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\S 1. Introduction.

Let $(M, g)$ be a Riemannian manifold of dimension $m\geqq 2$ and let $\nabla$ denote

the Riemannian connection defined by $g$. In this paper we study the following

system of differential equations of order three:

(1.1) $\nabla_{h}\nabla_{j}\nabla_{i}f+k(2\nabla_{h}fg_{jt}+\nabla_{j}fg_{ih}+\nabla_{i}fg_{hj})=0$

where $k$ is a positive constant. Originally the differential equations (1.1) come
from some study of the Laplacian on a Euclidean sphere ($S^{m}$ ; k) of constant

curvature $k$ . The first eigenvalue of the Laplacian on ($S^{m}$ ; k) is $mk$ and each

eigenfunction $h$ corresponding to $mk$ satisfies the following system of differential
equations of order two:

(1.2) $\nabla_{j}\nabla_{i}h+khg_{ji}=0$ .

The second eigenvalue is $2(m+1)k$ and each eigenfunction $f$ corresponding to

$2(m+1)k$ satisfies (1.1).

Assuming the existence of a non-constant function $h$ satisfying (1.2) on a
Riemannian manifold $(M, g)$ many mathematicians studied differential geometric

properties of $(M, g)$ (cf. S. Ishihara and Y. Tashiro [11], M. Obata [14], [15],

Y. Tashiro [22], etc.). In this case grad $f$ is an infinitesimal conformal trans-

formation.
Assume that there is a non-constant function $f$ satisfying (1.1) on $(M, g)$ .

Then grad $f$ is an infinitesimal projective transformation and is a k-nullity vector

field on $(M, g)$ . The converse is also true (cf. Proposition 2.1). This gives a
geometric meaning of (1.1).

The system of differential equations (1.1) was first studied by M. Obata
[15] and he announced the following.

THEOREM A. Let $(M, g)$ be a complete and simply connected Riemannian

manifold. In order for $(M, g)$ to admit a non-constant function $f$ satisfying (1.1)
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for some positive constant $k$ , it is necessary and sufficient that $(M, g)$ is isometric

to $a$ Euclidean sphere $(S^{m} ; k)$ .
However the outline of the proof given in [15] turned to be incomplete.

The complete proof was first given by the present author [21]. Later D. Ferus
[8] gave an elegant proof. Further, S. Gallot [9] announced his proof (but

this proof is also incomplete, as we give a counter-example to his main lemma

in \S 6).
The purpose of this paper is to clarify the differential geometric implications

of the existence of such a function $f$. In particular, we are concerned with the

behavior of trajectories of grad $f$. Proof of Theorem A is given in \S 5 and \S 8.

The mathematical essence of (1.1) will be seen in the next Theorem (cf. Theorem
5.1, Theorem 5.8).

THEOREM B. Let $(M, g)$ be a Riemannian manifold admitting a non-constant

function $f$ which satisfies (1.1) for some positive constant $k$ . If $(M, g)$ contains a
whole trajectory $l$ of grad $f$ with its limit points, then $(M, g)$ is constant curvature
$k$ at each point of the trajectory $l$ .

In \S 7 we define the concept of t-connectedness. k-nullity theory and t-

connectedness property enable us to state constancy of sectional curvature in

local forms.

K\"ahlerian analogues are also true.

Manifolds are assumed to be connected and of class $C^{\infty}$ . Functions and

tensor fields are supposed to be class $C^{\infty}$ unless otherwise stated.
The author is very grateful to Professor D. Ferus and other mathematicians

of the Berlin Technical University for mathematical discussions and kind hospi-

tality.

\S 2. Fundamental properties of $f$.

For a function $f$ on a Riemannian manifold $(M, g)$ , by $F$ we denote the
gradient vector field of $f:F=gradf=(F^{i})=(g^{ir}F_{r})=(g^{ir}\nabla_{r}f)$ . Here $(g^{i\tau})$ is the

inverse of the matrix $(g_{ji})$ . By $R=(R_{jhl}^{i})$ we denote the Riemannian curvature
tensor of $(M, g)$ . A vector field $X$ on $(M, g)$ is called a k-nullity vector field
on $(M, g)$ , if $X$ satisfies

(2.1) $X_{i}R_{jhl}^{i}=k(X_{h}g_{jl}-X_{l}g_{jh})$

for a constant $k$ (for more details, see \S 4, and [5], [6], [7], etc.).

PROPOSITION 2.1. Let $f$ be a function on $(M, g)$ . $f$ satisfies (1.1) for a constant
$k$ , if and only if

(i) $F$ is an infinitesimal pr0jective transformation, and
(ii) $F$ is a k-nullity vector field on $(M, g)$ .
PROOF. First we assume that $f$ satisfies (1.1) for a constant $k$ . By the
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Ricci identity for $\nabla_{l}\nabla_{h}F_{j}-\nabla_{h}\nabla_{l}F_{j}$ and by (1.1) we get (2.1) with $X=F$ . This

proves (ii). Next in the classical relation (on the Lie derivative of the Chris-

toffel’s symbols):

(2.2) $L_{F}\Gamma_{jh}^{i}=\nabla_{h}\nabla_{j}F^{i}-R_{jhl}^{i}F^{\iota}$ ,

we apply (1.1) and (2.1) with $X=F$, to get

(2.3) $L_{F}\Gamma_{jh}=-2k(F_{h}\delta_{j}^{i}+F_{j}\delta_{h}^{i})$ .

This shows that $F$ is an infinitesimal projective transformation on $(M, g)$ .
Conversely, let $f$ be a function on $(M, g)$ with properties (i) and (ii). By

(i) there is a function $\theta$ on $M$ such that

(2.4) $L_{F}\Gamma_{jh}^{i}=\theta_{h}\delta_{j}^{i}+\theta_{j}\delta_{h}^{i}$ ,

where $\theta_{h}=\nabla_{h}\theta$ . By (2.2), (2.4) and (2.1) with $X=F$, we obtain

(2.5) $\nabla_{h}\nabla_{j}F^{i}=k(F_{j}\delta_{h}^{i}-F^{i}g_{jh})+\theta_{h}\delta_{j}^{i}+\theta_{j}\delta_{h}^{i}$ .

Lowering the index $i$ and taking the symmetric part with respect to $i$ and $j$ ,

we obtain

(2.6) $2\nabla_{h}\nabla_{f}F_{i}=2\theta_{h}g_{if}+\theta_{j}g_{ih}+\theta_{i}g_{jh}$ ,

where we have used $\nabla_{j}F_{i}=\nabla_{i}F_{j}$ . Transvecting (2.5) [the index $i$ being lowered]

and (2.6) with $g^{hj}$, we obtain $\theta_{i}=-2kF_{i}$ . Substituting this into (2.5) we get

(1.1). Q. E. D.
From now on in this section we assume that $(M, g)$ admits a non-constant

function $f$ satisfying (1.1) for some positive constant $k$ .
Transvecting (1.1) with $g^{ij}$, we see that there is a constant $c$ such that

(2.7) $\Delta(f-c)=-2(m+1)k(f-c)$ ,

where $\Delta$ denotes the Laplacian on $(M, g);\Delta f=\nabla_{\tau}\nabla^{r}f$.
Let $\{x(s)\}$ be a geodesic in $(M, g)$ with arc-length parameter $s$ . We put

$(c^{i}(s))=(dx^{i}(s)/ds)$ . Transvecting (1.1) with $c^{i}c^{j}c^{h}$, we see that the restriction
$f(s)$ of $f$ to $\{x(s)\}$ satisPes

$f^{7/}+4kf^{\prime}=0$

where the dash means the differentiation with respect to $s$ . Solving the last

equation we obtain

(2.8) $f(s)=(f^{\prime}(0)/2k)$ sin2 $\sqrt{k}s+(f^{\prime}(0)/2\sqrt{k})$ sin2 $\sqrt{k}s+f(0)$ .

LEMMA 2.2. Let $x$ be a Point of $M$ and assume that $M$ contains the closed
$(\pi/2\sqrt{k})$-neighborhood $U$ of $x$. Then there are points $P$ and $q$ in $U$ where $f$

takes its maximum value $b=f(P)$ and the minimum value $a=f(q)$ .
PROOF. Fixing $x=x(O)$ and changing the direction of geodesics, by (28) we
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see that $f$ takes its maximum value $b$ at some point $p$ of $M$ within the distance
$\pi/2\sqrt{k}$ from $x(O)$ . Similarly there is a point $q$ where $f$ takes its minimum value
$a$ within the distance $\pi/2\sqrt{k}$ from $x(O)$ . Q. E. D.

LEMMA 2.3. Let $z$ be an arbitrary critical point of $f$. Let $\{x_{v}(s)=Exp_{z}sv\}$

be a unit speed geodesic starting at $z$ with the initial direction $v$ . Then the

restriction $f_{v}(s)$ of $f$ to this geodesic is given by

(2.9) $f_{v}(s)=f(z)+(1/2k)H(v, v)$ sin2 $\sqrt{\kappa}s$ ,

where $H$ denotes the Hessian $(\nabla_{j}F_{i})$ of $f$ at $z$.
PROOF. This follows from (2.8). Q. E. D.

\S 3. The behavior of trajectories of $F$ .

Let $M^{b}$ be the subset of $M$ of all critical points where $f$ takes its maximum
value $b$ and let $M^{a}$ be one of all critical points where $f$ takes its minimum
value $a$ .

LEMMA 3.1. Each connected comp0nent of $M^{b}$ is a totally geodesic submanifold
with respect to the induced metric from $(M, g)$ .

PROOF. Let $p$ be an arbitrary point of $M^{b}$ . Then for a unit tangent vector
$v$ at $p$ we have (2.9) (with $p=z$) along the geodesic $\{Exp_{p}sv\}$ . It is clear that
the Hessian $H$ at $p$ is negative semi-definite. If $v$ is not an eigenvector corre-
sponding to the eigenvalue zero of $H,$ $H(v, v)<0$ holds and $f_{v}(s)<f(p)$ holds for

all $s;0<s(<\pi/2\sqrt{k})$ . If $v$ is an eigenvector corresponding to zero, then $f_{v}(s)$

$=f(p)$ holds for all $s$ (for which $Exp_{p}sv$ is defined). Therefore $\{Exp_{p}sv\}$ is
contained in $M^{b}$ . Q. E. D.

REMARK 3.2. $M^{b}$ and $M^{a}$ have corresponding properties as seen by con-
sidering a function $b+a-f$. So it suffices to state propositions only on $M^{b}$ .

For a curve $l=\{x(s)\}$ we use the following notations:

$l[r]=\{x(s);0\leqq s\leqq r\}$ ,

$l[r)=\{x(s);0\leqq s<r\}$ ,

$l(r)=\{x(s);0<s<r\}$ .

LEMMA 3.3. Let $p$ be a point of $M^{b}$ and let $v$ be a unit eigenvector corre-
sp0nding to a non-zero eigenvalue $\nu$ of the Hessian $H$ of $f$ at $p$ . For the geodesic
$l=\{x(s)=Exp_{p}sv\}$ we have

(i) if $0<r<\pi/2\sqrt{k}$ and $l(r)\subset M$, then $l(r)$ is a part of a trajectory of $F$,

(ii) if $l(\pi/2\sqrt{k})\subset M$, then it is a whole trajectory of $F$,

(iii) if $1[\pi/2\sqrt{k}]\subset M$, then $x(\pi/2\sqrt{k})$ is a critical point of $f$.
PROOF. In proofs of (ii) and (iii), the proof of (i) is contained. So we
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assume that $1[\pi/2\sqrt{k}]\subset M$. If $1[\pi/2\sqrt{k}]$ has no conjugate point of $p=x(O)$ ,

let $s_{0}$ be an arbitrary real number such that $0<s_{0}<\pi/2\sqrt{k}$. If $1[\pi/2\sqrt{k}$) has
conjugate points, let $x(s_{1})$ be the first conjugate point of $p$ and let $s_{0}$ be an
arbitrary real number such that $0<s_{0}<s_{1}<\pi/2\sqrt{k}$ .

Let $(0\geqq)\nu_{1}\geqq\nu_{2}\geqq\ldots\geqq\nu_{m}$ be the eigenvalues of $H$ and assume $\nu=\nu_{i}$ . Let $j$

be any integer such that $j\neq i$ and $1\leqq j\leqq m$ . We define a curve $\{w_{j}(\theta);-\pi<\theta<\pi\}$

in the tangent space $M_{p}$ at $p$ by

(3.1) $w_{j}(\theta)=\cos\theta(s_{0}v)+\sin\theta(s_{0}v_{j})$ ,

where $v_{j}$ denotes a unit eigenvector corresponding to $\nu_{j}$ so that { $v_{1},$ $v_{2},$
$\cdots$ ,

$v_{i}=v,$ $\cdots$ , $v_{m}$} is an orthonormal base of $M_{p}$ such that $H(v_{r},\cdot)=\nu_{\tau}g(v_{r},\cdot)(r=1,$ $\cdots$ ,
$m)$ . Next we define a curve $\{z_{j}(\theta)\}$ in $M$ by

$z_{j}(\theta)=Exp_{p}w_{j}(\theta)$ .

Then $\{z_{j}(\theta);-\epsilon<\theta<\epsilon\}$ is a $C^{\infty}$-curve passing through $x(s_{0})$ for sufficiently small
$\epsilon$ . Then

$Z_{j}=(dz_{j}/d\theta)(0)$

is a non-zero tangent vector at $x(s_{0})$ . $Z_{j}$ is orthogonal to the geodesic $\{x(s)\}$

at $x(s_{0})$ by the well known Gauss lemma. Next we show that $Z_{j}$ and $F$ are
orthogonal at $x(s_{0})$ . For this purpose we define $f_{j}(\theta)$ by $f_{j}(\theta)=f(z_{j}(\theta))$ . Then
$g(Z_{j}, F)=0$ at $x(s_{0})$ is equivalent to

(3.2) $(df_{j}/d\theta)(0)=0$ .
By (2.9) we obtain

$f_{j}(\theta)=b+(1/2ks_{0}^{2})H(w_{j}(\theta), w_{j}(\theta))$ sin2 $\sqrt{k}s_{0}$

$=b+(1/2k)(\nu\cos^{2}\theta+\nu_{j}\sin^{2}\theta)$ sin2 $\sqrt{k}s_{0}$ ,

from which (3.2) follows. Therefore $F$ is orthogonal to all $Z_{j}(j\neq i)$ at $x(s_{0})$ .
Since the geodesic 1 is also orthogonal to all $Z_{j}(j\neq i),$ $F$ is tangent to 1 at $x(s_{0})$ .
Thus $F$ is tangent to 1 at each point $x(s)$ for $s;0<s<\pi/2\sqrt{k}$ or $0<s<s_{1}$ .

In the case where $x(s_{1})$ is the first conjugate point of $p$ , the geodesic $l(s_{1})$

is a part of a trajectory of $F$ . By Proposition 2.1 the sectional curvature for

each 2-plane which contains $F$ is equal to $k$ . Hence $x(s_{1})$ can not be a conjugate

point of $p$ unless $s_{1}\geqq\pi/\sqrt{k}$ . This contradicts $s_{1}<\pi/2\sqrt{k}$ .
Therefore in any case, $1(\pi/2\sqrt{k})$ is a part of a trajectory of $F$ . By (2.9)

we see that $g(F, F)$ tends to zero both when $x(s)\rightarrow x(O)$ and $x(s)\rightarrow x(\pi/2\sqrt{k})$,

and hence $1(\pi/2\sqrt{k})$ is a whole trajectory of $F$ and $x(\pi/2\sqrt{k})$ is a critical
point of $f$. Q. E. D.

COROLLARY 3.4. If $p\in M^{b}$ and $q\in M^{a}$ are joined by a geodesic { $y(s)$ ;
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$0\leqq s\leqq\pi/2\sqrt{k}\}$ in $M$ with $p=y(O)$ and $q=y(\pi/2\sqrt{k})$ , then $u=(dy/ds)(O)$ is an
eigenvector corresp0nding to the minimum eigenvalue of $H$ at $p$ , and { $y(s)$ ;

$0<s<\pi/2\sqrt{k}\}$ is a whole trajectory of $F$ .
PROOF. By (2.9) $H(u, u)$ must be the minimum eigenvalue of $H$, and Corol-

lary 3.4 follows from Lemma 3.3. Q. E. D.

COROLLARY 3.5. Each unit eigenvector $v$ correspOnding to a non-zero eigen-

value of $H$ at $P$ of $M^{b}$ belongs to the k-nullity space at $p$ . In Parlicular, the

normal space to $M^{b}$ in $M$ at $p$ is contained in the k-nullity space at $p$ .
PROOF. This follows from Lemma 3.3 (i) and Proposition 2.1. Q. E. D.

From now on in this section we assume that $(M, g)$ contains some complete

connected component $*M^{b}$ of $M^{b}$ and its closed $(\pi/2\sqrt{k})$-neighborhood $W(*M^{b})$ :

(3.3) $W(*M^{b})=$ { $w\in M$ ; distance $(w,$ $*M^{b})\leqq\pi/2\sqrt{k}$}.

By $W_{0}(*M^{b})$ we denote the subset of $W(*M^{b})$ defined by the inequality in
(3.3). By the boundary of $W(*M^{b})$ we mean $\partial W(*M^{b})=W(*M^{b})-W_{0}(*M^{b})$ .

LEMMA 3.6. There is no critical point of $f$ in $W_{0}(*M^{b})-*M^{b}$ .
PROOF. Let $w$ be an arbitrary point of $W_{0}(*M^{b})-*M^{b}$ . $w$ can be joined to

$*M^{b}$ by a shortest geodesic. The length of this geodesic is smaller than $\pi/2\sqrt{k}$ .
Therefore the derivative of $f$ along this geodesic cannot vanish at $w$ by (2.9),

and $w$ can not be a critical point of $f$. Q. E. D.

LEMMA 3.7. For each critical pOint $z$ in $W(*M^{b})-*M^{b}$ the distance between
$z$ and each point of $*M^{b}$ is equal to $\pi/2\sqrt{k}$ .

PROOF. $z$ is in the boundary $\partial W(*M^{b})$ of $W(*M^{b})$ by Lemma 3.6. So there

is a point $P$ in $*M^{b}$ such that the distance between $z$ and $P$ is equal to $\pi/2\sqrt{k}$ .
Let $y$ be a point in $*M^{b}$ near $p$, and join $y$ to $z$ by a shortest geodesic. Then,

considering (2.9) along this geodesic we see that the distance between $y$ and $z$

is equal to $\pi/2\sqrt{k}$ . Since $*M^{b}$ is connected, by continuity of the distance

function from $z$ we get Lemma 3.7.
COROLLARY 3.8. $*M^{b}$ and $W(*M^{b})$ are compact.

LEMMA 3.9. Let $w$ be a pOint in $W_{0}(*M^{b})$ and let $\{x(t)\}$ be a trajectory of
Fpassing through $w=x(O)$ . Then the distance function $\rho(t)$ between $x(t)$ and $*M^{b}$

is strongly monotone decreasing for $t\geqq 0$ and $\lim\rho(t)=0$ as $ t\rightarrow\infty$ .
PROOF. Let $l=\{y(s);0\leqq s\leqq s_{0}\}$ be a shortest geodesic of length $s_{0}<\pi/2\sqrt{k}$

connecting $x(0)=w=y(s_{0})$ and some point $y(O)$ of $*M^{b}$ . Since the tangent com-
ponent of $F$ to 1 is not zero by (2.9), there are two real numbers $s_{1}<s_{0}$ and
$\epsilon>0$ , such that for any $\delta(\epsilon>\delta>0)$ the distance between $x(\delta)$ and $y(s_{1})$ is smaller
than $s_{0}-s_{1}$ . Thus the distance between $x(\delta)$ and $*M^{b}$ is smaller than $s_{0}$ . Con-
tinuing this process and applying Lemma 3.6, we have Lemma 3.9.

LEMMA 3.10. If $\dim^{*}M^{b}\geqq 1$ , then $W(*M^{b})=M$ and $*M^{b}=M^{b}$ .

PROOF. Let $\rho$ be a point in $*M^{b}$ . Let $v$ be a unit eigenvector corresponding



Differential equations on Riemannian manifolds 515

to some non-zero eigenvalue of the Hessian at $p$ . Then $z:=Exp_{p}(\pi/2\sqrt{k})v$ is a
critical point in $\partial W(*M^{b})$ . Since $\dim^{*}M^{b}\geqq 1$ , we have linearly independent two

vectors $e_{1}$ and $e_{2}$ of length $\pi/2\sqrt{k}$ at $z$ such that

$Exp_{z}e_{1}=p$ , $Exp_{z}e_{2}\in*M^{b}$ .
$e_{1}$ and $e_{2}$ are eigenvectors of the Hessian at $z$ corresponding to the maximum
eigenvalue by (2.9). By completeness of $*M^{b}$ we see that $Exp_{z}u\in*M^{b}$ for each
vector $u$ of length $\pi/2\sqrt{k}$ in the 2-plane determined by $e_{1}$ and $e_{2}$ . In particular,
$Exp_{z}(-e_{1})\in*M^{b}$ . This shows that $\{Exp_{p}sv;0\leqq s\leqq\pi/\sqrt{k}\}$ is contained in $W(*M^{b})$ .

Next let $V(p)$ be the normal space at $p$ to $*M^{b}$ and let $*s(p)$ be the hyper-

sphere of radius $\pi/\sqrt{k}$ in $V(p)$ . Applying the continuity argument from
$Exp_{p}(\pi/\sqrt{k})v\in*M^{b}$ , we see that $Exp_{p}(*S(p))$ is contained in $*M^{b}$ . Thus the

closed $(\pi/\sqrt{}\overline{k})$-disk of $V(p)$ is mapped into $W(*M^{b})$ by $Exp_{p}$ . Since $p$ is an
arbitrary point of $*M^{b}$ , we see that $Exp_{q}V(q)$ is contained in $W(*M^{b})$ for each
$q$ of $*M^{b}$ . Q. E. D.

LEMMA 3.11. Assume that $\dim^{*}M^{b}=0$ and $M^{b}$ is composed of one point $p$ .
If $(M, g)$ is complete, then $W(p)=M$.

PROOF. For any unit tangent vector $v$ at $p$, we have $Exp_{p}(\pi/\sqrt k\gamma v=p$ by

(2.9). Therefore $W(p)=M$.
LEMMA 3.12. Assume that $\dim^{*}M^{b}=0$ and $M^{b}$ has at least two points $p,$ $q$

with distance $\pi/\sqrt{k}$ . If $W(p)$ and $W(q)$ are the closed ( $\pi/2\sqrt k\gamma$-neighborhoods

of $p,$ $q$ in $M$ then $M=W(p)\cup W(q)$ and $M^{b}$ is composed of only two points $p,$ $q$ .
PROOF. Let $\{Exp_{p}sv_{j}0\leqq s\leqq\pi/\sqrt{k}\}$ be a geodesic connecting $P$ and $q=$

$Exp_{p}(\pi/\sqrt{k})v$ . By the method similar to that in the proof of Lemma 3.10 we
obtain $Exp_{p}(*S(p))=q$ . Conversely, $Exp_{q}(*s(q))=p$ . Since $V(p)$ is the same as
the tangent space $M_{p}$ at $P$ in this case, $Exp_{p}V(P)=W(P)\cup W(q)=M$ . Q. E. D.

By Lemmas 3.10\sim 3.12, if $(M, g)$ is complete then $M$ is compact. The only

case where $W(*M^{b})$ is different from $M$ is possible for $M^{b}=\{p, q\}$ .
LEMMA 3.13. Assume that $M^{b}=\{p, q\}$ and $M=W(P)\cup W(q)$ . Let $*\tau(p)$ be

the hypersphere of radius $\pi/2\sqrt{k}$ in $M_{p}$ . Then $Exp_{p}(*T(p))=\partial W(p)$ and

$Exp_{p}|^{*}T(p)$ is a diffeomorphism.

PROOF. Let $*D_{0}(p)$ be the open $(\pi/\sqrt{k})$-disk of $M_{p}$ . We show that

$Exp_{p}|^{*}D_{0}(p)$ is a diffeomorphism of $*D_{0}(p)$ onto $M-q$ . Suppose that there are

two geodesics

$\{Exp_{p}sv;0\leqq s\leqq\pi/\sqrt{k}\}$ , { $Exp_{p}$ tu; $0\leqq t\leqq\pi/\sqrt{k}$}

such that $Exp_{p}s_{1}v=Exp_{p}t_{1}u$ for some $S_{1},$
$t_{1}$ ; $0<s_{1},$ $t_{1}<\pi/\sqrt{k}$, where $v$ and $u$ are

unit vectors at $p$ . Since

$Exp_{p}(\pi/\sqrt{k})v=Exp_{p}(\pi/\sqrt{k})u=q$

and $M$ is compact, the distance between $p$ and $q$ must be smaller than $\pi/\sqrt{k}$ .
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This contradicts (2.9). Q. E. D.
COROLLARY 3.14. Under the same situation as in Lemma 3.13, $W(p)$ is

closed with respect to trajectories of F. Every trajectory passing through a pojnt

in $w_{0}(p)$ stays in $w_{0}(p)$, and every trajectory passing through a point of the
boundary $\partial W(p)$ stays in the boundary.

PROOF. Since $\partial W(p)=Exp_{p}(*T(p)),$ $F$ is tangent to $\partial W(p)$ by (2.9). Therefore
every trajectory of $F$ passing through a point of $\partial W(p)$ stays in $\partial 7V(p)$ . Con-
sequently every trajectory of $F$ passing through a point in $W_{0}(p)-p$ can not

touch $\partial W(p)$ and stays in $w_{0}(p)$ . Q. E. D.
Let ( $M_{j}^{a}$ ; $j=1,$ $\cdots$ , u) be connected components of $M^{a}\cap W(*M^{b})$ . For each

$j$ we define $W_{0}(*M_{j}^{a})$ by

$W_{0}(*M_{j}^{a})=$ {$w\in W(*M^{b})$ ; distance $(w,$ $*M_{j}^{a})<\pi/2\sqrt{k}$}.

COROLLARY 3.15. Let $W(*M^{b})$ be one of these considered in Lemmas 3.10\sim

3.12. For each $j$ ($=1,$ $\cdots$ , u) and for each $w$ in $W_{0}(*M_{j}^{a})\cap W_{0}(*M^{b})$ the trajectory

of Fpassing through $w$ comes from some point of $*M_{j}^{a}$ and tends to some Point
of $*M^{b}$ .

PROOF. We apply Lemma 3.9 to the trajectory $\{x(t)\}(x(O)=w)$ of $F$ for $t\geqq 0$ .
For $t\leqq 0$ consider $b+a-f$ with respect to $*M_{j}^{a}$ . Q. E. D.

The behavior of trajectories of $F$ in $W(*M^{b})$ is as follows. Since $W(*M^{b})$

is compact and $W(*M^{b})$ is closed with respect to trajectories of $F$, every

trajectory of $F$ in $W(*M^{b})$ is written as

(3.4) $\{x(t)\}=\{\varphi_{t}x(0);-\infty<t<\infty\}$ ,

where $\{\varphi_{l}\}$ is a l-parameter group of (local) transformations generated by $F$.
Let $\nu_{*}$ and $\nu_{m}$ be the non-zero maximum eigenvalue and the minimum eigenvalue

of the Hessian $H$ at a point of $*M^{b}$ . $\nu_{*}$ and $\nu_{m}$ are independent of the choice
of points in $*M^{b}$ , because $H$ is parallel along $M^{b}$ by (1.1).

For each point $w$ in $W_{0}(*M_{j}^{o})\cap W_{0}(*M^{b})$, let (3.4) be the trajectory of $F$

passing through $w=x(O)$ . We put

(3.5) $x(-\infty)=\lim_{t\rightarrow-\infty}x(t)$ ,

(3.6) $x(\infty)=\lim_{t\rightarrow\infty}x(t)$ .

Then $x(-\infty)\in*M_{j}^{\alpha}$ and $x(\infty)\in*M^{b}$ . We put

(3.7) $v=\lim_{t\rightarrow\infty}(F/|F|)(x(t))$ ,

where $|F|^{2}=g(F, F)$ . If $\{x(t)\}$ is geodesic then $v$ is an eigenvector correspond-

ing to $\nu_{m}$ . If $\{x(t)\}$ is not geodesic, then $v$ is an eigenvector corresponding to
$\nu_{*}\neq\nu_{m}$ .
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To verify these it is convenient to study the case where the normal space
$V$ to $*M^{b}$ in $M$ at $p$ is 2-dimensional, as a simple model. Let $e_{1}$ and $e_{2}$ be unit
eigenvectors in $V$ corresponding to $\nu_{*}$ and $\nu_{m}$, respectively. Then $f(u_{1}, u_{2})$

$=f(Exp_{p}(u_{1}e_{1}+u_{2}e_{2}))$ is given by

$f(u_{1}, u_{2})=b+(1/2ks^{2})(\nu_{*}u_{1}^{2}+\nu_{m}u_{2}^{2})\sin^{2}\sqrt{k}s$ ,

where $s^{2}=u_{1}^{2}+u_{2}^{2}$ . Thus each level curve $L(c)$ corresponding $f=c=constant$ in
$V$ or $Exp_{p}V$ is given by

$\nu_{*}u_{1}^{2}+\nu_{m}u_{2}^{2}=(c-b)2ks^{2}/\sin^{2}\sqrt{k}s$ .

Since $\sqrt{k}s=\sin\sqrt{k}s$ for $s=0$, this level curve $L(c)$ is approximately equal to

an ellipse

$(-\nu_{*})u_{1}^{2}+(-\nu_{m})u_{2}^{2}=2(b-c)$ .

Thus we have a shrinking family of homothetic ellipses parametrized by $c\rightarrow b$

in $V$ or in $Exp_{p}V$ . Therefore each orthogonal trajectory to this family [which

is not the $u_{2}$-axis curve] tends to be tangent to the $u_{1}$-axis curve as $s\rightarrow 0$ .

\S 4. A Proposition on nullity distributions.

Let $T$ be a curvature-like tensor field on $(M, g)$ . By definition $T$ is of type

(1.3) and satisfies the same algebraic relations satisPed by the Riemannian cur-
vature tensor and the second Bianchi identity:

(4.1) $(\nabla_{X}T)(W, V)+(\nabla_{W}T)(V, X)+(\nabla_{V}T)(X, W)=0$ ,

where $X,$ $V$ and $W$ are vector fields on $M$.
The nullity space $N_{T}(p)$ with respect to $T$ at a point $p$ of $M$ is defined by

$N_{T}(p)=$ { $X\in M_{p}$ ; $T(X,$ $Y)=0$ for any $Y\in M_{p}$}.

The nullity index function $\mu_{T}$ : $p\rightarrow\mu_{T}(p)=\dim N_{T}(p)$ is upper semi-continuous
on $M$. The distribution $N_{T}$ : $p\rightarrow N_{T}(p)$ is called the nullity distribution with
respect to $T$. If $\mu_{T}$ is constant on an open set $G$ of $M$, then the distribution
$N_{T}$ is of class $C^{\infty}$ and involutive on $G$, and each integral submanifold of $N_{T}$ is
totally geodesic in $G$ . We need a generalization of this fact. A vector field $X$

on $(M, g)$ is called a nullity vector field with respect to $T$, if $X$ belongs to
$N_{T}(p)$ at each point $p$ of $M$.

PROPOSITION 4.1. If $X$ and $Y$ are nullity vector fields with respect to a
curvature-like tensor field $T$ on $(M, g)$ , then also $\nabla_{X}Y$ and $\nabla_{Y}X$ are nullity vector

fields with respect to $T$.
PROOF. Let $V,$ $W,$ $Z$ be arbitrary vector fields on $M$. By (4.1) and $X,$ $Y$

$\in N_{T}$ we obtain
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$0=g(Y, (\nabla_{X}T)(Z, W)V+(\nabla_{Z}T)(W, X)V+(\nabla_{W}T)(X, Z)V)$

$=g(Y, \nabla_{X}(T(Z, W)V)+\nabla_{Z}(T(W, X)V)+\nabla_{W}(T(X, Z)V))$

$=g(Y, \nabla_{X}(T(Z, W)V))$

$=-g(\nabla_{X}Y, T(Z, W)V)$ .

Therefore $\nabla_{X}Y\in N_{T}$ . Q. E. D.

COROLLARY 4.2. Let $X\in N_{T}$ and put $A=(\nabla_{j}X^{i})$ . Then $AX\in N_{T},$ $A^{2}X\in N_{T}$ ,

etc.

PROOF. This follows from $AX=\nabla_{X}X,$ $A^{2}X=\nabla_{AX}X$, etc.

REMARK 4.3. A k-nullity vector field (we are working) is a nullity vector

field with respect to the following curvature-like tensor field $Z_{k}$ :

$(Z_{k})_{jhl}^{i}=R_{jhl}^{i}-k(\delta_{h}^{i}g_{jl}-\delta_{l}^{i}g_{jh})$ .

\S 5. $(M, g)$ containing a whole trajectory of $F$ .
In this section we prove the following

THEOREM 5.1. Let $(M, g)$ be a Riemannian manifold admitting a non-

constant function $f$ satisfying (1.1) for some positive constant $k$ . If $(M, g)$

contains a whole trajectory $l$ of $F$ with its limit points in some critical submani-

folds of $f$, then $(M, g)$ is of constant curvature $k$ at each point of 1.
Let $\{\varphi_{t}\}$ be a (local) l-parameter group of (local) transformations generated

by $F$ . We put $l=\{x(t);-\infty<t<\infty\}$ , where $x(t)=\varphi_{t}x(0)$ for an arbitrary point
$x(O)$ of $l$ . We define $x(-\infty)$ and $x(\infty)$ by (3.5) and (3.6). We define a $(1,1)$-tensor

field $A$ by $\nabla F$ . Then by (1.1) we obtain

(5.1) $L_{F}A_{j}^{i}=-2k((Ff)\delta_{j}^{i}+F^{i}F_{j})$ ,

where $L_{F}$ denotes the Lie derivation with respect to $F$ .
There is an integer $r$ such that

$F,$ $AF,$ $\cdots$ $A^{r-1}F$

are linearly independent at $x(0)$ , and $F,$ $AF,$ $\cdots$ , $A^{r}F$ are not linearly independent

at $x(0)$ .

LEMMA 5.2. There are $C^{\infty}$-vector fields $\{e_{\alpha} ; \alpha=1, \cdots , r\}$ along $l$ such that

(i) each $e_{a}$ is invariant by $\varphi_{t}$ ,

(ii) each $e_{\alpha}$ is a linear combination of $F,$ $AF,$ $\cdots$ , $A^{a-1}F$ with functions along

1 as coefficients (the coeflicient of $A^{\alpha-1}F$ being 1).

PROOF. Since $L_{F}F=[F, F]=0$ , we can put $e_{1}=F$ along 1. By (5.1) and
$L_{F}F=0$, we get

$L_{F}(AF+4kfF)=0$ ,
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because $L_{F}f=Ff=g(F, F)$ . Therefore $e_{2}=AF+4kfF$ is invariant by $\varphi_{t}$ .
Assuming that there are $e_{1},$ $e_{2},$

$\cdots$ , $e_{n}$ with properties (i) and (ii), we con-
struct $e_{n+1}$ . By (5.1) and $L_{F}e_{n}=0$ we get

$L_{F}(Ae_{n})=-2k(Ff)e_{n}-2kg(F, e_{n})F$ .

We define a function $h=h(t)$ on $l$ by

$h(t)=\int_{0}^{t}2kg(F, e_{n})(x(t))dt$ .

Then $e_{n+1}$ defined by

$e_{n+1}=Ae_{n}+2kfe_{n}+hF$

is what we wanted. Therefore we obtain $\{e_{\alpha} ; \alpha=1, \cdots , r\}$ along 1 with pro-

perties (i) and (ii). Q. E. D.

REMARK 5.3. The construction of $\{e_{\alpha}\}$ in Lemma 5.2 shows that the integer
$r$ is independent of the choice of point $x(O)$ . In particular, $A^{\tau}F$ is expressed

as a linear combination of $F,$ $AF,$ $A^{r-1}F$ at each point of 1.

REMARK 5.4. $\{e_{\alpha}\}$ defines an r-dimensional distribution $D$ along $l$ such that
$D$ is invariant by $\varphi_{t}$ and $A$ . By Corollary 4.2 and Proposition 2.1, $D$ is contained

in the k-nullity space at each point of $l$ .
LEMMA 5.5. The distribution $D^{\perp}$ along 1 orthocomplementary to $D$ is also

invariant by $\varphi_{t}$ and $A$ .
PROOF. Since $A=(\nabla_{j}\nabla^{i}f)$ is symmetric with respect to $g,$

$D^{\perp}$ is also invariant
by $A$ . To show that $D^{\perp}$ is invariant by $\varphi_{t}$ , first we show $L_{F}Y\in D^{\perp}$ for each
$Y\in D^{\perp}$ . Operating $L_{F}$ to $g(e_{\alpha}, Y)$ and noticing that $L_{F}g=(2\nabla_{j}F_{i})$ , we get

$2g(Ae_{\alpha}, Y)+g(e_{\alpha}, L_{F}Y)=0$ .

Since $Ae_{ct}\in D$, we get $L_{F}Y\in D^{\perp}$ . Next, let $Z_{x(0)}$ be an arbitrary tangent vector

which belongs to $D_{x(0)}^{\perp}$ . Define a vector field $Z$ along 1 by $Z_{x(t)}=\varphi_{t}Z_{x(0)}$ , where

$\varphi_{t}$ also denotes its differential. Let

$Z=Z_{1}+Z_{2}\in D+D^{\perp}$

be the decomposition of $Z$. Since $L_{F}Z=0$, we get

$L_{F}Z_{1}+L_{F}Z_{2}=0$ .

Since $L_{F}Z_{1}\in D$ and $L_{F}Z_{2}\in D^{\perp}$ , we get $L_{F}Z_{1}=0$ . Since $Z_{1}$ vanishes at $x(O),$ $Z_{1}=0$

along 1. Thus $Z=Z_{2}\in D^{\perp}$ , and $D^{\perp}$ is invariant by $\varphi_{t}$ . Q. E. D.

LEMMA 5.6. There is a field of orthogonal basis $\{e_{u} ; u=r+1, \cdots , m\}$ of $D^{\perp}$

such that
(i) each $e_{u}$ is invariant by $\varphi_{t}$ ,

(ii) for each $e_{u}$ there is a constant $c_{u}$ satisfying

(5.2) $Ae_{u}=-2k(c_{u}+f)e_{u}$ ,
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(iii) $\{e_{u}\}$ is orthonormal at $x(O)$ .
PROOF. Let $C_{u}$ ($u=r+1,$ $\cdots$ , m) be eigenvalues of $A$ restricted to $D^{\perp}$ at $x(O)$

and let $\{(e_{u})_{x(0)}\}$ be an orthonormal base of $D^{\perp}$ at $x(O)$ such that

$A(e_{u})_{x(0)}=C_{u}(e_{u})_{x(0)}$ .
For each $u$ we dePne a constant $c_{u}$ by $C_{u}=-2k(c_{u}+f(x(0)))$, and $e_{u}$ by $(e_{u})_{x(t)}$

$=\varphi_{t}(e_{u})_{x(0)}$ . By (5.1) we get

$L_{F}(Ae_{u}+2k(c_{u}+f)e_{u})=0$ ,

because $g(F, e_{u})=0$ . Therefore $Ae_{u}+2k(c_{u}+f)e_{u}$ is invariant by $\varphi_{t}$ . Since it

vanishes at $x(O)$, it vanishes at each point of $l$. Thus we get (ii). Finally we
show that $\{e_{u}\}$ is orthogonal. We operate $L_{F}$ to $g(e_{u}, e_{v})$ , where $u\neq v$ and $r+1$

$\leqq u,$ $v\leqq m$ . Then

$L_{F}(g(e_{u}, e_{v}))=2g(Ae_{u}, e_{v})$

$=-4k(c_{u}+f)g(e_{u}, e_{v})$ .

This is an ordinary differential equation with respect to $g(e_{u}, e_{v})$ . Since $g(e_{u}, e_{v})$

vanishes at $x(O)$, the uniqueness of the solution implies that $g(e_{u}, e_{v})=0$ along $l$ .
Q. E. D.

Now we have obtained a field of $\varphi_{t}$-invariant frames along $l$ ;

$\{e_{i}\}=\{e_{a}, e_{u} ; 1\leqq\alpha\leqq r, r+1\leqq u\leqq m\}$ .

Let $\{w^{i}\}$ be the field of dual frames of $\{e_{i}\}$ along $l$ ;

$w^{i}(e_{j})=\delta_{j}^{i}$ .

By operating $L_{F}$ to the both sides of the last equation, we see that each l-form
$w^{i}$ along 1 is also invariant by $\varphi_{t}$ .

Let $P$ be the Weyl projective curvature tensor of $(M, g)$ . By $(P_{jhl}^{i})$ we
denote the components of $P$ with respect to $\{e_{i}\}$ along 1;

$P_{Ju}^{i}=w^{i}(P(e_{j}, e_{h}, e_{l}))$ .
Since $\varphi_{t}$ is projective (cf. Proposition 2.1), $P$ is invariant by $\varphi_{t}$ . Since $e_{i}$ and
$w^{i}$ are also invariant by $\varphi_{t},$

$P_{jhl}^{i}’ s$ are constant along 1.

LEMMA 5.7. $P_{vwz}^{u}=0$ for $r+1\leqq u,$ $v,$ $w,$ $z\leqq m$ .
PROOF. We define $E_{u}$ and $W^{u},$ $u=r+1,$ $\cdots$ , $m$, by

$E_{u}=e_{u}/|e_{u}|$ ,

$W^{u}=|e_{u}|w^{u}$ .

Then $\{E_{u}\}$ is field of orthonormal basis of $D^{\perp}$ along $l$, and $\{W^{u}\}$ is its dual.

We assume that there are $u,$ $v,$ $w,$ $z$ such that $P_{vwz}^{u}\neq 0$ and we consider
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(5.3) $W^{u}(P(E_{v}, E_{w}, E_{z}))=\frac{|e_{u}|}{|e_{v}||e_{w}||e_{z}|}P_{vwz}^{u}$

to induce a contradiction. First we claim that the left hand side of (5.3) is
bounded on $l$ . By $|P|^{2}$ we denote the square of the norm of $P$. Then $|P|^{2}$

$=\sum(P_{jhl}^{i})^{2}$ for the components of $P$ with respect to an arbitrary orthonormal
frame at a point where we consider $|P|^{2}$ . Since $P$ is a tensor field on $(M, g)$

and $x(-\infty)\cup l\cup x(\infty)$ is compact, $|P|^{2}$ is bounded on 1. Since

$(W^{u}(P(E_{v}, E_{w}, E_{z})))^{2}\leqq|P|^{2}$,

the left hand side of (5.3) is bounded on 1.
Therefore if we show that

(5.4) $\lim Q(t)=\infty$ (as $ t\rightarrow\infty$ or $ t\rightarrow-\infty$ )

for $Q=|e_{u}|^{2}|e_{v}|^{-2}|e_{w}|^{-2}|e_{z}|^{-2}$, then (5.3) gives a contradiction. Since

$L_{F}|e_{u}|^{2}=2g(Ae_{u}, e_{u})$

$=-4k(c_{u}+f)|e_{u}|^{2}$ ,
etc., we obtain

(5.5) $L_{F}Q=dQ/dt=4k(2f-c_{u}+c_{v}+c_{w}+c_{z})Q$ .
By $b_{0}$ and $a_{0}$ we denote the critical value of $f;f(x(\infty))=b_{0}$ and $f(x(-\infty))=a_{0}$ .
As the first case we assume

$4(2b_{0}-c_{u}+c_{v}+c_{w}+c_{z})>0$ .

Then we have some positive numbers $\epsilon$ and $i_{1}$ such that

$ 4k(2f-c_{u}+c_{v}+c_{w}+c_{z})>\epsilon$

holds for all $t>t_{1}$ , since $f(t)$ is increasing and $f(t)\rightarrow b_{0}$ as $ t\rightarrow\infty$ . Therefore

$(L_{F}Q)/Q>\epsilon$

holds for all $t>t_{1}$, and

$Q(t)>$ ($non$-zero $constant$) $e^{\epsilon t}$ .

This means that $ Q(t)\rightarrow\infty$ as $ t\rightarrow\infty$ .
Finally we assume

$4(2b_{0}-c_{u}+c_{v}+c_{w}+c_{z})\leqq 0$ .
Then

$-4(2a_{0}-c_{u}+c_{v}+c_{w}+c_{z})\geqq 8(b_{0}-a_{0})$ .
In this case we change the parameter $t\rightarrow\prime t=-t$. Then in (5.5) only $(dt\rightarrow d^{\prime}t)$

changes sign and hence

$dQ(\prime t)/d^{\prime}t=-4k(2f(\prime t)-c_{u}+c_{v}+c_{w}+c_{z})Q(\prime t)$ .
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As $\prime t\rightarrow\infty,$ $f(\prime t)$ is decreasing and $f(/t)\rightarrow a_{0}$ . Therefore we have some positive

numbers $\epsilon(<8(b_{0}-a_{0}))$ and $t_{2}$ such that

$-4(2f(\prime t)-c_{u}+c_{v}+c_{w}+c_{z})>-4(2a_{0}-c_{u}+c_{v}+c_{w}+c_{z})-\epsilon$

$\geqq 8(b_{0}-a_{0})-\epsilon$

holds for all $\prime t>t_{2}$ . Therefore $ Q(\prime t)\rightarrow\infty$ as $\prime r\rightarrow\infty$ or $ t\rightarrow-\infty$ . Thus we
obtain (5.4), and this completes the proof.

PROOF OF THEOREM 5.1. Let $R_{jhl}^{i}$ be the components of the Riemannian
curvanture tensor $R$ with respect to $\{e_{i}\}=\{e_{\alpha}, e_{u}\}$ along 1. Since each $e_{\alpha}$

belongs to the k-nullity distribution of $(M, g)$ along 1 (cf. Remark 5.4), if at

least one index (for example $ h=\alpha$ ) of $i,$ $j,$ $h,$ $l$ is smaller than $r+1$ , then

(5.6) $R_{J^{\alpha l}}^{i}=k(\delta_{a}^{t}g_{jl}-\delta_{l}^{i}g_{ja})$ .

In particular we obtain

(5.7) $\sum_{a=1}^{r}R_{v\alpha z}^{a}=rkg_{vz}$

where $r+1\leqq v,$ $z\leqq m$ . On the other hand, $P_{vwz}^{u}=0$ implies

(5.8) $R_{vwz}^{u}=(1/(m-1))(\delta_{w}^{u}R_{vz}-\delta_{z}^{u}R_{vvf})$ .

where $(R_{jl})$ denotes the Ricci tensor. Therefore

(5.9) $\sum_{u=\tau+1}^{m}R_{m}^{u}.=(1/(m-1))(m-r-1)R_{vz}$ .

Adding (5.7) and (5.9) we obtain

$R_{vz}=(1/(m-1))(m-r-1)R_{vz}+rkg_{vz}$ ,

from which we obtain

(5.10) $R_{vz}=(m-1)kg_{vz}$ .

By (5.6), (5.8) and (5.10), we see that $(M, g)$ is of constant curvature $k$ at each

point $x(t)$ of 1.
THEOREM 5.8. In Theorem 5.1, let $x(\infty)$ and $x(-\infty)$ be limit points of 1. If

$f$ takes its maximum value at $x(\infty)$ and its minimum value at $x(-\infty)$ , then $(M, g)$

contains an open set $W$ containing 1 so that $(W, g)$ is of constant curvature $k$ .
PROOF. Let $w_{1}$ be a point of $l$ near $x(\infty)$ . Then there is an open neigh-

borhood $U_{1}$ of $w_{1}$ such that $\{\varphi_{l}U_{t} ; 0<t<\infty\}$ is contained in $M$ (cf. \S 3). Similarly

for a point $w_{2}$ of $l$ near $x(-\infty)$, we have an open neighborhood $U_{2}$ of $w_{2}$ such

that $\{\varphi_{t}U_{2} ; -\infty<t<0\}$ is contained in $M$. The existence of such $U_{1}$ and $U_{2}$

shows that a trajectory of $F$ passing through a point $z$ near 1 lies near $l$ and

comes from some point of $M^{a}$ near $x(-\infty)$ and tends to some point of $M^{b}$ near
$x(\infty)$ . Therefore there is an open set $W$ containing $l$ so that $(W, g)$ is of con-
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stant curvature $k$, by Theorem 5.1.

PROOF OF THEOREM A. If $(M, g)$ is complete, by the bebavior of trajec-

tories of $F$ studied in \S 3 and by Theorem 5.1, Theorem A is verified.

\S 6. Examples.

Let $(B, *g)$ be an $(m-1)$-dimensional Riemannian manifold and let $I=(-\pi/2$ ,

$\pi/2)$ be an open interval of the real line. On $I\times B$ we define a warped product

metric $g$ by

(6.1) $ds^{2}=dt^{2}+\cos^{2}td^{*}s^{2}$ .

Then the function $h$ on $I\times B$ defined by

(6.2) $h(t, x)=h(t)=\sin t$

is a special concircular field on $(I\times B, g)$, that is, it satisPes

(6.3) $\nabla_{j}\nabla_{t}h=-hg_{ji}$

(cf. for example, Y. Tashiro [22], p. 254). If we put $f=h^{2}$ , then $f$ satisfies (1.1)

with $k=1$ .
(i) Let $(S^{m-1}, *g)$ be a totally geodesic sphere of a Euclidean sphere $(S^{m}, g_{0})$

of constant curvature 1. Denoting by $N_{0}$ and $S_{0}$ the north and south poles of
$S^{m}$, we obtain

$S^{m}-N_{0}-S_{0}=I\times S^{m-1}$ .

Notice that the metric $g_{0}$ on $S^{m}-N_{0}-S_{0}$ is the same as $ds_{0}^{2}$ defined by the right

hand side of (6.1). Define a function $h$ on $S^{m}$ by $h=\sin t$ on $I\times S^{m-1}$ and $h(N_{0})$

$=1,$ $h(S_{0})=-1$ . $h$ is of class $C^{\infty}$ and satisfies (6.3) on $(S^{m}, g_{0})$ .
Let $U$ be a sufficiently small simple open set in $S^{m-1}$ , and let $\alpha$ be a non-

constant positive function on $S^{m-1}$ such that $\alpha$ takes value 1 outside $U$. By

$ClU$ we denote the closure of $U$ .
Removing $[-\pi/3, -\pi/6]\times ClU$ and $[\pi/6, \pi/3]\times ClU$ from $S^{m}$ and replacing

the metric $ds_{0}^{2}$ on $((-\pi/6, \pi/6)\times U,$ $ds_{0}^{2}$) by $dt^{2}+(\cos^{2}t)\alpha d^{*}s^{2}$, we get a Rieman-
nian manifold $(M, g)$ of dimension $m$ . By the same letter $h$ we denote the

restriction of $h$ on $S^{m}$ to $M$. Then $h$ satisfies (6.3) also on $(M, g)$ . Summarizing

the properties of $(M, g)$ we get

(i-1) $(M, g)$ admits a non-constant function $f=h^{2}$ satisfying (1.1) with $k=1$ ,

$(i-2)$ there is a point $z$ in $S^{m-1}$ such that $(M, g)$ contains the closed $(\pi/2)-$

neighborhood of $z$ in $M$,

$(i-3)$ $(M, g)$ is not of constant curvature $k$ (in $(-\pi/6,$ $\pi/6)\times U$ ).

REMARK 6.1. Example (i) is a counter-example to the lemma of a paper
[9] by S. Gallot.

(ii) In example (i), consider an open submanifold
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$(S^{m}-[-\pi/3, \pi/3]\times ClU, g_{0}=g)$

of $(M, g)$ . Then each trajectory of grad $f$ in this manifold has $N_{0}$ or $S_{0}$ as its
limit point. This property is generalized to the concept of t-connectedness.

\S 7. t-connectedness.

DEFINITION 7.1. Let $X$ be a vector Peld on a manifold M. $M$ is called to

be t-connected ( $i$ . $e.$ , trajectory-connected) with respect to $X$, if for any two dif-
ferent points $x$ and $y$ of $M$, there is a piecewise $C^{\infty}$-curve $l(x, y)$ joining $x$ and
$y$ such that

(i) except a finite number of points $(p_{1}, \cdots , p_{j})$ of $l(x, y),$ $l(x, y)$ is composed

of trajectories of $X$,

(ii) $p_{1},$ $\cdots$ , $p_{j}$ are singular points ( $i$ . $e.$ , vanishing points) of $X$, and hence
they are limit points of the trajectories of $X$ in $l(x, y)$ .

REMARK 7.2. Let $f$ be a function on a Riemannian manifold $(M, g)$ and let
$q$ be an isolated singular point of grad $f$. If $f$ takes a local maximum (or local
minimum) at $q$ , then some neighborhood of $q$ in $M$ is t-connected with respect

to grad $f$.
DEFINITION 7.3. Let $X_{1},$ $\cdots$ , $X_{a}$ be vector fields on M. $M$ is called t-connected

with respect to $(X_{1}, \cdots , X_{a})$, if for any two different points $x$ and $y$ of $M$, there

is a piecewise $C^{\infty}$-curve $1(x, y)$ joining $x$ and $y$ such that
(i) except a finite number of points $(p_{1}, \cdots , p_{j}, q_{1}, \cdots , q_{h})$ of $l(x, y),$ $l(x, y)$

is composed of some trajectories of $X_{1},$ $\cdots$ , $X_{a}$ ,

(ii) each of $p_{1},$ $\cdots$ , $p_{j}$ is a singular point of some of $X_{1},$ $\cdots$ , $X_{a}$,

(iii) each of $q_{1},$
$\cdots$ , $q_{h}$ is the intersection of some two trajectories of

$X_{1},$ $\cdots$ $X_{a}$ .
We prepare about nullity theory for the proof of the main Theorem in this

section (Theorem 7.5). Let $N_{T}$ be the nullity distribution with respect to a
curvature-like tensor field $T$ on $(M, g)$ (cf. \S 4) and let $\mu_{T}$ be the index function
of nullity of $T$ . The minimum value $\mu_{T}^{0}$ of $\mu_{T}$ on $(M, g)$ is called the index of
nullity of $T$ on $(M, g)$ . The subset $M^{0}$ of $M$ composed of all points where
$\mu_{T}=\mu_{T}^{0}$ holds is called the nullity set of $T$. Since $\mu_{T}$ is upper semi-continuous,
$M^{0}$ is open in $M$. Each leaf (maximal integral submanifold) of $N_{T}$ is totally

geodesic in $M^{0}$ .
The completeness theorem of nullity foliations by $N_{T}$ is stated as follows:

If $(M, g)$ is complete, then each leaf of $N_{T}$ on $M^{0}$ is also complete (cf. K. Abe
[1], Y. H. Clifton and R. Maltz [5], D. Ferus [7], etc.).

What is proved in this completeness theorem is the following.

THEOREM 7.4 (Local form of completeness theorem). Let $\{x(s);c\leqq s\leqq b\}$ be

a geodesic in $(M, g)$ with arc-length parameter $s$, such that $\{x(s);c\leqq s<b\}$ is
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contained in a leaf $L$ of $N_{T}$ on $M^{0}$ . Then $x(b)\in L$, too.
We aPply this to the following.

THEOREM 7.5. Let $X$ be a nullity vector field of a curvature-like tensor field
$T$ on $(M, g)$ . If some open set $U$ in $M$ is t-connected with respect to $X,$ $T=0$

holds on $U$.
In particular, if $T=Z_{k},$ $(U, g)$ is of constant curvature $k$ .
PROOF. Let $\mu^{0}$ be the index of nullity of $T$ on $U$ and let $U^{0}$ be the nullity

set of $T$ in $(U, g)$ . Since $U$ is t-connected with respect to $X$ and since $U^{0}$ is
open, we get $\mu^{0}\geqq 1$ . Let $x$ be an arbitrary point of $U^{0}$ such that $X$ does not

vanish at $x$, and let $L$ be the leaf of the nullity distribution $N_{T}$ passing through
$x$ . We claim that $L=U^{0}=U$.

Let $y$ be an arbitrary point of $U$. By t-connectedness of $U$, we have a
piecewise $C^{\infty}$-curve $1(x, y)$ joining $\chi$ and $y$ in $U$, which is composed of trajectories

of $X$ except a finite number of points $p_{1},$ $\cdots$ , $p_{j}$ . We show that $1(x, y)$ is con-
tained in $L$ . By our choice of $\chi$ we get $x\neq P_{1}$ . We denote the portion of
$1(x, y)$ from $\chi$ to $p_{1}$ by $[xp_{1}]$ . By [$xp_{1}$) we mean $[xp_{1}]-p_{1}$ . [$xp_{1}$) is a part of

a trajectory of $X$. Since $X\in N_{T}$ , the connected component [$xz$) of $[xp_{1}$ ) $\cap U^{0}$

containing $\chi$ is contained in $L$ . We prove $z\in L$ .
(1) If [$xp_{1}$) is geodesic, $z\in L$ follows from Theorem 7.4.
(2) If [$xz$) is not geodesic, then $\mu^{0}\geqq 2$ . Let $B_{\epsilon}(z)$ be an $\epsilon$ -ball neighborhood

of $z$ in $M$, where $\epsilon$ is sufficiently small so that $B_{\epsilon}(z)$ is convex. Each geodesic

in $L\cap B_{\epsilon}(z)$ can be prolonged to a geodesic in $B_{\epsilon}(z)$, which has the limit points

in the boundary of $B_{\epsilon}(z)$ . By Theorem 7.4 again, this prolonged geodesic is
contained in $L$ . This means that $L$ has no boundary points in $B_{\epsilon}(z)$ . In parti-

cular $z\in L$ .
Consequently, we obtain $z=p_{1}$ and $p_{1}\in L$ . Since $U^{0}$ is open in $M$ some

neighborhood of $p_{1}$ is contained in $U^{0}$ and hence some part of $(p_{1}p_{2})$ is contained
in $L$ . Continuing the above argument we see that $[p_{1}p_{2}]$ is contained in $L$ .
And Pnally we see that $l(x, y)$ is contained in $L$ . Thus, $U=L$ and $T=0$ holds
on $U$.

THEOREM 7.6. Let $X_{1},$ $\cdots$ , $X_{a}$ be nullity vector fields of a curvature-like
tensor field $T$ on $(M, g)$ . If some open set $U$ in $M$ is t-connected with respect

to $X_{1},$ $\cdots$ , $X_{\alpha}$, then $T=0$ holds on $U$.
Proof is given by a slight modification of that of Theorem 7.5.

\S 8. Local theorems on (1.1).

By Theorem 7.5 we obtain

COROLLARY 8.1. Let $(M, g)$ be a Riemannian manifold admitting a function
$f$ satisfying (1.1) for some positive constant $k$ . If $M$ (or an open subset $U$ of
$M)$ is t-connected with respect to grad $f$, then $(M, g)$ (or $(U,$ $g)$, resp.) is of



526 S. TANNO

constant curvature $k$ .
SECOND PROOF OF THEOREM A. Assume that a complete Riemannian

manifold $(M, g)$ admits a non-constant function $f$ satisfying (1.1) for some
positive constant $k$ . Then $M$ is compact as was shown in \S 3 and $M$ is ex-
pressed as $M=W(*M^{b})$ or $M=W(p)\cup W(q)$ under the notations in \S 3. Since

the limit points of each trajectory of $F=gradf$ are critical points of $f$, it is

easy to see that $M$ is t-connected with respect to $F$ . This gives the second

proof of Theorem A.

THEOREM 8.3. Let $(M, g)$ be a Riemannian manifold admitting a non-constant

function $f$ satisfying (1.1) for some positive constant $k$ . Assume that there is a
point of $M$ where $f$ takes its maximum value $b$ . Let $M^{b}$ be the subset of $M$ of
all critical points of $f$ where $f=b$ holds and let $*M^{b}$ be a connected comp0nent

of $M^{b}$ . If $\dim^{*}M^{b}\leqq 1$ then there is an open set $U$ containing $*M^{b}$ such that
$(U, g)$ is of constant curvature $k$ .

PROOF. Since the set of all critical points of $f$ is of measure zero and $F=$

grad $f$ is a k-nullity vector field on $(M, g)$ , the index of k-nullity of $(M, g)$ is
greater than or equal to one.

Let $y$ be an arbitrary point of $*M^{b}$ . Since the normal space to $*M^{b}$ at $y$

is contained in the k-nullity space (cf. Corollary 3.5), the index of k-nullity at $y$

is equal to $m-\dim^{*}M^{b}\geqq m-1$ . This means that the index of k-nullity at each
point of $*M^{b}$ is equal to $m$ . Since there is no critical points near $*M^{b}$ (except

points of $*M^{b}$), there is an open set $U$ in $M$ containing $*M^{b}$ such that for each
point $z$ in $U$ the trajectory of $F$ passing through $z$ tends to some point of $*M^{b}$ .
Let $w$ be an arbitrary point which belongs to the k-nullity set $U^{0}$ of $(U, g)$ ,

and let $L$ be the leaf of the k-nullity distribution on $U^{0}$ passing through. $w$ .
Then we can show that $L$ meets $*M^{b}$ just by the same way as in the proof of

Theorem 7.5. Therefore $(U, g)$ is of constant curvature $k$ .

\S 9. Applications.

(i) From Theorem A we obtain
THEOREM 9.1 (T. Nagano [13]). Let $(M, g)$ be a complete Einstein space of

positive constant scalar curvature S. If $(M, g)$ admils an infinitesimal non-aJfine
projective transformation, then $(M, g)$ is of constant curvature $k=S/m(m-1)$ .

Or more generally,

THEOREM 9.2. Let $(M, g)$ be a complete Riemannian manifold with positive

constant scalar curvature $S=m(m-1)k$ . If $(M, g)$ admits an infinitesimal non-

affine projective transformation which leaves the gravitational tensor field $G=$

$(R_{jl}-(S/m)g_{jl})$ invariant, then $(M, g)$ is of constant curvature $k$ .
This follows from the following.

PROPOSITION 9.3. Assume that $(M, g)$ has positive constant scalar curvature
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$S=m(m-1)k$ . Then the existence of a non-constant function $f$ satisfying (1.1) on
$M$ is equivalent to the existence of an infinitesimal non-affine projective trans-

formation $X$ on $(M, g)$ which leaves the gravitational tensor field $G$ invariant.

Proof is standard (S. Tanno [21]) and we omit it here. We only give the

relation between $f$ and $X;f\rightarrow X=gradf$ and $X\rightarrow f=-\nabla_{r}X^{r}/2(m+1)$ (cf. also,

K. Yano [23], p. 271).

(ii) A Killing vector field $\xi$ of unit length on a Riemannian manifold $(M, g)$

is called a Sasakian structure if it is a l-nullity vector field on $(M, g)$ . $(M, g)$

admitting a Sasakian structure is called a Sasakian manifolds.

THEOREM 9.4 (S. Tachibana and W. N. Yu [17]). If a complete Riemannian

manifold $(M, g)$ admits two Sasakian structure $\xi$ and $\eta$ such that $f=g(\xi, \eta)$ is

not constant, then $f$ satisfies (1.1) with $k=1$ and $(M, g)$ is of constant curvature 1.

This theorem is useful in the study of isometry groups of Sasakian mani-

folds, etc. (cf. S. Tanno [18], [19]).

\S 10. The case of K\"ahlerian manifolds.

Let $(M, J, g)$ be a K\"ahlerian manifold of dimension $m=2n\geqq 4$ . The structure

tensors $J$ (almost complex structure tensor) and $g$ (K\"ahlerian metric tensor)

satisfy the following.

$f^{2}X=-X$ , $\nabla J=0$ ,

$g(JX, JY)=g(X, Y)$

for all vector Pelds $X$ and $Y$ on $M$.
A K\"ahlerian manifold $(M, J, g)$ is of constant holomorphic sectional curvature

$\beta$ at $x$, if and only if

(10.1) $R_{jhl}^{i}-(\beta/4)(\delta_{h}^{i}g_{jl}-\delta_{l}^{l}g_{jh}-J_{h}^{i}J_{lj}+J_{l}^{i}J_{hj}+2J_{hl}J_{j}^{i})=0$

holds at $x$, where $J_{hj}=g_{h\gamma}J_{j}^{r}$ .

For a positive constant $\beta$ we define a tensor field $E$ of type $(1,3)$ by

$E=(E_{jhl}^{i})=$ ($the$ left hand side of (10.1)).

Then $E$ is a curvature-like tensor Peld on $(M, J, g)$ , and it satisfies

(10.2) $E_{jhl}^{i}J_{r}^{h}J_{s}^{l}=E_{j\tau s}^{i}$ ,

etc. The holomorphic $\beta$-nullity space $HN_{x}$ at $\chi$ the holomorphic $\beta$ -nullity dis-

tribution $HN$, etc. are naturally defined. By (10.2) $NH_{x}$ is invariant by $J$. The

holonorphic sectional curvature with respect to a non-zero $X\in HN_{x}$ is equal to $\beta$ .
Let $(CP^{n}, J, g_{0} ; \beta)$ be a complex n-dimensional projective space with the

Fubini-Study metric of constant holomorphic sectional curvature $\beta$ . Then the

first eigenvalue of the Laplacian on $(CP^{n}, J, g_{0} ; \beta)$ is $(n+1)\beta$ and each eigen-
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function $f$ corresponding to $(n+1)\beta$ satisfies

(10.3) $\nabla_{h}\nabla_{j}\nabla_{i}f+(\beta/4)(2\nabla_{h}fg_{ji}+\nabla_{j}fg_{ih}+\nabla_{i}fg_{jh}$

$+(J_{j}^{s}J_{i}^{r}+J_{i}^{s}J_{j}^{r})\nabla_{r}fg_{hs})=0$ .

The following theorem was announced by M. Obata [15].

THEOREM 10.1. Let $(M, J, g)$ be a complete Kahlerian manifold. In order

for $(M, J, g)$ to admit a non-constant function $f$ satisfying (10.3) for some positive

constant $\beta$ , it is necessary and sufficient that $(M, J, g)$ is holomorphically isometric

to a $(CP^{n}, J, g_{0} ; \beta)$ .
REMARK 10.2. Restricting (10.3) to a geodesic $\{x(s)\}$ we get the differential

equation

$f^{M}+\beta f^{\prime}=0$ .

The case $\beta=4$ corresponds to $k=1$ in the Riemannian case, and so the local

behavior of trajectories of $F=gradf$ is quite the same as in the Riemannian
case (\S 2, \S 3).

A vector field $X$ on $(M, J, g)$ is called holomorphically projective, if

(10.4) $L_{X}J_{j}^{i}=-\nabla_{\tau}X^{i}J_{j}^{r}+\nabla_{j}X^{r}J_{r}^{i}=0$ ,

(10.5) $L_{X}\Gamma_{jh}^{i}=\rho_{j}\delta_{h}^{i}+\rho_{h}\delta_{j}^{i}-J_{h}^{i}J_{j}^{r}\rho_{r}-J_{h}^{r}J_{j}^{i}\rho_{r}$

for some function $\rho$ , where $\rho_{j}=\nabla_{j}\rho$ .

PROPOSITION 10.3. Let $f$ be a function on a Kahlerian manifold $(M, J, g)$ .
$f$ satisfies (10.3) for a non-zero constant $\beta$ , if and only if

(i) $F=gradf$ is holomorphically projective,

(ii) $F$ is a holomorphic $\beta$-nullity vector field on $(M, J, g)$ .
PROOF. First we assume that non-constant function $f$ satisfies (10.3) for a

constant $\beta\neq 0$ . By the Ricci identity for $\nabla_{l}\nabla_{h}F_{j}-\nabla_{h}\nabla_{l}F_{j}$, we get

$F_{i}E_{jhl}^{i}=0$ .

This proves (ii). Applying this to (2.2) we obtain

(10.6) $L_{F}\Gamma_{jh}^{i}=-(\beta/2)(F_{j}\delta_{h}^{i}+F_{h}\delta_{j}^{i}-J_{h}^{i}J_{j}^{r}F_{\tau}-J_{h}^{r}J_{j}^{i}F_{\tau})$ .

This proves (10.5) with $\rho=-(\beta/2)f$. By (10.3) we can verify

$J_{j}^{r}\nabla_{h}\nabla_{r}F_{i}+J_{i}^{r}\nabla_{h}\nabla_{r}F_{j}=0$ .

This means that $J_{j}^{r}\nabla_{r}F_{i}+J_{i}^{r}\nabla_{r}F_{j}$ is a parallel symmetric $(0,2)$-tensor field. The

existence of a non-trivial $\beta$ -nullity vector field $F$ implies that $(M, g)$ is irredu-

cible. So $J_{j}^{r}\nabla_{r}F_{i}+J_{i}^{r}\nabla_{r}F_{j}$ is proportional to $g_{ji}$ . Transvecting this $(0,2)$-tensor

field by $g^{ij}$, we see that $J_{j}^{r}\nabla_{r}F_{i}+J_{i}^{r}\nabla_{r}F_{j}=0$ . So we obtain (10.4) with $X=F$ and

hence (i).

The converse is proved by the method similar to the proof in Proposition
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2.1. Q. E. D.

REMARK 10.4. If $(M, J, g)$ is complete and admits a non-constant function
$f$ satisfying (10.3) for some positive constant $\beta$ , we see that $M$ is t-connected

with respect to $F=gradf$ by Remark 10.2. Therefore, $(M, J, g)$ is of constant
holomorphic sectional curvature by Theorem 7.5 and Proposition 10.3. Since a
complete $(M, J, g)$ of positive constant holomorphic sectional curvature is simply

connected, $(M, J, g)$ is holomorphically isometric to a $(CP^{n}, J, g_{0} ; \beta)$ .
This proves Theorem 10.1.
THEOREM 10.5. Let $(M, J, g)$ be a Kahlerian manifold admitting a non-

constant function $f$ satisfying (10.3) for some positive constant $\beta$ . If $(M, J, g)$

contains a whole trajectory 1 of $F=gradf$ with its limit points, then $(M, J, g)$

is of constant holomorphic sectional curvature $\beta$ at each point of $l$ .
The analogy of Theorem 5.8 is also true.

Proof is quite similar to that of Theorem 5.1, and so we give only an
outline of the proof. We write $l=\{x(t)=\varphi_{t}x(0), -\infty<t<\infty\}$ as in the proof of

Theorem 5.1. We define $A$ by $\nabla F$. Then $AJ=JA$ holds by (10.4). Assume that

$F,$ $JF,$ $AF,$ $JAF,$ $\cdots$ , $A^{\tau-1}F,$ $JA^{r-1}F$

are linearly independent at $x(O)$ and $F,$ $JF,$ $\cdots$ , $A^{r-1}F,$ $JA^{r-1}F,$ $A^{r}F$ are linearly

dependent at $x(0)$ . By (10.3) we obtain

(10.7) $L_{F}A_{j}^{i}=-(\beta/2)((Ff)\delta_{j}^{i}+F^{i}F_{j}+(JF)^{i}(JF)_{j})$ .

By (10.7) we can construct $\varphi_{t}$-invariant vector fields

$e_{1}=F,$ $Je_{1},$ $e_{2},$ $Je_{2},$ $\cdots$ , $e_{r},$ $Je_{r}$

along $l$ . So we have a $(2r)$-dimensional distribution $D$ along 1, which is invariant
by $\varphi_{t},$

$A$, and $J$. By Corollary 4.2 and (10.2), we see that $D$ is contained in the

holomorphic $\beta$ -nullity distribution $HN$ at each point of $l$ .
By $D^{\perp}$ we denote the distribution along $l$ orthocomplementary to D. $D^{\perp}$

is also invariant by $\varphi_{t},$
$A$, and $J$.

Since $\varphi_{t}$ is holomorphically projective, it leaves the holomorphically projective

curvature tensor $Q=(Q_{jhl}^{i})$ invariant (cf. for example, K. Yano [24], Chapter 7);

(10.8) $Q_{jhl}^{i}=R_{fhl}^{i}-(1/2(n+1))(\delta_{h}^{i}R_{jl}-\delta_{l}^{i}R_{jh}$

$-J_{h}^{i}J_{j}^{s}R_{ts}+J_{l}^{i}J_{j}^{s}R_{hs}+J_{l}^{s}J_{j}^{i}R_{hs}-J_{h}^{s}J_{j}^{i}R_{ls})$ .
$Q=0$ at $x$ is equivalent to $E=0$ at $x$. The rest of the proof is given by the
natural modification of the proof of Theorem 5.1.

COROLLARY 10.6. Let $(M, J, g)$ be a complete Kahler-Einstein space with
positive constant scalar curvature $ S=n(n+1)\beta$ . In order for $(M, J, g)$ to admit a

non-affine holomorphically projective vector field $X$, it is necessary and sufficient
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that $(M, J, g)$ is holomorphically isometric to a $(CP^{n}, J, g_{0} ; \beta)$ .
PROOF. In fact, for a holomorphically projective vector field $X$ on a K\"ahler-

Einstein space, $\delta X=(-\nabla_{\tau}X^{r})$ satisfies (10.3) (cf. S. Tachibana [16], p. 50). So

Corollary 10.6 follows from Theorem 10.1.
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