SOME NEW DIFFERENCE SEQUENCES SPACES DEFINED BY AN ORLICZ FUNCTION

TUNAY BILGIN

ABSTRACT. In this paper we introduce some new difference sequence spaces combining lacunary sequences and Orlicz functions. We establish some inclusion relations between these spaces.

1. INTRODUCTION

Let ℓ_{∞} and chenote the Banach spaces of real bounded and convergent sequences $\mathbf{x} = (x_i)$ normed by $||x|| = \sup_i |x_i|$, respectively.

A sequence of positive integers $\theta = (\mathbf{k}_r)$ is called "lacunary" if $\mathbf{k}_0 = 0$,

 $0 < k_r < k_{r+1}$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r)$ and $q_r = k_r/k_{r-1}$. The space of lacunary strongly convergent sequence N_{θ} was defined by Freedman et al [5] as:

$$N_{\theta} = \{ \mathbf{x} : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} |x_i - s| = 0, \text{ for some s } \}$$

An Orlicz function is a function $M : [0,\infty) \to [0,\infty)$ which is continuous, non- decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$. If convexity of M is replaced by subadditivity, then this function is called a modulus functions (see, Ruckle [13]).

Let w be the spaces of all real or complex sequence $\mathbf{x} = (x_i)$. Lindentrauss and Tzafriri [8] used the idea of Orlicz function to defined the following sequence spaces.

$$l_M = \{ \mathbf{x} : \sum_{i=1}^{\infty} M\left(\frac{|\mathbf{x}_i|}{\rho}\right) < \infty, \ \rho > 0 \}$$

which is called an Orlicz sequence spaces l_M is a Banach space with the norm,

$$||x|| = \inf \{\rho > 0 : \sum_{i=1}^{\infty} M\left(\frac{|x_i|}{\rho}\right) \le 1\}.$$

1991 Mathematics Subject Classification. 40A05, 40F05.

Key words and phrases. Difference sequence, Lacunary sequence, Orlicz function.

Strongly almost convergent sequence was introduced and studied by Maddox [10] and also independently by Freedman et al [5].

Parashar and Chaudhary [12] have introduced and examined some properties of the sequence spaces defined by using an Orlicz function M, which generalized the well-known Orlicz sequence spaces [c, 1, p], $[c, 1, p]_0$ and $[c, 1, p]_{\infty}$. It may be noted here that the spaces of strongly summable sequences were discussed by Maddox [9].

 K_{izmaz} [6] was defined the sequence spaces

 $l_{\infty}(\Delta) = \{ \mathbf{x} = (x_i) : \sup |\Delta x_i| < \infty \},\$

 $c(\Delta) = \{ \mathbf{x} = (x_i) : \lim_{i \to \infty} |\Delta x_i - s| = 0 \text{ for some s } \},$

 $c_o(\Delta) = \{ x = (x_i) : \lim_i |\Delta x_i| = 0 \}$, where $\Delta x_i = (x_i - x_{i+1})$. Subsequently difference sequence spaces has been discussed in Bilgin[2], Ahmad and Mursaleen [1], Malkowsky and Parashar[11] Et and Başarir [3], Et and Çolak [4] and others. The purpose of this paper is to introduce and study a concept of lacunary Δ -convergence using Orlicz function and to examine inclusion relations among new spaces in the same way that $c(\Delta)$ is related to c.

Now we introduce the following sequence spaces:

Definition 1.1 Let M be an Orlicz function and $p = (p_i)$ be any bounded sequence of strictly positive real numbers. We have

$$\begin{split} & w_0^{\theta}(M,p)_{\Delta} = \{ \mathbf{x} : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i|}{\rho}\right)^{p_i} = 0, \, \rho > 0 \} \\ & w^{\theta}(M,p)_{\Delta} = \{ \mathbf{x} : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i - s|}{\rho}\right)^{p_i} = 0, \text{for some s, } \rho > 0 \} \\ & w_{\infty}^{\theta}(M,p)_{\Delta} = \{ \mathbf{x} : \sup_{r} h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i|}{\rho}\right)^{p_i} < \infty, \, \rho > 0 \}, \end{split}$$

where for convenince, we put $M\left(\frac{|\Delta x_i|}{\rho}\right)^{p_i}$ instead of $\left[M\left(\frac{|\Delta x_i|}{\rho}\right)\right]^{p_i}$. If $\mathbf{x} \in w^{\theta}(M, p)_{\Delta}$, we say that \mathbf{x} is lacunary Δ -convergence to \mathbf{x} with respect to the Orlicz function M.

When $M(\mathbf{x}) = \mathbf{x}$, then we write $w_0^{\theta}(p)_{\Delta}$, $w^{\theta}(p)_{\Delta}$ and $w_{\infty}^{\theta}(p)_{\Delta}$ for the spaces $w_0^{\theta}(M, p)_{\Delta}$, $w^{\theta}(M, p)_{\Delta}$ and $w_{\infty}^{\theta}(M, p)_{\Delta}$, respectively. If $p_i = 1$ for all i, then $w_0^{\theta}(M, p)_{\Delta}$, $w^{\theta}(M, p)_{\Delta}$ and $w_{\infty}^{\theta}(M, p)_{\Delta}$ reduce to $w_0^{\theta}(M)_{\Delta}$, $w^{\theta}(M)_{\Delta}$ and $w_{\infty}^{\theta}(M)_{\Delta}$, respectively.

The following inequality will be used troughout the paper;

(1.1)
$$|a_i + b_i|^{p_i} \le C(|a_i|^{p_i} + |b_i|^{p_i})$$

where a_i and b_i are complex numbers , $\mathcal{C}=\max(1,2^{H-1}),$ and $\mathcal{H}=\sup p_i<\infty$

2. Inclusion theorems

By using (1), it is easy to prove the following theorem.

Theorem 2.1. Let M be an Orlicz function and $p = (p_i)$ be a bounded sequence of strictly positive real numbers. Then $w_0^{\theta}(M, p)_{\Delta}$, $w^{\theta}(M, p)_{\Delta}$ and $w_{\infty}^{\theta}(M, p)_{\Delta}$ are linear spaces over the set of complex numbers.

Theorem 2.2 Let M be an Orlicz function. If $\sup_i (M(x))^{p_i} < \infty$ for all fixed x > 0 then

$$w^{\theta}(M,p)_{\Delta} \subset w^{\theta}_{\infty}(M,p)_{\Delta}$$

Proof. Let $\mathbf{x} \in w^{\theta}(M, p)_{\Delta}$. There exists some positive ρ_1 such that

$$\lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i - s|}{\rho_1}\right)^{p_i} = 0.$$

Define $\rho = 2\rho_1$. Since M is non decreasing and convex ,by using (1.1), we have

$$\begin{split} \sup_{r} h_{r}^{-1} \sum_{i \in I_{r}} M\left(\frac{|\Delta x_{i}|}{\rho}\right)^{p_{i}} &= \sup_{r} h_{r}^{-1} \sum_{i \in I_{r}} M\left(\frac{|\Delta x_{i} - s + s|}{\rho}\right)^{p_{i}} \\ \leq & C\{\sup_{r} h_{r}^{-1} \sum_{i \in I_{r}} \frac{1}{2^{p_{i}}} M\left(\frac{|\Delta x_{i} - s|}{\rho_{1}}\right)^{p_{i}} + \sup_{r} h_{r}^{-1} \sum_{i \in I_{r}} \frac{1}{2^{p_{i}}} M\left(\frac{|s|}{\rho_{1}}\right)^{p_{i}}\} \\ < & C\{\sup_{r} h_{r}^{-1} \sum_{i \in I_{r}} M\left(\frac{|\Delta x_{i} - s|}{\rho_{1}}\right)^{p_{i}} + \sup_{r} h_{r}^{-1} \sum_{i \in I_{r}} M\left(\frac{|s|}{\rho_{1}}\right)^{p_{i}}\} < \infty. \end{split}$$

Hence $x \in w_{\infty}^{\theta}(M, p)_{\Delta}$. This completes the proof.

Theorem 2.3. Let M be an Orlicz function and $0 < h = \inf p_i$. Then $w^{\theta}_{\infty}(M,p)_{\Delta} \subset w^{\theta}_0(p)_{\Delta}$ if and only if

(1.2)
$$\lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} M(t)^{p_i} = \infty$$

for some t > 0.

Proof. Let $w_{\infty}^{\theta}(M,p)_{\Delta} \subset w_{0}^{\theta}(p)_{\Delta}$. Suppose that (2) does not hold. Therefore there are a subinterval $I_{r(m)}$ of the set of interval I_{r} and a number $t_{0} > 0$, where $t_{0} = \frac{|\Delta x_{i}|}{\rho}$ for all i, such that

(1.3)
$$h_{r(m)}^{-1} \sum_{i \in I_{r(m)}} M(t_0)^{p_i} \le K < \infty, m = 1, 2, 3, \dots$$

Let us define $\mathbf{x} = (x_i)$ as following

$$\Delta x_i = \begin{cases} \rho t_0 & ; i \in I_{r(m)} \\ 0 & ; i \notin I_{r(m)} \end{cases}$$

Thus by (3), $\mathbf{x} \in w_{\infty}^{\theta}(M, p)_{\Delta}$. But $\mathbf{x} \notin w_{0}^{\theta}(p)_{\Delta}$. Hence (2) must hold.

Conversely, suppose that (2) holds and that $x \in w_{\infty}^{\theta}(M,p)_{\Delta}$. Then, for each r

T. BILGIN

(1.4)
$$h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i|}{\rho}\right)^{p_i} \le K < \infty,$$

Suppose that $\mathbf{x} \notin w_0^{\theta}(p)_{\Delta}$. Then, for some number $1 > \varepsilon > 0$, there is a number i_0 such that , for a subinterval I_{r_1} of the set of interval I_r , $\frac{|\Delta x_i|}{\rho} > \varepsilon$ for $i \ge i_0$. From properties of the Orlicz function, we can write

 $\operatorname{M}\left(\frac{|\Delta x_i|}{\rho}\right)^{p_i} \ge \operatorname{M}(\varepsilon)^{p_i}$

which contradicts (2), by using (4). Hence we get $w_{\infty}^{\theta}(M,p)_{\Delta} \subset w_{0}^{\theta}(p)_{\Delta}$. This completes the proof.

Definition 2.1 An Orlicz function M is said to satisfy the Δ_2 -condition for all values of u, if there exists a constant L > 0 such that $M(2u) \leq LM(u)$, $u \geq 0$.

It is also easy to see that always L > 2. The Δ_2 - condition equivalent to the satisfaction of inequality M(Tu) \leq LTu M(u) for all values of u and for all T > 1 (see, Krasnoselskii and Rutitsky [7]).

Theorem 2.4 Let $0 < h = \inf p_i \leq p_i \leq \sup p_i = H < \infty$. For an Orlicz function M which satisfies Δ_2 - condition, we have $w_0^{\theta}(p)_{\Delta} \subset w_0^{\theta}(M, p)_{\Delta}, w^{\theta}(p)_{\Delta} \subset w^{\theta}(M, p)_{\Delta}$ and $w_{\infty}^{\theta}(p)_{\Delta} \subset w_{\infty}^{\theta}(M, p)_{\Delta}$.

Proof. Let
$$\mathbf{x} \in w^{\theta}(p)_{\Delta}$$
. Then we have $h_r^{-1} \sum_{i \in I_r} \left(\frac{|\Delta x_i - s|}{\rho}\right)^{p_i} \to 0$ as $r \to \infty$, for some s

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M(t) < \varepsilon$ for $0 \le t \le \delta$. We can write

$$h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i - s|}{\rho}\right)^{p_i} = h_r^{-1} \sum_{\substack{i \in I_r \\ |\Delta x_i - s| / \rho \le \delta}} M\left(\frac{|\Delta x_i - s|}{\rho}\right)^{p_i} + h_r^{-1} \sum_{\substack{i \in I_r \\ |\Delta x_i - s| / \rho > \delta}} M\left(\frac{|\Delta x_i - s|}{\rho}\right)^{p_i}$$

For the first summation above, we immediately write $h_r^{-1} \sum M \left(\frac{|\Delta x_i - s|}{\epsilon}\right)^{p_i} < \max(\epsilon, \epsilon^h)$

$$i \in I_r$$

$$|\Delta x_i - s| / \rho \le \delta$$

by using continuity of M. For the second summation, we will make following procedure. We have

$$\left(\frac{|\Delta x_i - s|}{\rho}\right) < 1 + \left(\frac{|\Delta x_i - s|}{\rho}\right)/\delta.$$

$$h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i - s|}{\rho}\right)^{p_i} \le \max(\varepsilon, \varepsilon^h) + \max\left\{1, [LM(2)/\delta]^H\right\} h_r^{-1} \sum_{i \in I_r} \left(\frac{|\Delta x_i - s|}{\rho}\right)^{p_i}$$

Taking the limit as $\varepsilon \to 0$ and $r \to \infty$, it follows that $x \in w^{\theta}(M, p)_{\Delta}$. Following similar arguments we can prove that $w_0^{\theta}(p)_{\Delta} \subset w_0^{\theta}(M, p)_{\Delta}$ and $w_{\infty}^{\theta}(p)_{\Delta} \subset w_{\infty}^{\theta}(M, p)_{\Delta}$.

After step of this section, different inclusion relations among these sequence spaces are going to be studied. Now we have

Theorem 2.5. Let M be an Orlicz function. Then the following statements are equivalent.

i) $w_{\infty}^{\theta}(p)_{\Delta} \subset w_{\infty}^{\theta}(M, p)_{\Delta}$ ii) $w_{0}^{\theta}(p)_{\Delta} \subset w_{\infty}^{\theta}(M, p)_{\Delta}$ iii) $\sup_{r} h_{r}^{-1} \sum_{i \in I_{r}} M(t)^{p_{i}} < \infty$ for all t > 0.

Proof. i) \Rightarrow ii): Let (i) holds. To verify (ii), it is enough to prove $w_0^{\theta}(p)_{\Delta} \subset w_{\infty}^{\theta}(p)_{\Delta}$. Let $\mathbf{x} \in w_0^{\theta}(p)_{\Delta}$. Then, there exist $r \geq r_0$, for $\varepsilon > 0$, such that

$$h_r^{-1} \sum_{i \in I_r} \left(\frac{|\Delta x_i|}{\rho} \right)^{p_i} < \varepsilon.$$

Hence there exists K > 0 such that

$$\sup_{r} h_r^{-1} \sum_{i \in I_r} \left(\frac{|\Delta x_i|}{\rho}\right)^{p_i} < K$$

So, we get $\mathbf{x} \in w_{\infty}^{\theta}(p)_{\Delta}$

 $ii){\Rightarrow}iii){:}$ Let (ii) holds. Suppose that (iii) does not holds. Then for some t>0

$$\sup_{r} h_r^{-1} \sum_{i \in I_r} M(t)^{p_i} = \infty$$

and therefore we can find a subinterval $I_{r(m)}$ of the set of interval I_r such that

(1.5)
$$h_{r(m)}^{-1} \sum_{i \in I_{r(m)}} M\left(\frac{1}{m}\right)^{p_i} > m, m = 1, 2, 3, \dots$$

Let us define $\mathbf{x} = (x_i)$ as following

$$\Delta x_i = \begin{cases} \frac{\rho}{m} & ; i \in I_{r(m)} \\ 0 & ; i \notin I_{r(m)} \end{cases}$$

Then $x \in w_0^{\theta}(p)_{\Delta}$ but by (5), $x \notin w_{\infty}^{\theta}(M,p)_{\Delta}$, which contradicts (ii). Hence (iii) must holds.

 $iii) \Rightarrow i$: Let (iii) hold and $x \in w_{\infty}^{\theta}(p)_{\Delta}$. Suppose that $x \notin w_{\infty}^{\theta}(M, p)_{\Delta}$. Then for $x \in w_{\infty}^{\theta}(p)_{\Delta}$

(1.6)
$$\sup_{r} h_{r}^{-1} \sum_{i \in I_{r}} M\left(\frac{|\Delta x_{i}|}{\rho}\right)^{p_{i}} = \infty$$

Let $t = \frac{|\Delta x_i|}{\rho}$ for each i, then by (6)

$$\sup_{r} h_r^{-1} \sum_{i \in I_r} M(t)^{p_i} = -\infty$$

which contradicts (iii). Hence (i) must holds.

Theorem 2.6. Let M be an Orlicz function. Then the following statements are equivalent.

i)
$$w_0^{\theta}(M, p)_{\Delta} \subset w_0^{\theta}(p)_{\Delta}$$

ii) $w_0^{\theta}(M, p)_{\Delta} \subset w_{\infty}^{\theta}(p)_{\Delta}$
iii) $\inf_r h_r^{-1} \sum_{i \in I_r} M(t)^{p_i} > 0$ for all $t > 0$.

Proof. i) \Rightarrow ii): It is obvious.

 $ii) \Rightarrow iii)$: Let (ii) holds. Suppose that (iii) does not holds. Then $\inf_r h_r^{-1} \sum_{i \in I_r} M(t)^{p_i} = 0$ for some t > 0,

and we can find a subinterval $I_{r(m)}$ of the set of interval I_r such that

(1.7)
$$h_{r(m)}^{-1} \sum_{i \in I_{r(m)}} M(m)^{p_i} < \frac{1}{m}, m = 1, 2, 3, ...$$

Let us define $x = (x_i)$ as following

$$\Delta x_i = \begin{cases} \rho m & ; i \in I_{r(m)} \\ 0 & ; i \notin I_{r(m)} \end{cases}$$

Thus, by (7) $x \in w_0^{\theta}(M, p)_{\Delta}$ but $x \notin w_{\infty}^{\theta}(p)_{\Delta}$ which contradicts (ii). Hence (iii) must holds.

iii) \Rightarrow i): Let (iii) holds. Suppose that $x \in w_0^{\theta}(M, p)_{\Delta}$. Therefore,

(1.8)
$$h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i|}{\rho}\right)^{p_i} \to 0$$

as $r \to \infty$. Again, suppose that $x \notin w_0^{\theta}(p)_{\Delta}$ for some number $\varepsilon > 0$ and a subinterval $I_{r(m)}$ of the set of interval I_r , we have $\frac{|\Delta x_i|}{\rho} \geq \varepsilon$ for all i. Then, from properties of the Orlicz function, we can write

 $\operatorname{M}\left(\frac{|\Delta x_i|}{\rho}\right)^{p_i} \ge \operatorname{M}(\varepsilon)^{p_i}$

Consequently, by (8) we have

$$\lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} M(\varepsilon)^{p_i} = 0$$

which contradicts (iii). Hence (i) must holds.

Finally, in this section, we consider that (p_i) and (q_i) are any bounded sequences of strictly positive real numbers. We are able to prove $w^{\theta}(M,q)_{\Delta} \subseteq w^{\theta}(M,p)_{\Delta}$ only under additional conditions.

Theorem2.7. i) If $0 < \inf p_i \leq p_i \leq 1$ for all k, then $w^{\theta}(M)_{\Delta} \subseteq w^{\theta}(M,p)_{\Delta}$

i i) $1 \leq p_i \leq \sup p_i = H < \infty$, then $w^{\theta}(M, p)_{\Delta} \subseteq w^{\theta}(M)_{\Delta}$

Proof. i) Let $\mathbf{x} \in w^{\theta}(M, p)_{\Delta}$ since $0 < infp_i \le p_i \le 1$ we get

$$h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i - s|}{\rho}\right) \le h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i - s|}{\rho}\right)^p$$

and hence $\mathbf{x} \in w^{\theta}(M)_{\Delta}$.

Let $1 \leq p_i \leq \sup p_i = H < \infty$, and $x \in w^{\theta}(M)_{\Delta}$. Then for each $0 < \varepsilon < 1$ there exists a positive integer r_0 such that

$$h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i - s|}{\rho}\right) \le \varepsilon < 1$$

for all $r \geq r_0$. This implies that

$$h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i - s|}{\rho}\right)^{p_i} \le h_r^{-1} \sum_{i \in I_r} M\left(\frac{|\Delta x_i - s|}{\rho}\right).$$

Therefore $\mathbf{x} \in w^{\theta}(M, p)_{\Delta}$.

Using the same technique as in Theorem 2 in [14], it is easy to prove the following theorem.

Theorem 2.8. Let $0 < p_i \le q_i$ for all i and let (q_i / p_i) be bounded. Then

$$w^{\theta}(M,q)_{\Delta} \subseteq w^{\theta}(M,p)_{\Delta}$$

T. BILGIN

References

- Z. U. Ahmad, Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, *Pub. Inst. Math. Beograd* 42(56) (1987), 57–61.
- [2] T. Bilgin, The lacunary strong Δ -convergence in Banach spaces, to appear
- [3] M. Et, M. Başarir, On some new generalized difference sequence spaces, *Periodica Math. Hung.* 35,(3) (1997), 169–176.
- [4] M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21 21(4) (1995), 377–386.
- [5] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesaro- type summability spaces, Proc. London Math. Soc. 37(3) (1978), 508–520.
- [6] H.,Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24;2 (1981),169–176.
- [7] M. A. Krasnoselskii, Y. B. Rutitsky, Convex function and Orlicz spaces, Groningen, The Netherlands, 1961.
- [8] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10(3) (1971), 379–390.
- [9] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford 18(2) (1967), 345–355.
- [10] I. J. Maddox, On strong almost convergence, Math. Proc. Camb. Phil. Soc. 85 (1979), 345–350.
- [11] E. Malkowsky, S. D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, *Analysis* 17 (1997), 87–97.
- [12] S. D. Parashar, B.Chaudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (1994), 419–428.
- [13] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Can. J. Math. 25 (1973), 973–978.
- [14] [14] E.,Öztürk, T.,Bilgin. Strongly summable sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 25(6) (1994), 621-625.

YÜZÜNCÜ Y*i*L UNIVERSITY, FACULTY OF EDUCATION, DEPARTMENT OF MATHEMATICS, VAN, TURKEY

E-mail address: tbilgin@yyu.edu.tr