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S u m m a r y .  - I n  this paper, we are investigating curvature properties o/complex two-dimensional 
Hermitian manifolds, particularly in  the compact case. To do this, we start with the remark 
that the fundamental form of such a manifold is integrable, and we use the analogy with the 
locally eonformal Kahler manifolds, which follows from this remark. Among the obtained 
results, we have the following: a compact Hermitian surface lot which either" the l~iemaq~nian 
curvature tensor satisfies the Ki~hler symmetries or the Jtermitian cq~rvature tensor satisfies 
the Riemannian Bianehi identity is K~hler ; a compact Hermitian surface of constant sectional 
curvature is a flat Kdhler surface; a compact Hermitian surface M with nonnegative non- 
identical zero holomorphic Hermitian bisectional curvature has vanishing plnrigenera, el(M) >~ O, 
and ~r exceptional curves; a compact t termitian surface with distinguished ~etric, and po- 
sitive integral Riemanuian scalar curvature has vanishing plurigenera, etc. 

The present paper started from the remark that  2-dimensional Hermitian met- 
rics have an interesting particular property namely: the corresponding fundamental 
form is integrable (its differential belongs to the ideal generated by the form itself). 
In  this respect, they are similar to the locally conformal K~hler metrics [13], a fact 
which suggests us to use the methods of the theory of the locally eonformM K~hler 
manifolds in order to study differential geometric properties of generM complex 
analytic surfaces (i.e., complex analytic manifolds of complex dimension 2). 

Our results are concerned with two questions. One of them is the characteriza- 
tion of X~hler metrics by curvature properties. For instance, we prove that:  a 
compact Hermitian surface, whose l~iemannian curvature has the Ki~hlerian sym- 
metries is a Ki~hler surface; a compact Hermitian surface of constant sectional 
curvature is a fiat Kghler suriace; a compact Hermitian surface whose unitary (or 
Hermitian) curvature tensor satisfies the Riemannian Bianchi identity is a l~ghler 
surface, etc. 

The second question is that  of the influence of the curvature on the structure 
of the surface. Until now, this subject has been studied rather for Ki~hler metrics [1, 
7, 18], and here we shall be diseasing generM Hermitian metrics on a surface. 

We shall establish that  if the ttermitian (unitary, Chern) connection of a com- 
pact Hermitian surface M has a nonnegative but not identical zero holomorphie 
bisectional curvature, then M has a nonnegative first Chern class, vanishing pluri- 
genera and no exceptional curve [10]. In particular, if the above mentioned bisec- 

(*) Entrata in Redazione il 2 febbraio 1981. 
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t ional curvature is positive, cl(M) > 0, and M is biholomorphically equivalent either 
to the complex projective plane or (but not  sure) to CP 1 • CP  ~. We shall provide 
also a generalization of a theorem of yA~T [18] stat ing tha t  if M is a compact tIer- 
mit ian surface whose metric g is of a distinguished (more general t han  K~hler) type,  
and is the integral Riemannian scalar curvature  of g is positive, then  M has vanishing 

plurigenera, etc. 

1 .  - I n t r o d u c t i o n .  

In  a general manner,  we shall denote by  M a complex surface, and by J its 
tensor of the complex structure. I f  a Hermit ian  metric g is added, we shall speak 
of a Hermi t ian  surface, and we shall denote by Q its fundamenta l  form 

(1.1) ~9(X, Y) = g(X,  d Y ) .  

Another interesting differential form of (M, J ,  g) is the Lee form 

(1.2) ~ = A d r 2 ,  

where A = i(Y2) is the interior product  by  D, i.e. the dual  of the operator L(a) = Y2Aa. 
Now, the following result is well known [11]: 

PROPOSITIO~ 1.1. - The relation 

(1.3) dt~ = ~oA/2 

holds on every Hermi t i an  surface. 

P~ooF. - In  Hermi t ian  geometry we have 

(1.4) A Z ~  - -  L A ~  =- (n - -  deg ~)~,  

for every form ~ on an n-dimensional manifold. Now, (1.2) and (1.4) imply for 
n ~ 2  

Lop = A L  dt~ fi- dY2 , 

and, since deg (L dr2) = 5, this relation is exactly (1.3). 
For  a Hermit ian manifold _%/ with dime M ----- n > 2, a Lee form can be defined 

by 

(1.5) ~o = [1/(n --  1)]A dzP, 

bu t  Proposit ion 1.1 may  not  hold. 
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F o r  an  a r b i t r a r y  n > 2 ,  if (1.3) holds  and  if o) is closed, we h a v e  loca l ly  o) ---- da, 
a n d  ~ ----- e-"g are  local  Ki~hler met r ics  on  M. Such  a man i fo ld  M is cal led locally 
conformal Kiihler, or, if w is an  exac t  form,  globally conformal K~ihler [13]. 

I f  n > 2 a n d  (1.3) holds,  co m u s t  be  d o s e d  [11], b u t  this  m a y  no t  be  t r u e  for  

n = 2, even  if M is compac t .  F o r  example ,  let us consider  t he  complex  t o rus  

T~ = C2/G, where  G is t he  g roup  genera ted  b y  (z% z ~) ~ (z ~ + a, z 2 + b), a and  b 

be ing  two complex  n u m b e r s  of i m a g i n a r y  p a r t  2~. Then ,  t h e  fo rmu la  

(1.6) 
2 

defines a t t e r m i t i a n  met r i c  on  T~ for  which  

~ - - 1  
(1.7) co - -  - -  

2 

cos v/-----f ~ - -  z~ -t- 5~ - -  z 1 2 (dz~-- dz~) " 

The re la t ion  (1.3) holds,  b u t  d(o :~ 0. 

Howeve r ,  we h a v e  [11] 

P~O].'OSlTION 1.2. - The relation 

(1.8) A doJ =- 0 

holds on every Hermitian sur]ace. 

PROOF. - A di f ferent ia t ion  o f  (1.3) yie lds  

(1.9) L de) - -  0 , 

whence  (1.8) follows b y  a p p l y i n g  A and  us ing (1.4). 

A n o t h e r  i m p o r t a n t  f ac t  is 

PROPOSITION 1.3. -- I] M is either a compact locally con]ormal Kghler mani]old 
o] an arbitrary dimension or a compact Hermitian sur]ace, then M has a con]ormalty 
related metric g '=  ]g ( ] >  0) whose Lee ]orm a)' is co-closed. 

PROOF. - This  is an  easy  consequence  of some r a t h e r  deep resul ts  of GAVD~- 

CHON [2]. I n  [2], one  defines a Hermitian metric o] vanishing eccentricity as one which  
satisfies 6v = 0, where  v = (%9oJ, and  one s ta tes  [2, 13. 137, foo tno te ]  t h a t  a n y  

H e r m i t i a n  met r ic  on  a c o m p a c t  man i fo ld  has  a con fo rmMly  re la ted  met r ic  of van -  

ishing eccen t r i c i ty  (1). B u t  i t  is k n o w n  t h a t  t he  Lee  fo rms  (1.2), (1.5) are  exac t l y  

(1) See the proof in: P, GAWDUCnO~, Le thgor~me de l'exeentricitd nulle, C. R. Acad. Sei. 
Paris, 285A (1977), pp. 387-390. 



Izu  VA!S:~[A~: Some curvature properties o/ complex sur]aces 

equal to [ 1 / ( n -  1)]v [11, 14]. Then the stated result follows by combining these 
facts. 

I~E~ARK. -- In  particular,  a compact locally con/ormal K~ihIer mani/old has a con- 
/ormally related metric with a harmonic Lee /orm. This n ~ y  be useful in the s tudy  
of the  topology of such a m~nifold. 

In  this p~per, ~ Hermi t ian  metric of vanishing eccentricity will be called a 
distinguished Hermitian metric. 

On the  other hand,  it  is clear tha t  a Hermit ian metric is K~hler iff w -~ 0~ which 
justifies to consider 1 ~-le)I2/2>0 and to call it  the modulo/  non-Kdhlerianity of 
the respective Hermi t ian  metric. 

2 .  - C o n n e c t i o n s  a n d  c u r v a t u r e s .  

Let  (M, g) be a Hermit ian  surface and  let us denote by  V the Levi-Civita con- 
nection of g. 

Following [13], let us define the Weyt connection of M by  

(2.1) ~TxY~- Vx:Y--�89189 ~-�89 17)B, 

where the Lee /ield B is defined by 

(2.2) g(B, X) -~ w(X) . 

Then we have 

P~oPOSiTIO~ 2.1. - The Weyl connection o /a  Hermitian sur/ace M has no torsion, 
and it satis/ies the relations 

(2.3) %J = 0 ,  ~Txg = ~ ( x ) g ,  ~ = ~ ( x ) ~  

PROOF. - The same proof like for locally conformal K~hler manifolds in [13]. 
Furthe~mor% it  is well known tha t  g defines a unitary connection ( t termit ian 

connection) V(~), which is characterized by 

(2.Q V(~)J = 0 ,  V(~)g = 0 ,  T(~)(X, JY)  = T(~)(JX, ~Y), 

where T(~) is the  torsion of V(~). By  straightiorward technical computat ion we can 
deduce 

P~oPosITIo~ 2.2. - The unitary connection o/ a Hermitian sur/ace is given by 

(2.5) V(~)x~ ---- ~TxY z7 �89 Y --  �89  = 

~- VxY- - � 89189  ~- �89 Y ) B ,  
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~Yow, let us denote by  It, t~, R(c), respectively, the curvatures of V, ~7, V(~) with 
the sign convention of [9], and set 

(2.6) R(X1, X2, X3, X4) = g(R(Xs, Xa)X~, Xl) , 

and something similar ~or ~ and /~(c). 
Then, we get as in [15] 

(2.7) /~(X1, X~, 2[3, X4) = R(XI, X~, X3, X4) --  �89 (Z(Xa, X2)g(X,, X~) -- 

-- Z(X4, X2)g(X3, X~) ~- Z(X,,  X1)g(Xs, X~) -- Z(Xs, X1)g(X~, X2)} --  

--�89 X2)do)(X3, X , ) -  ]-~ (g(X,, X2)g(X3, X ~ ) -  g(X3, X~)g(X,, X~)) 

where 

(2.s) L(x, :g)= (Vx~)(:~) + ~(x)~(]~),  

and this is a symmetric tensor iff M is locally coniormal K~hler. 
:Furthermore: 

(2.9) R(o)(x~, x~, x~, x~) = ~(xl ,  x~, x~, x,) + 

lg(X~, x~) d~(X~, X~) -- �89 X~) dO(X~, X,), 

where 

(2.10) 0 = ~ o j .  

And finally: 

(2.a~) R(o)(X~, X,, X~, X,) = n(Xl ,  Z~, X~, X,) - -  �89 {~(X~, X~)g(X,, X~) -- 

- - L ( X , ,  X~)g(X~, X~) + L(X~, X~)g(X~, X~) - L(Xo, X~)g(X,, X~) - 

4 (g(X,, X2)g(X3, X 1 ) -  g(X3, X2)g(X,, X ~ ) } -  �89 X2) dO(X3, X,) .  

As it is well known, various contractions of the cnrvatnre tensors are also 02 
interest. Thus are: the Ricci tensor 

4 

(2.~) e(x, ]~) = Z ~(E~, ]~, ~ ,  X) 
i = l  

where E~ (i = 1, 2, 3, 4) is an ~rbitrary orthonorm~l local tangent basis; the Weyl- 
tgicci form 

4 
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the  scalar curvature 

4 

(~.14) ~, = ~: R(~,, E~, ~ ,  ~,1, 
i , j=l  

etc. We shall spe~k also of the  various sectional curvatures analogous to those 
usual ly considered for Ki~hler manifolds, while these m ay  not  necessarilly be func- 
t ions on the  2-section only.  

Fur thermore ,  let us consider local o r thonormal  b~ses of the form {E~ JE~ 
----- E~.} (a : 1, 2), and  use them to define forms represent ing the  first Chern class 
of M. First ly,  if we use the  un i t a ry  connect ion to this purpose,  we get as in [6] 

t ha t  the  form 

1 
(2.15) C(Ax, ~) = ~ ~ , 

which we call the  unitary Chern form represents  the first reM Chern class of M. 
Secondly,  if we use the Weyl  connect ion which is also compatible  with the com- 

plex s t ruc ture  of M, we get by  the  same method [6] the  form: 

which represents  the  complex first Chern class of 3/1 ". Bu t  f rom (2.9) we have~ 
because of the  skew-symmetry  of /~(~) in its two first arguments ,  

(2.17) S(E~, ~ ,  x ,  ] ~ ) = - - � 8 9  Y), 

whence we deduce tha t  (2.16) is cohomologous with the real Weyl-Chern form 

1 

and this also represents  the  first Chern class of M. 
I t  is worthwhile not ing tha t  (2.9) yields 

(2.19) C(~)(X, Y) = C(X, ~[) -~ 1-~_dO(X, Y).  

Fur the rmore ,  there  is one addit ional  interest ing in terpre ta t ion  of C(c)(X , :Y): 
namely,  it  represents the  Chern class of the  cont ravar ian t  holomorphic canonical 
bundle  of M, while the curva ture  of the Chern connection of this canonical bundle  
will be - - 2 z  V/--~IC(~). By  an easy computat ion,  this implies tha t  the  Ricci scalar 
of the  cont ravar ian t  canonical  bundle  of M [2] is given b y  

(2.20) tr ~ R(~)(E, E~.. Ez, E~.). 
%fl 
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3.  - C u r v a t u r e  a n d  t h e  K f i h l e r  c o n d i t i o n .  

How, we shall proceed with the  discussion of the  curva ture  propert ies  of com- 

plex surfaces. 
Le t  us begin by  transposing an iden t i ty  which has been established for the  

locally conformM Ki~hler manifolds by  T. I~ASHIWADA [8]. I t  refers to the  scalar 
cmwature  r of (2.14) and to the  invar iant  

4 
(3.1) r* -~- Z R(Ei, E~, JEi ,  JE~) , 

/,i=l 

where Ei  is un arb i t ra ry  or thonormM local basis. 

THEOREM 3.1. - The following relation holds on any Hermitian sur]aee 

(3.2) d~ r* - - = 2 ~ o ~ + I ~ I  ~ 

PROOF. -- Le t  us s tar t  with the  obvious relat ion 

(3.3) R(~)(JX~, JX2, Xs, Xd) = R(~)(XI, X~, Xs, Xd) �9 

By using (2.11) this yields 

(3.4) 2R(X,,  X2, X3, X,) - 2R(JX~, JX2, Xs, X,) = L(Xs, X~)g(X,, X~) - 

--  L(X~, X2)g(X~, X~) + L(Xd, X~)g(X~, X~) --  L(X3, X~)g(X,, X~)-= 

-~(x~, Jx~)Q(x~, :~) § L(x~, jx~)~9(x~, x~) - z(x , ,  JX~)~(x~, x~) § 

§ i (X3 '  0TX1)~r X2) § V {g(Xd' X~)g(X~, X~)- g(X~, X~)g(X,, X , ) -  

- y2(x,, x~)~9(x~, x~) § ~(x~, x~)~9(x~, x~)}. 

Now, if we take X1 = ~/~x i, X2 = ~/~x j, Xs-= ~l~x ~, X4 = ~/~x ~, where x i (i =- 1, 
2, 3, 4) are reM local coordinates on M, and then contract  with g~g~, w e  get after  
some technical  computat ions  the s ta ted relat ion (3.2). 

The invar iant  s will be called the  scalar curvature deject of M. 
Theorem 3.1 provides us with the  following interesting corollaries: 

COROLLARY 3.2. -- A compact Hermitian sur]aee with nonpositive integral scalar 
curvature  eie t (f <0)is a K hler surtaee 

PROOF. - I t  suffices to integrate  (3.2) over M and to compare the signs of the 
~'esults, 
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COnOLLA~u 3.3. -- I] the Riemannian curvature of a compact Hermitian surface M 
satisfies the K~ihler identity 

(3.5) R(JX, J~ ,  Z, W) = R(X, Y, Z, W) , 

M is a Kiihler surface. 

P~OOF. - This follows f rom Corollary 3.2 since the  hypothes is  implies ~-----0. 

CO~OLLA}~Y 3.4. - If  for every two holomorphic sections defined by the unit vec- 
tors X, ~, the l~iemannian sectional and bisectional curvatures of the compact Her- 
mitian surface M are related by 

(3.6) R(X, JX,  Y, J Y ) > R ( X ,  Y, X, Y_) 4- R(X, JY ,  X, J Y ) ,  

then M is a Kiihler surface, and we have the equality sign in (3.6). 

P~ooP.  - I i  we use in (3.1) a basis oi the  fo rm {E~, E~.}, we get because of the  

Bianehi  iden t i ty  for R 

(3.7) r * =  2 E R(E~, E~,, Ez, E~.) , 
or 

whence we can deduce 

(3.8) u =  5 [R(E~, EZ, E~, EZ) 4- R(E~, E~., E~, Ez.) -- R(E~, E~., Ez, E~.)] 4- 
a,f l  
+ Y [R(E~., Ep., E . ,  E~.) + n(E.,  ~ ,  E . ,  ~ )  -- R(~.,  E~, ~ . ,  Z~). 

a,fl 

l~ow, the  s ta ted  resul t  follows f rom (3.6) and  Corollary 3.2. 
I t  is also worthwhi le  no t ing  t h a t  fo rmula  (3.4) and  the  Bianchi  iden t i ty  for R 

are leading us to the  following re la t ion be tween  the  bisect ional  and  the  sectional 

cu rva tu re  of M:  

(3.9) I~(X, JX,  3{, J~)  = R(X, Y, X, Y) + R(X, JY ,  X, J~)  - 

-- �89 !v)[2L(X, Y) + L(Y, X) -~ L(JY,  JX)] ~- 

§ P.(x, ~)[2L(x, d];)--L(]:, j x )  § L( jy ,  x ) ] -  

-- E2L(X, X) -- L( Y, Y) -- L(JY, Jl~)]) -- [~ (i -- g~(X, ]~) -- 9~(X, 17)}, 

where X and  Y are un i t  t angen t  vectors.  

COrOLLarY 3.5. - A compact Hermitian surface of constant sectional curvature is a 
flat KO;hler surface. 
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PROOF. - Assume tha t  M has the constant  sectional curvature e. We cannot 
have c ~ 0 since M would be covered by S 4, and the lat ter  has no complex struc- 
ture. On the other hand,  it  is easy to get z ---- 8c, whence the stated result follows 
from Coroi]ary 3.2, in the case e<0 .  

Another interesting result  can be deduced from a theorem of A. GRAY [5]: 

THEORElV[ 3.6. -- Assume that the holomorphic sectional curvature o] a complete Her- 
mitian sur/ace satis/ies the condition 

(3.]0) R(X, JX, X, JX)> I~J '+ ~ (IX] = 1) 

/or some ~ > O. Then M is compact and simply connected. 

PROOF. - The proof proceeds like in the case of the locally conformal K~hler 
manifolds [15; Prop. 3.1]. First ,  we get from (2.1): 

(3 . ] ] )  ( v , J ) ( ] ~ )  = - �89 :F)A - -  � 8 9  :Y)B + �89 - -  � 8 9  

where A ~ -  JB. Then, we derive from here 

(3.]2) 

and the stated result follows from Gray's  theorem [5] mentioned above. 

I~E~ARKS. -- a) The example of the IIopf surface S 1 • S a proves tha t  Theorem 3.6 
does not  hold for 8 ----0 [15]. 

b) Formula  (3.12) yields the known result [4] tha t  a I Iermit ian nearly K~hler 
surface is K/~hler, and, also, tha t  a nearly Ki~hler locally conformal Ki~hler manifold 
is Ki~hler. Indeed, (3.]2) and ( V z J ) ( X ) :  O give a)2(X) -k 02(X)~-]co[~IX] 2, which, 
in turn,  yields [o~] : O if we sum it over X ~ {E~}, an orthonormal basis. 

4. - Unitary curvature and the Kfihler condition. 

We shall be considering now the curvatures of the Weyl  connection and of the 
uni ta ry  connection, and we begin by noticing the following simple result 

PRoPosI~IO~ 4.1. - A Hermitian surface is locally conlormal K~hler iH it satis]ies 
either one o/the conditions: i) /~(X1, X~, Xa, X~) ~ --/~(X~, X1, X3, X~); if) the Weft 
connection is eguia]/ine (volume preserving). 
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PROOF. - Formula  (2.7) proves t ha t  i) holds iff d~o ----- 0. Fur thermore,  formulas 
(2.7) and (2.13) yield 

(4.1) f~ = - 2 d ~ ,  

and, since 1)]7 = 0 is a classical condition for V to be volume preserving [12], the 

s tated proposition is proven. 
A more interesting result is given by 

THEORE~ 4.2. -- I] a compact connected Hermitian sur]ace M satis]ies 

(4.2) R(~)(x~, x~, x~, x,)  = n(~)(x~, x~, x~, x~) , 

M is globally conformal Kghler. I], moreover, R(~I satis]ies the tgiemannian Bianchi 

identity, then M is Kghler. 

P}tooF. - Let  us define the tenser 

(4.3) 55(x~, x~ ,  x~ ,  x , )  = R(o)(x~, x~, x~, x,) + 

R(~)(X~, X,,  Y, ,  X,.) + R(o)(X~, X~, Y~, X,) . 

Since R satisfies the Riemannian Bianchi identi ty,  we obtain from (2.9) 

(4.4) 255(x~, x~, x~, x~) = g(X~, x~) dco(x~, x,)  + g(x~, x~) d~(X~, X~) + 

g(X~, X~) d~o(X~, X ~ ) -  .O(Y~, X~) aO(X~, X~) -- ~(X~, X~) dO(Y~, X~) -- 

- ~2(X~, X,) dO(X, X,) .  

lqow let us consider local complex coordinates (z ~, 5 ~'} (2-----1, 2), and pu t  

~,o :-  co~-~ co", w ' =  ~o~ dz ~" , co"= 5o~ d5 ~ , (4.5) 

whence 

(4.6) 0 = V - - i ( o / - -  ~o"). 

I t  is by  (4.3) tha t  the local components of 55 are zero unless they  have two 
indices 2,/~, and two ~, fi, and that ,  actually,  the only (( independent ~> component is 

(4.7) 55a~ = g~.~ ~ - -  g~ ~eS~. 

Furthermore,  by  a classical computat ion [9], we can get 

(4.8) 2{_~(~)(x~, x~, x~, x~) - R(o~(x~, x~, x~, x~)} = 55(x~, x~, x~, x ,)  -- 

- :~(x~, x~, x , ,  x~) - 55(x~, x , ,  x~, x~) + :~(x~, x~, x~, x~), 
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which yields 

(4.9) R ( c ) ~ - -  R(c)o~ ~ ~ �89 ~- ~eoa) --  � 8 9  + ~7,eoa) --  

--  ~ g ~ ( ~ . ~ - -  ~co~) + � 8 9  ~ , ) .  

~ow, (4.2) implies the vanishing of (4.9). Then, by contracting in (4.9) with 
gT~ we get 

(4.10) d'~o"+ d%'= ~2 

for some function F, and where d' is the (1, 0)-type part of d, and d" the (0,1)-type 
part of d. ~oreover, if we apply to (4.10) the operator A, and use the formulas (1.4) 
and (1.8), we obtain ~0 = 0 i.e., 

(4.11) d'co" + d"o~'= 0 . 

On the other hand, let us contract in (4.9) ----- 0 with g~. This will provide us 
with a relation of the form 

(4.12) d'co"-- d"eo'= ~32, 

for some scalar function ~. Together  with (4.11), this implies 

- -  d ' % '  (4.13) d '~"--  ~ ,  = # ~ ,  

where a ----/~ is some scalar function on M, and, because of (1.9)., we deduce from 
here 

(4.14) d' ro' A d' ~o"-~ 0 . 

~ow, if we have d'w'va O, we obviously have 

(4.15) [ (d '~ ' )A(d"J )  > 0 
. 2  

M 

which~ because of (4.14) and (4.11), yields 

o < r ( a ,  (a,.,,) = = o ,  
M M 

i.e., a contradiction. 
Therefore, d'~o'-----d"eo"= 0, which, together with (4.11) implies dco ~0~  and, 

consequently, M must be locally conformal K~hler. But then, as we proved in [16; 
Prop. 3.3], M is, in f~ct, globally con:formal Kfi3aler~ q.e.d. 
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The second par t  of Proposit ion 4.2 has the hypothesis  55~Zo~ 0 i.e., in view 
of (4.7) 

(4.16) g~9 3 o ~ - -  g~7 ~o(~ = 0 .  

By  contracting with g-~, this yields d'co"= 0, whence also d'%'-~ O. 
Now, since the Bianchi ident i ty  implies (4.2), as in classical ~ iemannian  geom- 

e t ry  [9], we know tha t  M is locally conformM K~hler. But  we proved in Theorem 2.1 
of [16] tha t  a compact locally cop_formM K~hler manifold with d ' % ' =  0 is a K ih l e r  
manifold q.e.d. 

COROLLARY ~.3. -- A compact Hermitian sur]ace with a vanishing curvature R(~) 
is a liar K~ihler sur]ace. 

I~E~L~RK. -- As a mat ter  of fact ,  formula (4.7) yields a stronger result, namely 
tha t  a compact Hermi t ian  surface M which satisfies the condition 

(4.17) R(c)~o7 ~ R(c)~7o; 

is a Kih le r  surface. Indeed,  (4.17) is equivalent to 

which means d'w"~- 0, hence d"~o'= 0 as well. But ,  by  Theorem 1 of [10, p. 754] 
every holomorphic 1-form of a compact surface is closed, whence d~o'= 0. Then, 
we easily deduce d o ) =  0, and we see tha t  M is locally conformM Xih le r  with 
d ' % ' =  0, i.e. M is Xih le r  as in [16, Theorem 2.1], q.e.d. 

5. - Curvature and plurigenera.  

In  this section, we shall consider some relations between the curvature,  the Chern 
numbers,  and the plurigenera oi a compact Hermit ian  surface M. 

TttEORE~ 5.1. -- Assume that M is a compact Hermitian sur]ace with non-negative 
but not identical zero unita~y holomorphic bisectional curvature. Then the ]irst Chern 
class ci(M) is nonnegative, M has vanishing plurigenera and no exeeptiona~ curve. 

PROOF. - The stated curvature  hypothesis  means 

(5.1) R(c)(X , JX ,  Y, JiV)>O and , 0 ,  

whence, by  (2.15), C(o)(X, I 7) is a nonnegative (1, 1)-form. Hence cl(M)>~O, and M 
enters into the class of surfaces classified by Theorem 3 of [18, p. 224]. 
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5foreover, f rom (5.1) and (2.20) we get tha t  k~>0,  k ~  0, where /CM is the l~icci 
scalar of the contravariant  canonical bundle K*(M). Since the  Rieci scalar of 
(K*(M)) ~ is ink, ,  M has vanishing plurigenera by [2, Corollary 2, p. 124]. 

Let  us also note tha t  c~(M)>O implies c~(M)>~O. ~ o r e  precisely, if we set 
C(~)(X, Y ) =  C(~)(X, JY) ,  we get a positive semidefinite I termit ian  form. Then, 
there is a basis {E~, E~.} which diagonalizes C(~), and with respect to which we 
have [6, Theorem 3.1, p. 467] 

(5.2) C~o) (E~, E . ,  E~, 1~2.) --- 2 C(~)(E~, E .  ) (J(~)(E2, E2.)/> 0 .  

Finally,  the non-existence of exceptional curves can be proven exactly as in 
the K~hlerian case [7, Lemina 6, p. 495], with the only difference tha t  the Gauss 
equation (7) of [7, p. 494] should be replaced as follows: Let  C be a regular curve 
in M, and X, Y tangent  vector fields of C. Then we have a decomposition 

V(c)x Y ~- V' x Y -~ b(X, Y) 

into a tangent  and a normal par t  with respect to C, and it easy to see tha t  V' is 
nothing else than  the Levi-Civita Connection of C. This decomposition yields 

R(o)(x, j x ,  x ,  JX) = . ~  + 2lb(X, x)]  ~ , 

where Ka is the Gaussian curvature of C, and this is the formula which we shall 
use instead of [7, (7), p. 494]. 

Theorem 5.1 is thereby completely proven. 

I~E)L~KS. -- 1) I t  follows tha t  the surfaces which satisfy the hypotheses of Theo- 
rem 5.1 should be divided into two classes: 

a) Algebraic surfaces. These surfaces will be found among the algebraic sur- 
faces without  exceptional curves enumerated by Theorem 3, p. 224 of [18]. In  par- 
tieular, here we have the compact Hermit ian surfaces with strictly positive holo- 
morphic bisectional un i ta ry  curvature. Indeed, in this case we have v~(M)> O, 
and M is an algebraic surface by [10, Theorem 9, p. 757]�9 ~[oreover, in this case 
cl(M) > O, and, since M has no exceptional curve, we get from Theorem 4 of [18, 
p. 225] t ha t  M is biholomorphically equivalent either to CP ~ or to C P I •  CP 1. Of 
course, CP ~ satisfies the  hypotheses of Theorem 5�9 but  it is an open question to 
know whether CPI• CP ~ admits  a Hermit ian metric of positive holomorphic bisec- 
t ional curvature. Note tha t ,  if it  admits  one, this cannot be a Ki~hler metric since 
CP~• CP ~ is not equivalent to C2 ~-~. Note also the parallelism between this open 
question and the  famous unsolved Hopf problem as to whether S ~ • S ~ carries a 
Riemann metric of positive sectional curvature. 

b) Nonalgebraic surfaces. Then the  surface belongs to the class VI I  of the Ko- 
daira classification [10], and it has necessarilly c~(M) ~ O, bl(M) ~ 1, z(M) ----- 0 [18, 

2 - . d n n c t t i  g i  M a t e m a t i c a  
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p. 221]. For  example, the t top i  surface S ~ • S 8 with its na tura l  locally conformal 
Kiihler metric [3, 13] can be seen to have a nonnegative and nonidentical  zero 
holomorphic bisectional un i ta ry  carvatv_re. (This follows easily ~rom the expression 
of its un i t a ry  curvature  given in [3, p. 167].) 

2) If  M is a locally coniormal l~i~hler manilold of an arbi t rary  dimension, 0 of 
(2.18) belongs to the  conformal local I ~ h l e r  metrics and, hence, it  has the type  
(1~ 1). Then, the same proof of [6] for Formula  (5.2) can be applied to ~ and we 
deduce as in [6]: 

:P~oPos1~rio~ 5.2. - I] M is a compact m-dimensional locally conformal Kiihler 
mani]old, and i] its local con]ormal KghIer metrics have nonnegative (nonpositive) 
holomorph@ bisectional curvatur6 the Chern number c~( M)~ ((-- 1)" c~( M) )i s nonnegative. 

l~ext, in order to relate plurigenera and lgiemannian carvature~ we shall prove 

TttEORElVl 5.3. - The relation 

(5.3) 

holds good on any sur]ace M. 

PRoof.  - Formula  (2.11) yields for the  basic vectors 

(5.4) 

Using this resnlt in (2.20), we obtain 

(5.5) 

.+I_~,[Z~(E~,,Ec,)_+_ Z(E~,.,E~,.) ] [~ 
2~  2 

The first te rm here is r*/2 in view oi (3.7). 
The second term can be computed as follows. Since E~. ~ J E ~  the vectors 

F~ = U~(s~-~ v%-f s~.) , & =~--~ (2= + ~/L-f E~.) 

define a basis of elements ol the type  (1, 0) and (0, 1), and we have 

dO(2~, ~ )  = V Z  1 ~ d0(a=, ~ . ) .  
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:Now, ff we go over to the  basis ~/3z ~, ~/~5 ~, we get 

(5.6) dO(E~, E~,.) -~ - -  v/~- i g,~(dO)~ = - -  A dO 
r162 

where, as usual  A = i(/2). 
At  this point ,  we shall use a commuta t ion  formula,  which we established for 

locally conformal l ~ h l e r  manifolds in [14], and which is t rue  in the  same way for 
surfaces as well: 

(5.7) [A,d]=5 a + ( n - p ) e  ~ + e A  . 

Here  e ( . ) =  coA., e -~  i(co), C is the usual operator  of Hermi t ian  geometry  [17], 
n ~ dim~ M, and p : deg ~, where ~ is the form on which (5.7) is acting. (~o te  
also a change of the  sign with respect to [14], explained b y  t h e  present  sign con- 
vent ion  for [2.) 

By  applying (5.7) to (5.6) we get 

(5.s) Z d0(E~, E . )  = ~ ~ + 1~[ ~ . 

Final ly,  the  th i rd  t e rm of (5.5) will be computed  by  (2.8), which yields 

(5.9) [L(E:, E )  + L(E:., E : . ) ]  ---= �89 ~ -  ~ .  
ot 

17ow, Theorem 5.3 follows f rom the formulas (5.5), (5.8), (5.9), and (3.2). 
Formula  (5.3) yields a generalization of a theorem proved b y  YAv [18] for 

K~hler surfaces: 

TItEORE~ 5.4. - -  Let M be a compact complex surface which admits a distinguished 
non-Kdhter Hermitian metric with a non-negative integral Riemannian scalar curvature. 
Then the surface M has vanishing plurigenera. 

PnooF.  - Recall  f rom Section 1 tha t  the  Hermi t ian  metr ic  g is called distinguished 
if &o = 0. I f  this is the case, the eccentricity/unction of g is fo = 1 [2], and we get 
f rom (5 .3 ) tha t  the ]undamental constant [2] of the  cont ravar iant  canonical bundle is 

M M 

Then,  the  stated" result  follows f rom Gauduchon's  Plurigenera Theorem [2~ p. 136]. 
Le t  us note  tha t  a K~hler metric has w -~ 0 and is therefore  distinguished. In  

this case, YAu [18] proved  tha t  if fr>~0 then  ei ther M has vanishing plurigenera 
or the  integral  Chern class cl(M) is a torsion class. 
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C0n0LLARu 5.5. -- A compact Hermitian sur]ace whose See vector field B is a non- 
zero Killing vector ]ield~ and which has a non-negative integral Riemannian scalar 
curvature is a sur]ace with vanishing piurigenera. 

P~ooF. - B Killing implies ~o : 0, and the  result  follows f rom Theorem 5.4. 
I t  is ulso wor th  not ing the following more simple consequence of Theorem 5.3: 

THnoRE~ 5.6. - I] a compact non-KShler Hermitian sur]aee M saris]los the condi- 
tion r + r*>O~ then M has vanishing plurigenera. 

PnooF.  - :By combining the  formula.s (5.3) and (3.2), we obta in  

(5.10) kM= ~(r + r*) + �89 ~ , 

whence the resul t  follows f rom [2, Corollary 2, p. 124]. 
The above ment ioned results are relat ing l~iemannian curva ture  and plurigenera. 

Bu t  it  is also possible to relate  it  wi th  c~(M), indeed,  b y  (5.2) e~(M) is given b y  the 
integrat ion of a sum of products  oi un i t a ry  bisectional curvatures  like those defined 

by  (5A). 
:Now, for ~ =~ fl, (5.4) gives 

(5.~) ~(o)(Eat, ~at., ~ ,  E~.) = n(~at, ~ . ,  E~, E~.) + 1 ~10(~, ~ . ) ,  

a~d for ~ : fi, (5.r gives 

§ 2 {L(E~, Eat) § L(E~*, E~*) § dO(.Eo,, Ec,*) --I--o92]-~ } �9 

Here,  ~ t e rm  of the fo rm Z(X,  X) + .L(JX, JX)  can be compute4  as in [15]. 

Numely,  if we set 

)~(X, Y) = L(X,  J~:) --  L(JX,  ]~), 

if we explici tate  this by  (2.8), and use (3.11), we obta in  

~(x, ]~)= l~l~(x, ]~)- �89 :~) + dO(X, : g ) -  ~ ( J X ,  :~). 

This yields 

(5.13) L(X,  X) + L(JX ,  JX)  = --  ).(X, JX)  = 

= [~]~[X[ 2 -  �89 - -  �89 --  dO(X, J X ) ,  

and f rom (5.12) we obtain 

at ~ Ea t*]  = (5.14) R(~)(Eat, •at., E , n(Eat, E . ,  ~at, Eat.) + ~[l~l ~ -  ~2(zat)-  ~(Eat.)] 
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Furthermore,  f rom (5.11), (5.13) and (3.9) we get 

(5.15) n(o)(E~, ~o., ~ ,  ~ . )  = n(E~, ~ ,  ~ ,  ~ )  + n ( ~ ,  ~ . ,  ~ ,  ~ . )  + 

d0(~, ~ . )  + L(~ ,  ~ )  - l~l ~ + i~(z~) + ~ ( ~ . )  (~ ~ ~). 

:Now, (5.14) and (5.15) give us the relation 

(5.16) 2.c(o)(~, ~ . )  = R(E~, ~.,  ~ ,  E~.) + R(E~, E~, ~ ,  ~) + 

n(~, ~. ,  ~ ,  ~.)-~l~l  ~ + d0(~, ~.) + (v~o~)(~) + �89 

where g ~ f i ,  and C(O(E~, EZ.) are the factors of the formul~ (5.2). 
As a consequence of these computat ion we obtain 

PI%OPOSITIOI~ 5.7. - Let M be a complete Hermitian sur/ace which satis/ies the 
/ollowing conditions: i) dO (X, JX)>~O and (Vxco)(X)>0 /or every tangent vector X;  
ii) the sectional curvature o/ M is > 1~o[2/4 + ~ for some (5 > O. Then M is a compact 
simply connected algebraic sur/aee o/ vanishing plurigenera and with e~(M) > O. 

PImOF. - Indeed,  M is compact and simply connected in view of Theorem 3.6, 
and it has k ~ >  0, e~(M) > 0 because of the formulas (2.20), (5.2), (5.16) and the 
hypotheses i) ~nd ii). All the conclusions follow then  easily. (In particular, M is 
~lgebraie by  Theorem 9, p. 758 of [10].) 

I~E)IAnKS. -- 1) One can see tha t  hypothesis i) holds, in particular,  if the Lee 
field B is Killing stud ~nulytic. Indeed, B Killing implies (Vx~o)(X) = 0. On the 
other hand,  B Killing and analyt ic  implies the vanishing of the Lie derivative 
L ~  = 0, and, since Ls = i(B)d + di(B), this means 

Iop]~.Q --  cpAO + dO ----- O , 

whence dO(X, J X )  = i~l~IXt ~-  ~ ( x )  - co~(JX)>O. 

2) Let  ns also note tha t  the metric of M of Proposition 5.7 is necessarily 
distinguished since (Vxop)(X) >O yields &o >0,  which implies 30~ = 0 by an integra- 
t ion over M. 
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