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1. COMPUTER SYSTEMS AND DEADLOCK 

In  this paper we present a simple graph 
model of computer  systems and investigate 
its deadlock properties. This model unifies a 
number  of previous results, leads to efficient 
deadlock detection and prevention algo- 
rithms, and is useful for teaching purposes. 

Deadlock is the situation in which one or 

more processes in a system are blocked for- 
ever because of requirements tha t  can never 
be satisfied. Tha t  is, deadlocked processes will 
remain blocked until special action is taken 
by some "external force" such as the opera- 
tor or the operating system. 

Let us consider a simple example of dead- 
lock which can occur when there are two 
processes, P1 and P2, and two resources, R1 
and R2. Assume tha t  a resource cannot be 
released by (or pre-empted from) a process 
waiting for a request. Suppose R1 has been 
assigned to P1, and R2 has been assigned to 
P2. Now suppose P1 requests R2 and, P2  
requests R1. The result is tha t  P1 and P2 
are deadlocked. 

*Depar tment  of Computer Scmnce and Com- 
puter Systems Research Group. 

To a large extent, studying deadlock 
means s tudying the logic of process inter- 
actions in computer  systems. At present, our 
ability to build large, reliable computer  
systems is something less than  satisfactory; 
this situation can be at t r ibuted to our lack 
of understanding of how the integral parts  
of such systems interact.  Examples of inter- 
actions among processes leading to system 
failure from deadlock have been described 
by various authors [9, 11, 13, 21]. I t  is hoped 

tha t  this paper will make the problem of 

deadlock easier to understand and analyze, 

thereby improving our ability to build reli- 

able computer  systems. 
This paper is organized in the following 

fashion. Section 2 gives examples of deadlock 

in present day computer  systems. This is 

followed by a listing of the methods avail- 

able for handling the deadlock problem. In  

Section 4 we present a theory of computer  

systems so tha t  terms such as "process" 

and "deadlock" can be defined. Then, "re- 

usable resources" are introduced to model 

physical objects (or objects behaving like 

physical objects) which are shared by proc- 
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esses, and "consumable resources" are intro- 
duced to model messages or signals ,passed 
among processes. Section 8 presents a simple 
graph model of processes interacting via 
reusable and consumable resources. This is 
followed by development of necessary and 
sufficient conditions for detection and pre- 
vention of deadlock for various special cases 
of the general model. Using these conditions, 
efficient algorithms are developed for the 
detection and prevention of deadlock. 

2. EXAMPLES OF DEADLOCK IN CURRENT 

SYSTEMS 

One of the major advantages provided by 
operating systems is the ability to share 
resources among processes. Whenever re- 
sources can be requested and held by proc- 
esses, deadlock is a potential problem; thus, 
the operating system designer should be well 
acquainted with solutions to this problem. 

One might argue that deadlock is of little 
interest in current operating systems, and 
that the problem is apparently solved be- 
cause it is seldom observed. It is true that 
deadlock caused by competition for devices, 
such as tape and disk drives, has been pre- 
vented by effective ad hoc procedures. (See 
[9] for a discussion of such procedures used 
in OS/360.) However, it is not at all obvious 
that these ad hoc methods are optimal; 
further work is required to clarify exactly 
what methods are possible and which are the 
least costly. 

In spooling systems, such as ASP/OS/360 
[16], deadlock sometimes occurs because of 
competition for spooling space on the disk. 
The problem arises when the spooling space 
becomes completely filled with input records 
for jobs waiting to execute and with output 
records for jobs not finished executing. There 
is no way to recover the spooling space 
occupied by a partially executed job (at 
least not in ASP/OS/360); the only way to 
recover from such a deadlock is to restart 
the system. The somewhat crude ad hoc 
solution to this problem is to prohibit (man- 
ually) the spooling of new jobs once the 
utilization of spooling space becomes too 
high, say above 80 % utilization. I t  is obvi- 
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ous that  this solution is costly in terms of 
idle spooling space, and it is not obvious that  
this solution approaches being optimal 

Deadlock caused by faulty synchroniza- 
tion of processes is still not well understood. 
(See Saltzer's discussion of the lost wake-up 
problem [23], and Rappaport 's  discussion of 
why the original design of Block/Wake-up 
in MULTICS caused deadlock [21].) Dead- 
locks caused by faulty synchronization of 
processes can and do occur in systems such 
as OS/360. The current solutions to these 
problems are typified by the following two 
examples: 

1) If a job in OS/360 begins waiting (via a 
Wait macro [13]) for an event, the system 
has no way of knowing if the event will 
ever occur. While the job is waiting for 
the event to occur, all resources allocated 
to the job, including core memory, will 
remain idle. To prevent waiting forever, 
OS/360 allows an arbitrary absolute limit 
of 30 minutes waiting time before canceling 
the job [15]. Why 30 minutes and not 5 
minutes or 50 minutes? 

2) The Enq-Deq facility in OS/360 allows 
processes to gain (by Enq) exclusive con- 
trol of a resource, and then to release it 
(by Deq) [13]. The simple example of dead- 
lock presented in Section 1 can occur using 
Enq-Deq and goes undetected by the 
operating system, thereby allowing dead- 
locked processes, together with the re- 
sources they hold, to remain idle for an 
indefinite amount  of time. 

These two examples illustrate the fact that  
in OS/360 methods of deadlock detection 
are, at best, rudimentary. 

With the introduction of parallel proc- 
esses, and operations to synchronize these 
processes in high-level languages such as 
P L / I  [14], a large community of users has at 
its disposal the means to deadlock the proc- 
cesses. A hostile user of an OS/360 system 
has only to submit the following three-line 
P L / I  program to cause a deadlock: 

REVENGE: PROCEDURE OPTIONS(MAIN,TASK), 

WAIT(EVENT); 

END REVENGE; 

The only executable statement in this pro- 

gram is " W A I T ( E V E N T ) ; " ,  which causes 
the program to begin waiting for an event 
which will never occur. The user will not be 
charged for CPU or input /output  use because 
the program employs neither. However, all 
resources allocated to this program, such as 
the core it occupies, will remain idle until the 
deadlock is removed by the operating system 
or by a keen-witted operator. 

3. DEADLOCK STRATEGIES 

In any computer system where processes 
share resources or pass signals, there must 
be a strategy, stated or not stated, to handle 
the problem of deadlock. We can charac- 
terize these strategies as belonging to one of 
three classes. 

Prevention. The system is designed so that  
deadlock is not possible. (In terms of the 
definitions given in Section 4, the system is 
designed so that  it is "secure" from dead- 
lock.) A system which is not secure from 
deadlock can sometimes be made secure by 
prohibiting operations which may lead to 
deadlock. Habermann's  policy of using maxi- 
mum claims (see Section 13) is an example 
of such a prevention strategy. 

Detection. Deadlocks can occur, but  they 
are detected when they happen. When a 
deadlock is detected, the system can recover 

by terminating the deadlocked processes or 

by pre-empting resources from processes. 

This strategy can allow higher resource 

utilization than is possible when deadlock is 

absolutely prevented, and it should be used 

when deadlock is not too frequent and re- 

covery is not too expensive. The algorithms 
given below should make deadlock detection 

practical in many cases where deadlock goes 
undetected in current systems. This strategy 

has not yet  been used widely, but it offers 

the distinct advantage of a "soft fail" over 

the next strategy. 
Crash. Deadlocks are possible and are not 

automatically detected. I t  is the responsi- 

bility of the operator to decide that  a dead- 
lock has occurred and to take steps to remove 

the deadlock. One might name this the "no 
s t ra tegy" strategy. However, this name is a 
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bit too unkind because this strategy saves 

the time and space required by deadlock 

prevention and detection algorithms. 

The methods of handling the deadlock 

problem which are discussed below are 

examples of prevention and detection strat- 
egies. 

4. BASIC DEFINITIONS 

In order to investigate the problem of dead- 

lock, we need to understand exactly what is 

meant by the terms "sys tem" and "process." 

We define a system as a pair (Z, H) where 

is a set of states { 3, T, U, V, W, . . .  }, and 

II is a set of processes {P1, P2, P 3 , . . .  }. 

(We do not  insist tha t  ~ and 1I be finite 

sets. In the system introduced in Section 8, 
is infinite and H is finite.) Each process P, 

is defined as a mapping from the system 

states into the subsets of system states. 

Figure 1 illustrates a system whose states 

are {3, T, U, V} and whose processes are 

{P1, P21 . In  this system, process P1 maps 

state 3 into {T, U}. We may interpret  this 
to mean that  when the system is in state S, 

process P1 may change the state to either 
T o r  U. 

If  process P, maps state S into a subset of 

containing state T, then we write 

1 

Fro. 1 Example of a system m which process P2 
can deadlock. The set of states is ~ --~ [S,T,U, 
V}. and the set of processes is II ~-- [P1, /)2} . 

3 $ ) T. 

(Read "process P~ takes 3 to T.") We call 

the change of state from S to T an operation 
by process P,. Operations in Figure I include 

the following: S 1 T, S 1 U, T 1 3, 

T 2 S, T 2 V. If the system allows the 

following sequence of zero or more changes 

of state:S-~T,T~ U,...,V--X W, then 

we write 

3 .... ) W .  

For  example, in Figure 1, 3 1 T and T 2 V; 
$ 

thus, 3 --~ V. 
The notion of "processes" in computer  

systems is well known [5, 12, 18, 23]. Our 
definition is noteworthy for two reasons. 

First, the definition is simple and precise, 

yet  convenient for our purposes. Second, our 

definition allows processes to be nondeter- 

ministic; for example, in Figure 1 process P1 

can change state 3 to either T or U. We may  

interpret  this nondeterminism to mean tha t  

we may not be able to know (or may not 
even wish to know) exactly what each proc- 

ess will do next. For example, we may know 

that  process P2  is presently capable of either 

requesting resource R1 or releasing resource 
R2, but  we may not know which operation 
P2 will actually execute. 

When process P,  can execute no operation, 

we say P,  is blocked; if P,  will never again 

be able to execute an operation, we say P,  is 
deadlocked. Formally: 

Process P, is blocked in state 3 if there 

exists no state T such that  3 / T. 
Process P~ is deadlocked in state 3 if for 

all T such that  S --~ T, P, is blocked in 
T. 

In Figure 1 process P2  is blocked (but not  
deadlocked) in state 3, and process P2  is 
deadlocked in states U and V. 

From these definitions it follows that  
process P,  is not deadlocked in state 3 if and 

$ 

only if there exists T such that  S -~ T and 
process P, is not  blocked in T. 

If  one or more processes are deadlocked in 
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state S, then we say S is a deadlock state. I f  
all processes are deadlocked in S, we say S 
is a total deadlock state. In  Figure 1, U and 
V are deadlock states, but  there are no total  

deadlock states. 
We shall say tha t  a state is secure if it 

cannot change (in any number  of operations) 
to become a deadlock state. Tha t  is: 

State  S is secure if for all T such tha t  

S -* T, T is not a deadlock state. 

We shall say a system is secure if i t  contains 

one or more secure states. 
The  lemma given below follows immedi- 

ately from the preceding definitions. 

Suppose S --~ T. I f  S is a deadlock state, 
then T is a deadlock state. I f  S is a 
secure state, then T is a secure state. 

Thus,  deadlock and security are "perma_ 
nent"  conditions. 

The definitions given in this section can 
be applied in various situations; for example, 
a process might  be a production in a context- 
free grammar,  or a set of transitions in a 
Petr i  net [10], or a chessman on a chessboard, 
or a vector  in a vector  addition system [17]. 
In  the following sections, we shall apply 
these definitions to models of computer  
systems. 

5. AN EXAMPLE OF A SIMPLE SYSTEM 

We shall now show how these definitions 
can be used in a system consisting of two 
processes tha t  share two identical units of a 
resource. Assume tha t  each process is able to 
request only one unit of the resource at  a 
time, and tha t  a process holding units can 
release only one unit  at  a time. In  this sys- 
tem, each process is in one of the following 
states: 

0) The process holds no units and has re- 
quested no units. 

1) The process holds no units and has re- 
quested one unit. 

2) The process holds one unit and has re- 
quested no units. 

3) The  process holds one unit and has re- 
quested one unit. 

4) The process holds two units and has re- 
quested no units. 

(We can assume a process will not request 
another  unit  when it holds two units, be- 
cause there is a total  of two units.) A proc- 
ess can change states f rom 0 to 1 by re- 
questing a unit, from 1 to 2 by being allo- 

cated a unit, from 2 to 3 by requesting a 
unit, and from 3 to 4 by being allocated a 
unit. A process can change states from 2 to 0 
or from 4 to 2 by releasing a unit. 

We represent each s tate  of the system as 
Sj~, where j is the state of process P1 and k 
is the state of process P2. For example, if the 
s tate  of P1 is 1 (P1 holds no units and has 

requested one unit) and the state of P2 is 4 
(P2 holds both units), then the system state 
is S14. The possible changes of s tate  in this 
system are illustrated in Figure 2. 

In  Figure 2 the vertical edges are opera- 
tions by P1, and the horizontal edges are 
operations by P2. Edges directed to the 
right and edges directed down represent re- 
quests and acquisitions of units; edges di- 
rected to the left and edges directed up rep- 
resent releases of units. 

Process P1 is blocked whenever it has 
requested a unit but no more units are avail- 
able. For example, in system state  S14 proc- 
ess P1 has requested a unit, but  both units 
have been allocated to process P2. In  Figure 
2 we can tell tha t  P1 is blocked in S14 
because the node S14 has no edges labeled 
' T '  directed away from it. 

Deadlock occurs in this system when one 
unit  of the resource has been allocated to 
each process and each process requests one 
more unit. This situation occurs in system 
state  $33. State  $33 is a total  deadlock state 
because both processes are deadlocked in 
$33. In  Figure 2 we can tell that  $33 is a 
total  deadlock state because no edges are 
directed away from node $33. 

Since deadlock state $33 can be reached 
from any other state there are no secure 
states in the system. 

6. RESOURCES IN COMPUTER SYSTEMS 

Processes in computer  systems can interact  
explicitly, for example, by exchanging mes- 
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F i G  2 A s y s t e m  w i t h  t w o  p r o c e s s e s  

sages, or zmphc~tly, for example, by  compet-  
ing for physical objects such as tape drives. 
Either  type of interaction muy cause 
blocking of processes. We shall use the te rm 
"resource" in a special sense to mean any 

object which may  cause a process to become 
blocked. "Reusable resources" will be used 
to model competi t ion for objects, and "con- 
sum~ble resources" will be used to model 
exchange of signals or messages. 

Both types of resources consist of ~ num- 
ber of identical units which can be requested 
by processes. A process requesting units is 
blocked until enough units are available to 
satisfy its request;  then the process can 
acquire the requested units. A process which 
is not waiting for a request can release units 

2 

I 

I I I 1 

l 2 

a n d  a r e s o u r c e  o f  t w o  ~ d e n t i c a l  u m t s .  

of resources, thereby making more units 
available. 

Reusable resources have the following 
properties: There is a fixed total  number  of 
units of a reusable resource. Each unit  of the 
resource either is available (not assigned) or 
has been acquired by (assigned to) a par- 
ticular process. A particular unit of a re- 
source can be assigned to, at  most, one 
process at  a time. A process can release any 
unit  of a resource which the process has 
acquired but  not yet  released (assuming the 
process is not  blocked waiting to acquire 
more units following a request).  Units can- 
not be pre-empted; once a process has ac- 
quired a unit, the unit will not become avail- 
able until released by the process. 
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(The term "reusable resource" has been 
borrowed from the term "serially reusable 
resource" used in IBM literature [9, 13]. 
Murphy [20] and Russell [22] investigate 
reusable resources whose units can be as- 
signed to more than one process at a time.) 
Some examples of reusable resources follow. 

EXAMPLE 1. The physical devices of the 
computer system, such as channels, core, 
tape drives, drums, and disks, can be 
reusable resources. The units of some of 
these resources will depend on the alloca- 
tion strategies of the computer system; for 
example, disks may be assigned in units 
of tracks, or cylinders, or even entire disks. 

EXAMPLE 2. Certain information structures 
shared by processes, such as records in a 
file and linkage pointers for buffer pools, 
are reusable resources. The processes must 
request, acquire, and release access to 
these information structures to guarantee 
that  the structures can be inspected or 
updated without interference from other 
processes. (As Dijkstra [5] puts it, at most 
one process at a time should enter a "criti- 
cal section" to inspect and update the in- 
formation structure.) 

Consumable resources have the following 
properties: There is no fixed total number of 
units of the resource. Every  unit of the 
resource is available; if a unit is acquired by 
a process, the unit ceases to exist. Only a 
process which is a producer of the resource 
can release units of the resource; a producer 
is allowed to release any number of units of 
the resource at any time (assuming the pro- 
ducer is not blocked waiting to acquire units 
following a request). Any released units 
immediately become available. 

Some examples of consumable resources 
are given below. 

EXAMPLE 1. The card reader produces (re- 
leases) card images that  are consumed 
(requested and acqmred) by some process, 
probably the input spooling process. Thus, 
card images are a consumable resource. 

EXAMPLE 2. In many systems, external 
interrupts are received by a special inter- 
rupt handling process that  interprets the 

interrupt and passes a special type of mes- 
sage to another process which is waiting 
for tha t  type of message. The interrupt  
handling process then cycles back to wait 
for the next external interrupt.  The inter- 
rupt  handling routine consumes the ex- 
ternal interrupts and produces messages 
of various types. Thus, the external inter- 
rupts and the various types of messages 
are consumable resources. 

The fundamental difference between reus- 
able and consumable resources is that  the 
units of a reusable resource are never created 
or destroyed, but  only passed (requested and 
acquired) from a pool of available units to a 
process and then passed back (released) to 
the pool. By contrast, units of a consumable 
resource are created ("produced" or re- 
leased) and destroyed ("consumed" or re- 
quested and acquired). 

7. SOME DEFINITIONS FROM GRAPH THEORY 

The following definitions will be used in our 
model of computer systems. A directed graph 
is a pair (N, E), where N is a nonempty set 
of nodes and E is a set of edges. Each edge in 
E is an ordered pair (a, b), where a and b are 
nodes in N. (For given nodes a and b, we 
will allow E to contain more than one edge 
of the form (a, b).) An edge (a, b) is said to 
be directed from node a and du'ected to node b. 
The graph is said to be bipartite if the set of 
nodes N can be partitioned into disjoint 
subsets l~I and RHO such that  each edge has 
one node in II and the other node in RHO. 

A sink is a node with no edges directed 
from it, and an isolated node is a node with 
no edges directed to or from it. If the graph 
contains edge (a, b), then node a is a father 
of b and node b is a son of a. A path is a 
sequence (a, b, c , . . . ,  r, s) containing at least 
two nodes, where (a, b), (b, c ) , . - . ,  and 
(r, s) are edges. A cycle is a path whose first 
and last nodes are the same. (Definitions 
similar to the above are well known [2].) 

I t  follows easily from these definitions 
that  in a bipartite graph having no more 
than one edge directed from given node a to 
given node b, there are at most 2ran edges 
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FIG 3. An  e x a m p l e  of a b ipa r t i t e  d i rec ted  graph .  

in E,  where m and n are the numbers of 
nodes in RHO and II. 

The  reachable set of node a is the set of all 
nodes b such that  a path is directed from a 
to b. A knot is a nonempty set K of nodes such 
that  the reachable set of each node in K is 
exactly set K. (We shall show that  in certain 
cases, the existence of a knot  in a system 
state graph is a necessary and sufficient con- 
dition for deadlock.) I t  can be shown that  a 
graph does not contain a knot iff each node 
is a sink or has a path directed from it to a 
sink. 

Figure 3 illustrates a bipartite graph with 
nodes {a, b, c, d} and edges t(a, b), (a, b), 
(a, c), (c, d), (d, c)}. In this example, node b 
is a sink, path (c, d, c) is a cycle, and set 
{c, d} is a knot. 

8. GENERAL RESOURCE SYSTEMS 

In this section we shall define a formal model 
of a system of interacting processes. Each 
state of the system will be represented by a 
directed graph having a node corresponding 
to each process and resource. Interactions in 
the system will be represented by edges 
drawn from process nodes to resource nodes 
or vice versa. To define the system we say a 
general resource system is completely charac- 
terized by: 

1) a nonempty set of processes II = [P1, P2, 
...,P~}; 

2) a nonempty set of resources RHO = {R1, 
R2, . . . ,  R,} ;  

3) a partit ion of RHO into two disjoint sub- 
sets, a set of reusable resources and a 
set of consumable resources; 

4) for each reusable resource Re, a strictly 
positive integer te, called the to~al units 
of R~; and 

5) for each consumable resource Re, a non- 
empty subset of the processes which 
will be called the producers of Re. 

The set of states Z of a general resource 
system is the set of all general resource 
graphs for the system, which we define as 
follows: 

A general resource graph is a biparti te di- 
rected graph whose disjoint sets of nodes are 
I I  = {P1, P 2 , . . .  ,P~} a n d R H O  = {R1, 
R2, . . .  , Rm}, together with a nonnegative 
integer vector 
available umts 
process nodes 
edges directed 
will be called 
directed from 

(rl, r 2 , . . . ,  rm), called the 
vector. Edges directed from 
will be called request edges, 
from reusable resource nodes 
asszgnment edges, and edges 
consumable resource nodes 

will be called producer edges. Each general 
resource graph must have the following 
properties: 

1) For a given reusable resource node Re: 
a) the number of assignment edges di- 

rected from Re cannot exceed the total 
milts t3; 

b) r~ (the available units) is equal to the 
total  units t~ minus the number of 
assignment edges directed from R~; 

c) for a given process node P~, the number 
of request edges (P~, Re) plus the num- 
ber of assignment edges (Re, P~) cannot 
exceed the total  units te. 

2) For a given consumable resource node Re: 
a) there is a producer edge directed from 

Re to process node P, iff P, is one of the 
producers of Re; 

b) r, (the available units) is any nonnega- 
tive integer. 

Part, (lc) of this definition implies that  a 
process cannot request more than the total  
units of a reusable resource. Par t  (2b) implies 
tha t  a system having consumable resources 
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will have an (countably) infinite number  of 
states. 

Figure 4 shows a state (a general resource 
graph) of a general resource system. In  the 
figure, we have illustrated the fact tha t  

reusable resource R3 has three total  units 
(t3 = 3) by drawing three subnodes inside 
the node for R3. Thus, the available units 
r3 of R3 is the number  of units which do not 

have assignment edges drawn from them. 
We have illustrated the fact tha t  consum- 
able resource R2 has two available units by 
drawing two subnodes inside the node for 

R2. The producer edge (R2, P2) indicates 
tha t  P2 is the only process capable of re- 
leasing umts of R2. (The subnodes are not 

par t  of the formal definitions and are drawn 
only as a convenient way of representing the 
total  ~nd available units.) 

The edges in Figure 4 can be thought  of 
as "waits for"  relations. For example, the 

edges from P2 to R1 mean tha t  process P2 is 
waiting for units of resource R1. We could 
have drawn the edges in the opposite direc- 
tion; in tha t  case the edges would have rep- 
resented "flow of units"  relations. For 
example, edges from R1 to P2 would have 
meant  tha t  units of resource R2 must  flow 
(be assigned) to process P2. 

The processes in a general resource system 
map the system states into subsets of the 
system states; we will specify these mappings 
by describing the operations the processes 
can execute. There are three types of opera- 
tions: requests, acquisitions, and releases. 

Essentially, the general resource graph (the 
system state) xs changed: 1) by a request 
operation to have more request edges; 2) by 
an assignment operation to have fewer re- 
quest edges and fewer available units; and 
3) by a release operation to have more awi l -  
able units. For system states S and T, we 
define these operations as follows: 

Requests. In  state S if no request edges are 
directed from node P,,  then 

S ~--)T 

where S and T are identical except tha t  in T 
there are one or more request edges directed 
from node P,.  

Acquisitwns. In  state S if there are request 

Consumable 
Resource  

R2 

Process 

P5 

Proc e s s  

P2 

Reusable 
Resource  

R1 

Process 
Pl 

Reusable 
Resource 

R3 

FIG 4 Example of a state in a general resource 
system. R1 and R3 are reusable resources whose 
total umts are tl ---- 2 and t3---- 3 R2 is a con- 
sumable resource whose only producer is P2. The 
available umts are ~1 = 1. r2 = 2, and T3 ---- 0 
The state is not deadlocked because it can be re- 
duced by P1, then by P2. and then by P3 

edges directed from node P,, and for each 

resource Re, the available units re is as large 
as the number  of request edges directed 
from P, to R~, then 

S - L  T 

where S and T are identical except tha t  for 
each request edge (P,, R~) in S: 1) r~ is de- 
creased by one; 2) if Rj is a reusable resource, 
then each request edge (P,, Re) is replaced 
by an assignment edge (R ,  P,) ;  and 3) if 
R~ is a consumable resource, then request 
edge ( P ,  Re) is deleted. 

Releases. In  state S if no request edges are 

directed from node P,  and some edges (as- 
signment or producer edges) are directed to 
P ,  then 

S A + T  

where S and T are identical except tha t  a t  
least one resource R3 having one or more 
edges (assignment or producer edges) di- 
rected from R3 to P,  has its available units 
(re) increased; if Re is a reusable resource, 
then there are deleted a number  of assign- 
ment  edges (R ,  P,)  equal to the number  by 
which re is increased. 

From the definitions of these operations, 
it follows tha t  a process P~ is blocked if and 
only if there is a resource node Re such tha t  
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S -1 ->  T -1 ->  U -1 ->  V 

Pl  P1 Pl  Pl  

R1 R R 2 

P2 P2 P2 P2 

:FIG 5 Examples of operations m a general resource system The system consists of consumable re- 
source R1 (whose only producer is process P1), reusable resource R2 (which has three total units), 
and processes P1 and P2 Process P1 changes the state first by requesting one umt of each resource, 
next by acquiring the two units, and finally by releasing three uplts of R1 plus the acquired unit of 
R2 Process P2 is blocked in S because it has requested more umts than are available, but P2 is no 
longer blocked in state V 

the number of request edges directed from 

P,  to R~ exceeds r ,  i.e., when P,  has re- 

quested more units than are presently avail- 

able. 

Figure 5 contains examples of operations 

in a general resource system. When the 

system is restricted to having only reusable 

resources, these operations are equivalent 

to operations which Shoshani [24] developed 

previously and independently for a matrix- 

based model of computer systems. 

9. NECESSARY AND SUFFICIENT CONDITIONS 

FOR DEADLOCK 

In  Section 4 we defined the terms "system" 

and "deadlock," and in Section 8 we gave 

an example of a system, namely, a general 

resource system. In  this section we will use 

these definitions to develop necessary and 

sufficient conditions for deadlock in general 

resource systems. 

A process is deadlocked when there is no 

way for the process to become not blocked. 
Thus, if we are able to find some sequence of 

operations which leaves a process not 

blocked, then we have shown that  the proc- 
ess is not deadlocked. 

We shall introduce sequences of "graph 

reductions" as a method of testing to see if 

processes are deadlocked. A graph reduction 

(by a particular process Pc) corresponds to 

the best set of operations which P,  can 

execute to help unblock other processes; this 
is eqmvalent to forcing P,  to release as many 

units as possible. 

In  order to define reductions we need a 

special symbol, O M E G A ,  which may be 

thought  of as an "infinitely large" positive 

integer: 

O M E G A  is a symbol such that  for 

any integer ~, O M E G A  ~ i and 

O M E G A  -F ~ = O M E G A  - i = 

O M E G A .  

During reductions, we will allow the avail- 

able units re of a consumable resource to 

assume the value O M E G A .  When a reduc- 

tion assigns the value O M E G A  to r~, this 

can be interpreted to mean that  enough 

units of the resource could be released to 

satisfy all subsequent requests. The defini- 

tion of general resource graphs required that  

each consumable resource R~ have a non- 

empty set of producers; however, we shall 

adopt the convention that  if re = O M E G A ,  

then Re may have no producers. 

We define reductions as follows: A general 

resource graph can be reduced by any process 
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node which is not an isolated node and which 
is not blocked. The reduction by P~ 

1) for each reusable resource node Re, de- 
letes all edges (P,, Re) and (R,  P~) (for 
each assignment edge (Re, P,) deleted, re 
is increased by one); and 

2) for each consumable resource node Re 
a) decrements re by the number of re- 

quest edges directed from P~ to Re, 
b) sets r~ to OMEGA if P~ is a producer 

of Re, and 
c) deletes all edges ( P ,  Re) and (Re, P,) .  

We say the graph is completely reducible if a 
sequence of reductions deletes all edges in 
the graph. (See Figure 6 for examples of 
reductions.) 

Under the convention that  a consumable 
resource Re need not have any producers 
when re = OMEGA, every reduction of a 
general resource graph leaves another general 
resource graph. 

THEOREM 1. Process P,  is not deadlocked in 
a general resource graph S iff a sequence 
of reductions applied to S leaves a state in 
which P~ is not blocked. 

ARGUMENT. First assume P~ is not dead- 
$ 

locked in S. Then it must be that  S --~ T 
such that  P~ is not blocked in T. Let SEQ 
be the sequence of processes whose opera- 
tions change S to T. SEQ can be modified 
to describe a sequence of reductions which 
changes S to a state in which P~ is not 
blocked as follows: 1) delete each process 
in SEQ that  has an isolated node in S; and 
2) delete all but  the first occurrence of 
each process in SEQ. I t  can be shown that ,  
from state S, any sequence of operations 
by a given set of processes will result in, 
at most, as many available units as would 
a sequence of reductions by the processes 
in the same set. Thus, each reduction by 
a process in the modified SEQ sequence 
will result in at least as many available 
units as would the corresponding opera- 
tion in the unmodified sequence. This 
implies tha t  each reduction by a process 
in the modified sequence will result in 
enough available units so that  the suc- 
ceeding process will not be blocked and 
can be reduced. Hence, if P,  is not dead- 

locked in S, then S can be reduced to a 
state in which P,  is not  blocked. Now 
assume a sequence SEQ of reductions 
changes S to state U in which P ,  is not 
blocked. A reduction by any process Pe 
can be "simulated" by an acquisition and 
a release (or just a release) by Pj. Thus, 
the sequence SEQ of reductions can be 
"simulated" by a sequence of operations 
which changes state S to T in which P,  is 
not blocked; hence, P,  is not deadlocked 
in S. 

Theorem 1 means simply that  if there is a 
sequence of moves leaving P ,  unblocked, 
then such a sequence can be found using 
graph reductions. From Theorem 1, the 
following corollary is easily proved: 

COROLLARY 1. If a general resource graph 
is completely reducible, then it is not  a 
deadlock state. 

This follows from the observation that  a 
complete reduction deletes all edges, in- 
cluding all request edges; thus, in the com- 
pletely reduced state, no process is blocked. 

Unfortunately, neither Theorem 1 nor its 
corollary suggests a fast method of testing 
for deadlock; the author knows of no better  
deadlock detection algorithm than a near 
exhaustive checking of the n! different pos- 
sible reduction sequences. The reason a fast 
deadlock detection algorithm has not been 
found is that  reductions involving consum- 
able resources may decrease the available 
units; consequently, the order of reductions 
is important.  In Sections 10 and 12 this 
problem is avoided by imposing certain 
restrictions on the model, and fast detection 
algorithms are developed. 

Now let us define an important  type of 
state for which there is a simple sufficient 
condition for deadlock: An expedient state is 
a state in which all processes having requests 
are blocked. Any state which is not expedient 
will become expedient if all possible requests 
are granted. 

Many computer systems use an "expedi- 
ent"  resource allocation strategy in which 
all requests for available units are granted. 
In such a system, units are assigned only 
immediately following requests and releases, 
and the system state is always expedient 
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(except for the brief intervals before assign- 
ments  are made). 

THEOREM 2. In  a general resource graph: 
1) a cycle is a necessary condition for 

deadlock; and 
2) if the graph is expedient, then a knot  

is a sufficient condition for deadlock. 
ARGUMENT. I f  the graph contains no cycle, 

then there must  exist a linear ordering of 
the processes which has the following 
property:  I f  a path in the graph is directed 
to P~ from P~, then P~ appears before P~ 
in the linear ordering. 

I t  can be shown tha t  if processes having 
isolated nodes are deleted from this order- 
ing, then the ordering gives a sequence of 
reductions tha t  will completely reduce the 
graph. Thus, if there is no cycle, then the 
graph is completely reducible; hence, the 
graph is not a deadlock state. 

I f  an expedient graph contains a knot,  

then the processes in the knot  are all 
blocked waiting for units of resources in 
the knot, and the resources in the knot  
can have their available units increased 
only by (blocked) processes in the knot.  
Hence, all processes in the knot  are dead- 
locked and the state is deadlocked. 

I f  all possible requests have not been 
granted, i.e., if the state is not expedient, the 
general resource graph may  contain a knot  
and still not be a deadlock state. For exam- 
ple, s tate T in Figure 6 contains knot  {P1, 
R2, P2, R1} and still is not a deadlock state. 

S t a t e  
P1 

T State U 
PI 

R2 R2 

State V 

Pl 

[3 

[] 
P2 P2 P2 

FIG 6 Reduet,ons of a general resource graph. 
(State T is identical to state T m Figure 5 ) R1 
is a consumable resource, and R2 is a reusable 
resource. State T is reduced by P1 to obtain U, 
and U~s reduced by P2 to obtain V T is com- 
pletely reducible because the reductmns delete 
all edges, therefore, T Is not a deadlock state 

The following corollary of Theorem 2 can 

be proved using the graph properties of 
knots. 

COROLLARY 2. Suppose the general resource 
graph is expedient. I f  P ,  is not a sink and 
no p'~th is directed from P,  to a sink, then 
process P,  is deadlocked. 

In  the next three sections we shall show 

tha t  for impor tant  special cases of general 
resource systems, there are simple necessary 
and sufficient conditions for deadlock, and 
for security from deadlock. 

10. GENERAL RESOURCE SYSTEMS WITH 

SINGLE UNiT REQUESTS 

We shall impose the following restriction on 
the model. 

Single Umt Requests. A process may re- 
quest only one unit a t  a time. In  the general 
resource graph this means tha t  at  most  one 
request edge may  be directed from any 

process node. 
The restriction has the practical advan-  

tage of simplifying the algorithms used to 
implement  request and acquire operations. 

THEOREM 3. An expedient general resource 
graph with single unit requests is a dead- 
lock state iff it contains a knot.  

ARGUMENT. Since Theorem 2 states tha t  a 
knot  is a sufficient condition for deadlock, 
we have only to show tha t  when there are 

only single unit requests, a knot  is a neces- 

sary condition for deadlock. I f  the graph 

does not contain a knot, then from any 

blocked process's node there exists a pa th  

directed to a sink, and such a sink is 

necessarily a process node. Any such 

blocked process can be shown to be not 

deadlocked by showing tha t  the graph call 

successively be reduced by each process 

on the path,  starting from the sink and 

working backward. Hence, when there is 

no knot,  no process is deadlocked and the 

state is not deadlocked. 

The following results are closely related to 
Theorem 3. Let  S be an expedient general 
resource graph with single unit requests: 
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1) S is not a deadlock state iff S is com- 
pletely reducible. 

2) Suppose different sequences of reductions 
applied to S result in states which 
cannot be reduced. Then all these re- 
sulting states are identical. 

3) Process P,  is not deadlocked in S iff node 
P,  is a sink or has a path directed from 
it to a sink. 

(See reference [11] for discussion and proofs 
of these results.) 

The requirement for single unit requests 
in Theorem 3 is essential, as is shown by the 
following example. Consider a system having 
two consumable resources R1 and R2 whose 
only producers are P1 and P2, respectively. 
Let  us suppose that  no requests are pending 
and no units are available. Now suppose 
that  there is a multiple unit request by 
process P1 for one unit of R1 and one unit of 
R2. As a result, P1 will be deadlocked, but  
the general resource graph will not contain 
a knot. 

Theorem 3 and its related results are 

important because they imply that efficient 

deadlock detection algorithms are available 

for this special case of general resource sys- 

tems. 

Algorithm 1 can be used to detect if a 

graph is a deadlock state by testing to see if 

the graph contains a knot. The algorithm 

works by successively making all fathers of 

sinks into sinks; the graph will not have 

contained a knot iff all nodes become sinks. 

Algorithm 1 can be thought of as a simpli- 

fied mechanism for successively reducing 

the graph. 

ALGORITHM 1. Determination of whether a 
directed graph contains a knot. This can 
be used to detect if an expedient general 
resource graph with single unit requests is 
deadlocked. 
1. Do for each node Q on list of sinks; 
2. Do for each father F of Q; 
3. If F is not already on list of 

sinks 
4. Then add F to list of sinks; 
5. End,  
6. End; 
7. Knots = (Not all nodes are now on 

list of sinks); 

Algorithm 2 can be used to determine if a 
particular blocked process is deadlocked. I t  
works by systematically tracing out all 
paths leading from the process's node. The 
process will not have been deadlocked iff 
some path leads to a sink. 

ALGORITHM 2. Determination of whether 
blocked process P is deadlocked in an 
expedient general resource graph with 
single unit requests. 

/*Switch D will tell if P is 
deadlocked.*/ 

1. Set switch D to say P is deadlocked; 
2. Initialize a list to contain only P;  
3. Do for each node Q on list while D 

says P is deadlocked; 
4. Do for each son S of Q; 
5. If S is a sink 
6. Then set switch D to say P 

is not deadlocked; 
7. If S has not yet  been added 

to list 
8. Then add S to end of list; 
9. End; 

10. End; 

The maximum execution times of both 
Algorithms 1 and 2 are proportional to the 
total number of edges in the graph. This can 
be shown by observing that  the inner Do- 
group of each algorithm is executed at  most 
once for each edge in the graph. 

If  more than one edge is directed from a 
given node to another given node, then these 
edges can be represented by a single edge 
together with an integer giving the number 
of edges represented. We will say this alter- 
nate representation uses weighted edges. 
Given that  the graph uses weighted edges, 
then the number of edges is at most 2ran 
(see Section 7), and the maximum execution 
times of Algorithms 1 and 2 are proportional 
to ran. (m and n are the numbers of re- 
sources and processes.) This fast execution 
time means the algorithms can be used in 
practical systems. 

I t  may be desirable in some systems to 
test for deadlock continually, i.e., after each 
operation which can cause a deadlock. I t  
can be shown that  if the system has only 
single unit requests and if requested avail- 
able units are immediately acquired, then 
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the only operation that  can cause deadlock 
is a request for an unavailable unit [11]. 
Such a deadlock will necessarily involve the 
requesting process; hence, continual dead- 
lock detection can be accomplished by apply- 
ing Algorithm 2 to any process requesting an 
unavailable unit. This detection method has 
been incorporated into a simple language 
which is being used for teaching concurrent 
programming I7]. 

Some of the overhead required by con- 
tinual deadlock detection can be avoided by 
testing for deadlock only occasionally, say 
every 20 minutes, or when some process has 
been bloeked for a suspiciously long time. 
This occasional test can be accomplished 
efficiently by Algorithm 1. 

11. CONSUMABLE RESOURCE SYSTEMS 

We shall now discuss another special case of 
general resource systems, which we call con- 

sumable resource systems, in which there are 
only consumable resources. All interactions 
in such systems are explicit; we may con- 
sider that  processes can interact only by 
producer-consumer relationships. 

We shall associate with each consumable 
resource R~ a set of processes, called the 
consumers of Re. We will assume that  every 
process is a producer or consumer of at least 
one resource. We define a claim limited con- 

sumable resource system as a consumable 
resource system from which has been elimi- 
nated each request by process P~ for resource 
Re such that  P~ is not one of the consumers 
of R e. 

R1 

P2 P1 

R2 

FIG 7. Example of a clam1 hmlted graph for a 
claim lnmted consumable resource system 

We can now show how to characterize a 
claim limited consumable resource system 
by one particular graph, and how to deter- 
mine if the system is secure from deadlock. 
For  a given claim limited consumable re- 
source system, the claim limited graph is the 
state of the system having: 1) zero available 
units, and 2) a request edge ( P ,  Rj) iff P ,  is 
a consumer of R e. 

(Part  (2a) of the definition of general re- 
source graphs in Section 8 describes the 
producer edges in the claim limited graph.) 
Figure 7 is an example of a claim limited 
graph. 

A claim limited graph completely charac- 
terizes a claim limited consumable resource 
system since from it we can determine the 
processes, the resources, and the sets of 
producers and consumers. For example, the 
claim limited graph in Figure 7 shows that  
the processes a r e / P 1 ,  P2}, the resources are 
/R1, R2}, the producers and consumers of 
R1 are /P1, P2} and IP2}, respectively, 
and the producers and consumers of R2 are 
[P1} and tP2}, respectively. 

We can use the following theorem to 
determine if deadlock is possible in a claim 
limited consumable resource system. 

T H E O R E M  4 .  A claim limited consumable 
resource system is secure iff its claim 
limited graph is completely reducible. 

ARGUMENT. Let  the claim limited graph be 
called V. First, it can be shown that  any 
sequence of reductions of V leads to a 
unique graph which cannot be reduced. 
I t  can then be shown that  V (now con- 
sidered to be a state in the system) is not 
deadlocked iff it is completely reducible. 
The proof is completed as follows. I t  is 
assumed that  V is not completely re- 
ducible (thus, V is a deadlock state), and 
it is shown that  for any (supposedly) 

$ 

secure state S, S ~ V. Then it is assumed 
that  s, sequence of reductions completely 
reduces V, and it is shown that  a similar 
sequence completely reduces any state in 
the system. 

The claim limited graph in Figure 7 is 
completely reducible by the sequence (P1, 
P2). Hence, the system is secure; i.e., neither 
P1 nor P2 can deadlock. 
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In theory, Theorem 4 could be used to 
determine whether a simple computer sys- 
tem could deadlock. In practice, the condi- 
tion for security (complete reducibility of 
the claim limited graph) is too strong and 
could probably not be met. This means that  
the processes in a practical system can avoid 
deadlock by regulating their use of resources 
according to some knowledge of the system 
state; however, the theory makes no assump- 
tions about such "intelligent" behavior by 

processes. 

12. DEADLOCK DETECTION IN REUSABLE 

RESOURCE SYSTEMS 

We shall now consider the special case of 
general resource systems, which we call 
reusable resource systems, in which there are 
only reusable resources. 

THEOREM 5. Let  S be any state of a reusable 
resource system. 
1) S is not a deadlock state iff S is com- 

pletely reducible. 
2) Suppose different sequences of reduc- 

tions applied to S result in states 
which cannot be reduced. Then all 
these resulting states are identical. 

ARGUMENT. Part  (2) follows from the obser- 
vations: 1) tha t  a reduction can never de- 
crease the available units; and 2) tha t  a 
reduction by given process P~ will delete 
the same edges regardless of which reduc- 
tions were done previously. Since Corol- 
lary 1 (see Section 9) states tha t  complete 
reducibihty is a sufficient condition for a 
state not to be deadlocked, we need only 
show tha t  for this case complete reduci- 
bility becomes a necessary condition. The 
required proof follows from the fact tha t  
when the graph is not completely reduc- 
ible, blocked processes which cannot be 
reduced are deadlocked. 

If each reusable resource has exactly one 
total unit, it can be shown that  the condi- 
tions of deadlock, "not  complete reducibil- 
i ty ,"  and "existence of a cycle in the graph" 
become equivalent [11]. 

Par t  (2) of Theorem 5 implies tha t  a 
"reasonably fast" deadlock algorithm exists 

for reusable resource systems. The algorithm 
successively reduces the graph as long as 
possible; the original graph will not  have 
been deadlocked iff these reductions delete 
all edges. Since every sequence of reductions 
will lead to the same final graph, the algo- 
r i thm will not need to backtrack. 

Such an algorithm will be slowed since 
following each reduction a search must be 
made to determine which process (if any) to 
reduce by next. Algorithm 3 avoids this 
searching by assuming that  the representa- 
tion of the system state uses "wait  counts" 
and "ordered requests" in the following 
manner: 1) for each process there is a wa~t 

count which gives the number of resources 
whose available units are less than those 
requested by the process; and 2) for each 
resource there is a list of processes requesting 
the resource, the list being in order by the 
number of units requested. 

Algorithm 3 works by successively reducing 
(in Do-group 1) by processes which have 
zero wait counts and nonzero allocations. 
Each reduction increases the available units 
of at least one resource (in statement 3); this 
in turn may result in decreasing the wait 
counts (in statement 5) of other processes 
requesting the resource. Notice that  no 
searching is required in statement 4 to locate 
"process Q" because "process Q" will be the 
next process on the ordered list of processes 
requesting resource R. Notice also tha t  the 
total number of executions of Do-group 4 is 
limited by the number (m) of ordered lists 
of requests multiplied by the maximum 
number (n) of processes on each list. Thus, 
maximum execution time of Algorithm 3 is 
proportional to m n  because Do-group 1 is 
executed at most n times (once for each 
process), Do-group 2 is executed at most 
m n  times (once for each weighted assign- 
ment edge), and Do-group 4 is executed at 
most m n  times (once for each weighted re- 
quest edge). (Russell [22] has concurrently 
and independently developed an equivalent 
algorithm with this same maximum execu- 
tion time. Shoshani [4, 24] has developed an 
equivalent algorithm which does not use 
wait counts or ordered requests and which 
requires maximum time ran2.) 

ALGORITHM 3. Testing to see if a state in a 
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reusable resource system is completely re- 
ducible. The "list to be reduced" is ini- 
tialized to contain those processes with 
zero wait counts and some allocations. 
Processes with zero wait counts and no 
allocations are considered already re- 
duced. 

1. Do for each process node P on list 
to be reduced; 

2. Do for each resource R assigned 
to P ;  

3. Increase available units of 
R by units assigned 
to P ;  

4. Do for each process Q whose 
request for R can 
now be granted; 

5. Decrease wait count of 
Qbyl; 

6. If the wait count of Q 
is zero 

7. Then add Q to list to 
be reduced ; 

End-; 
End;  

End; 
Completely reducible = (All process 

nodes are now reduced); 

. 

9. 
10. 
11. 

While it might appear to be costly to 
maintain the wait counts and ordered lists 
of requests during system operation, there is 
a significant advantage in doing so. The 
advantage being that  following a release, no 
searching is necessary to find processes which 
have become able to acquire their requested 
units; these processes will be exactly the 
ones whose wait counts become zero as a 
result of the release. 

I t  can be shown that  only requests for 
unavailable units can cause deadlock in 
reusable resource systems. Therefore, to 
maintain continual deadlock detection, one 
need apply Algorithm 3 only when unavail- 

able units are requested. The request will 

have caused a deadlock only if the requesting 

proces~ has become deadlocked; thus, Algo- 
r i thm 3 can be stopped (with the conclusion 

that  deadlock has not occurred) as soon as 

the requesting process's wait count reaches 

zero. 
Processes interact only via reusable re- 

sources generally when the processes repre- 
sent nominally independent user jobs in a 
batch-processing system. In such a system, 
Algorithm 3 can be used to test for deadlock; 
if deadlock has occurred, it will be necessary 
to terminate jobs or to pre-empt resources 
from jobs. 

13. DEADLOCK PREVENTION IN REUSABLE 

RESOURCE SYSTEMS 

Habermann [8] has shown how to prevent 
deadlock in reusable resource systems in 
which a maximum limit (a claim) is placed 
on each process's need for resources. We will 
briefly discuss Habermann's  prevention 
method, showing how Algorithm 3 can be 
used to improve his original algorithm. 

We define a clazm matrix C as an n by m 
matrix where C ,  gives the maximum number 
of units of resource Re which will be required 
by process P ,  We require that  0 < C ,  < t~. 
For given process P ,  we require that  C~j > 0 
for at  least one resource R3 ; this means every 
process can request at least one unit of one 
resource. We define a claim limited reusable 
resource system as a reusable resource system 
from which has been eliminated each request 
by process P,  which (for some Rj) causes the 
number of request edges ( P ,  Re) plus the 
number of assignment edges (Rj, P~) to 
exceed C~j. Tha t  is, we assume processes 
never request more than they claim. 

For  a given state in a claim limited reus- 
able resource system, the claim l~m~ted graph 
is constructed from the original graph (state) 
by adding (for all i and j) request edges 
(P,, Rj) until the number of request edges 
( P ,  Rj) plus the number of existing assign- 
ment  edges (Re, P~) is equal to C~. 

Intuitively, the claim limited graph for a 
given state is formed by having all processes 
request as many units as allowed by their 
claims. 

To prevent  deadlock, one must guarantee 
tha t  even though all processes request as 
many resources as allowed by their claims 
deadlock will not  occur. Thus, one might 
expect tha t  deadlock will be prevented if the 
system is never allowed to enter a state 
whose claim limited graph represents a dead- 
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lock state. Essentially, this is what Theorem 
6 states. 

Habermann's method employs the oper- 
ating system's ability to determine when to 
grant which requests. In terms of our formal 
definitions, this means that some of the state 
transitions defined by acquire operations can 
be eliminated by the operating system. We 
define an acquisilion policy as a rule which 
eliminates some of the acquisition operations 
of the system, thereby creating a new system 
which is secure. ("Secure" was defined in 
Section 4.) We shall say an acquisition policy 
is optimum if there exists no other acquisition 
policy which ehminates fewer acquisitions. 
Finally, an acquisition operation is said to 
be safe if it results in a state whose claim 
limited graph is completely reducible. 

TREORE~ 6. The optimum acquisition policy 
for a claim limited reusable resource sys- 
tem is the one that eliminates acquisitions 
which are not safe. 

ARGUMENT. The theorem is proved by show- 
ing: 1) that if the acquisition policy allows 
an acquisition which is not safe, then 
necessarily a sequence of operations exists 
which leads to a deadlock; and 2) that if 
only safe acquisitions are allowed, then 
any state whose claim limited graph is 
completely reducible is not a deadlock 
state and can be changed only to similar 
states. (The proof is discussed in detail 
elsewhere [8, 11].) 

Theorem 6 means that deadlock can be 
prevented (while granting as many requests 
as possible) by refusing to grant requests 
when the resulting state "may lead to dead- 
lock." We determine if a state "may lead to 
deadlock" by seeing if its claim limited graph 
is completely reducible; this can be accom- 
plished efficiently by Algorithm 3. Thus, 
Algorithm 3 is useful both for detecting and 
for preventing deadlock. 

Habermann's algorithm to determine if 
an acquisition is safe is equivalent to Algo- 
rithm 3, but requires maximum execution 
time proportional to mn 2 instead of mn re- 
quired by Algorithm 3. His algorithm is 
used to prevent deadlock caused by compe- 
tition for plotter and paper tape punches in 
the "TRE" multiprogramming system [19]. 

14. CONCLUSION 

We introduced reusable and consumable re- 
sources to model interactions among proc- 
esses in computer systems. It  was shown 
that the technique of graph reductions can 
be used 1) to determine if a state in a system 
having reusable and consumable resources is 
deadlocked; 2) to determine if a system with 
only consumable resources is secure from 
deadlock; and 3) to implement deadlock 
prevention in a system with only reusable 
resources. Graph reductions are easy to 
understand, and this wide range of uses in 
investigating the deadlock problem attests 
to their importance. 

The fast execution times of Algorithms 1, 
2, and 3 indicate they can be used in practical 
systems for detecting and preventing dead- 
lock. 

In general, the results presented here, and 
the methods used to obtain them, do not 
depend greatly upon the exact definitions of 
"resources" and "operations." The message- 
passing operations of the SUE operating 
system [1] (being developed at University of 
Toronto) have been shown to have deadlock 
properties analogous to those described in 
this paper [25]. Similar results can be ob- 
tained for systems in which interactions are 
a result of P and V operations [6], Wake-up 
and Block operations [18], Wait, Post, Enq, 
and Deq operations [13], or Send Message, 
Wait Message, Send Answer, and Wait 
Answer operations [3]. 

This paper has been based on material in 
the author's PhD thesis; those interested in 
a more leisurely and complete treatment of 
the material should refer to the thesis [11]. 
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