine subspace theory and o/ the a]/ine coltincations in  the base Finsler 
mani]old. 

Introduction. 

K. YA~'O and OKuno made an a t t e m p t  to construct  the  geometry  of Finsterian 
manifold by  regarding i t  to  be tha t  of its t angen t  bundle  itself [7]. In  the  theory  
of fibre bundles the  not ion of cross-section t h a t  provides the  links between any object 
defined in base space and its image ~-1 in its bundle space plays the  impor tan t  role 
and this paper  tries to discuss the  geometrical  propert ies  of the  cross-section of a 
vec tor  field defined in the  base FI~SLE~ manifold. 

§ 1 is devoted  to the in t roduct ion  of the  tangent  bundle T ( M )  over a Finsler 
manifold M with the  CAETi~ connection V. Herein endowing T ( M )  with the  vector  
fields XV, X R and X ° derived direct ly f rom the  theory  of connection and also by  
assigning the  connection V e, T ( M )  is made  into an affinely connected m a n , o l d .  
§ 2 deals with the  infinitesimal affine collineations in FI~SLEE manifolds, which together  
with § 1 serves the  main  discussion presented in § 3. Since the  condit ion of complete 
integrabil i ty  of affine co]linea~ions defined in Finslerian manifold is in our know- 
ledge hard  to find in any  ex t an t  tex ts  on the  theory  of LIE derivatives,  i t  would 
not  be less no tewor thy  to leave it  in record (cf. (2.4)). 

§ 3 discusses the  geometry  of the  cross-section ~ in T ( M )  with respect  to an aI'- 
b i t ra ry  vector  field V(x)  defined in M along its differentiable curve C. ~ reveals itself 
in T ( M )  a submanifold with the  dimension same as t h a t  of M and along which we 
define the vert ical ,  horizontal  ~nd complete vector  fields denoted respectively by  
X v, X H and X e. Then  we prove tha t  X ~ lies in the  plane normal  to ~ and X ~ is 
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tangent ia l  to ~ if !8 is a horizontal  submanifold of T(M),  while X ~ is so if ~3 is hori- 
zontal  and the  LIE der ivat ive of X with respect  to the  vector  field V(x) vanishes. 
After  establishing the  subspace theory  on !~ we present  the condition for the  curva- 
ture  vector  field of !~ to be tangent ia l  to ~ (cf. Theorem 9). 

1 .  - T a n g e n t  b u n d l e  T(M) o v e r  a F i n s l e r i a n  s p a c e .  

Le t  M be an n-dimensional manifold of class C = and Tp be the  tangent  plane 
a t  a, point  P of M. Then T ( M ) =  [J /~,(M) is by  definition the  t angen t  bundle 

/ ~ M  

over the  base space M. A p o i n t / 5  of T ( M )  is an ordered pair  (P, yp) of a point  P 
of M and a vector  y e c T ( M ) .  ~ is the  project ion of T ( M )  into M defined by  
/5_+ p .  The set ~-~(P) is the  fibre over P.  On supposing tha t  M satisfies the second 

axiom of countabi l i ty  we introduce in T ( M )  the  local coordinate sys tem x ~ = (x ~, y~) (~) 
in ~-~ {U; (#)} where U is a local coordinate neighbourhood of P in M and y~ denote 
the  components  of vector  y at  p having the expression y - -  y~O~ with respect  to the 
na tura l  f rame ~ =  ~/Ox ~. Then,  corresponding to the  coordinate t ransformat ion 
(x ~) -+ (x ~') at  P E { U ( x ) }  (3 {U'(x')}, (x ") obeys the  l~w of t ransformat ion 

(1.1) x*' = x * ' ( J ) ( ~ )  

such t ha t  

(1.2) 

X " =  X;(X~), det.  (O~x ~') :/:: 0 ,  

x~'__ y~'-- (~,x*')yZ= (~x~ ' )x  ~ . 

and its Jacobian  mat r ix  is given by  

[ ~ x  ~' 0 ] 

(1.3) (SnxA') : [Ya~a~X~" ~,:X, . 

We now take  the  direction ~ dx/dt  of any curve C: x =  x(t) of class C r, r > 2 ,  
as the fibre y of T ( M )  over P and suppose t h a t  there  is in T ( M )  a differentiable 

funct ion L(x ,  ~) which is posi t ively homogeneous of degree one in the 2's. On put-  

t ing 

F(x,  ~) = L2(x, ~)/2 

(1) We adopt the following conventions for indices 

A, B, C, D : I, £ . . . . .  n ,  1,2 .... , ~ ,  

a , b , c , h , i , j , k - ~ l ,  2 . . . . .  n .  
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and denoting ~/3~ by  ~,  we obta in  n ~ symmetr ic  functions g~(x, 2) which are ho- 
mogeneous degree zero in the  ~'s. I f  we ~ssume tha t  the quadrat ic  form g(A, A) 

defined for ~ A ~ A ~ =  1 is posit ive definite, we call the  base m~nifold M a Finslerian 

space ([2]~ [3]). Then  T(M) is the  tangent bundle over a Finslerian space M. 
Since T(M) is a 2n-dimensionM manifold, we can introduce two complementary  

n-dimensional distributions l 7 a n d / t  at ~-~ P,  called the  vertical and horizontal sub- 
spaces. ~ a n d / t  are respect ively spanned by  n independent  base (~) and 

(1.4) ~, = ~ --/~,~ ~ ,  

where ~ = / ~ , ~ y J  and/ ' j ,~(x,  2) are n a functions defined in .n-~{U; (x')} and undergo 
the  law of t ranformat ion  subject  to  (1.1): 

r~,',, = (~x~'){G 3. x~ + (GxJ)G, x0G~}. 

We say tha t  if there  are given such n 3 functions in T(M), the manifold is endowed 
with ~ non-linear connection V and A. KAWAGVCm called $~ the  operator of basic 
connection. I t  was E. CA~TA~ who provided M with V which is torsion-free ~nd 
keeps the  metr ic  g covar iant ly  constant  [7] 

(1.5) 

{h} 
where j i  

and satisfies 

f h /  o b iji[-g  (r co o+ r:c0 o- r:co.), 

is the  ClZlClSTOrF]~L symbol formed with gj~ and Ch~-~ is defined by  ½~gj~ 

Hence we have for (1.5) 

(1.6) 

Also we have f rom (1.4) 

G z ~  = ] ? ~ =  i " 

( ~  (~J - -  (~J ~k) ](X, X) . . . . .  Kk~ a ~y@~/(x, Y~) 

for ~ny funct ion ](x, 2) defined in z-~ U, where 

and it  is culled the  component  of the  curvature  tesor of the CAI¢~A~ connection V. 
Le t  Xi(x, 2) be any n functions t h a t  obey the  law of t ransformat ion 

(1.7) Xh'(x ', 2') = (~hx h') Xh(x, 2) . 
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We define in T(M) the  vert ical ,  horizontal  and complete vector  fields denoted re- 

spect ively by  X ~, X a and X ~ by  [7] 

(1.8) X v = X ~ = X ° = 
X ~ - -  F~ y~ X ~ y ~  X 

with respect  to the  na tura l  f rame ~ =  (~h, ~i) in g-l(U).  
Likewise, we define for n functions eo~(x, x) satisfying 

o,~,(x', x ' )  = ( ~ , x ' )  o~,(x, x) , 

their  vert ical ,  hor izontal  and complete vector  fields by  

o ~ =  (o~, 0),  ~ =  ( - - F ~ y ~  ~ ,  ~o~), o~= (yi~,o~) .  

Let  P and Q be the  two sets of n,'+, and n t+~ functions having in TrY(U) respecti- 

ve ly  the  expression 

P = P~V,_,...~ ~'~ ...... ~,, Q = q~v,_~...~ ~ ...... ~ 

a~nd obeying the  law of t ransformat ion  

p~,.~...,~:,~;...~; = (~vx~,) ... (~ , Ix~) .  ( ~  x~') ... ( ~ x ~ ) P ~ . . . ~ , ' " ~ ,  

! i t #~) ku.,,k 1 o, ,  .,~...~ = ( ~ j y ~ )  ( ~ j , x ' ~ ) . ( ~  xV)  ( ~ x ~ ) ~ , . . . j ~  , 
lu ~t.,,~ I . . . .  , .  

subject to (1.1). Denoting by P ×Q the formal functional product of P and Q, we 
define the vertical, horizontal and complete tensor fields respectively by 

(PxQ)v = PV®QV, 

(P xQ)"  = P" ®Q~ ÷ ~" ®Q" 

By the  use of the CA~T~N connection V we introduce in T(M) the  affine connection 
V ° so t ha t  T(M) is now made into an affine manifold. V e is supposed to have in =-~U 

the  components  of the  form [6] 

(1.9) o. 
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Let X(x, ~) and Iz(x, ~) be any vector fields in T(M). 

[ X~V~:Y" 1 _  
(~.~o) V~] ; °=  [~(x~V~y~)J 

0 0 

where V~ Y~ is defined by 

(~.~) 

and as we have by  (1.8), 

(~.~2) 

we can state 

V+ :Y~ = 5j I TM + / ~  Y*, 

= [  X~V~Y~ ] 

(V. ~)° [~o~o(x~v~ I~)] ' 

THEO~E)t 1. - V~xoY ~ coincides with (VxY) ~ i/ Y does not depend upon the ~'s. 
The curvature tensor K v of V ~ is by definition given by  

K~(2, :~)2-- v~ ~ ~ ~ ~ ~ V~Z - -  V~V~Z - -  V~.~ Z 

where 2~, ]~ and 2 are any vector fields in T(M), and for the variuble range of indices 
K ~ is found to have in ~-~(U) the components of the form given by 

(~.~3) 

]~jih h 

~ k ~ i  h - - R J ~ c i  h k ~ i '  

k v ~ -  j i  j ~z  kt 9 

K ~ =  --  K ~ =  ~ ~ , 

all other being zero. 
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On computing the BIA~-cI-II identities 

K~(X, Y ) Z +  K~(F, 2 ) 2 +  ~:~(2, 2 ) F =  0,  

V~KV(f  ~, Z)t$~+ V~K~(Z, X)ISz + V$KV(Y~, F)I~- -  - 0 ,  

we have 

THE0~E~ 2. - The curvature tensor K of the Cartan connection satisfies 

(1.14) K ~ +  K~,:~ + K~k~ ~ = 0 

The formulas (1.14) and (1.15) are called th, e BIAS-ore identities of the first and se- 
cond kinds respectively [2]. 

2.  - I n f i n i t e s i m a l  a f l l ne  c o l l i n e a t i o n s .  

Since T(T(M)) is spanned by V and /~  determined respectively by (~) and (5~), 
the cotangent plane 'T(T(M)) is spanned by the two planes dual to ~ a n d / t  and their 
base are respectively given by (Sm ~) and (dwO, where 

(2.1) ~ x ~ =  d x  ~ + F ~ x  j . 

Let C: x-~ x(t), be a curve of class C", r~>2, and ~ be its direction. If  in T(M) 
the 1-form (2.1) vanishes along C so tha t  we have 

d2x ~ dx i dx ~ 
+F~at a t - ° '  

we call C the geodesic of M. Let V(x) be any vector field defined along C in M and 
consider the infinitesimal transformation 

(2.2) ~ =  x~+ V~(x) &t 

Then we say tha t  if (2.2) sends the geodesic C to ~ geodesic, the vector field V(x) 
generates an a]fine eollineation [7], and its necessary and sufficient condition is given 
by the vanishing of the LI]~ derivative ~rF~ tha t  is, 

(2.3) ~,F~, = vjv, v ~ + K ~ 9  V ~ + (~  Vo V ~) ~F~, = 0 
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and the  condit ion of in tegrabi l i ty  of the  equations is found by  a s t rMghtforward 

computa t ion  to be 

Hence  we have  b y  tak ing  account  of (2.3) 

THEOtCESI 3. -- The condition o] integrabiIity of £vI%~= 0 is given by the va- 
nishing of ~vK~j~ ~ . 

3 .  - C r o s s - s e c t i o n  o f  V(x). 

Le t  V(x) be a vec tor  field of M defined along a curve C: x = x(t), of class C r, 

r ~ 2 ,  that lies in {U;(x~)}. The coordinates x ~ of ~-I(PEC) in ~-*(U) corre- 
sponding to  the  vec tor  V(x) issuing f rom P is then  given b y  

(3.1) x~= (x% V~(x)) , 

which we call the  cross-section of V(x) [1], [4] and  it  reveals itself in T(M) an n-di- 
mensional  submanifold.  He rea f t e r  we express it  by  !~. Along i~ we have  f rom (3.1) 

5 ~ =  (5% 5@a V i) , 

and with  those 5 ~ involved in x ~ the  n a functions I '~(x, 5) of T(M) are well defined 
th roughou t  I y. Subject  to these ~ ( x ,  5) if the  vector  field V(x) satisfies 

(3.2) Vj V~= a~ Vh + l~(x ,  5)V~= O, 

we say t h a t  ~ is the  horizontal submani]old of T(M). 
The base  B of the  t angen t  p lane  of ~ has  in ~-*(U) the  expression 

(3.3) B~*= a ~ =  LO~V~J, 

and  serves to  m a p  any  vec tor  field defined in ~ into a vec tor  in T(M) t angen t  to !8. 

I n  order to obta in  the  WmT~CE¥ sum of f rames  a t  each point  of !8, we choose n a]- 
fine normals C~ defined by  

[o] 
(3.4) C~ = ax~/8 V ~ = . 
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in vh' tue 

(3.6) 

and thus 

B A Then the eoframe (BT~B, C~) dual to the f rame ( ~ , C~) has the  expression 

(3.5) B ~ =  ( ~ ,  0 ) ,  ¢~= (--~V ~., ~). 

Let  X~(x, 2) be any  n functions in T(M) define4 along 93 satisfying the law of 

t ransformat ion given in (1.7), and by  the use of which we construct  XL If  we de- 

compose X ~ into the directions tangent  and normal  to 93, we have 

S~(X~)~ = 0, ~ ( X ~ ) ~  = X ~ 

of (3.5). Hence we have 

X v  A i O~ X ,  

TtIEOt~Ei~[ 4. -- Any vertical vector field defined along 93 is ontained in the normale 
plane oJ ~.  

Along 93 we define X R and X ° by using the above stated n functions X~(x, ~) 
and n 8 functions I~(x, 2) by 

X ~ 

(3.7) X~-= [_  I,!~i(x, :~) W X~] 

respectively. Then we have 

Bh (X')~ = X 7., 

fl'om which we get 

(3.8) 

X a ~__ [ X h  ] 

[V~ djXq 

e ~ ( x ' v  = - (v~ v ~) x ~ , 

(X~)~ B ~ X ~ A V V i s = - ~ ( ~  ) x  i ° 

and hence we have by  taking account  of (3.2) 

THEOI~EM 5. - -  Any horizonta~ vector field deJined along 93 is tangential to 93 iJ 93 
is an horizontal submanifold of T(M). 

As for X a we have 

B~A(X~)~ = X ~, C ~ ( X ~ ) ~ =  ~ Z  ~ -  (2 ~ V~V °) ~ X  ~ 

from which we get 

A i "b a i (3.9) (XC)~= B~aX~+ ¢7 {~v X -- (x V~V ) ~ X  } .  

Thus we have 

T n ~ o m ~  6. - Any complete vector ]ield X ~ de]ined along ~ is tangential to 93 i] 
the LIE derivative ~TX vanishes and 93 is a horizontal submanifold o] T(M). 
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We have  in t roduced in T(M) the  affine connection V e whose components  in 
z-~(U) were given in (1.9). Then  we have for ~ the  van  der WAERDE~-]3OlCTOLOTTIE 
equations 

(3.10) V ~ ] B F =  B 'V~ F-~- H~(X,Y)Ci 

where X and Y are arb i t rary  vector  fields of !3 and 'V is the  connection of 13, induced 
f rom V ~ which is symmetr ic  and is called the  induced connection of ~ .  H ~ are n sym- 
metr ic  tensor  fields- of t ype  (0.2) and  are called the  second fundamental tensor fields 
of !~. We say tha t  !3 is a totally geodesic submanifold of T(M) if H ~ vanish identically. 
In  terms of the  local coordinates 'V has the components  

,r ix x ) =  * ° ~i~x ' ~i  Bt )B  ~ 

where (FSa) ° denote  the  components  of V ° with respect  to (x a) of ~-~(U). Then 
taking account  of (1.9), (3.3) and (3.5) we find 

~nd (3,10) is reducible to 

(3.12) 

Hence  we have by  taking account  of (2.3) and (3.2) 

Tn~EOlCV,~ 7. - ~l'he cross-section ~ of a vector field V(x) is a totally geodesic sub- 
mani/old~ if V(x) generates an a]fine collineation in M and ~ is a horizontal submani/olds 
in ~(M). 

The local expression of the  Wv, I~GAIcTEx equations of !~ is given by  

'V C * a~ 

and by  taking account  of (1.9)~ (3.3) and (3.11) we find 

(3.13) 'V C ~ -  0 

Thus 

Tm~0]~E~ 8. - The a]fine normal vector fields C z are transported parallel along ~ .  

Since we have (3.10) the  s t ruc ture  equations of !3 will only be given by  

V oa~V ~n~BZ ~ -- V~vV~gBZ - -  V~EB~.BV~ BZ = Ka(BX, B Y ) B Z  
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und  it, ha s  t h e  loca l  e x p r e s s i o n  

(3.14) rV 'V B ~ ' "-- : (K)I)eB Bl~ Bj  B~ --Kkj /~B~ ~ 

in  v i r t u e  of (3.10) a n d  (3.11). I f  we t a k e  a c c o u n t  of t h e  c o m p o n e n t s  (K)O~eBA of K ° 

g i v e n  in  (1.13) a n d  also of (3.3), t h e  r i g h t  h a n d  s ide  of (3.14) is f o u n d  to  h a v e  t h e  

f o r m  

(3.15) [£vKkj ,~-k "~ : ~ h 

K r "  o 

~ ~ F ~ V V b ~ V b - {( - j v o v  

H e n c e  we h u v e  b y  t u k i n g  a c c o u n t  of (2.3), (3.2), (3.14), (3.15) nnd  ulso of Theo-  

r e in  4:  

TItEOEEM 9. -- Let  X ,  Y and Z be any vector fields in  ~ ,  then the curvature vcctor 

K ~ ( B X ,  B Y ) B Z  is tangential to ~ ,  i f  ~ is a horizontal submani]old in  T ( M )  and V(x) 

defines an af]ine eollineation in  M.  
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