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ABSTRACT. In the present paper we introduce difference paranormed sequence spaces
CO(M7 A%, D, u, ||7 T H)7 C(Ma A%, D, u, Ha ) H) and lOO(M7 AL, D, u, ||7 Tt H) de-
fined by a Musielak-Orlicz function M = (M}) over n-normed spaces. We also study
some topological properties and some inclusion relations between these spaces.

1. Introduction and Preliminaries

Let w, ls, ¢ and cy denote the spaces of all, bounded, convergent and null
sequences x = (xy) with real or complex entries respectively. The zero sequence is
denoted by 6 = (0,0, ...). The notion of difference sequence spaces was introduced
by Kizmaz [9], who studied the difference sequence spaces I (A), ¢(A) and ¢y(A).
The notion was further generalized by Et and Colak [4] by introducing the spaces
loo(A™), ¢(A™) and c¢,(A™). Let m, n be non-negative integers, then for Z = [, ¢
and ¢y we have sequence spaces,

Z(AY) ={x = (ap) €w: (Al ag) € Z}

where Az = (A% zy) = (A% ey, — AP teyy ) and A% 2y = xp for all k € N,

m m
which is equivalent to the following binomial representation

Arap = (-1) ( Z ) Thtmo-

v=0
Taking m = n = 1, we get the spaces [ (A), ¢(A) and ¢,(A) introduced and studied
by Kizmaz [6].
Let X be a linear metric space. A function p : X — R is called paranorm, if
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p(z) >0, for all z € X;
p(—z) = p(x), for all z € X;
p(z +vy) <p(z)+py), for all z,y € X;

- W o=

if (o,,) is a sequence of scalars with o,, — 0 as n — oo and (z,,) is a sequence
of vectors with p(z, —x) — 0 as n — oo, then p(opz, —ox) — 0 asn — oc.

A paranorm p for which p(z) = 0 implies = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [18], Theorem 10.4.2,
P-183). For more details about sequence spaces (see [1], [2], [3], [14], [15], [16], [17])
and references therein.

An Orlicz function M : [0,00) — [0,00) is a continuous and convex with
M(0) =0, M(x) >0 for z >0 and M(z) — o0 as x — 0.
Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the follow-
ing sequence space,

Ly = {(mk) Eng(lifl) < 0o, for some p>0}

which is called as an Orlicz sequence space. Also £, is a Banach space with the

norm o
el =int {03 m(F) <1}

Also, it was shown in [10] that every Orlicz sequence space £); contains a subspace
isomorphic to £,(p > 1). An Orlicz function M satisfies Ag—condition if and only if
for any constant L > 1 there exists a constant K (L) such that M (Lu) < K(L)M (u)
for all values of w > 0. An Orlicz function M can always be represented in the
following integral form

M(z) = /OI n(t)dt

where 7 is known as the kernel of M, is right differentiable for t > 0,7(0) = 0,7(t) >
0, n is non-decreasing and 7(t) — oo as t — co.

A sequence M = (M) of Orlicz functions is called a Musielak-Orlicz function
(see [11], [13]). A sequence N = (Ny) defined by

Ni(v) = sup{|v|ju — My(u) : w >0}, k=1,2,---

is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space ty¢ and its subspace
hyt are defined as follows

v = {3: € w: In(cx) < oo for some ¢ > O},
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hy = {wa:IM(cx) < oo for all c>0}7

where Iy is a convex modular defined by

Iy (z) = iMk(l‘k),l‘ = (l‘k) € -
k=1

We consider ty equipped with the Luxemburg norm
. x
||| = 1nf{l€ >0: IM(E) < 1}
or equipped with the Orlicz norm
1
]| = inf{%<1 + I(ka)) k> 0},

The concept of 2-normed spaces was initially developed by Géahler [5] in the mid of
1960’s, while that of n-normed spaces one can see in Misiak[9]. Since then, many
others have studied this concept and obtained various results, see Gunawan ([6], [7])
and Gunawan and Mashadi [8]. Let n € N and X be a linear space over the field K,
where K is the field of real or complex numbers of dimension d, where d > n > 2. A
real valued function ||-,- - ,-|| on X™ which satisfies the following four conditions:

1. ||x1, @, - ,z,|| = 0 if and only if 1,29, ,x, are linearly dependent in
X.

bl

2. ||z1,22, - ,xy|| is invariant under permutation;
3. laxy, xa, - ,xnll = || ||z1,22, -, 2,|| for any a € K, and
4o |z + 2z, @l Sl m2, o[ + 27, 22,0 20|

is called a n-norm on X and the pair (X, ||-,--- ,||) is called a n-normed space over
the field K.

For example, we may take X = R"™ being equipped with

the n-norm ||z1,22, - ,2,||g = the volume of the n-dimensional parallelopiped
spanned by the vectors z1,xo, -+ ,x, which may be given explicitly by the formula

|1, @2, an||p = | det(a4)],

where x; = (z1, %2, - ,Tin) € R™ for each i = 1,2, -+ ,n and script E denotes the
Euclidean norm. Let (X,||-,---,||) be a n-normed space of dimension d > n > 2
and {a1, a9, - ,a,} be linearly independent set in X. Then the following function
[+ 5 +||loo on X~ defined by

H.’ﬂ1,$2,"' 7mn71||00 :max{||x1,x2,~~ ;xnfl’aiH B 1727"' 7TL}

defines an (n — 1)-norm on X with respect to {a1,a9, - ,an}.
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A sequence (z) in a n-normed space (X, ||, ,||) is said to converge to some
LeXif
lim ||zx — L, 21, -+ ,2n-1]| =0 for every z1,--+,2z,_1 € X.
k—o00
A sequence (z1) in a n-normed space (X, ||-,--- ,-||) is said to be Cauchy if
lim ||z — xp, 21, - ,2n-1]] =0 for every z1,---,2,-1 € X.
k,p—o0

If every Cauchy sequence in X converges to some L € X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said to be
n-Banach space.

Let M = (M) be a Musielak-Orlicz function, p = (pg) be a bounded sequence
of positive real numbers and u = (ug) be a sequence of positive reals such that
ur # 0 for all k, then we define the following classes of sequences in the present

paper:

CO(MvAZr’anpvuJ"?"' 7||) =
A7 P
{x = (x) €w: lm uy {M;g(H mxk,zl,~-- ,zn,lH)} ' =0, forsome p > O},
k—o0 P
" . A%m — L Pk
O AL pw | )= = () € ws Tim M| 225 2 )]
k—o0 P
=0, for some p >0 and LEX},
and
loo(MvA?n7p7uv||'a"' 7||) =
Afnxk

Pk
{x: (xr) € w : supuy [Mk(H S 21, ,zn_1||)} ' < oo, for some p > 0}.
E>1

For pi, =1, for all &
CO(MvA%ﬂ% H7 7||) =

A’I’L
{x = (z) €Ew: klim U, [Mk (H mxk,zl, cee ,zn_1||)} =0, for some p > 0},
— 00 p

(M, A i, || ,~||):{x = (mx) € w lim uy {M&H%,zl, - ,zn,1||>}

=0, for some p >0 and LEX},

and
loo(MaA:}muau'f" 7||):
An
{x = (x) € w: supuy [Mk(\|ﬂ,zl,~-~ ,zn_1||)} < oo, for some p > 0}.
k>1 P



Some Difference Paranormed Sequence Spaces 77

For M(x) = z, we have

. An.’L‘k Pk
CO(AZL,]LU,”',--'fH):{(E:(ﬂfk)e’LUZ lim uk(” o ;217"';Zn71||) :0’
k—o0 P

for some p > 0},

. A".’L‘k—L Pk
Ayl ol) = {o = (@) €w: lim g (||Z2E2 2z
k—o0 P

=0, for some p >0 and LEX},

and

==

Pk
oo (Ao |+ ol = {w = (0) € w i supuy e mell) < oo

k>1

for some p > O}.

The following inequality will be used throughout the paper. If 0 < pp < suppx = G,
K = max(1,2971) then

(1.1) |ag, + be [P < K{|ax|P* + [bx["*}

for all k and ay, by € C. Also |aP* < max(1, |a|%) for all a € C.

The aim of this paper is to study some difference sequence spaces in more gen-
eral setting i.e. over n- normed spaces defined by a Musielak-Orlicz function.

2. Main Results

In this section, we study some topological properties and inclusion rela-
tion between the spaces CO(Ma Agfmpv U, ||a Ty H)a C(Mv A:anpv U, Ha Ty ||) and
loo(Ma A:Ln7p7u7 ||7 R H)

Theorem 2.1. Let M = (My) be a Musielak-Orlicz function, p = (px) be a
bounded sequence of positive real numbers and u = (ug) be a sequence of strictly

positive real numbers, then the classes of sequences co(M, AT p,u, |- ,-]),
(M AY pyuy || |]) and Lo (M, AL Dy ||, -+, ¢]|) are linear spaces.
PT’OOf. Let z = (xk)v Yy = (yk) € CO(M7A7napvu7||'7"' 7”) and OZ?B € C. Then
there exist positive numbers p; and po such that
Al P
lim {Mk<|| m k,zl,~- ,zn,lHﬂ =0, and
k—oco

An Pk
lim g [ 2 (1222 21,z ) ] =0
k—o0 P2
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Let ps = max(2|alp1,2|8|p2). Since M = (M) is non-decreasing convex function
and so by using inequality (1.1), we have

A7 Pk
lim Uk[Mk(HMazh”' o 1”)} g
k— o0 P3
. aA?nl‘k ﬁAm k Pr
< gim [ 2] T R [ )]
k—o0 P3
1 A" P
< K Jim M (H k)]
k—oo 2Pk

.1 myk P
+ K hm QW [Mk<” yRLy e ,Zn71||>:|

Pk
< K lim uk[ (H ,zn_1||)}
Pk
+ K lim [ M (H myk ,zn_1||>}
= 0.
So, ax+py € co(M, A%, p,u, ||, - ,-||). Hence CO(M Al pyug ], ||) is alinear
space. Similarly, we can prove that ¢(M, A" p,u, ||-,- -+ ,-||) and loo (M, AZ,, p, u, ||+,
-, +||) are linear spaces. O

Theorem 2.2. Let M = (My,) be a Musielak-Orlicz function, p = (px) be a bounded
sequence of positive real numbers and u = (ug) be a sequence of strictly positive real
numbers. For Z = ls,c and cy, the spaces Z(M, A% p,u,l||-, - ,||) are para-
normed spaces, paranormed by

mn » Anmk
. Pr
=3l ons e znal | inf {p % sup by (|| =25 21, aall) <1

where H = max(1, sup pg).
k

Proof. Clearly g(—z) = g(x), g(8) = 0. Let (zx) and (yx) be any two sequences
belong to any one of the space Z(M, A" p,u,||-,---,-||), for Z = ¢y, ¢ and I
Then, we get p1, p2 > 0 such that

A”:ck
SupukMk<|| - 7217"'7’2"—1”) Sl
k

and

Ay
supukMk(HL,Zl,“' ,anlu) <L
k P2

Let p = p1 + p2. Then by convexity of M = (Mjy), we have



Sl;p ukMk(H

Hence we have,
9(z +y)

AL (zr + yk)

IN

+
~~
=

IN
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znall)

A T
)sup M (|25 21,z
k P

n

1

ALYk
)supuedi (1222 21z )
k

P2

mn
= Z||(xk+yk)7zl7"'azn—l||
k=1

+ inf{p% : supukMk(
k

IA

y 21yt 7Zn—1||) S 1}
P

mn . I A:Ln(Ek

>z szl + inf {pF : sup (] s zell) <1)
k

k=1

p1

Py
H

. k
£ 3 Mgz szl bt g s sup M (1720 21, zll) < 1)
k 2
k=1

This implies that

g(x+y) < g(x) + g(y).

The continuity of the scalar multiplication follows from the following inequality

g(px)

mn

. Pr An Tk
= E :H/J’xkazlf"aZTL—IH—i_lnf{pf}t zsupukMk<||%azl7”'azn—IH) Sl}
k

k=1

mn
= |M|Z ka’z17"' aznle
k=1

+1nf{(t|,u|) 7" :supukMk(H ko, 7zn,1||> < 1},
k

t
where t = \TP\' Hence the space Z(M, AY p,u, ||, ,-|]), for Z =cp,c and I is a
paranormed space, paranormed by g. O

Theorem 2.3. Let M = (M},) be a Musielak-Orlicz function, p = (px) be a bounded
sequence of positive real numbers and u = (ug) be a sequence of strictly positive real
numbers. For Z = l,c and cy, the spaces Z(M, A% p,u, ||, ,-||) are complete
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paranormed spaces, paranormed by
mn
) PE A xy,
9() = D lfows 2zl in {p % supurd (|25 21, zal) < 1
k
k=1

where H = max (1, sup pg).
k

Proof. We prove the result for the space lo (M, A", p,u, ||, ,-||). Let (z*) be
any Cauchy sequence in loo (M, A" p,u,||-,--- ,||). Let g > 0 be fixed and ¢ > 0
be such that for a given 0 < € < 1, fot > 0 and xgt > 1. Then there exists a

positive integer ng such that g(z* —27) < .5, for all i, j > ng. Using the definition
of paranorm, we get

mn )
(21) ZH(‘TZ*‘T?WZD 7Zn—1||
k=1
' A" (2t — o)
+inf{p%’“ :SupukMk(HMle;“‘ 72n71||>}
k P
< i, for all 4,5 > ng.
$0t
Hence we have,
mn .
Z [|(x), —27), 21, zn-1]| <€, forall i,j > ny.
k=1
This implies that
|| (8 — xi),zl,~-~ yZn—1|] <€, forall i,j >ng and 1<k < mn.
Thus () is a Cauchy sequence for k = 1,2,....,mn. Hence () is convergent for
k=1,2,.....,mn. Let
(2.2) lim x} =z, sayfor k=1,2,--- mn.
1— 00
Again from equation (2.1) we have,
A" (zh — 2
inf {p%k : supukMk<||M,z1,-~ ,zn_1||) < 1} <, forall 4,57 > ng.
k p
Hence we get
An T J
supukMk(||M,zl,~- ,zn,1\|> <1, forall i,j5 > ng.
k gzt — z9)
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AL (zh—a})

It follows that ukMk(H S0kt e 7zn_1”) <1, for each k > 1 and for all
i,j > ng. For t > 0 with ukMk(t%O) > 1, we have

A" (i — ) tzo
M(M, e e )< M(i)
ue M (|| o —z7) ] ) < uMi (5
This implies that
. ; trg € €
|A% Ty — Ay, 215 21| < 7% 9

Hence (A7,z}) is a Cauchy sequence for all k& € N. This implies that (AJ}z}) is
convergent for all k£ € N. Let lim A} ) = y;, for each k € N. Let k = 1, then we

11— 00
have
: n i . . v n 7
(23) Jim At = i 307 (7)o =
v=0

We have by equation (2.2) and equation (2.3) lim z!,, .1 = Zmn41, exists. Pro-
71— 00
ceeding in this way inductively, we have lim x} = xj exists for each k € N. Now
71— 00

we have for all ¢, > ng,

mn

Dol =2z 2zl

k=1

» A" i .
—i—inf{pﬁk :supukMk(HM,zl,--- ,zn,lH) < 1} < €.
k p

This implies that
mn )
jgrgo{;uxzx@,zl,m il

A” PR |
(IIM,%W ;Z'n,71||) < 1}} <e
p

for all 4 > ng. Using the continuity of (My), we have

+ inf {p%k : sup ug My,
k

mn
Z”(x’ltc _iUk),Zl,"- ,Zn71||
k=1
A % — A"
+ inf {p%k :supukMk(HM,zl,--- 7zn,1||) < 1} <€,
k
for all i > ng. It follows that (2% — ) € loo (M, A”,, p,u, |-, ,-||). Since

2t € Lo (M, AZ pyuy ||y, 0]]) and Too (M, A7 pyuy ||+, -+ ,¢]]) is a linear space, so

m



82 K. Raj, S. K. Sharma and A. Gupta

we have z = ' — (2 — x) € loo (M, A", p,u,||-,- -+ ,-||). This completes the proof.

SimﬂarIYv Wwe can prove that C(Mv Anm7pa U, Hv M) ||) and Co(M, AZmpa U, ||7 ) H)
are complete paranormed spaces in view of the above proof. O

Theorem 2.4. If 0 < p; < g < oo for each k, then Z(M, A" p,u, ||, ,-||) C
Z(MyA:Lna(Luv ||7 e 7'”)7 fO?” Z = Co and c.

Proof. Let = (xy) € ¢(M, A, p,u,||-,- -+ ,-||). Then there exists some p > 0 and

L € X such that

A" xp — L P
lim u;c(Mk(Himxk S, ,Zn,lﬂ)) * =0.
k— o0 P

Al xp — L
This implies that ukMk<|\L
p

)21y 7Zn—1||) <e€ (0<e<1) for suffi-

ciently large k. Hence we get

. A" T — L qk
lim uk<Mk(||7m Sy R1y "t ,Zn_1|‘>)
k— o0 P

Anay, — L Z
< lim Uk(Mk<||Lazlv”'azn71‘|>> '

k—o0 P
= 0.
This implies that « = (x) € ¢(M, A%, q,u, ]|, ,-||). This completes the proof.
Similarly, we can prove for the case Z = . O

Theorem 2.5. If M' = (M]) and M" = (M}!) be two Musielak-Orlicz functions.
Then

(Z) Z(M/7Azmp7uv||'v"' 7”) - Z(MNOM/,A%,Z),U,H-,"' "H))
(”) Z(MlvA%’anﬂH? a||) QZ(MN’A?mp’uvH'a'“ 7||)
gZ(MI+Ml/aA?n7p7ua||'a"' a'H)a

for Z =ly,c and cg.

Proof. (i) We prove this part for Z = I, and the rest of the cases will follow
similarly. Let (x) € loo(M', A2 p,u, ||+ ,-]|), then there exists 0 < U < oo such
that

AP Dk
Uk(Mllc(H n;xkazla"' 7Zn71||>) * <U, forall keN.

Anml'k

Al

Hence we have

21, ,Zn—1||)~ Then y;, < Uﬁ <V, say for all kK € N.

N
m
P y 215

((aat o2 (1 ) ) = (P < QW) < s,
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A7 P
for all & € N. Hence supuk((M,’c’ o M,’c)(|| mlk ,zn,1||>) " < 0. Thus
k
r = (k) € loo(M" o M, AT p,u, ||+ ,-]]).
(ii) We prove the result for the case Z = ¢ and the rest of the cases will follow
Simﬂarly Let z = (xk) € C(M/a Aprauv ||7 t a||) n C(M//aATrLrwpa U, ||ﬂ e 7'”)3

then there exist some p;,p2 > 0 and L € X such that
Az — L P
lim uk(M];<HL,Zl,'” ,Zn_1||)) * =0
k—o0 P1

and

Az — L P

lim uk<M,'€’(HL,z— 1, ,zn_lH)) -
k— o0 P2

Let p = p1 + p2. Then we have

Anx — L Pr
i (4] + 2) (|| 222 22l

p
A"z — L p
S K|:( il )U]CM];(HL,Z]A, 7Z7l—1|‘):| ’
p1t p2 p1
Az — L p
+ K[ e (122 )]
p1+ p2 P2

This implies that

A" xp, — L P
tim e (M + M) (1225522 2 zal)) T =0,
k— o0 P

Thus z = (x) € c(M' +M", A p,u,||-, -+ ,-||). This completes the proof. O

m

Theorem 2.6. Let M = (My,) be a Musielak-Orlicz function, p = (px) be a bounded
sequence of positive real numbers and u = (uy) be a sequence of strictly positive real
numbers, then Z(M, A" p u |-, ,-|]) € Z(M, A%, p,u, ||+ ,-||), for Z =
loo, ¢ and cq.

Proof. We prove the result for the case Z = [, and the rest of the cases will follow

similarly. Let 2 = (zx) € loo(M, A% p,u,||,--+,-]|). Then we can have p > 0
such that
An—l Dr
(2.4) uk(Mk(HM,zl, e ,zn,lﬂ)) * < oo, forall ke N.
p

On considering 2p and using the convexity of (My), we have

A" . 1 An_lxk
w M (222 2 zall) < Sud (|22 22
2p 2 p
1 AP lgy
+ §ukMk(||me7zl7"')Z’I’Lflu)'



84 K. Raj, S. K. Sharma and A. Gupta

Hence we have

A
g, (Mk <|| a’f’“

Pr
y R, 7271*1H)>

An 1 Dk

< Klu(GM(I1ZE 2 zl)
p
1 2; Thk+m Pk

o (GM (PR ) )

p

Then using equation (2.4), we have

A
uk(Mk(H Tk 21, ,zn_1||))pk < oo, forall ke N.
Thus Lo (M, AR pyw, ||+ l]) € loo (VG AT pys [, ]])- o

Theorem 2.7. Let M = (My,) be a Musielak-Orlicz function. Then

CO(M,A?,L,]),U,H',"' ’||) C C(M A:Lnap>u || H)
(M Anvpa a|| )T aH)
Proof. Tt is obvious that co(M, A% p,u, ||, -+ ,-|]) C (M, A" p,u, || ,-]]). We
shall prove that ¢(M, A% . p,u, ||+ ,|]) Cloo(M, A2 pyu, ||+ ,¢]|). Let
x = (x) € c(M, AT, p,u,]||-, -+ ,-||). Then there exists some p > 0 and L € X such
that A .
n - Pk
lim uk<Mk(||L,Zl,'” ,Zn_lH)) = 0.
k—o0 P

On taking p = 2p;, we have

A €T Pk
uk(Mk(H b y Rl )Zn—l))

1 Al xp, — L Pk
<K|3 uk(Mk(u%,zl,m,zn_1||))}

+K[ ukMk(H— 21,0 7zn,1|\)}pk

1\P AP L Pk
SK(f) kuk[Mk(HL)Zlv'” 7Z7L—1H>:| ’
2 P1

w0 (5)" max (L (M (12 10 zanall)) ),

where H = max(Lsuppk). Thus we get = (z) € loo(M, AZ D, u, |-+ ,-]])-
Hence co(M, A% p, u, || D) C eV AR S ]y e]])
Cloo(M, AT Py s |- H)- =
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Theorem 2.8. The sequence space loo (M, A% . p,u, ||, -+ ,-||) is solid.
Proof. Let x = (xy) € loo(M, AL, p,u, ||-,- -+ ,-||), that is
A P
lim uy {Mk<|| mmk,zl,~-- ,%4”)} ' < 0.
k—o0

Let (o) be a sequence of scalars such that |ag| < 1 for all k& € N. Thus we have

3 akA” Tk Pk
lim ug [Mk (H7m721’ e 7Z’n*1||):|
k—o0 P

. An{Ek Pk
< lim wuy [Mk<||L,Zl,"' azn—1||>:|
k—o0 P
< 00.

This shows that (agzr) € loo(M, AL, p,u, ]|, ,-||) for all sequences of scalars
(ag) with |ag| < 1 for all k € N, whenever (x) € I (M, A, p,u,||-, -+ ,-||). Hence

m

the space loo (M, A7, p,u, ||, ,-||) is a solid sequence space. O

Theorem 2.9. The sequence space loo (M, A%, p,u, ||, ,||) is monotone.

Proof. The proof of the theorem is obvious and so we omit it.
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