
Some Developments of the Blackwell-MacQueen

Urn Scheme

Jim Pitman
University of California

Published in Statistics, Probability and Game Theory; Papers in
honor of David Blackwell, T.S. Ferguson et al. (eds), pages 245-267,
Institute of Mathematical Statistics Lecture Notes-Monograph Series,

Vol 30, 1996. This preprint version available at
http://stat.berkeley.edu/users/pitman/blmq.pdf

Abstract

The Blackwell-MacQueen description of sampling from a Dirichlet
random distribution on an abstract space is reviewed, and extended to
a general family of random discrete distributions. Results are obtained
by application of Kingman’s theory of partition structures.

1 Introduction

Blackwell and MacQueen [10] described the construction of a Dirichlet prior
distribution by a generalization of Pólya’s urn scheme. While the notion
of a random discrete probability measure governed by a Dirichlet distribu-
tion was first developed in the setting of Bayesian statistics [30, 26, 27, 28],
this idea has applications in other fields. The distribution of the ranked
masses of atoms in a Dirichlet distribution, called the Poisson-Dirichlet
(pd) distribution [45], appears as an asymptotic distribution in number the-
ory [14, 8, 67, 16], combinatorics [65, 68, 69, 34], and population genetics
[70, 24]. Though the finite dimensional distributions of the pd distribu-
tion are difficult to describe explicitly, there are some remarkably simple
formulae involving this distribution, most notably the Ewens sampling for-
mula [23, 25]. Antoniak [3] derived the Ewens sampling formula from the
Blackwell-MacQueen description of sampling from a Dirichlet prior. Hoppe
[35, 37] used the urn scheme to derive the simple form of the size-biased ran-
dom permutation of the pd distribution, which Ewens [24] termed the gem
distribution, after Griffiths, Engen and McCloskey, who contributed to its
development and application in the fields of genetics and ecology. Dirichlet
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random measures and the pd and gem distributions appear also as the sta-
tionary distributions of measure-valued diffusions derived from population
genetics models [19, 20, 21, 22].

Section 2 of this paper reviews some basic results involving Dirichlet
distributions and the pd and gem distributions. Section 3 shows how many
of these results extend to a more general Bayesian model for sampling from
a random discrete distribution. This involves Kingman’s theory of partition
structures [46] as developed in [1, 55]. The general model is illustrated by
a two-parameter model for species sampling, first proposed by Engen [18],
which is defined here following [55] by a variation of the Blackwell-MacQueen
urn scheme. This two-parameter model is a natural extrapolation of a basic
model for species sampling proposed by R.A. Fisher in 1943 [29]. The family
of random discrete distributions associated with this two-parameter model,
which can be characterized in a number of ways [53, 58, 71, 43], turns out
to include both Dirichlet distributions and distributions derived from the
lengths of excursions of Brownian motion and Bessel processes [53, 59, 54,
60].

Finally, Section 4 indicates briefly how the Blackwell-MacQueen urn
scheme and its generalizations described in Section 3 can be interpreted
in terms of random permutations.

2 Dirichlet Distributions

2.1 Preliminaries

For µ > 0 let gamma(µ) denote the gamma distribution on (0,∞) with
mean µ, whose density at x is Γ(µ)−1xµ−1e−x, and define gamma(0) to be
the distribution degenerate at 0. Recall that if Γ1, . . . ,Γk are independent
and Γi has gamma(µi) distribution, then the distribution of the random vec-
tor (Y1, . . . , Yk), where Yi = Γi/Σk

j=1Γj , is called Dirichlet with parameter
(µ1, . . . , µk), denoted by dirichlet(µ1, . . . , µk). Note that the ith com-
ponent of a random vector with dirichlet(µ1, . . . , µk) distribution has a
beta(µi ,

∑
j 6=i µj) distribution on [0, 1], where for a > 0 and b > 0 the

beta(a, b) distribution has density Γ(a + b)Γ(a)−1Γ(b)−1xa−1(1 − x)b−1 at
x ∈ (0, 1). Let (S,S) be an abstract measurable space. To avoid measure
theoretic pathologies, it is assumed throughout that

the diagonal {(x, y) : x = y} is a product measurable subset of S × S (1)

Call F a random distribution on S if F is a collection of random variables

F = (F (B), B ∈ S) = (F (B,ω), B ∈ S, ω ∈ Ω) (2)

defined on some probability space (Ω,F , P), such that for each ω ∈ Ω, the
function B → F (B,ω) is a probability measure on (S,S). Call a sequence
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of random variables (Xn) a sample from F if conditionally given F the
Xn are independent and identically distributed according to F , abbreviated
i.i.d.(F ).

Let µ be a positive measure on (S,S) with 0 < µ(S) < ∞. Say F
has dirichlet(µ) distribution if F is a random distribution on S such
that for every measurable partition B1, . . . , Bk of S, the random vector
(F (B1), . . . , F (Bk)) has dirichlet(µ(B1), . . . , µ(Bk)) distribution. Fergu-
son [27] established the existence of such a random distribution, and proved
the following extension of the well known updating rule for sampling from a
Dirichlet prior on a finite set. For x ∈ S let δ(x) denote the distribution of
a unit mass at x. So δ(x, B) = 1(x ∈ B), B ∈ S.

Theorem 1 [27]. If (Xn) is a sample from F with dirichlet(µ) distribu-
tion, then the conditional distribution of F given X1, . . . , Xn is dirichlet(µn)
where µn is the random measure

µn = µ +
n∑

i=1

δ(Xi) (3)

If (Xn) is a sample from a dirichlet(µ) prior F , then the unconditional
distribution of each Xn is µ/||µ|| where ||µ|| = µ(S) is the total mass of µ.
So Theorem 1 implies the Blackwell-MacQueen prediction rule[10]:

P (Xn+1 ∈ · |X1, . . . , Xn) = µn(·)/||µn|| (4)

Blackwell and MacQueen reversed this derivation of (4) to establish the
following result:

Theorem 2 [10] Let (Xn) be a sequence of random variables constructed
so that X1 has distribution µ/||µ||, and (4) holds for µn as in (3). Let
Fn = µn/||µn||. Then

(i) Fn converges a.s. as n →∞ to a random discrete distribution F ;
(ii) F has Dirichlet (µ) distribution;
(iii) X1, X2, . . . is a sample from F .

Blackwell and MacQueen assumed that (S,S) is a Polish space with Borel
σ-field, and proved weak convergence of Fn to F almost surely. But it will be
seen in Section 3 that Theorem 2 holds under the weaker regularity condition
(1), with the convergence in (i) meaning convergence in total variation almost
surely. See also Blackwell [9] and Berk-Savage [7] regarding the discreteness
of Dirichlet distributions.
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2.2 Ranked and size-biased frequencies

For a measure µ on S with 0 < µ(S) < ∞ let θ = µ(S) and ν = µ/θ. So
θ > 0, ν is a probability distribution on S, and µ = θν.

Theorem 3 [27] Let Γ(1) > Γ(2) > · · · be the points of a Poisson random
measure on (0,∞) with mean measure θx−1e−xdx. Put

Pi = Γ(i)/Σ where Σ =
∑

i Γ(i) (5)

and define

F =
∞∑
i=1

Pi δ(X̂i) (6)

where the X̂i are i.i.d. (ν), independent also of the Γ(i). Then F has dirich-
let(θν) distribution, independently of Σ which has gamma(θ) distribution.

Definition 4 [45] The distribution of the sequence (Pi) defined by (5),
with P1 > P2 > · · · > 0 and

∑
i Pi = 1 almost surely, is called the Poisson

Dirichlet distribution with parameter θ, abbreviated pd (θ).

Explicit formulae for the finite dimensional distributions of pd (θ) are
known but rather complicated [70, 38, 52]. The construction (5) of (Pi) with
pd (θ) distribution is related to a derivation of Dirichlet distributions from
Fisher’s [29] model for species sampling, which is now described. Suppose
there are m distinct species in a population and that individuals of the ith
species are trapped according to a homogeneous Poisson process with rate
Γi where Γ1, . . . ,Γm are i.i.d. with gamma(κ) distribution for some κ > 0.
Call Γi the abundance of the ith species. Let Γ(1) > · · · > Γ(m) denote
the order statistics of these abundances. As noted by Fisher and others
[2, 45, 70, 18, 17], various features of this model have simple limits as m →∞
and κ → 0 with mκ = θ held fixed. From a modern perspective, these limits
are features of a limiting model with ranked abundances Γ(1) > Γ(2) > · · ·
defined by ranking the points of a Poisson process as in Theorem 3. In this
limit model, introduced by McCloskey [50], the sampling process records
arrivals from an infinite collection of independent Poisson processes with
random rates Γ(i). Suppose the jth species to be observed in such a sampling
process is the species whose abundance is Γ(πj) and let P̃j = Pπj be the
corresponding relative frequency of this species. Elementary properties of
Poisson processes imply that (P̃j) is a size-biased permutation of (Pi). That
is to say, P̃j = Pπj where for all finite sequences (ij , 1 ≤ j ≤ k) of distinct
positive integers, the conditional probability of the event (πj = ij for all
1 ≤ j ≤ k) given (P1, P2, . . .) is

Pi1

Pi2

1− Pi1

· · · Pik

1− Pi1 − . . .− Pik−1

(7)
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Theorem 5 [50] Let (P̃j) be a size-biased permutation of a sequence of ran-
dom variables P1 > P2 > · · · > 0 with

∑
i Pi = 1. Then

P̃j =

j−1∏
i=1

(1− W̃i)

 W̃j (8)

for a sequence of i.i.d. random variables (W̃j) iff (Pi) has pd (θ) distribution
for some θ > 0. The common distribution of the W̃j is then beta(1, θ)

McCloskey’s thesis [50] is unpublished, but a proof of Theorem 5 can be
found in [53]. The model (8) for generating a random discrete distribution
(P̃j) from independent factors W̃i has been studied by many authors [33,
30, 12, 26, 15, 51]. See also [36, 17, 58] for further study of size-biased
permutations and their applications.

Definition 6 [24] Say that a sequence of random variables (P̃j) has gem (θ)
distribution iff (8) holds for a sequence (W̃j) of i.i.d. beta(1, θ) variables.

McCloskey’s theorem has the following corollary:

Corollary 7 Let (Pi) with P1 ≥ P2 ≥ · · · be defined by ranking a sequence
(P̃j) with gem (θ) distribution. Then

(i) (Pi) has pd (θ) distribution, and

(ii) (P̃j) is a size-biased permutation of (Pi).

Proof. Part (i) is an obvious consequence of Theorem 5. To see why (ii)
is true, write simply P̃ for (P̃j) and P for (Pi). Then P = r(P̃ ) where
the ranking function r is a product measurable function on sequence space.
Because the values Pi are a.s. distinct, it is clear that P̃j = Pπj for an a.s.
uniquely defined sequence of random variables (πj), and hence that P̃ is a
size-biased permutation of P iff P̃ has a particular conditional distribution
given P . But a conditional distribution of P̃ given r(P̃ ) that serves for some
sequence P̃ with a prescribed distribution must work for every sequence P̃
with that distribution.

Combining Theorems 3 and 5 yields the following result:

Corollary 8 [64, 63]. Let F be defined by

F =
∞∑

j=1

P̃j δ(X̃j) (9)

for two sequences of random variables (P̃j) and X̃j such that (P̃j) has the
gem (θ) distribution (8) and the X̃j are i.i.d (ν), independent of (P̃j). Then
F has dirichlet(θν) distribution.
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This construction provides both a simple way to simulate F with dirich-
let(µ) distribution, and an approach to computation of the distribution of
functionals of F such as ∫

S
gdF =

∞∑
j=1

P̃jg(X̃j) (10)

for a measurable function g on S. For further developments see [61, 62, 13,
44].

Call µ diffuse if µ({x}) = 0 for all x ∈ S. Then the X̂i in (6) are a.s.
distinct, and the relation between the two constructions (9) and (6) of a
dirichlet(µ) distributed F can be clarified as follows:

Corollary 9 Suppose F has dirichlet(θν) distribution, for θ > 0 and a
diffuse probability distribution ν on S. Let Pi denote the magnitude of the
ith largest atom of F , and let X̂i be the location of this atom in the space S.
Let X̃j denote the jth distinct value observed in a sample (Xn) from F and
let P̃j = F ({X̃j}), the size of the atom of F at X̃j. Then almost surely

F =
∞∑
i=1

Pi δ(X̂i) =
∞∑

j=1

P̃j δ(X̃j) (11)

where
(i) (P1, P2, . . .) has pd (θ) distribution;
(ii) the X̂i are i.i.d (ν), independently of (Pi);
(iii) (P̃j) is a size-biased permutation of (Pi);
(iv) (P̃1, P̃2, . . .) has gem (θ) distribution;
(v) the X̃j are i.i.d (ν), independently of (P̃j).

Corollary 10 Suppose that F with dirichlet(θν) distribution, for θ > 0
and a diffuse probability measure ν, is constructed via (9) for (P̃j) and X̃j

as in Corollary 8, then expressed in terms of its ranked atoms (Pi) and their
locations X̂i, so that formula (11) holds by construction. Then the joint
distribution of the four sequences (P̃j), (X̃j), (Pi), and (X̂i) is as described
in parts (i)-(v) of Corollary 9. In particular, (P̃j) is a size-biased random
permutation of (Pi), say P̃j = Pπj , and X̃j = Xπj .

Proof. The subtlety here is that X̃j is not defined as the jth distinct value
to appear in some random sample (Xn) from F , as in Corollary 9. It is only
asserted that the joint distribution of (X̃j) and F is the same as if X̃j were
the jth distinct value to appear in a sample from F , and this is a conse-
quence of Corollary 7.
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3 Species Sampling Models

As noted by Ferguson [27], the fact that Dirichlet distributions are a.s.
discrete has some disadvantages from the standpoint of conventional non-
parametric problems of Bayesian inference, where it may be preferable to
have an a.s. continuous prior with an explicit updating rule [49]. But there
is one setting where discreteness of a prior distribution is very much a pos-
itive feature. This is in problems of species sampling, as studied in ecology
[29, 18], population genetics [24], and other settings [66, 11]. Suppose that
a random sample X1, X2, . . . is drawn from a large population of individuals
of various species, and Xi represents the species of the ith individual sam-
pled. The space S in this setting should be thought of as an arbitrary set of
tags, or a spectrum of colors, used to label various species. Following Aldous
[1], it can be assumed that S is the unit interval and that the jth distinct
species to appear in the sample is deliberately assigned a tag X̃j in [0, 1],
where the X̃j are i.i.d. uniform [0, 1] variables generated by some additional
randomization. Since the X̃j are a.s. distinct, different species are coded
by different tags almost surely. This device of random tagging transforms
an unconventional problem, where the observation at stage n is a random
partition of n individuals into various species, into a conventional one where
what is observed at stage n is a sequence of tags (X1, . . . , Xn).

More formally, let (Xn) be a sequence of random variables with values
in (S,S), defined on some probability space (Ω,F , P). Let M1 := 1 and for
j > 1 let

Mj := inf{n : n > Mj−1, Xn /∈ {X1, . . . , Xn−1}} (12)

with the convention inf ∅ := ∞. On the event Mj < ∞ define X̃j := XMj .
In the language of species sampling, Xn represents the species of the nth
individual in some process of sampling of individuals from a population, and
X̃j is the jth species to appear. For j = 1, 2, . . . let Njn be the number of
times that the jth species X̃j appears in the sample X1, . . . , Xn:

Njn :=
n∑

m=1

1(Xm = X̃j ,Mj < ∞) (13)

Let Kn := max{j : Njn > 0}, the number of different species to appear in
the first n observations.

Call a rule specifying the distribution of X1 and the conditional distri-
bution of Xn+1 given X1, . . . , Xn for each n = 1, 2, . . . a prediction rule. It
will be assumed throughout that X1 has some fixed probability distribution
ν on S which is diffuse, that is ν({x}) = 0 for all x ∈ S. The symbol ν
is a mnemonic for the distribution of a new species. To be definite, it can
be supposed that S = [0, 1] and ν is uniform. For θ > 0 the Blackwell-
MacQueen prediction rule (4) for random sampling from a Dirichlet (θν)
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random measure F can be written using the above notation as follows: for
1 ≤ k ≤ n

P(Xn+1 ∈ · |X1, . . . , Xn,Kn = k) =
k∑

j=1

Njn

n + θ
1(X̃j ∈ ·) +

θ

n + θ
ν(·) (14)

As a generalization, consider (Xn) subject to a prediction rule of the form

P(X1 ∈ · ) = ν(·) (15)

P(Xn+1 ∈ · |X1, . . . , Xn,Kn = k) =
k∑

j=1

pj(Nn)1(X̃j ∈ ·) + pk+1(Nn)ν(·)

(16)
where Nn := (N1n, N2n, . . .) is the vector of counts of various species ob-
served in the sample (X1, . . . , Xn). Here the range of the random vectors
Nn is identified in an obvious way with the countable set N∗ :=

⋃∞
k=1 Nk,

the set of finite sequences of positive integers, and (pj , j = 1, 2, . . .) is a se-
quence of prediction probability functions defined on N∗. The functions pj

should be understood as follows. Given that after n observations the vector
of counts of various species in order of appearance is Nn = n say, where
n = (n1, . . . , nk) ∈ N∗ with

∑
i ni = n, the next observation is the jth

species already observed with probability pj(n) for 1 ≤ j ≤ k, and a new
species with probability pk+1(n). Here k = k(n) is the number of non-zero
components of n, so the random number Kn of different species to appear
in the first n observations is Kn = k(Nn), and

pj(n) = P(Xn+1 = X̃j |Nn = n) (1 ≤ j ≤ k(n) + 1) (17)

It is clear that any sequence of functions pj such that

pj(n) ≥ 0,

k(n)+1∑
j=1

pj(n) = 1 (n ∈ N∗) (18)

determines the distribution of a sequence of random variables (Xn) via the
prediction rule (16). For example, the Blackwell-MacQueen rule (14) is the
special case of (16) with

pj(n1, . . . , nk) =
nj

n + θ
1(1 ≤ j ≤ k) +

θ

n + θ
1(j = k + 1) (19)

where n =
∑k

i=1 ni. The following proposition is an easy consequence of
Kingman’s theory of exchangeable random partitions as developed in [1, 55]:
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Proposition 11 Suppose (Xn) is an exchangeable sequence of random vari-
ables subject to a prediction rule of the form (15)–(16). Let Fn denote the
conditional distribution of Xn+1 given X1, . . . , Xn, as displayed in (16).

(i) Fn converges in total variation norm almost surely as n → ∞ to the
random distribution

F :=
∑
j

P̃jδ(X̃j) + (1−
∑
j

P̃j)ν (20)

where P̃j is the frequency of the jth species to appear, that is

P̃j := lim
n→∞

Njn

n
almost surely (21)

(ii) the X̃j are i.i.d.(ν) independent of the P̃j.
(iii) (X1, X2, . . .) is a sample from F .

To be careful about the meaning of part (ii), note that the number K∞
of distinct values in the infinite sequence (X1, X2, . . .) is almost surely equal
to inf{k : P̃1 + · · ·+ P̃k = 1}. The meaning of (ii) is that conditionally given
(P̃1, P̃2, . . .) with K∞ = k the X̃j are i.i.d.(ν) for 1 ≤ j < k + 1. Such am-
plifications are required to interpret similar independence statements made
below.

When compared to Theorem 2 for the Blackwell-MacQueen prediction
rule, Proposition 11 is deficient in two respects. Firstly, Proposition 11 makes
the assumption that (Xn) is exchangeable, which is part of the conclusion
of the Blackwell-MacQueen theorem. Secondly, Proposition 11 provides no
explicit description of the distribution of F . These deficiencies are remedied
to some extent by the following discussion.

Definition 12 Call (Xn) a species sampling sequence if (Xn) is an exchange-
able sequence subject to a prediction rule of the form (15)–(16) for a diffuse
distribution ν, as supposed in Proposition 11.

As a variation of Proposition 11, it is easily seen that (Xn) is a species
sampling sequence iff (Xn) is a sample from a random distribution F of the
form

F =
∑

i

Piδ(X̂i) + (1−
∑

i

Pi)ν (22)

for some sequence of random variables (Pi) such that

Pi ≥ 0 and
∑

i Pi ≤ 1 a.s. (23)

and some sequence (X̂i) that is i.i.d.(ν) independent of (Pi).
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This set-up, with a random distribution F of the form (22), and a sample
(Xn) from F , will be called a species sampling model. Interpret Pi as the
relative frequency of the ith species in some listing of species present in
a population, and X̂i as the tag assigned to that species. The random
distribution F has an atom of magnitude Pi at X̂i for each i such that
Pi > 0, and the rest of its mass distributed proportionally to ν. Call the
model proper if

∑
i Pi = 1 a.s.. That is to say, F is almost surely discrete.

Then
F =

∑
i

Piδ(X̂i) =
∑
j

P̃jδ(X̃j) (24)

where X̃j and P̃j as in (20) are defined in terms of a sample (Xn) from
F . Provided the sample (Xn) is conditionally i.i.d.(F ) given both F and
(Pi), as is the case if (Pi) is decreasing, the sequence (P̃j) is a size-biased
permutation of (Pi). So (24) generalizes the representations (11) for F with
dirichlet(θν) distribution. It is easily verified that a species sampling
model is proper iff

P(P̃1 > 0) = 1 (25)

Alternatively, by application of the strong law of large numbers after condi-
tioning on all the (Pi), the model is proper iff

P(lim
n

Kn/n = 0) = 1 (26)

3.1 The finite-dimensional distributions of F

Assuming that S = [0, 1] and ν is uniform, the random distribution F
on [0, 1] constructed via (22) is determined by its cumulative distribution
function (F [0, t], 0 ≤ t ≤ 1), which is a random process with exchangeable
increments. Moreover this construction yields the most general possible
distribution for a random distribution function on [0, 1] with exchangeable
increments [41]. For an abstract (S,S, ν) the construction (22) yields the
most general possible possible random distribution F whose finite dimen-
sional distributions are described as follows: for every measurable partition
B1, . . . , Bk of S with ν(Bi) = ti say, (F (B1), F (B2), . . . , F (Bk)) has the same
joint distribution as

(G(t1), G(t1 + t2)−G(t1), . . . , 1−G(t1 + · · ·+ tk−1)) (27)

where (G(t), 0 ≤ t ≤ 1) is the random distribution function on [0, 1] with
exchangeable increments obtained from the model with ν uniform on [0, 1]
and the same random frequencies. Such random measures were studied by
Kallenberg [40, 42].

A large class of models, including the Dirichlet and its two-parameter ex-
tension described below, is obtained by supposing that G(t) = Y (t)/Y (1) for
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Y an increasing process with independent increments, and either condition-
ing on Y (1) or allowing a change of measure by a density which is function
of Y (1). See [45, 53, 52, 56, 60, 54] for further study of these models.

3.2 The exchangeable partition probability function

Let [n] = {1, . . . , n}, and for a finite set A let #A denote the number of
elements of A. If (Xn) is exchangeable, then for each partition of [n] into k
non-empty subsets A1, . . . , Ak, where it is assumed that the Ai are in order
of appearance, that is 1 ∈ A1, and for each 2 ≤ j ≤ k the first element of
[n]− (A1 ∪ . . . ∪Aj−1) belongs to Aj ,

P

 k⋂
j=1

(X` = X̃j for all ` ∈ Aj)

 = p(#A1, . . . ,#Ak) (28)

for some symmetric function p of k-tuples of non-negative integers with
sum n. Allowing n to vary defines a function p : N∗ → [0, 1], where
N∗ =

⋃∞
k=1 Nk as before. This symmetric function p determines the dis-

tribution of the random partition of N whose classes are the equivalence
classes for random equivalence relation defined by i ∼ j iff Xi = Xj . See
[55] for further discussion. Call p the exchangeable partition probability func-
tion (eppf) derived from the exchangeable sequence (Xn). As before, iden-
tify n = (n1, . . . , nk) ∈ N∗ with the infinite sequence (n1, . . . , nk, 0, 0 . . .)
obtained by padding with zeros, and view the number k of non-zero compo-
nents of n as a function k = k(n) With this identification, for each sequence
n ∈ N∗ and each 1 ≤ j ≤ k(n) + 1, a sequence nj+ ∈ N∗ is defined by
incrementing nj by 1. From the definition (28) and the addition rule of
probability, an eppf must satisfy

p(1) = 1 and p(n) =
k(n)+1∑

j=1

p(nj+) (n ∈ N∗) (29)

Conversely [55], every non-negative, symmetric function p defined on N∗

and satisfying (29) is an eppf, that is to say the eppf of some exchangeable
sequence (Xn).

Proposition 13 Corresponding to each pair (p, ν), where p is an eppf and
ν is a diffuse probability distribution, there is a unique distribution for a
species sampling sequence (Xn) such that p is the eppf of (Xn) and ν is the
distribution of X1.

Proof. For each n the eppf p of an exchangeable sequence (Xn) determines
the probability of each event of the form displayed in (28). But from the
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prediction rule (15)–(16), given such an event, the common value X̃j of X`

for ` ∈ Aj has distribution ν, and these X̃j are independent for 1 ≤ j ≤ k.
Thus the joint distribution of (X1, . . . , Xn) is determined for every n by
(p, ν), which proves the uniqueness claim. Given a pair (p, ν), such a se-
quence (Xn) is constructed by assigning the values of an i.i.d(ν) sequence
(X̃j) to the classes of an independent exchangeable random partition of N
defined by p.

According to Proposition 11, the random distribution F governing a
species sampling sequence (Xn) can be recovered almost surely from (Xn).
Thus a pair (p, ν) as above determines the finite-dimensional distributions
of a random distribution F such that a sample (Xn) from F has eppf p and
each Xn with distribution ν.

3.3 Ranked frequencies

Kingman’s theory of random partitions [46] sets up a one-one correspondence
between eppf’s p and distributions for a decreasing sequence of random
variables (Pi) with Pi ≥ 0 and

∑
i Pi ≤ 1. The random distribution F

corresponding to (p, ν) is then constructed via (22). Let P denote the set
of eppf’s p : N∗ → [0, 1], and give P the topology of pointwise convergence.
The set P is convex and compact, in fact a simplex: as shown by Kingman,
the extreme p are those corresponding to a deterministic decreasing sequence
of frequencies (Pi).

For a proper sequence (Pi) there is a formula for the corresponding eppf
which follows easily from (28) and (22) by conditioning on (Pi) and (X̂i):

p(n1, . . . , nk) =
∑

(i1,...,ik)

E

 k∏
j=1

P
nj

ij

 (30)

where the sum is over all sequences of distinct positive integers (i1, . . . , ik),
and E stands for expectation with respect to the underlying probability dis-
tribution P. In principle this formula determines the correspondence between
the eppf and the distribution of ranked frequencies (Pi) in a proper species
sampling model. But it gives little hint of how to arrange the distribution
of frequencies to produce models with a simple eppf.

3.4 Prediction rules

Consider now the functions pj defined on N∗ which determine the prediction
rule (16) of a species sampling sequence (Xn). From formula (28) and Bayes’
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rule, these functions are expressed as follows in terms of the eppf p of (Xn):

pj(n) =
p(nj+)
p(n)

for 1 ≤ j ≤ k(n) + 1 provided p(n) > 0. (31)

It is now clear from Proposition 13 that the statement of Proposition 11 can
be sharpened as follows:

Theorem 14 Given a diffuse probability distribution ν and a sequence of
functions (pj , j = 1, 2, . . .) defined on N∗ and satisfying (18), let (Xn) be
governed by the prediction rule (15)–(16). The sequence (Xn) is exchangeable
iff there exists a non-negative, symmetric function p defined on N∗ such that
(31) holds. Then (Xn) is a sample from F as in Proposition 11, and the
eppf of (Xn) is the unique non-negative symmetric function p such (31)
holds and p(1) = 1.

Example 15 The Blackwell-MacQueen Urn Scheme. Fix θ > 0. It is easily
checked that the functions pj displayed in (19) are of the form (31) for the
function p = p(θ) defined on N∗ by

p(θ)(n1, . . . , nk) :=
θk−1 ∏k

i=1(ni − 1)!
[1 + θ]n−1

(32)

where n =
∑

i ni and [x]m =
∏m

j=1(x + j − 1). Since this function is sym-
metric, and p(θ)(1) = 1, Theorem 14 implies that (Xn) generated by the
Blackwell-MacQueen urn scheme is governed by the species sampling model
corresponding to the pair (p(θ), ν). Comparison with Theorem 2 identifies
p(θ) as the eppf of a sample from dirichlet(θν) for any diffuse distribution
ν, a result due to Antoniak [3].

Example 16 The Two-Parameter Model [55]. Consider the prediction rule
(15)–(16) defined by the sequence of functions

pj(n1, . . . , nk) =
nj − α

n + θ
1(1 ≤ j ≤ k) +

θ + kα

n + θ
1(j = k + 1) (33)

where α and θ are two real parameters. To ensure that all relevant prob-
abilities are non-negative and that the rule is not degenerate, it must be
supposed that either

α = −κ < 0 and θ = mκ for some κ > 0 and m = 2, 3 . . . (34)

or
0 ≤ α < 1 and θ > −α (35)
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This prediction rule satisfies (31) for the function p = p(α,θ) defined by

p(α,θ)(n1, . . . , nk) =

(∏k−1
`=1 (θ + `α)

) (∏k
i=1[1− α]ni−1

)
[1 + θ]n−1

(36)

where n =
∑

i ni and [x]m =
∏m

j=1(x + j − 1). Since p(α,θ)(1) = 1 and
p(α,θ) is symmetric, Theorem 14 shows that (Xn) defined by this prediction
rule is exchangeable, hence a species sampling sequence. The case (34)
corresponds to sampling from F =

∑m
i=1 PiX̂i where (P1, . . . , Pm) has a

symmetric Dirichlet distribution with m parameters equal to κ, and the
X̂i are i.i.d. with distribution ν. This is just Fisher’s model, described in
Section 2, with m species identified by i.i.d.(ν) tags. In this model, the
number of species Kn in a sample of size n remains bounded above by m
and is eventually equal to m as n →∞. Passing to the limit as m →∞ and
κ → 0 for fixed θ = mκ, the prediction rule and the eppf for Fisher’s model
converge to the Blackwell-MacQueen rule and the eppf for sampling from
a Dirichlet(θν) prior, which is the special case of the two-parameter model
with α = 0 and θ > 0. In this model, Kn is a sum of independent indicator
variables, which implies Kn ∼ θ log n almost surely and Kn is asymptotically
normal [48]. In the model with 0 < α < 1 and θ > −α the sequence (Kn)
is an inhomogeneous Markov chain such that Kn ∼ Snα almost surely, for a
random variable S with a continuous density on (0,∞) depending on (α, θ).
See [56, 60, 54] for this and other asymptotic results for the two-parameter
model with 0 < α < 1, which follow from an extension to this case of the
Poisson representation of Theorem 3.

3.5 The sampling formula

For n = 1, 2, . . ., define a vector Cn = (C1n, . . . , Cnn) of non-negative integer
counts by

Cin =
n∑

j=1

1(Njn = i) (37)

So Cin represents the number of species that appear exactly i times among
X1, . . . , Xn. By definition

∑
i iCin = n, and

∑
i Cin = Kn. The vector Cn

is a standard coding of the partition of n induced by X1, . . . , Xn. Instead of
working with the eppf p as above, Kingman [46] worked with the function

p?(m) = P(Cn = m) (38)

defined for finite vectors of non-negative integers m = (m1, . . . ,mn). For
fixed n, as m = (m1, . . . ,mn) ranges over all such vectors of length n with
Σ imi = n, this function p?(m) defines a probability distribution over par-
titions of n. In terms of species sampling, p?(m) is the probability that in

14



a sample of size n there are m1 species with a single representative in the
sample, and m2 species with two representatives in the sample, and so on.
By an elementary counting argument, the number of partitions of the set [n]
that contain m1 singleton sets, m2 doubletons, and so on, is

#(m) :=
n!∏n

i=1(i!)mimi!
(39)

It follows that
p?(m) = #(m)p◦(m) (40)

where
p◦(m1, . . . ,mn) = p(n1, . . . , nk) (41)

for every sequence (n1, . . . , nk) such that

mi =
k∑

`=1

1(n` = i) for all 1 ≤ i ≤ k,

due to the symmetry of p. To illustrate, for (Xn) governed by the two-
parameter model with eppf p = p(α,θ) as in (36), it follows that p?(m) =
p?
(α,θ)(m) is given by the following formula [55]: for m = (m1, . . . ,mn) with

Σ mi = k, and Σ imi = n,

p?
(α,θ)(m) = n!

(∏k−1
`=1 (θ + `α)

)
[θ + 1]n−1

n∏
i=1

(
[1− α]i−1

i!

)mi 1
mi!

(42)

For α = 0, θ > 0 this is the Ewens sampling formula [23] which has found ex-
tensive applications in population genetics [47, 24, 25]. Antoniak [3] showed
that the distribution of the partition of n generated by sampling from a
dirichlet(θν) prior for a diffuse ν is governed by this formula. The case
α = −κ < 0 and θ = mκ gives the distribution of the partition of n generated
by Fisher’s m-species model, corresponding to sampling from a symmetric
Dirichlet prior on m points. The formula in this case was found by Watterson
[70].

3.6 The frequencies in order of appearance

Consider now the infinite sequence P̃ = (P̃1, P̃2, . . .) of frequencies in or-
der of appearance obtained from a species sampling sequence (Xn), as in
(19). According to Theorem 6 of [55], for each n = 1, 2, . . . the conditional
distribution of Xn+1 given X1, . . . , Xn and P̃ is given by

P (Xn+1 ∈ · |X1, . . . , Xn, P̃ ) =
Kn∑
j=1

P̃j1(X̃j ∈ ·) + (1−
Kn∑
j=1

P̃j )ν(·) (43)
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For n = (n1, . . . , nk) ∈ N∗, this formula shows that the conditional proba-
bility of the event displayed in (28) given P̃ is Π(n, P̃ ) where

Π(n, P̃ ) =

k−1∏
i=1

P̃ni−1
i (1−

i∑
j=1

P̃j)

 P̃nk−1
k (44)

It follows that the eppf p of (Xn) and the distribution of the sequence P̃
determine each other via the formula

p(n) = E[Π(n, P̃ )] (45)

See [55] for details. In view of McCloskey’s Theorem 5, it is natural to
represent the frequencies P̃j in the form

P̃j =

j−1∏
i=1

(1− W̃i)

 W̃j (46)

for a sequence of random variables (W̃j) with 0 ≤ W̃j ≤ 1. The formula (45)
then becomes

Π(n, P̃ ) =
k∏

i=1

W̃ni−1
i (1− W̃i)ni+1+ ···+nk (47)

Keep in mind that the W̃i are subject not only to 0 ≤ W̃i ≤ 1, but also
to the more subtle symmetry constraint that E[Π(n, P̃ )] is a symmetric
function of n. It is natural to look first at models in which the W̃j are
independent. But the choice is severely limited by the symmetry constraint.
Assuming for simplicity that 0 < W̃j < 1 there is the following generalization
of McCloskey’s Theorem 5:

Theorem 17 [58, 55] A species sampling sequence (Xn) is such that the
frequencies in order of appearance (P̃j) are of the form (46) for independent
random variables (W̃j) with 0 < W̃j < 1 a.s. iff (Xn) is governed by the
two-parameter prediction rule (33) for some 0 ≤ α < 1 and θ > −α. Then
W̃j has beta(1− α, θ + jα) distribution for all j.

3.7 The updating rule

The argument leading to (45), combined with Bayes’ rule, yields the following
updating rule for species sampling:

Theorem 18 Suppose (Xn) is a species sampling sequence. For each n =
1, 2, . . . the conditional distribution of F given (X1, . . . , Xn) is determined by
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the following conditional distribution given (X1, . . . , Xn) of the two sequences
(X̃j) and P̃ := (P̃j) which determine F via (20):

(i) the X̃j for 1 ≤ j ≤ Kn are measurable functions of (X1, . . . , Xn)

(ii) the X̃j for j > Kn are i.i.d (ν)

(iii) independent of the all the X̃j, the sequence P̃ has conditional distri-
bution specified by the following formula: for all non-negative product mea-
surable functions f

E[f(P̃ )|X1, . . . , Xn,Nn = n] =
E[f(P̃ )Π(n, P̃ )]

p(n)
(48)

where Π(n, P̃ ) is defined by (43), and p(n) = E[Π(n, P̃ )] is the eppf of
(Xn).

Note the following special cases of formula (48), which relate this formula
to the prediction probability functions pj via (31), and can be read directly
from (16) and (43):

E[P̃j |X1, . . . , Xn,Nn = n] = pj(n) (1 ≤ j ≤ k(n)) (49)

and for R̃k := 1−
∑k

i=1 P̃i,

E[R̃Kn |X1, . . . , Xn,Nn = n] = pk(n)+1(n) (50)

Here the random variable R̃Kn represents the proportion in the total popu-
lation of all species unobserved in the sample X1, . . . , Xn.

To illustrate, consider sampling from F corresponding to the two-parame-
ter prediction rule in Example 16.

Definition 19 Say a random discrete distribution F has (α, θ, ν)-distribution
if a sample (Xn) from F is governed by the model of Example 16 determined
by real parameters α and θ subject to either (34) or (35), and a diffuse mea-
sure ν.

That is to say, according to Theorem 17, F has the same distribution as∑
j P̃jδ(X̃j) where the P̃j are given by (46) for W̃i that are independent

with beta(1 − α, θ + iα) distributions, independent also of the i.i.d(ν) se-
quence (X̃j). In particular, the (0, θ, ν) distribution is dirichlet(θν). To
be definite, it will be assumed that 0 ≤ α < 1 and θ > −α. But the following
results hold just as well for the range of parameters (34) corresponding to
Fisher’s model, provided attention is restricted to W̃i for 1 ≤ i ≤ m and it
is understood that W̃m = 1.

If (Xn) is a sample from F with the (α, θ, ν)-distribution, then the con-
ditional distribution of P̃ given (X1, . . . , Xn) can be made more explicit as
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follows. Using the expression (47) for Π(n, P̃ ), it follows from (48) that
given (X1, . . . , Xn) with Nn = (n1, . . . , nk), the W̃i are independent, with

beta(ni − α, θ + iα +
∑k

j=i+1 nj) distribution for 1 ≤ i ≤ k, and (51)

beta(1− α, θ + iα) distribution for i > k. (52)

This amounts to the following updating rule:

Corollary 20 If (Xn) is a sample from a random distribution F with the
(α, θ, ν)-distribution, then conditionally given X1, . . . , Xn with k distinct val-
ues X̃j for 1 ≤ j ≤ k, and nj values Xi equal to X̃j for each 1 ≤ j ≤ k,

F =
k∑

j=1

P̃jδ(X̃j) + R̃kFk (53)

where (P̃1, . . . , P̃k, R̃k) has dirichlet(n1 − α, . . . , nk − α, θ + kα) distribu-
tion, independently of the random distribution Fk, which has (α, θ + kα, ν)-
distribution.

As checks, take expectations and use the formulae (49) and (50) to recover
the (α, θ) prediction rule (33). Also, for α = 0 it is easily verified that this
updating rule reduces to the Dirichlet updating rule of Theorem 1.

4 Random Permutations

It is easily seen that there exists a unique probability distribution for a
sequence of random permutations (σn, n = 1, 2, · · ·) such that

(i) σn is a uniformly distributed random permutation of [n] for each n;
(ii) for each n, if σn is written as a product of cycles, then σn−1 is derived

from σn by deletion of element n from its cycle.
For example, using standard cycle notation for permutations,

if σ5 = (134)(25) then σ4 = (134)(2);
if σ5 = (134)(2)(5) then σ4 = (134)(2).

The combinatorial basis of the above observation appears in Greenwood
[32]. Lester Dubins and I devised the following Chinese restaurant construc-
tion of such a sequence (σn), which is mentioned in [1, (11.19)]. Suppose
people numbered 1, 2, · · · arrive in an initially empty restaurant with an
unlimited number of circular tables T1, T2, · · ·, each capable of seating an
unlimited number of people. Person 1 sits at table T1. For n ≥ 1 suppose
inductively that n people have already entered the restaurant, and are seated
in some arrangement, with at least one person at each of the tables Tj for
1 ≤ j ≤ k say, where k is the number of tables occupied by the first n people
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to arrive. Let person n + 1 choose with equal probability to sit at any of
the following n + 1 places: to the left of person j for some 1 ≤ j ≤ n, or
alone at table Tk+1. Define σn : [n] → [n] by σn(i) = j if person j is seated
immediately to the left of person i after n people have entered. The sequence
(σn) then has features (i) and (ii) above by a simple induction.

Suppose now that independently of the sequence (σn) the table Tj is
painted a random color X̃j , where the X̃j are i.i.d. random variables with
some arbitrary probability distribution ν over a spectrum S of possible col-
ors. Let Xn denote the color of the table occupied by the nth person to
arrive. By construction, the sequential development of (Xn) is exactly that
described by the Blackwell-MacQueen urn scheme for µ = ν. Consequently,

(Xn) is a sample from F with dirichlet(ν) distribution (54)

where F is the limiting empirical distribution of X1, · · · , Xn as n → ∞.
Assuming ν is diffuse, different tables have different colors almost surely.
Then by construction, the following three partitions of [n] are almost surely
identical: the partition of [n] induced by X1, · · · , Xn, the partition of [n]
defined by the way the first n customers are distributed among tables, and
the partition of [n] induced by the cycles of the uniformly distributed random
permutation σn.

To construct F with dirichlet(θν) distribution for arbitrary θ > 0, let
people enter the restaurant exactly as before, but suppose that given the
seating arrangement of the first n people at tables T1, · · · , Tk say, person
n + 1 chooses to sit the left of person j with equal probability 1/(n + θ) for
each 1 ≤ j ≤ n, and to sit alone at table Tk+1 with probability θ/(n + θ).
Now the sequence of colors (Xn) is governed by the Blackwell-MacQueen
urn scheme for µ = θν, so

(Xn) is a sample from F with dirichlet(θν) distribution (55)

In this construction the number Kn of cycles of σn is represented as

Kn = Y1 + · · ·+ Yn (56)

where Ym is the indicator of the event that customer m chooses to sit
alone at a new table, and by construction the Ym are independent Bernoulli
(θ/(θ + m − 1)) variables. In terms of (Xn) constructed as a sample from
Dirichlet(θν) for a diffuse ν, Ym is the indicator of the event that Xm does
not equal Xj for any 1 ≤ j ≤ m − 1, and Kn is the number of distinct val-
ues observed among X1, · · · , Xn. The simple structure of the representation
(56) in this setting can be read immediately from the Blackwell-MacQueen
urn scheme. As noted by Korwar-Hollander [48], by application of standard
limit theorems for sums of independent random variables, this leads to a law
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of large numbers and a central limit theorem governing the Pθ asymptotic
behaviour of Kn for large n. In particular, for θ = 1, we recover the re-
sult of Goncharov [31] regarding the asymptotic normality for large n of the
distribution of the number of cycles of σn, a uniformly distributed random
permutation of [n]. A number of other asymptotic results for random per-
mutations, originally obtained by other methods [65, 68], can also derived
from the Chinese restaurant construction. See also [5, 4, 6, 13, 35, 39, 57]
for related developments.

The Chinese restaurant construction can also be extended to the more
general species sampling setting of Section 3. See Kerov [44, §4.2] for a
remarkable connection between these ideas and the theory of interlacing
measures and the Markov transform.

References

[1] D.J. Aldous. Exchangeability and related topics. In P.L. Hennequin,
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