Some Difference Paranormed Sequence Spaces over *n*-normed Spaces Defined by a Musielak-Orlicz Function

KULDIP RAJ*, SUNIL K. SHARMA AND AMIT GUPTA

School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India

e-mail: kuldeepraj68@rediffmail.com, sunilksharma42@yahoo.co.in and guptaamit796@gmail.com

ABSTRACT. In the present paper we introduce difference paranormed sequence spaces $c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$, $c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ and $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ defined by a Musielak-Orlicz function $\mathcal{M} = (M_k)$ over *n*-normed spaces. We also study some topological properties and some inclusion relations between these spaces.

1. Introduction and Preliminaries

Let $w,\ l_{\infty},\ c$ and c_0 denote the spaces of all, bounded, convergent and null sequences $x=(x_k)$ with real or complex entries respectively. The zero sequence is denoted by $\theta=(0,0,\ldots)$. The notion of difference sequence spaces was introduced by Kızmaz [9], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Çolak [4] by introducing the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$. Let m,n be non-negative integers, then for $Z=l_{\infty},\ c$ and c_0 we have sequence spaces,

$$Z(\Delta_m^n) = \{x = (x_k) \in w : (\Delta_m^n x_k) \in Z\}$$

where $\Delta_m^n x = (\Delta_m^n x_k) = (\Delta_m^{n-1} x_k - \Delta_m^{n-1} x_{k+m})$ and $\Delta_m^0 x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta_m^n x_k = \sum_{v=0}^n (-1)^v \begin{pmatrix} n \\ v \end{pmatrix} x_{k+mv}.$$

Taking m = n = 1, we get the spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_o(\Delta)$ introduced and studied by Kızmaz [6].

Let X be a linear metric space. A function $p:X\to\mathbb{R}$ is called paranorm, if

Received August 18, 2011; accepted August 22, 2012.

2000 Mathematics Subject Classification: 40A05, 46A45, 46E30.

Key words and phrases: Paranorm space, difference sequence spaces, Orlicz function, Musielak-Orlicz function, solid, monotone etc.

^{*} Corresponding Author.

- 1. $p(x) \ge 0$, for all $x \in X$;
- 2. p(-x) = p(x), for all $x \in X$;
- 3. $p(x+y) \le p(x) + p(y)$, for all $x, y \in X$;
- 4. if (σ_n) is a sequence of scalars with $\sigma_n \to \sigma$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\sigma_n x_n \sigma x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [18], Theorem 10.4.2, P-183). For more details about sequence spaces (see [1], [2], [3], [14], [15], [16], [17]) and references therein.

An Orlicz function $M:[0,\infty)\to [0,\infty)$ is a continuous and convex with $M(0)=0,\,M(x)>0$ for x>0 and $M(x)\longrightarrow\infty$ as $x\longrightarrow\infty$. Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the following sequence space,

$$\ell_M = \left\{ (x_k) \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is called as an Orlicz sequence space. Also ℓ_M is a Banach space with the norm

$$||(x_k)|| = \inf \Big\{ \rho > 0 : \sum_{k=1}^{\infty} M\Big(\frac{|x_k|}{\rho}\Big) \le 1 \Big\}.$$

Also, it was shown in [10] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p(p \geq 1)$. An Orlicz function M satisfies Δ_2 —condition if and only if for any constant L > 1 there exists a constant K(L) such that $M(Lu) \leq K(L)M(u)$ for all values of $u \geq 0$. An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_0^x \eta(t)dt$$

where η is known as the kernel of M, is right differentiable for $t \geq 0$, $\eta(0) = 0$, $\eta(t) > 0$, η is non-decreasing and $\eta(t) \to \infty$ as $t \to \infty$.

A sequence $\mathcal{M} = (M_k)$ of Orlicz functions is called a Musielak-Orlicz function (see [11], [13]). A sequence $\mathcal{N} = (N_k)$ defined by

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, k = 1, 2, \cdots$$

is called the complementary function of a Musielak-Orlicz function \mathcal{M} . For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows

$$t_{\mathcal{M}} = \left\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \right\},$$

$$h_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \ \text{ for all } \ c > 0 \Big\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k), x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0: I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

The concept of 2-normed spaces was initially developed by Gähler [5] in the mid of 1960's, while that of n-normed spaces one can see in Misiak[9]. Since then, many others have studied this concept and obtained various results, see Gunawan ([6], [7]) and Gunawan and Mashadi [8]. Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{K} , where \mathbb{K} is the field of real or complex numbers of dimension d, where $d \geq n \geq 2$. A real valued function $||\cdot, \cdots, \cdot||$ on X^n which satisfies the following four conditions:

- 1. $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X;
- 2. $||x_1, x_2, \cdots, x_n||$ is invariant under permutation;
- 3. $||\alpha x_1, x_2, \cdots, x_n|| = |\alpha| \ ||x_1, x_2, \cdots, x_n||$ for any $\alpha \in \mathbb{K}$, and
- 4. $||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$

is called a *n*-norm on X and the pair $(X, ||\cdot, \cdots, \cdot||)$ is called a *n*-normed space over the field \mathbb{K} .

For example, we may take $X = \mathbb{R}^n$ being equipped with

the *n*-norm $||x_1, x_2, \dots, x_n||_E$ = the volume of the *n*-dimensional parallelopiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \cdots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \cdots, n$ and script E denotes the Euclidean norm. Let $(X, ||\cdot, \cdots, \cdot||)$ be a n-normed space of dimension $d \geq n \geq 2$ and $\{a_1, a_2, \cdots, a_n\}$ be linearly independent set in X. Then the following function $||\cdot, \cdots, \cdot||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \cdots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \dots, a_n\}$.

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \dots, z_{n-1}|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to be Cauchy if

$$\lim_{k, p \to \infty} ||x_k - x_p, z_1, \dots, z_{n-1}|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be a sequence of positive reals such that $u_k \neq 0$ for all k, then we define the following classes of sequences in the present paper:

$$c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) =$$

$$\left\{x=(x_k)\in w: \lim_{k\to\infty}u_k\Big[M_k\Big(||\frac{\Delta_m^nx_k}{\rho},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k}=0, \text{ for some } \rho>0\right\},$$

$$c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) = \left\{x = (x_k) \in w : \lim_{k \to \infty} u_k \left[M_k\left(||\frac{\Delta_m^n x_k - L}{\rho}, z_1, \cdots, z_{n-1}||\right)\right]^{p_k}\right\}$$

$$=0$$
, for some $\rho > 0$ and $L \in X$,

and

$$l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) =$$

$$\left\{x = (x_k) \in w : \sup_{k \ge 1} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} < \infty, \quad \text{for some } \rho > 0 \right\}.$$

For $p_k = 1$, for all k

$$c_0(\mathcal{M}, \Delta_m^n, u, ||\cdot, \cdots, \cdot||) =$$

$$\left\{x = (x_k) \in w : \lim_{k \to \infty} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right] = 0, \text{ for some } \rho > 0 \right\},$$

$$c(\mathcal{M}, \Delta_m^n, u, ||\cdot, \dots, \cdot||) = \left\{ x = (x_k) \in w : \lim_{k \to \infty} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n x_k - L}{\rho}, z_1, \dots, z_{n-1} \right| \right| \right) \right] \right\}$$

$$=0$$
, for some $\rho > 0$ and $L \in X$,

and

$$l_{\infty}(\mathcal{M}, \Delta_m^n, u, ||\cdot, \cdots, \cdot||) =$$

$$\Big\{x=(x_k)\in w: \sup_{k\geq 1}u_k\Big[M_k\Big(||\frac{\Delta_m^nx_k}{\rho},z_1,\cdots,z_{n-1}||\Big)\Big]<\infty, \text{ for some } \rho>0\Big\}.$$

For $\mathcal{M}(x) = x$, we have

$$\begin{split} c_0(\Delta_m^n,p,u,||\cdot,\cdots,\cdot||) &= \Big\{x = (x_k) \in w: \lim_{k \to \infty} u_k \Big(||\frac{\Delta_m^n x_k}{\rho},z_1,\cdots,z_{n-1}||\Big)^{p_k} = 0, \\ & \text{for some } \rho > 0\Big\}, \\ c(\Delta_m^n,p,u,||\cdot,\cdots,\cdot||) &= \Big\{x = (x_k) \in w: \lim_{k \to \infty} u_k \Big(||\frac{\Delta_m^n x_k - L}{\rho},z_1,\cdots,z_{n-1}||\Big)^{p_k} \\ &= 0, \text{ for some } \rho > 0 \text{ and } L \in X\Big\}, \end{split}$$

and

$$l_{\infty}(\Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) = \left\{ x = (x_k) \in w : \sup_{k \ge 1} u_k \left(||\frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1}|| \right)^{p_k} < \infty, \right\}$$
 for some $\rho > 0$.

The following inequality will be used throughout the paper. If $0 \le p_k \le \sup p_k = G$, $K = \max(1, 2^{G-1})$ then

$$(1.1) |a_k + b_k|^{p_k} \le K\{|a_k|^{p_k} + |b_k|^{p_k}\}$$

for all k and $a_k, b_k \in \mathbb{C}$. Also $|a|^{p_k} \leq \max(1, |a|^G)$ for all $a \in \mathbb{C}$.

The aim of this paper is to study some difference sequence spaces in more general setting i.e. over n- normed spaces defined by a Musielak-Orlicz function.

2. Main Results

In this section, we study some topological properties and inclusion relation between the spaces $c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||), c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ and $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$.

Theorem 2.1. Let $\mathcal{M}=(M_k)$ be a Musielak-Orlicz function, $p=(p_k)$ be a bounded sequence of positive real numbers and $u=(u_k)$ be a sequence of strictly positive real numbers, then the classes of sequences $c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$, $c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ and $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ are linear spaces.

Proof. Let $x=(x_k), y=(y_k) \in c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\lim_{k \to \infty} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n x_k}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} = 0, \text{ and}$$

$$\lim_{k \to \infty} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n y_k}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} = 0.$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $\mathcal{M} = (M_k)$ is non-decreasing convex function and so by using inequality (1.1), we have

$$\lim_{k \to \infty} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n (\alpha x_k + \beta y_k) \right|}{\rho_3}, z_1, \cdots, z_{n-1} \right| \right) \right]^{p_k}$$

$$\leq \lim_{k \to \infty} u_k \left[M_k \left(\left| \left| \frac{\alpha \Delta_m^n x_k}{\rho_3}, z_1, \cdots, z_{n-1} \right| \right| + \left| \left| \frac{\beta \Delta_m^n y_k}{\rho_3}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k}$$

$$\leq K \lim_{k \to \infty} \frac{1}{2^{p_k}} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n x_k}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k}$$

$$+ K \lim_{k \to \infty} \frac{1}{2^{p_k}} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n y_k}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k}$$

$$\leq K \lim_{k \to \infty} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n x_k}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k}$$

$$+ K \lim_{k \to \infty} u_k \left[M_k \left(\left| \left| \frac{\Delta_m^n y_k}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k}$$

So, $\alpha x + \beta y \in c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$. Hence $c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ is a linear space. Similarly, we can prove that $c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ and $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ are linear spaces.

Theorem 2.2. Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be a sequence of strictly positive real numbers. For $Z = l_{\infty}$, c and c_0 , the spaces $Z(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ are paranormed spaces, paranormed by

$$g(x) = \sum_{k=1}^{mn} ||x_k, z_1, \cdots, z_{n-1}|| + \inf \left\{ \rho^{\frac{p_k}{H}} : \sup_k u_k M_k \left(|| \frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1}|| \right) \le 1 \right\}$$

where $H = \max(1, \sup_{k} p_k)$.

Proof. Clearly $g(-x)=g(x),\ g(\theta)=0$. Let (x_k) and (y_k) be any two sequences belong to any one of the space $Z(\mathcal{M},\Delta^n_m,p,u,||\cdot,\cdots,\cdot||)$, for $Z=c_0,\ c$ and l_∞ . Then, we get $\rho_1,\ \rho_2>0$ such that

$$\sup_{k} u_k M_k \left(\left| \left| \frac{\Delta_m^n x_k}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \le 1$$

and

$$\sup_{k} u_k M_k \left(\left| \left| \frac{\Delta_m^n y_k}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \le 1.$$

Let $\rho = \rho_1 + \rho_2$. Then by convexity of $\mathcal{M} = (M_k)$, we have

$$\begin{split} \sup_k u_k M_k \Big(|| \frac{\Delta_m^n(x_k + y_k)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \\ & \leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_k u_k M_k \Big(|| \frac{\Delta_m^n x_k}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \\ & + \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_k u_k M_k \Big(|| \frac{\Delta_m^n y_k}{\rho_2}, z_1, \cdots, z_{n-1} || \Big) \\ & < 1. \end{split}$$

Hence we have, g(x+y)

$$\begin{split} &= \sum_{k=1}^{mn} ||(x_k+y_k), z_1, \cdots, z_{n-1}|| \\ &+ \inf \Big\{ \rho^{\frac{p_k}{H}} : \sup_k u_k M_k \Big(||\frac{\Delta_m^n(x_k+y_k)}{\rho}, z_1, \cdots, z_{n-1}|| \Big) \leq 1 \Big\} \\ &\leq \sum_{k=1}^{mn} ||x_k, z_1, \cdots, z_{n-1}|| + \inf \Big\{ \rho_1^{\frac{p_k}{H}} : \sup_k u_k M_k \Big(||\frac{\Delta_m^n x_k}{\rho_1}, z_1, \cdots, z_{n-1}|| \Big) \leq 1 \Big\} \\ &+ \sum_{k=1}^{mn} ||y_k, z_1, \cdots, z_{n-1}|| + \inf \Big\{ \rho_2^{\frac{p_k}{H}} : \sup_k u_k M_k \Big(||\frac{\Delta_m^n y_k}{\rho_2}, z_1, \cdots, z_{n-1}|| \Big) \leq 1 \Big\}. \end{split}$$

This implies that

$$g(x+y) \le g(x) + g(y).$$

The continuity of the scalar multiplication follows from the following inequality

 $g(\mu x)$

$$= \sum_{k=1}^{mn} ||\mu x_k, z_1, \cdots, z_{n-1}|| + \inf \left\{ \rho^{\frac{p_k}{H}} : \sup_k u_k M_k \left(|| \frac{\Delta_m^n \mu x_k}{\rho}, z_1, \cdots, z_{n-1}|| \right) \le 1 \right\}$$

$$= |\mu| \sum_{k=1}^{mn} ||x_k, z_1, \cdots, z_{n-1}||$$

$$+ \inf \left\{ (t|\mu|)^{\frac{p_k}{H}} : \sup_k u_k M_k \left(|| \frac{\Delta_m^n x_k}{t}, z_1, \cdots, z_{n-1}|| \right) \le 1 \right\},$$

where $t = \frac{\rho}{|\mu|}$. Hence the space $Z(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$, for $Z = c_0, c$ and l_∞ is a paranormed space, paranormed by g.

Theorem 2.3. Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be a sequence of strictly positive real numbers. For $Z = l_{\infty}$, c and c_0 , the spaces $Z(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ are complete

paranormed spaces, paranormed by

$$g(x) = \sum_{k=1}^{mn} ||x_k, z_1, \cdots, z_{n-1}|| + \inf \Big\{ \rho^{\frac{p_k}{H}} : \sup_k u_k M_k \Big(||\frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1}|| \Big) \le 1 \Big\},$$

where $H = \max_{k} (1, \sup_{k} p_k)$.

Proof. We prove the result for the space $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$. Let (x^i) be any Cauchy sequence in $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$. Let $x_0 > 0$ be fixed and t > 0 be such that for a given $0 < \epsilon < 1$, $\frac{\epsilon}{x_0 t} > 0$ and $x_0 t \ge 1$. Then there exists a positive integer n_0 such that $g(x^i - x^j) < \frac{\epsilon}{x_0 t}$, for all $i, j \ge n_0$. Using the definition of paranorm, we get

(2.1)
$$\sum_{k=1}^{mn} ||(x_k^i - x_k^j, z_1, \cdots, z_{n-1}|| + \inf \left\{ \rho^{\frac{p_k}{H}} : \sup_k u_k M_k \left(|| \frac{\Delta_m^n (x_k^i - x_k^j)}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right\}$$

$$< \frac{\epsilon}{x_0 t}, \text{ for all } i, j \ge n_0.$$

Hence we have,

$$\sum_{k=1}^{mn} ||(x_k^i - x_k^j), z_1, \cdots, z_{n-1}|| < \epsilon, \text{ for all } i, j \ge n_0.$$

This implies that

$$||(x_k^i - x_k^j), z_1, \dots, z_{n-1}|| < \epsilon$$
, for all $i, j \ge n_0$ and $1 \le k \le mn$.

Thus (x_k^i) is a Cauchy sequence for k=1,2,....,mn. Hence (x_k^i) is convergent for k=1,2,....,mn. Let

(2.2)
$$\lim_{i \to \infty} x_k^i = x_k, \quad \text{say for } k = 1, 2, \cdots, mn.$$

Again from equation (2.1) we have,

$$\inf\left\{\rho^{\frac{p_k}{H}}: \sup_k u_k M_k\left(||\frac{\Delta_m^n(x_k^i - x_k^j)}{\rho}, z_1, \cdots, z_{n-1}||\right) \le 1\right\} < \epsilon, \text{ for all } i, j \ge n_0.$$

Hence we get

$$\sup_{k} u_{k} M_{k} \Big(|| \frac{\Delta_{m}^{n} (x_{k}^{i} - x_{k}^{j})}{g(x^{i} - x^{j})}, z_{1}, \cdots, z_{n-1} || \Big) \le 1, \quad \text{for all } i, j \ge n_{0}.$$

It follows that $u_k M_k \left(|| \frac{\Delta_m^n(x_k^i - x_k^j)}{g(x^i - x^j)}, z_1, \cdots, z_{n-1}|| \right) \leq 1$, for each $k \geq 1$ and for all $i, j \geq n_0$. For t > 0 with $u_k M_k \left(\frac{tx_0}{2} \right) \geq 1$, we have

$$u_k M_k \Big(|| \frac{\Delta_m^n (x_k^i - x_k^j)}{g(x^i - x^j)}, z_1, \cdots, z_{n-1} || \Big) \le u_k M_k \Big(\frac{tx_0}{2} \Big).$$

This implies that

$$||\Delta_m^n x_k^i - \Delta_m^n x_k^j, z_1, \cdots, z_{n-1}|| < \frac{tx_0}{2} \frac{\epsilon}{tx_0} = \frac{\epsilon}{2}.$$

Hence $(\Delta_m^n x_k^i)$ is a Cauchy sequence for all $k \in \mathbb{N}$. This implies that $(\Delta_m^n x_k^i)$ is convergent for all $k \in \mathbb{N}$. Let $\lim_{i \to \infty} \Delta_m^n x_k^i = y_k$ for each $k \in \mathbb{N}$. Let k = 1, then we have

(2.3)
$$\lim_{i \to \infty} \Delta_m^n x_1^i = \lim_{i \to \infty} \sum_{v=0}^n (-1)^v \binom{n}{v} x_{1+mv}^i = y_1.$$

We have by equation (2.2) and equation (2.3) $\lim_{i\to\infty} x_{mn+1}^i = x_{mn+1}$, exists. Proceeding in this way inductively, we have $\lim_{i\to\infty} x_k^i = x_k$ exists for each $k\in\mathbb{N}$. Now we have for all $i,j\geq n_0$,

$$\sum_{k=1}^{mn} ||(x_k^i - x_k^j), z_1, \cdots, z_{n-1}|| + \inf \left\{ \rho^{\frac{p_k}{H}} : \sup_k u_k M_k \left(|| \frac{\Delta_m^n (x_k^i - x_k^j)}{\rho}, z_1, \cdots, z_{n-1}|| \right) \le 1 \right\} < \epsilon.$$

This implies that

$$\lim_{j \to \infty} \left\{ \sum_{k=1}^{mn} ||(x_k^i - x_k^j), z_1, \cdots, z_{n-1}|| + \inf \left\{ \rho^{\frac{p_k}{H}} : \sup_k u_k M_k \left(|| \frac{\Delta_m^n (x_k^i - x_k^j)}{\rho}, z_1, \cdots, z_{n-1}|| \right) \le 1 \right\} \right\} < \epsilon,$$

for all $i \geq n_0$. Using the continuity of (M_k) , we have

$$\begin{split} & \sum_{k=1}^{mn} || (x_k^i - x_k), z_1, \cdots, z_{n-1} || \\ & + \inf \left\{ \rho^{\frac{p_k}{H}} : \sup_k u_k M_k \Big(|| \frac{\Delta_m^n x_k^i - \Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1} || \Big) \le 1 \right\} < \epsilon, \end{split}$$

for all $i \geq n_0$. It follows that $(x^i - x) \in l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$. Since $x^i \in l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ and $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ is a linear space, so

we have $x=x^i-(x^i-x)\in l_\infty(\mathcal{M},\Delta^n_m,p,u,||\cdot,\cdots,\cdot||)$. This completes the proof. Similarly, we can prove that $c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ and $c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ are complete paranormed spaces in view of the above proof.

Theorem 2.4. If $0 < p_k \le q_k < \infty$ for each k, then $Z(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) \subseteq$ $Z(\mathfrak{M}, \Delta_m^n, q, u, ||\cdot, \cdots, \cdot||), \text{ for } Z = c_0 \text{ and } c.$

Proof. Let $x=(x_k)\in c(\mathcal{M},\Delta_m^n,p,u,||\cdot,\cdots,\cdot||)$. Then there exists some $\rho>0$ and $L \in X$ such that

$$\lim_{k \to \infty} u_k \left(M_k \left(\left| \left| \frac{\Delta_m^n x_k - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right)^{p_k} = 0.$$

This implies that $u_k M_k \left(\left| \left| \frac{\Delta_m^n x_k - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) < \epsilon, \quad (0 < \epsilon < 1)$ for sufficiently large k. Hence we get

$$\lim_{k \to \infty} u_k \left(M_k \left(\left| \left| \frac{\Delta_m^n x_k - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right)^{q_k}$$

$$\leq \lim_{k \to \infty} u_k \left(M_k \left(\left| \left| \frac{\Delta_m^n x_k - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right)^{p_k}$$

$$= 0.$$

This implies that $x = (x_k) \in c(\mathcal{M}, \Delta_m^n, q, u, ||\cdot, \cdots, \cdot||)$. This completes the proof. Similarly, we can prove for the case $Z = c_0$.

Theorem 2.5. If $\mathfrak{M}' = (M'_k)$ and $\mathfrak{M}'' = (M''_k)$ be two Musielak-Orlicz functions.

$$\begin{array}{l} (i) \ Z(\mathcal{M}', \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) \subseteq Z(\mathcal{M}'' \circ \mathcal{M}', \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||), \\ (ii) \ Z(\mathcal{M}', \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) \cap Z(\mathcal{M}'', \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) \end{array}$$

(ii)
$$Z(\mathcal{M}', \Delta^n, p, u, ||\cdot, \cdot \cdot \cdot||) \cap Z(\mathcal{M}'', \Delta^n, p, u, ||\cdot, \cdot \cdot \cdot \cdot||)$$

$$\subseteq Z(\mathcal{M}' + \mathcal{M}'', \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||),$$

for $Z = l_{\infty}, c$ and c_0 .

Proof. (i) We prove this part for $Z = l_{\infty}$ and the rest of the cases will follow similarly. Let $(x_k) \in l_{\infty}(\mathcal{M}', \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$, then there exists $0 < U < \infty$ such that

$$u_k\left(M_k'\left(\left|\left|\frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1}\right|\right|\right)\right)^{p_k} \le U, \text{ for all } k \in \mathbb{N}.$$

Let $y_k = u_k M_k' \Big(|| \frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1} || \Big)$. Then $y_k \leq U^{\frac{1}{p_k}} \leq V$, say for all $k \in \mathbb{N}$. Hence we have

$$\left((M_k'' \circ M_k') \left(|| \frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right)^{p_k} = (M_k''(y_k))^{p_k} \le (M_k''(V))^{p_k} < \infty,$$

for all $k \in \mathbb{N}$. Hence $\sup_{k} u_k \Big((M_k'' \circ M_k') \Big(|| \frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big)^{p_k} < \infty$. Thus $x = (x_k) \in l_{\infty}(\mathcal{M}'' \circ \mathcal{M}', \Delta_m^n, p, u, || \cdot, \cdots, \cdot ||)$.

(ii) We prove the result for the case Z=c and the rest of the cases will follow similarly. Let $x=(x_k)\in c(\mathcal{M}',\Delta_m^n,p,u,||\cdot,\cdots,\cdot||)\cap c(\mathcal{M}'',\Delta_m^n,p,u,||\cdot,\cdots,\cdot||)$, then there exist some $\rho_1,\rho_2>0$ and $L\in X$ such that

$$\lim_{k \to \infty} u_k \left(M_k' \left(\left| \left| \frac{\Delta_m^n x_k - L}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \right)^{p_k} = 0$$

and

$$\lim_{k\to\infty}u_k\Big(M_k''\Big(||\frac{\Delta_m^nx_k-L}{\rho_2},z-1,\cdots,z_{n-1}||\Big)\Big)^{p_k}=0.$$

Let $\rho = \rho_1 + \rho_2$. Then we have

$$\begin{aligned} u_{k}\Big((M'_{k}+M''_{k})\Big(||\frac{\Delta_{m}^{n}x_{k}-L}{\rho},z_{1},\cdots,z_{n-1}||\Big)\Big)^{p_{k}} \\ &\leq K\Big[\Big(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\Big)u_{k}M'_{k}\Big(||\frac{\Delta_{m}^{n}x_{k}-L}{\rho_{1}},z_{1},\cdots,z_{n-1}||\Big)\Big]^{p_{k}} \\ &+ K\Big[\Big(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\Big)u_{k}M''_{k}\Big(||\frac{\Delta_{m}^{n}x_{k}-L}{\rho_{2}},z_{1},\cdots,z_{n-1}||\Big)\Big]^{p_{k}}. \end{aligned}$$

This implies that

$$\lim_{k \to \infty} u_k \Big((M'_k + M''_k) \Big(|| \frac{\Delta_m^n x_k - L}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big)^{p_k} = 0.$$

Thus $x = (x_k) \in c(\mathcal{M}' + \mathcal{M}'', \Delta_m^n, p, u, ||\cdot, \dots, \cdot||)$. This completes the proof. \square

Theorem 2.6. Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be a sequence of strictly positive real numbers, then $Z(\mathcal{M}, \Delta_m^{n-1}, p, u, ||\cdot, \cdots, \cdot||) \subset Z(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$, for $Z = l_{\infty}$, c and c_0 .

Proof. We prove the result for the case $Z=l_{\infty}$ and the rest of the cases will follow similarly. Let $x=(x_k)\in l_{\infty}(\mathcal{M},\Delta_m^{n-1},p,u,||\cdot,\cdots,\cdot||)$. Then we can have $\rho>0$ such that

$$(2.4) u_k \Big(M_k \Big(|| \frac{\Delta_m^{n-1} x_k}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big)^{p_k} < \infty, \text{ for all } k \in \mathbb{N}.$$

On considering 2ρ and using the convexity of (M_k) , we have

$$u_k M_k \Big(|| \frac{\Delta_m^n x_k}{2\rho}, z_1, \cdots, z_{n-1} || \Big) \leq \frac{1}{2} u_k M_k \Big(|| \frac{\Delta_m^{n-1} x_k}{\rho}, z_1, \cdots, z_{n-1} || \Big)$$

$$+ \frac{1}{2} u_k M_k \Big(|| \frac{\Delta_m^{n-1} x_{k+m}}{\rho}, z_1, \cdots, z_{n-1} || \Big).$$

Hence we have

$$\begin{split} u_k \Big(M_k \Big(|| \frac{\Delta_m^n x_k}{2\rho}, z_1, \cdots, z_{n-1} || \Big) \Big)^{p_k} \\ & \leq K \Big\{ u_k \Big(\frac{1}{2} M_k \Big(|| \frac{\Delta_m^{n-1} x_k}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big)^{p_k} \\ & + u_k \Big(\frac{1}{2} M_k \Big(|| \frac{\Delta_m^{n-1} x_{k+m}}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big)^{p_k} \Big\}. \end{split}$$

Then using equation (2.4), we have

$$u_k\Big(M_k\Big(||\frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1}||\Big)\Big)^{p_k} < \infty, \text{ for all } k \in \mathbb{N}.$$

Thus
$$l_{\infty}(\mathcal{M}, \Delta_m^{n-1}, p, u, ||\cdot, \cdots, \cdot||) \subset l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||).$$

Theorem 2.7. Let $M = (M_k)$ be a Musielak-Orlicz function. Then

$$c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) \subset c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$$
$$\subset l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||).$$

Proof. It is obvious that $c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \dots, \cdot||) \subset c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \dots, \cdot||)$. We shall prove that $c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \dots, \cdot||) \subset l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \dots, \cdot||)$. Let $x = (x_k) \in c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \dots, \cdot||)$. Then there exists some $\rho > 0$ and $L \in X$ such that

$$\lim_{k \to \infty} u_k \left(M_k \left(\left| \left| \frac{\Delta_m^n x_k - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right)^{p_k} = 0.$$

On taking $\rho = 2\rho_1$, we have

$$\begin{split} u_{k} \Big(M_{k} \Big(|| \frac{\Delta_{m}^{n} x_{k}}{\rho}, z_{1}, \cdots, z_{n-1} \Big) \Big)^{p_{k}} \\ & \leq K \Big[\frac{1}{2} u_{k} \Big(M_{k} \Big(|| \frac{\Delta_{m}^{n} x_{k} - L}{\rho_{1}}, z_{1}, \cdots, z_{n-1} || \Big) \Big) \Big]^{p_{k}} \\ & + K \Big[\frac{1}{2} u_{k} M_{k} \Big(|| \frac{L}{\rho_{1}}, z_{1}, \cdots, z_{n-1} || \Big) \Big]^{p_{k}} \\ & \leq K \Big(\frac{1}{2} \Big)^{p_{k}} u_{k} \Big[M_{k} \Big(|| \frac{\Delta_{m}^{n} x_{k} - L}{\rho_{1}}, z_{1}, \cdots, z_{n-1} || \Big) \Big]^{p_{k}} \\ & + K \Big(\frac{1}{2} \Big)^{p_{k}} \max \Big(1, u_{k} \Big(M_{k} \Big(|| \frac{L}{\rho_{1}}, z_{1}, \cdots, z_{n-1} || \Big) \Big)^{H} \Big), \end{split}$$

where $H = \max(1, \sup p_k)$. Thus we get $x = (x_k) \in l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$. Hence $c_0(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||) \subset c(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ $\subset l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$.

Theorem 2.8. The sequence space $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ is solid. Proof. Let $x = (x_k) \in l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$, that is

$$\lim_{k\to\infty}u_k\Big[M_k\Big(||\frac{\Delta_m^nx_k}{\rho},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k}<\infty.$$

Let (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. Thus we have

$$\lim_{k \to \infty} u_k \left[M_k \left(|| \frac{\alpha_k \Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k}$$

$$\leq \lim_{k \to \infty} u_k \left[M_k \left(|| \frac{\Delta_m^n x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k}$$

$$< \infty.$$

This shows that $(\alpha_k x_k) \in l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \dots, \cdot||)$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$, whenever $(x_k) \in l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \dots, \cdot||)$. Hence the space $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \dots, \cdot||)$ is a solid sequence space.

Theorem 2.9. The sequence space $l_{\infty}(\mathcal{M}, \Delta_m^n, p, u, ||\cdot, \cdots, \cdot||)$ is monotone. *Proof.* The proof of the theorem is obvious and so we omit it.

Acknowledgement. The authors thank the referee for his valuable suggestions that improved the presentation of the paper.

References

- [1] Y. Altın, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed., 29(2009), 427-434.
- [2] M. Et, H. Altınok and Y. Altın, On generalized sequence spaces, Appl. Math. Comput., 154(2004), 167-173.
- [3] M. Et, Y. Altın, B. Choudhary and B. C. Tripathy, On some classes of sequences defined by sequences of Orlicz functions, Math. Inequal. Appl., 9(2006), 335-342.
- [4] M. Et and R. Çolak, On generalized difference sequence spaces, Soochow J. Math., 21(1995), 377-386.
- [5] S. Gähler, *Linear 2-normietre Rume*, Math. Nachr., **28**(1965), 1-43.
- [6] H. Gunawan, On n-inner product, n-norms, and the Cauchy-Schwartz inequality, Sci. Math. Jap., 5(2001), 47-54.
- [7] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., 64(2001), 137-147.
- [8] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27(2001), 631-639.
- [9] H. Kızmaz, On certain sequence spaces, Canad. Math-Bull., 24(1981), 169-176.

- [10] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- [11] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science (1989).
- [12] A. Misiak, n-inner product spaces, Math. Nachr., 140(1989), 299-319.
- [13] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Matthematics, 1034(1983).
- [14] K. Raj, A. K. Sharma and S. K. Sharma, A Sequence space defined by a Musielak-Orlicz function, Int. J. Pure Appl. Math., 67(2011), 475-484.
- [15] K. Raj, S. K. Sharma and A. K. Sharma, Some difference sequence spaces in n-normed spaces defined by a Musielak-Orlicz function, Armen. J. Math., 3(2010), 127-141.
- [16] K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by a Musiclak-Orlicz function, Acta Univ. Sapientiae Math., 3(2011), 97-109.
- [17] B. C. Tripathy and H. Dutta, Some difference paranormed sequence spaces defined by Orlicz functions, Fasciculi Math., Nr, 42(2009), 121-131.
- [18] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud., 85(1984).