
Some Deadlock Properties of Computer Systems

RICHARD C. HOLT

Unwers~ty of Toronto,*
Toronlo, Onlarzo, Canada

Several examples of deadlock occurring in present day computer systems are
given Next, there is a discussion of the strategms which can be ~sed to deal
with the deadlock problem A theory of computer systems is developed so that
the terms "process" and "deadlock" can be defined. "Reusable resources" are
introduced to model objects that are shared among processes, and "consumable
resources" are introduced to model signals or messages passed among processes. Then
a rumple graph model of computer systems m developed, and its deadlock propertms
are investigated This graph model unifies a number of previous results, leads to
efficient deadlock detection and prevenUon algorithms, and ~s useful for teaching
purposes.

Key words and phrases: deadlock, deadly embrace, knot, interlock, pre-empuon,
resource allocation, operating system, graph reduction

CR categorzes: 4 31, 4.32

1. COMPUTER SYSTEMS AND DEADLOCK

In this paper we present a simple graph
model of computer systems and investigate
its deadlock properties. This model unifies a
number of previous results, leads to efficient
deadlock detection and prevention algo-
rithms, and is useful for teaching purposes.

Deadlock is the situation in which one or

more processes in a system are blocked for-
ever because of requirements tha t can never
be satisfied. Tha t is, deadlocked processes will
remain blocked until special action is taken
by some "external force" such as the opera-
tor or the operating system.

Let us consider a simple example of dead-
lock which can occur when there are two
processes, P1 and P2, and two resources, R1
and R2. Assume tha t a resource cannot be
released by (or pre-empted from) a process
waiting for a request. Suppose R1 has been
assigned to P1, and R2 has been assigned to
P2. Now suppose P1 requests R2 and, P2
requests R1. The result is tha t P1 and P2
are deadlocked.

*Depar tment of Computer Scmnce and Com-
puter Systems Research Group.

To a large extent, studying deadlock
means s tudying the logic of process inter-
actions in computer systems. At present, our
ability to build large, reliable computer
systems is something less than satisfactory;
this situation can be at t r ibuted to our lack
of understanding of how the integral parts
of such systems interact. Examples of inter-
actions among processes leading to system
failure from deadlock have been described
by various authors [9, 11, 13, 21]. I t is hoped

tha t this paper will make the problem of

deadlock easier to understand and analyze,

thereby improving our ability to build reli-

able computer systems.
This paper is organized in the following

fashion. Section 2 gives examples of deadlock

in present day computer systems. This is

followed by a listing of the methods avail-

able for handling the deadlock problem. In

Section 4 we present a theory of computer

systems so tha t terms such as "process"

and "deadlock" can be defined. Then, "re-

usable resources" are introduced to model

physical objects (or objects behaving like

physical objects) which are shared by proc-

Computing Storeys, Vol 4, No. 3, September 1972

180 • R. C. Holt

CONTENTS

1 Computer Systems and Deadlock 179-180

2 Examples of Deadlock m Current Systems 180-181
3 Deadlock Strategies 181-182
4. Basra Defimtlons 182-183

5 An Example of a Simple System 183

6 Resources m Computer Systems 183-185
7 Some Defimtlons from Graph Theory 185-186

8 General Resource Systems 186-188
9. Necessary and Sufficmnt Condltmns for Deadlock

188-190

10 General Resource Systems with Single Umt
Requests 190-192

ll Consumable Resource Systems 192-193
12. Deadlock Detection in Reusable Resource Systems

193-194

13. Deadlock Prevention in Reusable Resource
Systems 194-195

14 Conclusion 195
References 195-196

Copyright © 1971, Association for Computing
Machinery, Inc General permission to republish,
but not for profit, all or part of this material is
granted, provided that reference is made to thin
publicatmn, to ~ts date of issue, and to the fact
that reprinting prtvdeges were granted by per-
mission of the Association for Computing Ma-
chinery.

esses, and "consumable resources" are intro-
duced to model messages or signals ,passed
among processes. Section 8 presents a simple
graph model of processes interacting via
reusable and consumable resources. This is
followed by development of necessary and
sufficient conditions for detection and pre-
vention of deadlock for various special cases
of the general model. Using these conditions,
efficient algorithms are developed for the
detection and prevention of deadlock.

2. EXAMPLES OF DEADLOCK IN CURRENT

SYSTEMS

One of the major advantages provided by
operating systems is the ability to share
resources among processes. Whenever re-
sources can be requested and held by proc-
esses, deadlock is a potential problem; thus,
the operating system designer should be well
acquainted with solutions to this problem.

One might argue that deadlock is of little
interest in current operating systems, and
that the problem is apparently solved be-
cause it is seldom observed. It is true that
deadlock caused by competition for devices,
such as tape and disk drives, has been pre-
vented by effective ad hoc procedures. (See
[9] for a discussion of such procedures used
in OS/360.) However, it is not at all obvious
that these ad hoc methods are optimal;
further work is required to clarify exactly
what methods are possible and which are the
least costly.

In spooling systems, such as ASP/OS/360
[16], deadlock sometimes occurs because of
competition for spooling space on the disk.
The problem arises when the spooling space
becomes completely filled with input records
for jobs waiting to execute and with output
records for jobs not finished executing. There
is no way to recover the spooling space
occupied by a partially executed job (at
least not in ASP/OS/360); the only way to
recover from such a deadlock is to restart
the system. The somewhat crude ad hoc
solution to this problem is to prohibit (man-
ually) the spooling of new jobs once the
utilization of spooling space becomes too
high, say above 80 % utilization. I t is obvi-

Computing Storeys, Vol 4, No 3, September 1972

Some Deadlock Properties of Computer Systems • 181

ous that this solution is costly in terms of
idle spooling space, and it is not obvious that
this solution approaches being optimal

Deadlock caused by faulty synchroniza-
tion of processes is still not well understood.
(See Saltzer's discussion of the lost wake-up
problem [23], and Rappaport 's discussion of
why the original design of Block/Wake-up
in MULTICS caused deadlock [21].) Dead-
locks caused by faulty synchronization of
processes can and do occur in systems such
as OS/360. The current solutions to these
problems are typified by the following two
examples:

1) If a job in OS/360 begins waiting (via a
Wait macro [13]) for an event, the system
has no way of knowing if the event will
ever occur. While the job is waiting for
the event to occur, all resources allocated
to the job, including core memory, will
remain idle. To prevent waiting forever,
OS/360 allows an arbitrary absolute limit
of 30 minutes waiting time before canceling
the job [15]. Why 30 minutes and not 5
minutes or 50 minutes?

2) The Enq-Deq facility in OS/360 allows
processes to gain (by Enq) exclusive con-
trol of a resource, and then to release it
(by Deq) [13]. The simple example of dead-
lock presented in Section 1 can occur using
Enq-Deq and goes undetected by the
operating system, thereby allowing dead-
locked processes, together with the re-
sources they hold, to remain idle for an
indefinite amount of time.

These two examples illustrate the fact that
in OS/360 methods of deadlock detection
are, at best, rudimentary.

With the introduction of parallel proc-
esses, and operations to synchronize these
processes in high-level languages such as
P L / I [14], a large community of users has at
its disposal the means to deadlock the proc-
cesses. A hostile user of an OS/360 system
has only to submit the following three-line
P L / I program to cause a deadlock:

REVENGE: PROCEDURE OPTIONS(MAIN,TASK),

WAIT(EVENT);

END REVENGE;

The only executable statement in this pro-

gram is " W A I T (E V E N T) ; " , which causes
the program to begin waiting for an event
which will never occur. The user will not be
charged for CPU or input /output use because
the program employs neither. However, all
resources allocated to this program, such as
the core it occupies, will remain idle until the
deadlock is removed by the operating system
or by a keen-witted operator.

3. DEADLOCK STRATEGIES

In any computer system where processes
share resources or pass signals, there must
be a strategy, stated or not stated, to handle
the problem of deadlock. We can charac-
terize these strategies as belonging to one of
three classes.

Prevention. The system is designed so that
deadlock is not possible. (In terms of the
definitions given in Section 4, the system is
designed so that it is "secure" from dead-
lock.) A system which is not secure from
deadlock can sometimes be made secure by
prohibiting operations which may lead to
deadlock. Habermann's policy of using maxi-
mum claims (see Section 13) is an example
of such a prevention strategy.

Detection. Deadlocks can occur, but they
are detected when they happen. When a
deadlock is detected, the system can recover

by terminating the deadlocked processes or

by pre-empting resources from processes.

This strategy can allow higher resource

utilization than is possible when deadlock is

absolutely prevented, and it should be used

when deadlock is not too frequent and re-

covery is not too expensive. The algorithms
given below should make deadlock detection

practical in many cases where deadlock goes
undetected in current systems. This strategy

has not yet been used widely, but it offers

the distinct advantage of a "soft fail" over

the next strategy.
Crash. Deadlocks are possible and are not

automatically detected. I t is the responsi-

bility of the operator to decide that a dead-
lock has occurred and to take steps to remove

the deadlock. One might name this the "no
s t ra tegy" strategy. However, this name is a

Computing Smveys, Vol. 4, No 3, September 1972

182 • R. C. Holt

bit too unkind because this strategy saves

the time and space required by deadlock

prevention and detection algorithms.

The methods of handling the deadlock

problem which are discussed below are

examples of prevention and detection strat-
egies.

4. BASIC DEFINITIONS

In order to investigate the problem of dead-

lock, we need to understand exactly what is

meant by the terms "sys tem" and "process."

We define a system as a pair (Z, H) where

is a set of states { 3, T, U, V, W, . . . }, and

II is a set of processes {P1, P2, P 3 , . . . }.

(We do not insist tha t ~ and 1I be finite

sets. In the system introduced in Section 8,
is infinite and H is finite.) Each process P,

is defined as a mapping from the system

states into the subsets of system states.

Figure 1 illustrates a system whose states

are {3, T, U, V} and whose processes are

{P1, P21 . In this system, process P1 maps

state 3 into {T, U}. We may interpret this
to mean that when the system is in state S,

process P1 may change the state to either
T o r U.

If process P, maps state S into a subset of

containing state T, then we write

1

Fro. 1 Example of a system m which process P2
can deadlock. The set of states is ~ --~ [S,T,U,
V}. and the set of processes is II ~-- [P1, /)2} .

3 $) T.

(Read "process P~ takes 3 to T.") We call

the change of state from S to T an operation
by process P,. Operations in Figure I include

the following: S 1 T, S 1 U, T 1 3,

T 2 S, T 2 V. If the system allows the

following sequence of zero or more changes

of state:S-~T,T~ U,...,V--X W, then

we write

3) W .

For example, in Figure 1, 3 1 T and T 2 V;
$

thus, 3 --~ V.
The notion of "processes" in computer

systems is well known [5, 12, 18, 23]. Our
definition is noteworthy for two reasons.

First, the definition is simple and precise,

yet convenient for our purposes. Second, our

definition allows processes to be nondeter-

ministic; for example, in Figure 1 process P1

can change state 3 to either T or U. We may

interpret this nondeterminism to mean tha t

we may not be able to know (or may not
even wish to know) exactly what each proc-

ess will do next. For example, we may know

that process P2 is presently capable of either

requesting resource R1 or releasing resource
R2, but we may not know which operation
P2 will actually execute.

When process P, can execute no operation,

we say P, is blocked; if P, will never again

be able to execute an operation, we say P, is
deadlocked. Formally:

Process P, is blocked in state 3 if there

exists no state T such that 3 / T.
Process P~ is deadlocked in state 3 if for

all T such that S --~ T, P, is blocked in
T.

In Figure 1 process P2 is blocked (but not
deadlocked) in state 3, and process P2 is
deadlocked in states U and V.

From these definitions it follows that
process P, is not deadlocked in state 3 if and

$

only if there exists T such that S -~ T and
process P, is not blocked in T.

If one or more processes are deadlocked in

Computing Surveys, Vol 4, No. 3, September 1972

Some Deadlock Properties of Computer Systems • 183

state S, then we say S is a deadlock state. I f
all processes are deadlocked in S, we say S
is a total deadlock state. In Figure 1, U and
V are deadlock states, but there are no total

deadlock states.
We shall say tha t a state is secure if it

cannot change (in any number of operations)
to become a deadlock state. Tha t is:

State S is secure if for all T such tha t

S -* T, T is not a deadlock state.

We shall say a system is secure if i t contains

one or more secure states.
The lemma given below follows immedi-

ately from the preceding definitions.

Suppose S --~ T. I f S is a deadlock state,
then T is a deadlock state. I f S is a
secure state, then T is a secure state.

Thus, deadlock and security are "perma_
nent" conditions.

The definitions given in this section can
be applied in various situations; for example,
a process might be a production in a context-
free grammar, or a set of transitions in a
Petr i net [10], or a chessman on a chessboard,
or a vector in a vector addition system [17].
In the following sections, we shall apply
these definitions to models of computer
systems.

5. AN EXAMPLE OF A SIMPLE SYSTEM

We shall now show how these definitions
can be used in a system consisting of two
processes tha t share two identical units of a
resource. Assume tha t each process is able to
request only one unit of the resource at a
time, and tha t a process holding units can
release only one unit at a time. In this sys-
tem, each process is in one of the following
states:

0) The process holds no units and has re-
quested no units.

1) The process holds no units and has re-
quested one unit.

2) The process holds one unit and has re-
quested no units.

3) The process holds one unit and has re-
quested one unit.

4) The process holds two units and has re-
quested no units.

(We can assume a process will not request
another unit when it holds two units, be-
cause there is a total of two units.) A proc-
ess can change states f rom 0 to 1 by re-
questing a unit, from 1 to 2 by being allo-

cated a unit, from 2 to 3 by requesting a
unit, and from 3 to 4 by being allocated a
unit. A process can change states from 2 to 0
or from 4 to 2 by releasing a unit.

We represent each s tate of the system as
Sj~, where j is the state of process P1 and k
is the state of process P2. For example, if the
s tate of P1 is 1 (P1 holds no units and has

requested one unit) and the state of P2 is 4
(P2 holds both units), then the system state
is S14. The possible changes of s tate in this
system are illustrated in Figure 2.

In Figure 2 the vertical edges are opera-
tions by P1, and the horizontal edges are
operations by P2. Edges directed to the
right and edges directed down represent re-
quests and acquisitions of units; edges di-
rected to the left and edges directed up rep-
resent releases of units.

Process P1 is blocked whenever it has
requested a unit but no more units are avail-
able. For example, in system state S14 proc-
ess P1 has requested a unit, but both units
have been allocated to process P2. In Figure
2 we can tell tha t P1 is blocked in S14
because the node S14 has no edges labeled
' T ' directed away from it.

Deadlock occurs in this system when one
unit of the resource has been allocated to
each process and each process requests one
more unit. This situation occurs in system
state $33. State $33 is a total deadlock state
because both processes are deadlocked in
$33. In Figure 2 we can tell that $33 is a
total deadlock state because no edges are
directed away from node $33.

Since deadlock state $33 can be reached
from any other state there are no secure
states in the system.

6. RESOURCES IN COMPUTER SYSTEMS

Processes in computer systems can interact
explicitly, for example, by exchanging mes-

Computing Surveys, Vol. 4, No 3, September 1972

184 •

PI hol,ls O,

needs 0

R. C. Holt

P2
holds

needs

Oo
0

P2

holds O,

nee,ls I

P2

holds 1,
needs 0

2

I

P2
holds 1,

needs I

P2

holds 2,

needs 0

2

I

P1 holds O,

needs I

PI holds I,

needs 0

I/ T/2 1 1 ! 1

II ~ I

PI hclds I ,

needs I

11 /1 1

Pl holds 2,

needs 0

F i G 2 A s y s t e m w i t h t w o p r o c e s s e s

sages, or zmphc~tly, for example, by compet-
ing for physical objects such as tape drives.
Either type of interaction muy cause
blocking of processes. We shall use the te rm
"resource" in a special sense to mean any

object which may cause a process to become
blocked. "Reusable resources" will be used
to model competi t ion for objects, and "con-
sum~ble resources" will be used to model
exchange of signals or messages.

Both types of resources consist of ~ num-
ber of identical units which can be requested
by processes. A process requesting units is
blocked until enough units are available to
satisfy its request; then the process can
acquire the requested units. A process which
is not waiting for a request can release units

2

I

I I I 1

l 2

a n d a r e s o u r c e o f t w o ~ d e n t i c a l u m t s .

of resources, thereby making more units
available.

Reusable resources have the following
properties: There is a fixed total number of
units of a reusable resource. Each unit of the
resource either is available (not assigned) or
has been acquired by (assigned to) a par-
ticular process. A particular unit of a re-
source can be assigned to, at most, one
process at a time. A process can release any
unit of a resource which the process has
acquired but not yet released (assuming the
process is not blocked waiting to acquire
more units following a request). Units can-
not be pre-empted; once a process has ac-
quired a unit, the unit will not become avail-
able until released by the process.

Computing Surveys, Vol 4, No 3, September 1972

Some Deadlock Properties of Computer Systems • 185

(The term "reusable resource" has been
borrowed from the term "serially reusable
resource" used in IBM literature [9, 13].
Murphy [20] and Russell [22] investigate
reusable resources whose units can be as-
signed to more than one process at a time.)
Some examples of reusable resources follow.

EXAMPLE 1. The physical devices of the
computer system, such as channels, core,
tape drives, drums, and disks, can be
reusable resources. The units of some of
these resources will depend on the alloca-
tion strategies of the computer system; for
example, disks may be assigned in units
of tracks, or cylinders, or even entire disks.

EXAMPLE 2. Certain information structures
shared by processes, such as records in a
file and linkage pointers for buffer pools,
are reusable resources. The processes must
request, acquire, and release access to
these information structures to guarantee
that the structures can be inspected or
updated without interference from other
processes. (As Dijkstra [5] puts it, at most
one process at a time should enter a "criti-
cal section" to inspect and update the in-
formation structure.)

Consumable resources have the following
properties: There is no fixed total number of
units of the resource. Every unit of the
resource is available; if a unit is acquired by
a process, the unit ceases to exist. Only a
process which is a producer of the resource
can release units of the resource; a producer
is allowed to release any number of units of
the resource at any time (assuming the pro-
ducer is not blocked waiting to acquire units
following a request). Any released units
immediately become available.

Some examples of consumable resources
are given below.

EXAMPLE 1. The card reader produces (re-
leases) card images that are consumed
(requested and acqmred) by some process,
probably the input spooling process. Thus,
card images are a consumable resource.

EXAMPLE 2. In many systems, external
interrupts are received by a special inter-
rupt handling process that interprets the

interrupt and passes a special type of mes-
sage to another process which is waiting
for tha t type of message. The interrupt
handling process then cycles back to wait
for the next external interrupt. The inter-
rupt handling routine consumes the ex-
ternal interrupts and produces messages
of various types. Thus, the external inter-
rupts and the various types of messages
are consumable resources.

The fundamental difference between reus-
able and consumable resources is that the
units of a reusable resource are never created
or destroyed, but only passed (requested and
acquired) from a pool of available units to a
process and then passed back (released) to
the pool. By contrast, units of a consumable
resource are created ("produced" or re-
leased) and destroyed ("consumed" or re-
quested and acquired).

7. SOME DEFINITIONS FROM GRAPH THEORY

The following definitions will be used in our
model of computer systems. A directed graph
is a pair (N, E), where N is a nonempty set
of nodes and E is a set of edges. Each edge in
E is an ordered pair (a, b), where a and b are
nodes in N. (For given nodes a and b, we
will allow E to contain more than one edge
of the form (a, b).) An edge (a, b) is said to
be directed from node a and du'ected to node b.
The graph is said to be bipartite if the set of
nodes N can be partitioned into disjoint
subsets l~I and RHO such that each edge has
one node in II and the other node in RHO.

A sink is a node with no edges directed
from it, and an isolated node is a node with
no edges directed to or from it. If the graph
contains edge (a, b), then node a is a father
of b and node b is a son of a. A path is a
sequence (a, b, c , . . . , r, s) containing at least
two nodes, where (a, b), (b, c) , . - . , and
(r, s) are edges. A cycle is a path whose first
and last nodes are the same. (Definitions
similar to the above are well known [2].)

I t follows easily from these definitions
that in a bipartite graph having no more
than one edge directed from given node a to
given node b, there are at most 2ran edges

Computing Smveys, Vol 4, No 3, September 1972

186 • R. C. Holt

FIG 3. An e x a m p l e of a b ipa r t i t e d i rec ted graph .

in E, where m and n are the numbers of
nodes in RHO and II.

The reachable set of node a is the set of all
nodes b such that a path is directed from a
to b. A knot is a nonempty set K of nodes such
that the reachable set of each node in K is
exactly set K. (We shall show that in certain
cases, the existence of a knot in a system
state graph is a necessary and sufficient con-
dition for deadlock.) I t can be shown that a
graph does not contain a knot iff each node
is a sink or has a path directed from it to a
sink.

Figure 3 illustrates a bipartite graph with
nodes {a, b, c, d} and edges t(a, b), (a, b),
(a, c), (c, d), (d, c)}. In this example, node b
is a sink, path (c, d, c) is a cycle, and set
{c, d} is a knot.

8. GENERAL RESOURCE SYSTEMS

In this section we shall define a formal model
of a system of interacting processes. Each
state of the system will be represented by a
directed graph having a node corresponding
to each process and resource. Interactions in
the system will be represented by edges
drawn from process nodes to resource nodes
or vice versa. To define the system we say a
general resource system is completely charac-
terized by:

1) a nonempty set of processes II = [P1, P2,
...,P~};

2) a nonempty set of resources RHO = {R1,
R2, . . . , R,} ;

3) a partit ion of RHO into two disjoint sub-
sets, a set of reusable resources and a
set of consumable resources;

4) for each reusable resource Re, a strictly
positive integer te, called the to~al units
of R~; and

5) for each consumable resource Re, a non-
empty subset of the processes which
will be called the producers of Re.

The set of states Z of a general resource
system is the set of all general resource
graphs for the system, which we define as
follows:

A general resource graph is a biparti te di-
rected graph whose disjoint sets of nodes are
I I = {P1, P 2 , . . . ,P~} a n d R H O = {R1,
R2, . . . , Rm}, together with a nonnegative
integer vector
available umts
process nodes
edges directed
will be called
directed from

(rl, r 2 , . . . , rm), called the
vector. Edges directed from
will be called request edges,
from reusable resource nodes
asszgnment edges, and edges
consumable resource nodes

will be called producer edges. Each general
resource graph must have the following
properties:

1) For a given reusable resource node Re:
a) the number of assignment edges di-

rected from Re cannot exceed the total
milts t3;

b) r~ (the available units) is equal to the
total units t~ minus the number of
assignment edges directed from R~;

c) for a given process node P~, the number
of request edges (P~, Re) plus the num-
ber of assignment edges (Re, P~) cannot
exceed the total units te.

2) For a given consumable resource node Re:
a) there is a producer edge directed from

Re to process node P, iff P, is one of the
producers of Re;

b) r, (the available units) is any nonnega-
tive integer.

Part, (lc) of this definition implies that a
process cannot request more than the total
units of a reusable resource. Par t (2b) implies
tha t a system having consumable resources

Computing Surveys, Vol 4, No 3, September 1972

Some Deadlock Properties of Computer Systems • 187

will have an (countably) infinite number of
states.

Figure 4 shows a state (a general resource
graph) of a general resource system. In the
figure, we have illustrated the fact tha t

reusable resource R3 has three total units
(t3 = 3) by drawing three subnodes inside
the node for R3. Thus, the available units
r3 of R3 is the number of units which do not

have assignment edges drawn from them.
We have illustrated the fact tha t consum-
able resource R2 has two available units by
drawing two subnodes inside the node for

R2. The producer edge (R2, P2) indicates
tha t P2 is the only process capable of re-
leasing umts of R2. (The subnodes are not

par t of the formal definitions and are drawn
only as a convenient way of representing the
total ~nd available units.)

The edges in Figure 4 can be thought of
as "waits for" relations. For example, the

edges from P2 to R1 mean tha t process P2 is
waiting for units of resource R1. We could
have drawn the edges in the opposite direc-
tion; in tha t case the edges would have rep-
resented "flow of units" relations. For
example, edges from R1 to P2 would have
meant tha t units of resource R2 must flow
(be assigned) to process P2.

The processes in a general resource system
map the system states into subsets of the
system states; we will specify these mappings
by describing the operations the processes
can execute. There are three types of opera-
tions: requests, acquisitions, and releases.

Essentially, the general resource graph (the
system state) xs changed: 1) by a request
operation to have more request edges; 2) by
an assignment operation to have fewer re-
quest edges and fewer available units; and
3) by a release operation to have more awi l -
able units. For system states S and T, we
define these operations as follows:

Requests. In state S if no request edges are
directed from node P,, then

S ~--)T

where S and T are identical except tha t in T
there are one or more request edges directed
from node P,.

Acquisitwns. In state S if there are request

Consumable
Resource

R2

Process

P5

Proc e s s

P2

Reusable
Resource

R1

Process
Pl

Reusable
Resource

R3

FIG 4 Example of a state in a general resource
system. R1 and R3 are reusable resources whose
total umts are tl ---- 2 and t3---- 3 R2 is a con-
sumable resource whose only producer is P2. The
available umts are ~1 = 1. r2 = 2, and T3 ---- 0
The state is not deadlocked because it can be re-
duced by P1, then by P2. and then by P3

edges directed from node P,, and for each

resource Re, the available units re is as large
as the number of request edges directed
from P, to R~, then

S - L T

where S and T are identical except tha t for
each request edge (P,, R~) in S: 1) r~ is de-
creased by one; 2) if Rj is a reusable resource,
then each request edge (P,, Re) is replaced
by an assignment edge (R , P,) ; and 3) if
R~ is a consumable resource, then request
edge (P , Re) is deleted.

Releases. In state S if no request edges are

directed from node P, and some edges (as-
signment or producer edges) are directed to
P , then

S A + T

where S and T are identical except tha t a t
least one resource R3 having one or more
edges (assignment or producer edges) di-
rected from R3 to P, has its available units
(re) increased; if Re is a reusable resource,
then there are deleted a number of assign-
ment edges (R , P,) equal to the number by
which re is increased.

From the definitions of these operations,
it follows tha t a process P~ is blocked if and
only if there is a resource node Re such tha t

Comput ing Surveys, Vol 4, No. 3, September 1972

188 • R . C. H o l t

S -1 -> T -1 -> U -1 -> V

Pl P1 Pl Pl

R1 R R 2

P2 P2 P2 P2

:FIG 5 Examples of operations m a general resource system The system consists of consumable re-
source R1 (whose only producer is process P1), reusable resource R2 (which has three total units),
and processes P1 and P2 Process P1 changes the state first by requesting one umt of each resource,
next by acquiring the two units, and finally by releasing three uplts of R1 plus the acquired unit of
R2 Process P2 is blocked in S because it has requested more umts than are available, but P2 is no
longer blocked in state V

the number of request edges directed from

P, to R~ exceeds r , i.e., when P, has re-

quested more units than are presently avail-

able.

Figure 5 contains examples of operations

in a general resource system. When the

system is restricted to having only reusable

resources, these operations are equivalent

to operations which Shoshani [24] developed

previously and independently for a matrix-

based model of computer systems.

9. NECESSARY AND SUFFICIENT CONDITIONS

FOR DEADLOCK

In Section 4 we defined the terms "system"

and "deadlock," and in Section 8 we gave

an example of a system, namely, a general

resource system. In this section we will use

these definitions to develop necessary and

sufficient conditions for deadlock in general

resource systems.

A process is deadlocked when there is no

way for the process to become not blocked.
Thus, if we are able to find some sequence of

operations which leaves a process not

blocked, then we have shown that the proc-
ess is not deadlocked.

We shall introduce sequences of "graph

reductions" as a method of testing to see if

processes are deadlocked. A graph reduction

(by a particular process Pc) corresponds to

the best set of operations which P, can

execute to help unblock other processes; this
is eqmvalent to forcing P, to release as many

units as possible.

In order to define reductions we need a

special symbol, O M E G A , which may be

thought of as an "infinitely large" positive

integer:

O M E G A is a symbol such that for

any integer ~, O M E G A ~ i and

O M E G A -F ~ = O M E G A - i =

O M E G A .

During reductions, we will allow the avail-

able units re of a consumable resource to

assume the value O M E G A . When a reduc-

tion assigns the value O M E G A to r~, this

can be interpreted to mean that enough

units of the resource could be released to

satisfy all subsequent requests. The defini-

tion of general resource graphs required that

each consumable resource R~ have a non-

empty set of producers; however, we shall

adopt the convention that if re = O M E G A ,

then Re may have no producers.

We define reductions as follows: A general

resource graph can be reduced by any process

Computing Surveys, Vol 4, No 3, September 1972

Some Deadlock Properties of Computer Systems • 189

node which is not an isolated node and which
is not blocked. The reduction by P~

1) for each reusable resource node Re, de-
letes all edges (P,, Re) and (R, P~) (for
each assignment edge (Re, P,) deleted, re
is increased by one); and

2) for each consumable resource node Re
a) decrements re by the number of re-

quest edges directed from P~ to Re,
b) sets r~ to OMEGA if P~ is a producer

of Re, and
c) deletes all edges (P , Re) and (Re, P,) .

We say the graph is completely reducible if a
sequence of reductions deletes all edges in
the graph. (See Figure 6 for examples of
reductions.)

Under the convention that a consumable
resource Re need not have any producers
when re = OMEGA, every reduction of a
general resource graph leaves another general
resource graph.

THEOREM 1. Process P, is not deadlocked in
a general resource graph S iff a sequence
of reductions applied to S leaves a state in
which P~ is not blocked.

ARGUMENT. First assume P~ is not dead-
$

locked in S. Then it must be that S --~ T
such that P~ is not blocked in T. Let SEQ
be the sequence of processes whose opera-
tions change S to T. SEQ can be modified
to describe a sequence of reductions which
changes S to a state in which P~ is not
blocked as follows: 1) delete each process
in SEQ that has an isolated node in S; and
2) delete all but the first occurrence of
each process in SEQ. I t can be shown that ,
from state S, any sequence of operations
by a given set of processes will result in,
at most, as many available units as would
a sequence of reductions by the processes
in the same set. Thus, each reduction by
a process in the modified SEQ sequence
will result in at least as many available
units as would the corresponding opera-
tion in the unmodified sequence. This
implies tha t each reduction by a process
in the modified sequence will result in
enough available units so that the suc-
ceeding process will not be blocked and
can be reduced. Hence, if P, is not dead-

locked in S, then S can be reduced to a
state in which P, is not blocked. Now
assume a sequence SEQ of reductions
changes S to state U in which P , is not
blocked. A reduction by any process Pe
can be "simulated" by an acquisition and
a release (or just a release) by Pj. Thus,
the sequence SEQ of reductions can be
"simulated" by a sequence of operations
which changes state S to T in which P, is
not blocked; hence, P, is not deadlocked
in S.

Theorem 1 means simply that if there is a
sequence of moves leaving P , unblocked,
then such a sequence can be found using
graph reductions. From Theorem 1, the
following corollary is easily proved:

COROLLARY 1. If a general resource graph
is completely reducible, then it is not a
deadlock state.

This follows from the observation that a
complete reduction deletes all edges, in-
cluding all request edges; thus, in the com-
pletely reduced state, no process is blocked.

Unfortunately, neither Theorem 1 nor its
corollary suggests a fast method of testing
for deadlock; the author knows of no better
deadlock detection algorithm than a near
exhaustive checking of the n! different pos-
sible reduction sequences. The reason a fast
deadlock detection algorithm has not been
found is that reductions involving consum-
able resources may decrease the available
units; consequently, the order of reductions
is important. In Sections 10 and 12 this
problem is avoided by imposing certain
restrictions on the model, and fast detection
algorithms are developed.

Now let us define an important type of
state for which there is a simple sufficient
condition for deadlock: An expedient state is
a state in which all processes having requests
are blocked. Any state which is not expedient
will become expedient if all possible requests
are granted.

Many computer systems use an "expedi-
ent" resource allocation strategy in which
all requests for available units are granted.
In such a system, units are assigned only
immediately following requests and releases,
and the system state is always expedient

Comput ing Sulveys, Vol 4, No 3, September 1972

190 • R. C. Holt

(except for the brief intervals before assign-
ments are made).

THEOREM 2. In a general resource graph:
1) a cycle is a necessary condition for

deadlock; and
2) if the graph is expedient, then a knot

is a sufficient condition for deadlock.
ARGUMENT. I f the graph contains no cycle,

then there must exist a linear ordering of
the processes which has the following
property: I f a path in the graph is directed
to P~ from P~, then P~ appears before P~
in the linear ordering.

I t can be shown tha t if processes having
isolated nodes are deleted from this order-
ing, then the ordering gives a sequence of
reductions tha t will completely reduce the
graph. Thus, if there is no cycle, then the
graph is completely reducible; hence, the
graph is not a deadlock state.

I f an expedient graph contains a knot,

then the processes in the knot are all
blocked waiting for units of resources in
the knot, and the resources in the knot
can have their available units increased
only by (blocked) processes in the knot.
Hence, all processes in the knot are dead-
locked and the state is deadlocked.

I f all possible requests have not been
granted, i.e., if the state is not expedient, the
general resource graph may contain a knot
and still not be a deadlock state. For exam-
ple, s tate T in Figure 6 contains knot {P1,
R2, P2, R1} and still is not a deadlock state.

S t a t e
P1

T State U
PI

R2 R2

State V

Pl

[3

[]
P2 P2 P2

FIG 6 Reduet,ons of a general resource graph.
(State T is identical to state T m Figure 5) R1
is a consumable resource, and R2 is a reusable
resource. State T is reduced by P1 to obtain U,
and U~s reduced by P2 to obtain V T is com-
pletely reducible because the reductmns delete
all edges, therefore, T Is not a deadlock state

The following corollary of Theorem 2 can

be proved using the graph properties of
knots.

COROLLARY 2. Suppose the general resource
graph is expedient. I f P , is not a sink and
no p'~th is directed from P, to a sink, then
process P, is deadlocked.

In the next three sections we shall show

tha t for impor tant special cases of general
resource systems, there are simple necessary
and sufficient conditions for deadlock, and
for security from deadlock.

10. GENERAL RESOURCE SYSTEMS WITH

SINGLE UNiT REQUESTS

We shall impose the following restriction on
the model.

Single Umt Requests. A process may re-
quest only one unit a t a time. In the general
resource graph this means tha t at most one
request edge may be directed from any

process node.
The restriction has the practical advan-

tage of simplifying the algorithms used to
implement request and acquire operations.

THEOREM 3. An expedient general resource
graph with single unit requests is a dead-
lock state iff it contains a knot.

ARGUMENT. Since Theorem 2 states tha t a
knot is a sufficient condition for deadlock,
we have only to show tha t when there are

only single unit requests, a knot is a neces-

sary condition for deadlock. I f the graph

does not contain a knot, then from any

blocked process's node there exists a pa th

directed to a sink, and such a sink is

necessarily a process node. Any such

blocked process can be shown to be not

deadlocked by showing tha t the graph call

successively be reduced by each process

on the path, starting from the sink and

working backward. Hence, when there is

no knot, no process is deadlocked and the

state is not deadlocked.

The following results are closely related to
Theorem 3. Let S be an expedient general
resource graph with single unit requests:

C o m p u t i n g Surveys , Vol 4, N o 3, S e p t e m b e r 1972

Some Deadlock Properties of Computer Systems • 191

1) S is not a deadlock state iff S is com-
pletely reducible.

2) Suppose different sequences of reductions
applied to S result in states which
cannot be reduced. Then all these re-
sulting states are identical.

3) Process P, is not deadlocked in S iff node
P, is a sink or has a path directed from
it to a sink.

(See reference [11] for discussion and proofs
of these results.)

The requirement for single unit requests
in Theorem 3 is essential, as is shown by the
following example. Consider a system having
two consumable resources R1 and R2 whose
only producers are P1 and P2, respectively.
Let us suppose that no requests are pending
and no units are available. Now suppose
that there is a multiple unit request by
process P1 for one unit of R1 and one unit of
R2. As a result, P1 will be deadlocked, but
the general resource graph will not contain
a knot.

Theorem 3 and its related results are

important because they imply that efficient

deadlock detection algorithms are available

for this special case of general resource sys-

tems.

Algorithm 1 can be used to detect if a

graph is a deadlock state by testing to see if

the graph contains a knot. The algorithm

works by successively making all fathers of

sinks into sinks; the graph will not have

contained a knot iff all nodes become sinks.

Algorithm 1 can be thought of as a simpli-

fied mechanism for successively reducing

the graph.

ALGORITHM 1. Determination of whether a
directed graph contains a knot. This can
be used to detect if an expedient general
resource graph with single unit requests is
deadlocked.
1. Do for each node Q on list of sinks;
2. Do for each father F of Q;
3. If F is not already on list of

sinks
4. Then add F to list of sinks;
5. End,
6. End;
7. Knots = (Not all nodes are now on

list of sinks);

Algorithm 2 can be used to determine if a
particular blocked process is deadlocked. I t
works by systematically tracing out all
paths leading from the process's node. The
process will not have been deadlocked iff
some path leads to a sink.

ALGORITHM 2. Determination of whether
blocked process P is deadlocked in an
expedient general resource graph with
single unit requests.

/*Switch D will tell if P is
deadlocked.*/

1. Set switch D to say P is deadlocked;
2. Initialize a list to contain only P;
3. Do for each node Q on list while D

says P is deadlocked;
4. Do for each son S of Q;
5. If S is a sink
6. Then set switch D to say P

is not deadlocked;
7. If S has not yet been added

to list
8. Then add S to end of list;
9. End;

10. End;

The maximum execution times of both
Algorithms 1 and 2 are proportional to the
total number of edges in the graph. This can
be shown by observing that the inner Do-
group of each algorithm is executed at most
once for each edge in the graph.

If more than one edge is directed from a
given node to another given node, then these
edges can be represented by a single edge
together with an integer giving the number
of edges represented. We will say this alter-
nate representation uses weighted edges.
Given that the graph uses weighted edges,
then the number of edges is at most 2ran
(see Section 7), and the maximum execution
times of Algorithms 1 and 2 are proportional
to ran. (m and n are the numbers of re-
sources and processes.) This fast execution
time means the algorithms can be used in
practical systems.

I t may be desirable in some systems to
test for deadlock continually, i.e., after each
operation which can cause a deadlock. I t
can be shown that if the system has only
single unit requests and if requested avail-
able units are immediately acquired, then

Computing Surveys, Vol. 4, No. 3, September 1972

192 • R. C.. Holt

the only operation that can cause deadlock
is a request for an unavailable unit [11].
Such a deadlock will necessarily involve the
requesting process; hence, continual dead-
lock detection can be accomplished by apply-
ing Algorithm 2 to any process requesting an
unavailable unit. This detection method has
been incorporated into a simple language
which is being used for teaching concurrent
programming I7].

Some of the overhead required by con-
tinual deadlock detection can be avoided by
testing for deadlock only occasionally, say
every 20 minutes, or when some process has
been bloeked for a suspiciously long time.
This occasional test can be accomplished
efficiently by Algorithm 1.

11. CONSUMABLE RESOURCE SYSTEMS

We shall now discuss another special case of
general resource systems, which we call con-

sumable resource systems, in which there are
only consumable resources. All interactions
in such systems are explicit; we may con-
sider that processes can interact only by
producer-consumer relationships.

We shall associate with each consumable
resource R~ a set of processes, called the
consumers of Re. We will assume that every
process is a producer or consumer of at least
one resource. We define a claim limited con-

sumable resource system as a consumable
resource system from which has been elimi-
nated each request by process P~ for resource
Re such that P~ is not one of the consumers
of R e.

R1

P2 P1

R2

FIG 7. Example of a clam1 hmlted graph for a
claim lnmted consumable resource system

We can now show how to characterize a
claim limited consumable resource system
by one particular graph, and how to deter-
mine if the system is secure from deadlock.
For a given claim limited consumable re-
source system, the claim limited graph is the
state of the system having: 1) zero available
units, and 2) a request edge (P , Rj) iff P , is
a consumer of R e.

(Part (2a) of the definition of general re-
source graphs in Section 8 describes the
producer edges in the claim limited graph.)
Figure 7 is an example of a claim limited
graph.

A claim limited graph completely charac-
terizes a claim limited consumable resource
system since from it we can determine the
processes, the resources, and the sets of
producers and consumers. For example, the
claim limited graph in Figure 7 shows that
the processes a r e / P 1 , P2}, the resources are
/R1, R2}, the producers and consumers of
R1 are /P1, P2} and IP2}, respectively,
and the producers and consumers of R2 are
[P1} and tP2}, respectively.

We can use the following theorem to
determine if deadlock is possible in a claim
limited consumable resource system.

T H E O R E M 4 . A claim limited consumable
resource system is secure iff its claim
limited graph is completely reducible.

ARGUMENT. Let the claim limited graph be
called V. First, it can be shown that any
sequence of reductions of V leads to a
unique graph which cannot be reduced.
I t can then be shown that V (now con-
sidered to be a state in the system) is not
deadlocked iff it is completely reducible.
The proof is completed as follows. I t is
assumed that V is not completely re-
ducible (thus, V is a deadlock state), and
it is shown that for any (supposedly)

$

secure state S, S ~ V. Then it is assumed
that s, sequence of reductions completely
reduces V, and it is shown that a similar
sequence completely reduces any state in
the system.

The claim limited graph in Figure 7 is
completely reducible by the sequence (P1,
P2). Hence, the system is secure; i.e., neither
P1 nor P2 can deadlock.

Computing Surveys, Vol 4, No 3, September 1972

Some Deadlock Properties of Computer Systems • 193

In theory, Theorem 4 could be used to
determine whether a simple computer sys-
tem could deadlock. In practice, the condi-
tion for security (complete reducibility of
the claim limited graph) is too strong and
could probably not be met. This means that
the processes in a practical system can avoid
deadlock by regulating their use of resources
according to some knowledge of the system
state; however, the theory makes no assump-
tions about such "intelligent" behavior by

processes.

12. DEADLOCK DETECTION IN REUSABLE

RESOURCE SYSTEMS

We shall now consider the special case of
general resource systems, which we call
reusable resource systems, in which there are
only reusable resources.

THEOREM 5. Let S be any state of a reusable
resource system.
1) S is not a deadlock state iff S is com-

pletely reducible.
2) Suppose different sequences of reduc-

tions applied to S result in states
which cannot be reduced. Then all
these resulting states are identical.

ARGUMENT. Part (2) follows from the obser-
vations: 1) tha t a reduction can never de-
crease the available units; and 2) tha t a
reduction by given process P~ will delete
the same edges regardless of which reduc-
tions were done previously. Since Corol-
lary 1 (see Section 9) states tha t complete
reducibihty is a sufficient condition for a
state not to be deadlocked, we need only
show tha t for this case complete reduci-
bility becomes a necessary condition. The
required proof follows from the fact tha t
when the graph is not completely reduc-
ible, blocked processes which cannot be
reduced are deadlocked.

If each reusable resource has exactly one
total unit, it can be shown that the condi-
tions of deadlock, "not complete reducibil-
i ty ," and "existence of a cycle in the graph"
become equivalent [11].

Par t (2) of Theorem 5 implies tha t a
"reasonably fast" deadlock algorithm exists

for reusable resource systems. The algorithm
successively reduces the graph as long as
possible; the original graph will not have
been deadlocked iff these reductions delete
all edges. Since every sequence of reductions
will lead to the same final graph, the algo-
r i thm will not need to backtrack.

Such an algorithm will be slowed since
following each reduction a search must be
made to determine which process (if any) to
reduce by next. Algorithm 3 avoids this
searching by assuming that the representa-
tion of the system state uses "wait counts"
and "ordered requests" in the following
manner: 1) for each process there is a wa~t

count which gives the number of resources
whose available units are less than those
requested by the process; and 2) for each
resource there is a list of processes requesting
the resource, the list being in order by the
number of units requested.

Algorithm 3 works by successively reducing
(in Do-group 1) by processes which have
zero wait counts and nonzero allocations.
Each reduction increases the available units
of at least one resource (in statement 3); this
in turn may result in decreasing the wait
counts (in statement 5) of other processes
requesting the resource. Notice that no
searching is required in statement 4 to locate
"process Q" because "process Q" will be the
next process on the ordered list of processes
requesting resource R. Notice also tha t the
total number of executions of Do-group 4 is
limited by the number (m) of ordered lists
of requests multiplied by the maximum
number (n) of processes on each list. Thus,
maximum execution time of Algorithm 3 is
proportional to m n because Do-group 1 is
executed at most n times (once for each
process), Do-group 2 is executed at most
m n times (once for each weighted assign-
ment edge), and Do-group 4 is executed at
most m n times (once for each weighted re-
quest edge). (Russell [22] has concurrently
and independently developed an equivalent
algorithm with this same maximum execu-
tion time. Shoshani [4, 24] has developed an
equivalent algorithm which does not use
wait counts or ordered requests and which
requires maximum time ran2.)

ALGORITHM 3. Testing to see if a state in a

Computing Surveys, Vol 4, No 3, September 1972

194 • R. C. Holt

reusable resource system is completely re-
ducible. The "list to be reduced" is ini-
tialized to contain those processes with
zero wait counts and some allocations.
Processes with zero wait counts and no
allocations are considered already re-
duced.

1. Do for each process node P on list
to be reduced;

2. Do for each resource R assigned
to P ;

3. Increase available units of
R by units assigned
to P ;

4. Do for each process Q whose
request for R can
now be granted;

5. Decrease wait count of
Qbyl;

6. If the wait count of Q
is zero

7. Then add Q to list to
be reduced ;

End-;
End;

End;
Completely reducible = (All process

nodes are now reduced);

.

9.
10.
11.

While it might appear to be costly to
maintain the wait counts and ordered lists
of requests during system operation, there is
a significant advantage in doing so. The
advantage being that following a release, no
searching is necessary to find processes which
have become able to acquire their requested
units; these processes will be exactly the
ones whose wait counts become zero as a
result of the release.

I t can be shown that only requests for
unavailable units can cause deadlock in
reusable resource systems. Therefore, to
maintain continual deadlock detection, one
need apply Algorithm 3 only when unavail-

able units are requested. The request will

have caused a deadlock only if the requesting

proces~ has become deadlocked; thus, Algo-
r i thm 3 can be stopped (with the conclusion

that deadlock has not occurred) as soon as

the requesting process's wait count reaches

zero.
Processes interact only via reusable re-

sources generally when the processes repre-
sent nominally independent user jobs in a
batch-processing system. In such a system,
Algorithm 3 can be used to test for deadlock;
if deadlock has occurred, it will be necessary
to terminate jobs or to pre-empt resources
from jobs.

13. DEADLOCK PREVENTION IN REUSABLE

RESOURCE SYSTEMS

Habermann [8] has shown how to prevent
deadlock in reusable resource systems in
which a maximum limit (a claim) is placed
on each process's need for resources. We will
briefly discuss Habermann's prevention
method, showing how Algorithm 3 can be
used to improve his original algorithm.

We define a clazm matrix C as an n by m
matrix where C , gives the maximum number
of units of resource Re which will be required
by process P , We require that 0 < C , < t~.
For given process P , we require that C~j > 0
for at least one resource R3 ; this means every
process can request at least one unit of one
resource. We define a claim limited reusable
resource system as a reusable resource system
from which has been eliminated each request
by process P, which (for some Rj) causes the
number of request edges (P , Re) plus the
number of assignment edges (Rj, P~) to
exceed C~j. Tha t is, we assume processes
never request more than they claim.

For a given state in a claim limited reus-
able resource system, the claim l~m~ted graph
is constructed from the original graph (state)
by adding (for all i and j) request edges
(P,, Rj) until the number of request edges
(P , Rj) plus the number of existing assign-
ment edges (Re, P~) is equal to C~.

Intuitively, the claim limited graph for a
given state is formed by having all processes
request as many units as allowed by their
claims.

To prevent deadlock, one must guarantee
tha t even though all processes request as
many resources as allowed by their claims
deadlock will not occur. Thus, one might
expect tha t deadlock will be prevented if the
system is never allowed to enter a state
whose claim limited graph represents a dead-

Comput ing Surveys, Vol 4, No 3, September 1972

Sonde Deadlock Properties of Computer Systems • 195

lock state. Essentially, this is what Theorem
6 states.

Habermann's method employs the oper-
ating system's ability to determine when to
grant which requests. In terms of our formal
definitions, this means that some of the state
transitions defined by acquire operations can
be eliminated by the operating system. We
define an acquisilion policy as a rule which
eliminates some of the acquisition operations
of the system, thereby creating a new system
which is secure. ("Secure" was defined in
Section 4.) We shall say an acquisition policy
is optimum if there exists no other acquisition
policy which ehminates fewer acquisitions.
Finally, an acquisition operation is said to
be safe if it results in a state whose claim
limited graph is completely reducible.

TREORE~ 6. The optimum acquisition policy
for a claim limited reusable resource sys-
tem is the one that eliminates acquisitions
which are not safe.

ARGUMENT. The theorem is proved by show-
ing: 1) that if the acquisition policy allows
an acquisition which is not safe, then
necessarily a sequence of operations exists
which leads to a deadlock; and 2) that if
only safe acquisitions are allowed, then
any state whose claim limited graph is
completely reducible is not a deadlock
state and can be changed only to similar
states. (The proof is discussed in detail
elsewhere [8, 11].)

Theorem 6 means that deadlock can be
prevented (while granting as many requests
as possible) by refusing to grant requests
when the resulting state "may lead to dead-
lock." We determine if a state "may lead to
deadlock" by seeing if its claim limited graph
is completely reducible; this can be accom-
plished efficiently by Algorithm 3. Thus,
Algorithm 3 is useful both for detecting and
for preventing deadlock.

Habermann's algorithm to determine if
an acquisition is safe is equivalent to Algo-
rithm 3, but requires maximum execution
time proportional to mn 2 instead of mn re-
quired by Algorithm 3. His algorithm is
used to prevent deadlock caused by compe-
tition for plotter and paper tape punches in
the "TRE" multiprogramming system [19].

14. CONCLUSION

We introduced reusable and consumable re-
sources to model interactions among proc-
esses in computer systems. It was shown
that the technique of graph reductions can
be used 1) to determine if a state in a system
having reusable and consumable resources is
deadlocked; 2) to determine if a system with
only consumable resources is secure from
deadlock; and 3) to implement deadlock
prevention in a system with only reusable
resources. Graph reductions are easy to
understand, and this wide range of uses in
investigating the deadlock problem attests
to their importance.

The fast execution times of Algorithms 1,
2, and 3 indicate they can be used in practical
systems for detecting and preventing dead-
lock.

In general, the results presented here, and
the methods used to obtain them, do not
depend greatly upon the exact definitions of
"resources" and "operations." The message-
passing operations of the SUE operating
system [1] (being developed at University of
Toronto) have been shown to have deadlock
properties analogous to those described in
this paper [25]. Similar results can be ob-
tained for systems in which interactions are
a result of P and V operations [6], Wake-up
and Block operations [18], Wait, Post, Enq,
and Deq operations [13], or Send Message,
Wait Message, Send Answer, and Wait
Answer operations [3].

This paper has been based on material in
the author's PhD thesis; those interested in
a more leisurely and complete treatment of
the material should refer to the thesis [11].

REFERENCES

1. ATWOOD, J W ; CLARK, B L ; GRusncow, M
S., HOLT, R. C.; HORNIN~, J J . ; SEVCIK, K. C ;
AND TSICHRITZIS, D "Project SUE status re-
port." Computer Systems Research Group,
Techmcal Report CSRG-11, Umv Toronto,
Toronto, Ontario, Canada, April 1972.

2. BERGE, CLAUDE. The theory o/ graphs John
Wiley & Sons, New York, 1962 (originally pub-
hshed in French m 1958).

3. I-IANSEN, PER BRINCtt "The nucleus of a multi-
programming sys tem" Comm ACM 13~ 4
(April 1970), 238-241, 250.

Computing Surveys, Vol. 4, No 3, September 1972

196 • R. C. Holt

4. COFFMAN, E. G.; ELPHICK, M. J.; AND SHO-
SHANI, A. "System deadlocks." Computing
Surveys 3~ 2 (June 1971), 67-78.

5. DIJ~:STaA, E. W. "Cooperating sequential proc-
esses." Technological Univ, Emdhoven, The
Netherlands, Sept. 1965.

6. DIJKSTEA, E. W "The structure of the "THE"
multlprogrammmg system " Comm. ACM l l ,
5 (May 1968), 341-346.

7. DRYER, MATTHEW. "User's manual for ToePs."
Computer Systems Research Group, Umv
Toronto, Toronto, Ontario, Canada, 1972.

8. HABERMANN, A N. "Preventmn of system dead-
locks." Comm ACM 12, 7 (July 1969), 373-
377, 385

9 HAVENDER, J W "Avoiding deadlock in multi-
taskmg systems." IBM Systems J. 7, 2 (1968),
74-84

l0 HOLT, A W., A~D COMMO~NER, F. "Events and
conditions " Record o] the pro2ect MAC con-
]ere~ce on concurrent systems and parallel
computatwn, ACM, June 1970, 3-52

11. HOLT, RICHARD C. "On deadlock in computer
systems." PhD Thesis, Cornell Umv, Ithaca,
N Y, Jan 1971 (Reproduced as CSRG Tech-
nical Report 6, Dept Computer Scmnce, Umv.
Toronto, Toronto, Ontarm, Canada)

12 HORNING. J J., AND RANDELL, B. "Structuring
complex processes." Report RC2459, IBM Re-
search Lab.. Yorktown Heights, N.Y, May
1969

13 IBM System/360 operating system supervisor
and data management serwces IBM Form No
C28-6646-2, IBM Corp, Nov 1968.

14 IBM System/360 PL/I reference manual. IBM
Form No C28-8201-1, IBM Corp, March 1968.

15 IBM System/360 operating system: job con-
trol language IBM Form No C28-6359-8, IBM
Corp, Nov. 1968.

16 System/360 attached support processor system

(ASP) (360S-CX-15X) version 2' system man-
ual. IBM Form No. Y20-0305-0, IBM Corp,
Dec. 1968.

17 KARP. RICHARD M.; AIgD MILLER, RAYMOI'~D E.
"P~rallel program schemata." J Computer &
System Sciences 3, 2 (May 1969), 147-195.

18. LAMPSON, S. W. "A scheduling philosophy for
multlprocesslng systems " Comm. ACM 11, 5
(May 1968), 347-360.

19 MCKEAG, R M "The multlprogrammmg sys-
tem." Queen's Umv. Belfast, Dept. Computer
Science, Belfast, N. Ireland, 1972

20 MURFHY, J E. "Resource allocation with In-
terlock detection in a multltask system" In
Proc. AFIPS 1968 Fall Joml Computer Con].,
Vol. 33. Pt 2, AFIPS Press, Montvale, N J.,
1169-1176.

21 RAPPAPORT, ROBERT L "Implementing multi-
process primitives in a multtplexed computer
system" Masters Thesis. Dept Eleemcal En-
gmeermg (Project MAC), Massachusetts In-
stitute Technology, Cambmdge, Mass, Nov.
1968

22. RUSSELL, R D "A model of deadlock-free re-
source allocation." PhD Thesis, Dept. Com-
puter Science, Stanford Umv, Stanford, Cahf,
July 1971

23 SALTZER, JEROME HOWARD "Traffic control in a
multiplexed computer system" PhD Thesis,
Project MAC, Massachusetts Institute Tech-
nology, Cambridge, Mass, July 1966

24 SHOSHANI, A ; A~D COF~MAN, E G, JR "Detec-
tmn, prevention, and recovery from deadlock
m multiprocess, multiple resource systems."
Techmcal Report 80, Computer Sciences Lab,
Dept Electrical Engineering, Princeton Univ,
Princeton, N J., Oct 1969.

25. VERNER, YvEs "On process commumcatmn and
process synchronizatmn " Masters Thesis. Dept
Computer Science. Umv Toronto. Toronto,
Ontarm, Canada, Oct 1971

Computing Surxeys, Vol 4, No 3, September 1972

