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Abstract: The Hausdorff approximation of the shifted Heaviside function ht0
(t) by sig-

moidal functions based on the Pham [1] and Song–Chang–Pham [2] cumulative functions is
investigated and an expression for the error of the best approximation is obtained in this
paper.

The results of numerical examples confirm theoretical conclusions and they are obtained
using programming environment Mathematica.

We give real examples with data provided by IBM entry software package [3] using Song–

Chang–Pham [2] software reliability model.
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1. Introduction

In this article we study the Hausdorff approximation of the shifted Heaviside
function ht0(t) by sigmoidal functions based on the Pham [1] and Song–Chang–
Pham [2] cumulative functions.

We give a software modules within the programming environment CAS
Mathematica for illustrating the results.
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Definition 1. Pham [1] developed the following deterministic software
reliability model:

M(t) = N

(

1−

(

β

β − 1 + at
b

)α)

. (1)

Definition 2. Song, Chang and Pham [2] developed the following new
software reliability model:

M1(t) = N

(

1−

(

β

β + at− ln(1 + at)

)α)

. (2)

Definition 3. The shifted Heaviside function is defined as:

ht0(t) =











0, if t < t0,

[0, 1], if t = t0

1, if t > t0

(3)

We will note that the determination of compulsory in area of the Soft-
ware Reliability Theory components, such as confidence intervals and confi-
dence bounds, should also be accompanied by a serious analysis of the value of
the best Hausdorff approximation of the function ht0(t) by cumulative functions
of type (1)–(2) - the subject of study in the present paper.

Definition 4. [5] The Hausdorff distance (the H–distance) ρ(f, g) between
two interval functions f, g on Ω ⊆ R, is the distance between their completed
graphs F (f) and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB , xB) in R
2 is

||A−B|| = max(|tA − tB|, |xA − xB |).

2. Main Results

2.1. A Note on the Pham’s Model (1) [1]

Without loosing of generality we will look at the following ”cumulative sig-
moid”:

M∗(t) = 1−

(

β

β − 1 + at
b

)α

, (4)
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Figure 1: The functions F (d) and G(d).

with N = 1 (see (1)), and

t0 =













ln

(

1− β

(

1− 1

( 1

2)
1
α

))

ln a













1

b

; M∗(t0) =
1

2
. (5)

The one–sided Hausdorff distance d between the function ht0(t) and the
sigmoid ((4)–(5)) satisfies the relation

M∗(t0 + d) = 1− d. (6)

The following theorem gives upper and lower bounds for d

Theorem. Let

p = −
1

2
,

q = 1+

bα ln a

β



1− β



1−
1

(

1
2

)
1

α
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( 1
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1
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Figure 2: The model ((4)–(5)) for β = 4, α = 0.8, a = 5, b = 10,
t0 = 1.01533;H −−distanced=0.0895807, dl = 0.0786509.

For the one–sided Hausdorff distance d between ht0(t) and the sigmoid ((4)–
(5)) the following inequalities hold for:

2.1q > e1.05

dl =
1

2.1q
< d <

ln(2.1q)

2.1q
= dr. (7)

Proof. Let us examine the function:

F (d) = M∗(t0 + d)− 1 + d. (8)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = p+ qd. (9)

From Taylor expansion we obtain G(d) − F (d) = O(d2).
Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0.

Further, for 2.1q > e1.05 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

The model ((4)–(5)) for β = 4, α = 0.8, a = 5, b = 10, t0 = 1.01533 is
visualized on Fig. 2.
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Figure 3: The model ((4)–(5)) for β = 4, α = 0.95, a = 5.9, b = 16,
t0 = 0.996093; H–distance d = 0.0606985, dl = 0.0522077.

From the nonlinear equation (6) and inequalities (7) we have: d = 0.0895807,
dl = 0.0786509.

The model ((4)–(5)) for β = 4, α = 0.95, a = 5.9, b = 16, t0 = 0.996093,
d = 0.0606985, dl = 0.0522077 is visualized on Fig. 3.

2.2. A Note on the Song–Chang–Pham Model (2) [2]

We consider the following ”cumulative sigmoid”:

M∗
1 (t) = 1−

(

β

β + at− ln(1 + at)

)α

, (10)

with N = 1 (see (2)), and let t0 is the unique positive root of the nonlinear
equation

M∗
1 (t0)−

1

2
= 0. (11)

The one–sided Hausdorff distance d1 between the function ht0(t) and the
sigmoid ((10)–(11)) satisfies the relation

M∗
1 (t0 + d1) = 1− d1. (12)

Based on the methodology proposed in the present note, the reader may
formulate the corresponding approximation problems on his/her own.
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Figure 4: The model ((10)–(11)) for β = 1.5, α = 2.5, a = 6.9, t0 =
0.191515; H–distance d1 = 0.196555.

The model ((10)–(11)) for β = 1.5, α = 2.5, a = 6.9, t0 = 0.191515 is
visualized on Fig. 4.

3. Numerical Examples. Concluding Remarks

1. We examine the following data. (The small on–line data entry software
package test data, available since 1980 in Japan [3], is shown in Table 1. For
more details, see [4]).

Below, we will illustrate the fitting of this data, for example, with the M1(t)
model.

The fitted model

M1(t) = M1(t) = N

(

1−

(

β

β + at− ln(1 + at)

)α)

based on the data of Table 1 for the estimated parameters:

N = 46; a = 2.96839 ∗ 10−6; β = 3.81716 ∗ 10−8; α = 51.0754

is plotted on Fig. 5.
2. Dataset presented in Table 2, was proposed in [6]. The week index is

from 1 week to 18 weeks, and there are 176 cumulative failures at 18 weeks in
Dataset..
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Testing time (day) Failures Cumulative failures

1 2 2
2 1 3
3 1 4
4 1 5
5 2 7
6 2 9
7 2 11
8 1 12
9 7 19
10 2 21
11 1 22
12 2 24
13 2 26
14 4 30
15 1 31
16 6 37
17 1 38
18 3 41
19 1 42
20 3 45
21 1 46

Table 1: On–line IBM entry software package [3]

The fitted model based on the data of Table 2 for the estimated parameters:
N = 176; a = 2.30793 ∗ 10−6; β = 2.19561 ∗ 10−8; α = 98.0241 is plotted on
Fig. 6.

The example results show a good fit to the presented model.

Obviously, studying of phenomenon ”super saturation” is mandatory ele-
ment along with other important components - ”confidence bounds” and ”con-
fidence intervals” when dealing with questions from Software Reliability Models
domain.

For some software reliability models, see [7]–[54].

We hope that the results will be useful for specialists in this scientific area.
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Figure 5: The model M1(t) with N = 46; a = 2.96839 ∗ 10−6; β =
3.81716 ∗ 10−8; α = 51.0754.

Figure 6: The fitted model M1(t) with N = 176; a = 2.30793∗10−6 ; β =
2.19561 ∗ 10−8; α = 98.0241.
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Week Index Failures Cumulative failures

1 28 28
2 1 29
3 0 29
4 0 29
5 0 29
6 8 37
7 26 63
8 29 92
9 24 116
10 9 125
11 14 139
12 13 152
13 12 164
14 0 164
15 1 165
16 3 168
17 2 170
18 6 176

Table 2: Dataset [6]
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