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SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN

J. M. BORWEIN, P. B. BORWEIN AND F. G GARVAN

Abstract. There is a beautiful cubic analogue of Jacobi's fundamental theta

function identity: 0* = Q\ + B\ . It is

00 \        I     °° \
V""*      an2+nm+m2 \    _   |      y*      ^n-m-^+nm+m2 |

\n,m=—oo / \n,m=-oo j

+ f      9("+|)2+(«+i)(m+^)+(m+i)2 j

\n ,m= — oo /

Here a> = exp(27ti'/3). In this note we provide an elementary proof of this

identity and of a related identity due to Ramanujan. We also indicate how to

discover and prove such identities symbolically.

1. Introduction

In [5] the behaviour of the hypergeometric function 2-^1 (3 > § ; 1; •) was stud-
ied and exploited. Central to that paper was the cubic identity, implicit in [6]:

(X ^ an2+nm+m2\    __   /x ^ ^n—man2+nm+m2\

(l.i)        vz^ )   -\¿* )
+ (V<7(n+*)2+(n+ï)(m+4)+(m+4)T ,

where co := e2ni^ , and all sums range over 1? . Identity (1.1) was established

in [5] by modular function techniques. It is our purpose here to establish (1.1)

by elementary means. For this purpose it is convenient to recall the definition

of the Dedekind eta function

00

(1.2) t,(q)^q^]J(l-q"),
n=l
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36 J. M. BORWEIN, P. B. BORWEIN AND F. G GARVAN

and the Jacobian theta functions
oo

(1.3) e2(q):=  Y, <7("+i)2>
71= — OO

OO

r2
1

n=—oo

oo

(1.4) 03(9):=   £ q"

and

(1.5) 04(9):=  £ (-l)V2.
n=—oo

Jacobi's quartic identity, 04 = 04 + 04 , plays a key role in theta function and

elliptic function theory [2, 4]. The cubic identity (1.1) has very similar conse-

quences which are detailed in [5]. Let us denote
oo

(1.6) a(q):=    £    q«
n,m=—oo

oo

(1.7) b(q):=    £    <^~mQn

n,m=-oo

oo

(1.8) c(q) :=    V    q("+\)2Hn+1})(m+\)+(m+\)2^

n,m=—oo

We will prove that a? = b3 + c3. Note that in (1.3) and (1.8) we take principal

roots.

2. Results

Lemma 2.1. For \q\ < 1

(i) (a) a(q) = 03(<7)03(<73) + d2(q)d2(q3) ;

(b) a(<z4) = | (03(<7)03(<73) + 04(q)64(q3)) ;

(ii)   %) = |a(í3)-ia(í);

(ni)   c(í) = ia(íí)-ia(í).

¿Voo/. (i) In (1.6) write n2 + nm + m2 = (n + f )2 + 3(f)2 . Now

a(9)=     J2    ?(«+¥)2+3(f )2 +    £   9(«+f)2+3(f)2_

m even m odd

This identity is (i) (a). Identity (i) (b) follows from 63(q4) + 02(q4) = 63{q)

and 03(?4) - 02(<Z4) = 64(q).
(ii) We observe that b(q) is real and that

b(q) = J] cos [2f (n - m)] g"2+'""+'"2

_ _   V"*   an2+nm+m2 _ _ V"* an2+nm+m2

3\n—m

Now we write the first sum by

y^ y^ q^P+m12+(-iP+m)m+m2 = a(q3),

m    p
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SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN 37

as is apparent on substituting m-p for m. Identity (ii) follows.

(iii) Since (ii) holds, it suffices to show that

(2.1) c(qi)^\>(a(q)-b(q)).

Now the right-hand side of (2.1) is
oo

_   \^    nn2+nm+m2 _ ^ nn2+nm+m2 _     ^     „(m+3/>+l)2+(m+3p+l)m+m2_   V^    an2+nm+m2 _ V^ an2+nm+m2 _     V^     Q

V[n-m n-msl(mod3) m,p=-oo

On replacing m by m-p (bijectively) we have

^(a(q) - b(q)) = £ qiP2+iP+3Pm+3m2+:im+l,

p ,m

which, by (1.8), equals c(q3). Thus, (2.1) has been proved.   D

As is well known, [4, p. 64], the theta functions possess simple product ex-

pansions. This is not true of a. It is true of b and c as our main preliminary
result shows:

Proposition 2.2.

(ii) C(q) = 3^ = 3ffi n (1"g3")3W c(q)        m       iq   H   {l_qn).

Proof, (i) We need the following result due to Euler (which is a corollary of the
^-binomial theorem [1, p. 19], [4, p. 309]). We use

oo oo      (k\    k

(2.2) (-x; qU = ]J(l+ xq") = £ ^-f-,
n=0 k=0    [q,k

where as usual
oo

(a)00 = (a;q)00:=l[[(l-aqn),

n=0

n

(a)„ = (a ; q)n := (a ; q)ool(aqn ; 9)00 = Y[(l - aqk~x).

fc=i

Observe that

(-X3 ; q3)oo = (-X ; q)oo(-xco ; q)00(-xco2 ; q)x,

so that (2.2) gives

~    x3kq3(*2)   ^ ^^ qC?h(n¡h("¡)xn0+nt+n2

h^'^X        no^n^ («)%(«)-(«)*

Equating coefficients of powers of x yields

i             v-       n ..fiïNîWïHG)—-——      y     û)"1-''2^-

(93;í3k    „^^ ,. (9)110(9)11,(9)11,
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38 J. M. BORWEIN, P. B. BORWEIN AND F. G. GARVAN

We replace n¡ by m¡ + k for i = 0, 1, 2. Then

2     /„ \ ,2

sGHs><+3i=0   x    ' ¿=0

since £2=o am, = 0. Hence

E «m,-m2.
^(mjj+mf+m2.)

(93i93)fc        mo+^2=0 (9)mo+/k(9)m,+/k(9)™2+*'

Letting k tend to infinity gives

1 ^ /7ï('"0+'"2+'"2)

£
COmi-m2\

^^        mo+ntm2=0 («)«

Hence

^°°_ = V^ r,)'"i-'"2/Ji('no+w2+m2)

mo+mi+m2=0
(93;93)oo

y^   ft,m1-m2^m2+m1m2+m|

mi ,m2

as claimed.
(ii) This may be established in a similar fashion. Alternatively, we may argue

as follows. The previous identity combines with Lemma 2.1 (ii) to produce

(2 3) ñSl = 3<*(93)-a(9)
>/(93) 2

The theta transformation formulae [4, p. 38]

yTtd3(e-*') = 83{e-*"),     Vt64(e-nt) = d2(e-"")

may be applied to a as given by Lemma 2.1 (i) (a). The corresponding trans-

formation of n,

Vtn(e-2nt) = ri(e-2n"),

and Lemma 2.1 (i) (b) yields

n 4) 3^V) = a(g^)-a(q)
r\(Q) 2

Now Lemma 2.1 (iii) completes the proof.   D

We are now ready to establish identity (1.1) which, as we have seen, is equiv-
alent to

Theorem 2.3.

a\q) = b\q) + c\q).

Proof. Let us set a* := a(q3), b* := b(q3), c* := c(qi). Now Lemma 2.1
shows a* - c* = b . Hence

b(q)b(coq)b((o2q) = (a* - c*)(a* - cac*)(a* - co2c*),
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SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN 39

since a*(co'q) = a* and c*(co'q) - co'c*. Thus

2

a*3-c*i = Y[b((oiq) = b*\
;=0

where the last identity is an easy consequence of Proposition 2.2 (i). On replac-
ing q3 by q we are done.   D

For completeness we record the following corollary established in [5].

Corollary 2.4.

(2.5) 2Fx(\,\;\;c^) = a(q).

The crucial step in establishing (2.5) involves determining what happens as

q -> q3 on both sides of (2.5). Armed with Theorem 2.3 and Lemma 2.1, this
'i

reduces to establishing that F(s) :=2Fi(\, \ ; 1 ; s3) satisfies

® =

1+2

(:)•

Since £- = n+2¿?a) » tms becomes a cubic transformation for F, and can be

verified in various ways (including symbolically). Details of the derivation of
this cubic transformation may be found in [6].

Next we observe that the classical cubic modular equation for n is easily

accessible from Theorem 2.3. This modular equation is Entry l(iv) of Chapter

20 in Ramanujan's second notebook [3, p. 345].

Corollary 2.5.

(2.6) 1 + 9>/3(99)

r\3(q)
= 1+27

>7(93)

ri(Q)

12

Proof. Let t := a/b and note as above that

Thus

(2.7)

while

(2.8)

(c*y (¿-i)4

\b*J      9(t3-l)

(I)'--«-
Now use Proposition 2.2 to write

(2.9)

Finally (2.7)-(2.9) combine to yield

c   ,>;4(93)

b        //4(9) '

{t     l)   -9W)   -[%3(9).
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Hence
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1+9 v\q9)

vHq)
= l + (£)3=l+27

>7(93)
-,12

ri(Q)\
a

We observe that in terms of the eta-multiplier, N$ :— rç2(93)/rç2(9), (2.6)
becomes

iV3(93) =
(1 + 27JVJ)* -1

. 2n 3

3$N3

The parallel quintic and septic identities, due to Ramanujan, are solvable and

are given in [4, p. 312].
We now prove the corresponding quadratic modular equation given by Ra-

manujan. It is the first equation on page 259 of the second notebook [12].

Theorem 2.6. For \q\ < 1

(i) a(q)a(q2) = b(q)b(q2) + c(q)c(q2)

or equivalently

(ii) (I - uv)3 = (1 - u3)(l - V3) ,

where u := c(q)/a(q) and v := c(q2)/a(q2).

Proof, (i) Let
L(q) := a(q)a(q2) - b(q)b(q2) - c(q)c(q2).

We will show that

(2.10) L(q) = L(-q).

It will follow that

L(q) + L(-q) _ a(q) + a(-q)      2
(2.11)L(<7) = -a(Q¿)

¿(9) + ¿(-9)ft(g2) _ <(9)+2C(-9)c(g2)

However, since 02(q)d2(q3) is an odd function we have

a(q) + a(-q)     d3(q)63(q3) + 64(q)d4(q3)
-a(94),

2 2

by Lemma (2.1) (i) (b). Lemma 2.1 (ii) and (iii) now show that

c(q) + c(-q)
b(q) + H-q)=b(q4)    aim = c(q%

Hence (2.11) becomes L(q) = L(q2). Inductively, L(q) = L(q2") and hence
L(q) = L(0) = 0 as claimed.

To establish (2.10) we define

(2.12)     *(g):=*;*;-*;-*;, y^^^-^ia(q)-a(-q)      ^v a(q) - a(-q)

and note that (2.10) is equivalent to

(2.13) a(q2)=x(q)b(q2)+y(q)c(q2).
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SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN 41

Now

a(q) - a(-q) = [03(<?)03(<73) + d2(q)d2(q3)} - [e4(q)64(q3) - d2(q)d2(q3)]

= 302(9)02(93)

on applying the cubic modular equation for 02/02 [4, p. 110]. Thus Lemma

2.1 (ii) yields the first equation in the following.

(214)       i^^y i^ ft(i+f)[       ' m)        02(9) ^(l+92")3'
w=l

The second equation follows from [4, Theorem 4.11 (c)] which is proved using
the quintuple product identity. Here we a give a proof using Jacobi's triple
product identity [4, (3.1.1), p. 62]:

oo
„2

-1)

(2.15) Yl (-1)"*V = II^1 - q2nXl - z92w_1)(l - z-xq2"-1).
n=-oo n=l

Now,

oo

04(9)=   £ (-W2
n=—oo

oo oo oo

=   Y (-1)"9(3")2-   £ (-1)V3,,+1)2-   £ (-l)"9(3n

n=—oo n=—oo n=—oo

oo

= 04(99)-29   X) (-1)V"2+6".
n= —oo

Using (2.15) we find, after some manipulation, that

oo

(2.16) 04(9) - 04(99) = -29   £ (-l)n99"2+6B

n=—oo

oo

= -2q IJ(1 - qxs")(l - <718"-3)(1 - q1*»-15)

n=l

2 ri(qW(Qn)

»mnm ■
Now, replace q by e~nt, apply the transformation t —> ̂ , and use the trans-

formation formulae:

r¡{e-*/') = v^ n(e-4n<),    d4(e-n") = v7? e2(e~nl).

We find after some simplification, that

IflfVi^      ft(n\-      o q(9i:V(92)3 02(9)-02(9) --2    ̂ 6)^4)   •

Since 02(9) = 2n2(q4)/n(q2) [4, p. 64] we obtain the second equation in (2.14)
after dividing both sides by 02(9). In consequence, Proposition 2.2 (i) gives

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



42 J. M. BORWEIN, P. B. BORWEIN AND F. G GARVAN

But nr=i(l - 9")/(l + 9") = 04(9) [4, p. 64]. Thus

(2.17) 2x(q)b(q2) = -64(q2)3/d4(q6).

Similarly, we find that

,2 IN 2v(a\-62{qk)     l-fl-inM(2-18) 2v(9) - ^y - 1 - 9  41 (1+^)3-

The proof of the first equation in (2.18) is analogous to that of the first equa-
tion in (2.14) and uses Lemma 2.1 (iii). The proof of the second equation is

analogous to that of (2.16). It also follows from [4, Theorem 4.11 (c)]. Let

oo
„2 .

02*(9) =   £ 9" +",        so that       62(q) = qi 6*2(q).
n=—oo

Replacing n by 3m + k ( k = 0, ±1 ) in the summation yields

oo

02*(9) = 9202*(99) + 2   ]T   q9m2+3m-

m=—oo

So, by (2.15), we have

oo

02*(9*)-92;02(93) = 2   Y  qîm2+m

m=—oo

oo

2 Y\(l - q6n)(l + 96"~2)(1 - 96"-4)
n=l

,-fi(l-g6")(l+g2")

„=, (1+<76")

L (1+92")    ^Tt(1-912,,)2N\
ll(1+fffc)s^ll  (1_        f

and

P2*(9*)   -j = fr (i + 92n)
02*(93)     ?       ^(l+96")3'

After multiplying both sides by #-2/3 we obtain the second equation in (2.18).
Using Proposition 2.2 (ii) we have

M9M?')=3n(j+£)7n(}
7i=l /    n=l

-g2"

+ 92"

whence

(2.19) 2y(q)c(q2) = 364(q6)3/d4(q2)

Thus (2.10) is equivalent to

3 043(93)      1 043(9)
(2.20) fl(flr) =

2 04(9)      2 04(93)'
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SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN 43

Here we have simplified (2.13), the equation equivalent to (2.10), using (2.17)

and (2.19). We need the Lambert series for a(q) :

(2.21) a(4) = 1 + 6g|^_._^_}.

This identity is due to Lorenz [11, p. 111]. The referee has informed us Ra-
manujan had a proof of this result; see his Saturday night letter from Fitzroy

house [13, pp. 93-96]. The referee also states that it can be proved by combin-
ing together some results found in Ramanujan's notebooks. It also follows from
Kolitsch [10, Lemma 2]. We now sketch how (2.21) follows from Lemma 2.1

(i)(a), [4, Ex.5(ii), p. 287] and the cubic modular equation [4, (4.2.7), p. 110].
From [4, Ex.5(ii), p. 287] we have

(2.22) 03(9)03(93) = l+2gii^

«   (l-q2*)q2« "    (\-qn)qn

n odd

/,y(l-94")94n

ti   U-912")  '

By replacing q by -q we find after some simplification that

(2.23)

B(aW(J\     inf''-^     Jy(l+9")9"     y(l+92w)92"l
04(9)04(9)-1 + 2^    {l_g6n)    -2\glîTF=r-g    (1 + 9«»)    /

,y(l-94")94w

¿"   (l-itx   d-i12")

(l-94n)9"        ^(l-94")(l + 392" + 94n)92"

(l-q6n) ^ (l-912n)
n=l     v "     ' n=l

From Lemma 2.1 (i)(a) and [4, (4.2.7) p. 110] we have

(2.24) a(q) = d3(q)83(q3) + 62(q)d2(q3)

= 263(q)63(q3) - e4(q)d4(q3).

After rewriting (2.24) using (2.22) and (2.23) we find after much simplification

that

00     oo

= 1 + 6 E E 9"(3m+1) - 9w(3m+2),

71=1 m=0

and (2.21) follows by reversing the order of summation.
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The following result is Entry 4(iv) in Chapter 19 of Ramanujan's second

notebook [3, p. 227]. Ewell [7; 4, p. 151] has also given a proof using the
quintuple product identity.

043(9)       ,     ,<M    93"+1 9
oo     ,

-i-«E{ï 3n+l /7371+2

Hence we have

04(93) ^\\+q3n+l      l+q3"+2

öiM _ w„2>(2.26) -^LL = 2a(q2)-a(q).

This can also be deduced from Fine [8, (32.64), p. 84]. Dually, on replacing

q by —q, using the theta transform and replacing q by —q again

This can also be deduced from Fine [8, (32.39), p. 80].  Now (2.26) and
(2.27) combine to establish (2.20) and so (2.10).

(ii) Write (i) as

a(q) a(q2)

and cube both sides. Then Theorem 2.3 produces

1 '      a3(q)a3(q2)     [ )[ '

Note that (ii) is Ramanujan's preferred form. We also note that

2x(q) = -b(q2)/b(q4)   and   2y(q) = c(q2)/c(q4),

so that

(2 28) a(a) - 1 c2{q)     ! ^1
(2-28) a{q)-2cW)~2bWY

3. The modular machine

It is possible to both find and prove the two key identities of this note, (1.1)

and Theorem 2.6 (i), entirely mechanically. This works as follows. From (2.21)

we see that a(q) (in the variable x, q — e2nix) is an Eisenstein series of

weight one and character x{d) = (f) (the Legendre symbol modulo 3 ) for

the congruence subgroup To(3). See [9, p. 4]. It is well known that if /(t)

is a modular form on r0(iV) then f(Mx) is a modular form on r0(./VAf).
From Lemma 2.1 (ii), (iii) it follows that a(q3), b(q3), c(q3), a(q6), b(q6),
c(q6) are all entire modular forms of weight one (and trivial character) on some

congruence subgroup G where

r(3) n r0(54) c g c r

(we are working in the variable q3 to give c a Taylor series expansion at j'oo ).
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Here as usual

F:={(y ßS)\^-ß7=U    a,ß,y,S€z},

r(7V) := {(" ^AeT\a = ô = l   and   ß = y = 0 mod Tvj ,

r0(/V):={(° £)er|y = 0mod/v}.

The indices satisfy

[r:r(iv)]=AT3n(i-¿)

and

It follows that

p\N

[r:To(N)]=Nl[(l + ̂ )
P\NK P/

[T:G]< [T : T(3)] • [T : T0(54)] < 24 • 108.

(This standard theory is in [14].)

Now suppose

(3.1) P:=P(a,b,c,A,B,C)

is a homogeneous polynomial of degree TV in the 6 variables a :- a(q), b :=

b(q), c :— c(q), A := a(q2), B := b(q2), C := c(q2). Then P(q) is an entire
modular form of weight TV on G and hence can have exactly N[T:G]/\2

zeros in a fundamental region (counted in the local variables at the cusps). In
particular P can have a zero of order at most

^!<216TV
12

at x = zoo. In other words if the ^-expansion of P vanishes through the first
216TV + 1 terms then P = 0.

It is now a straightforward matter to generate a basis for all homogeneous

identities of type (3.1) for a fixed TV. One expands the six functions a, b, c, A,

B, C as ^-series to some fixed order that is greater than the number of mono-

mials in the expansion of (xx + x2 + x3 + x4 + x5 + x¿)N. One then solves the
linear problem of finding a basis of identities to this fixed order. This must now
be a superset of the desired identities. One then verifies that the ^-expansion

of each basis element vanishes through 216TV + 1 terms; which proves that
the alleged identity is a true identity (and not just an identity to a fixed num-

ber of terms). Since this is all done in exact integer arithmetic in a symbolic
manipulation package this constitutes both a derivation and a proof.

We illustrate with TV = 3. What follows is a basis for all homogeneous
cubic relations in a := a(q), b := b(q), c := c(q), A := a(q2), B := b(q2),

C:=c(q2).
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(1*)

(2)

(3*)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

J. M. BORWEIN, P. B. BORWEIN AND F. G. GARVAN

A[c2-aC-2AC)

b(c2 -aC-2AC^

c (bB -Aa + cC)

B (bB -Aa + cC)

C(bB-Aa + cC)

A\[cA-ac + 2 C2)

B (cA - ac + 2 C2)

c{cA-ac + 2C2}

-b(cA-ac + 2 C2)

B(bA-2B2 + ab)

(11*)   c(bA-2B2 + ab)

(12*)

(13)

(14)

(15)

(16)

-A

-B

-C

-B

-C

(-aB-b2+2ABsj

(-aB-b2 + 2AB)

{-aB-b2 + 2AB}

(Aa-2bB-a2 + 2A2}    (31)

(Aa-2bB-a2 + 2A2)    (32)

(17*)    -C3-B3 + A3

(18)     4C3-3acC + c3

(19*)   253 -3bAB + b3

(20*)    - be A - bC2 + cB2

(21) bcC-aB2 + bA2

(22) bc2-bAC-2B2C

(23) b2c-acB + 4BC2

(24) ab2-aAB-2bB2 + 2A2B

(25) bcC + a2b-3aB2 + 2AB2

2bBC-3aAC + ac2 -2A2C

2bcB - 3acA + a2c + 4AC2

abA-bcC + aB2-2AB2

bcB-acA + aC2 + 2AC2

bAB-acC-2Bi + a2A

- bAB -acC + 2C*+ aA2

-3bAB-3acC + 4Ci + 2B3 + a3

(26)

(27)

(28)

(29)

(30)

We find 32 of them, presented in factored form. Since there is a basis of

six quadratic relations many of them factor. Relations are starred if they cor-

respond to identities obtained earlier in this paper, or if they are needed in

the proof of the results given below. The verification of the identities requires
computing Taylor series of length 650. The entire calculation takes just a few

minutes in MAPLE on a SUN4. Note that basis element (17*) is our cubic

modular equation while basis element (3*) is our quadratic identity. More

thought would allow checking to a lower degree in the ^-expansion, however

since the computations are easy we have opted for the most straightforward

estimates. Similar remarks apply for other forms and other TV. Note that (1*)

and (12*) combine to verify (2.28)

a -
\c2

2C 2B '
while (20*) is

and (19*) is

A = &ç2L

b       c ''

,_2B2     lb2

A~3b  +3B-

From (11*) and (12*) we may solve for A, B. After some work we find we get

a(q2) = A = Re (b$ + ic^j   - acos ( ^arctan i^-J   j,
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b(q2) = B = Re (b3 + ibhrf = v^cos Qarctan (|)^ = JbJ^S.

In particular the mean iteration [4]

1 /. 17. I _
,3 >   3
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