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1. Introduction

A single occasion survey provides information about the characteristics of the
surveyed population for the given occasion only and unable to give information
about the rate of change of characteristics over different occasions and estimates
of the characteristics over all occasions or on the most recent (current) occasion.
To get such information, generally sampling is done on successive occasions where
a part of the sample retained while the remainder of the sample is drawn afresh
for generating reliable estimates at different occasions. This kind of sampling
procedure is known as successive (rotation) sampling which was initiated by Jessen
(1942) in the analysis of farm data. The theory was further extended by Patterson
(1950), Eckler (1955), Rao and Graham (1964), Sen (1971, 1972, 1973), Gupta
(1979), Das (1982), Singh et al. (1991) and Singh and Singh (2001)among others.

Sometimes, information on an auxiliary variable may be readily available on
the first as well as on the second occasion. Utilizing the auxiliary information
on both occasions Feng and Zou (1997), Biradar and Singh (2001), Singh (2005),
Singh and Priyanka (2006) , Singh and Priyanka (2008) and Singh and Karna
(2009) proposed estimators of current population mean in successive (rotation)
sampling.

In many sample surveys, generally the information is not obtained from all
the sample units selected from the population. This incompleteness is called non-
response. Hansen and Hurwitz (1946) introduced first time, sub sampling method
of non-respondents to deal with the problems of non-response in mail surveys.
Cochran (1977)and Fabian and Hyunshik (2000) extended the Hansen and Hurwitz
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(1946) technique for the situation when besides the information on character under
study, information is also available on auxiliary character. Recently, Choudhary
et al. (2004), Singh and Priyanka (2007) and Singh and Kumar (2011) used the
Hansen and Hurwitz (1946) technique for the estimation of population mean on
current occasion in two-occasion successive sampling.

In follow up of the above work, the aim of the present paper is to study the
occurrence of non-response by utilizing the Hansen and Hurwitz (1946) technique,
when it occurs on current occasion in two-occasion successive (rotation) sampling.
Recently Bahl and Tuteja (1991), Singh and Vishwakarma (2007) and Singh and
Homa (2013) suggested exponential type estimators of population mean under
different practicable situations. Looking on the dominance nature of these estima-
tors, we proposed some modified exponential type estimators of population mean
on current occasion where information on a dynamic (changing over occasions)
auxiliary variable has been used and are capable in reducing the negative impact
of non-response to a greater extent. Properties are examined and the performances
of the proposed estimators are compared with the similar estimator and natural
successive estimator when the complete response is observed and with the Hansen
and Hurwitz (1946) estimator under non-response. Optimum replacement strate-
gies are suggested and empirical studies are carried out to assess the behaviors of
the proposed estimation procedures.

2. Sample structures and symbols

Consider the finite population U = (U1, U2, ..., UN ) of N units,which has been
sampled over two occasions. The character under study be denoted by x (y) on
the first (second) occasion respectively. It is assumed that the information on a
dynamic (change over time) auxiliary variable zk (k = 1, 2) (with known popula-
tion mean) is readily available on kth occasion and which is positively correlated
with study variable. We assume that there is non-response occurs at the current
occasion, so that the population can be divided into two classes, those who will
respond at the first attempt and those who will not respond. Let the sizes of these
two classes be N1 and N2 respectively. A simple random sample (without replace-
ment) sn of n units is drawn on the first occasion. A random sub sample sm of
m = nλ units is retained (matched) for its use on the second occasion under the
assumption that these units will respond at the second occasion as well. Now, at
the current (second) occasion a simple random sample (without replacement) su
of u = (n−m) = nµ units is drawn afresh from the entire population so that the
sample size on the current (second) occasion is also n. Here λ and µ (λ+ µ = 1)
are the fractions of matched and fresh samples respectively at the current (second)
occasion. We assume that in the unmatched portion of the sample on the current
(second) occasion u1 units respond and u2 units do not respond. Let u2h denote
the size of the sub sample su2h drawn from the non-responding units in the un-
matched (fresh) portion of the sample (su) on the current (second) occasion. The
following notations are considered for the further use:
X̄ , Ȳ : The population means of the study variables x(y).

Z̄k(k = 1, 2): The population mean of the auxiliary variable z on kth occasion.
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ȳm, ȳu, ȳu1 , ȳu2h
, ȳn, ȳn1 , ȳn2h

, x̄n, x̄m, z̄1m, z̄2u1 , z̄2u2h
: The sample means of the re-

spective variables based on the sample sizes shown in suffices.
ρyx, ρxz1 , ρxz2 , ρyz1 , ρyz2 : The population correlation coefficients between the

variables shown in suffices.
ρ2yz2 : The population correlation coefficient between the variables y and z2 in

the non-responding units of the population.
S2
x, S

2
y , S

2
z1 , S

2
z2 : The population variances of the variables x, y, z1 and z2 re-

spectively.
S2
2y, S

2
2z2 : The population variances of the variables y and z2 respectively in

the non-responding units of the population.
W = N2

N : The proportion of non-responding units in the population at current
(second) occasion.

ȳ∗u =
u1ȳu1+u2ȳu2h

u and z̄∗2u =
u1z̄2u1+u2z̄2u2h

u : Hansen and Hurwitz estimators
defined on study variable and auxiliary variable respectively for the unmatched
portion of the sample on the current occasion.

f2 = u2

u2h
and f∗

2 = n2

n2h
.

3. Formulation of estimators

To estimate the population mean Ȳ on the current (second) occasion, two different
sets of estimators are considered that use information on a dynamic auxiliary vari-
able z1(z2). One set of estimators Su = (T1u, T2u) based on sample su of size u
drawn afresh on the second occasion and the second set of estimator Sm = (Tm)
based on the sample sm of size sm which is common to both occasions. Since the
non-response occurs in the sample su, therefore, we have used the Hansen and Hur-
witz (1946) technique to propose the estimators of set Su. Hence, the estimators
of sets Su and Sm for estimating the current population mean Ȳ are formulated as

T1u = ȳ∗u exp
(

Z̄2−z̄2u
Z̄2+z̄2u

)
, T2u = ȳ∗u exp

(
Z̄2−z̄∗

2u

Z̄2+z̄∗
2u

)
and Tm = ȳm exp

(
x̄n−x̄m

x̄n+x̄m

)(
Z̄1

z̄1m

)
.

Combining the estimators of sets Su and Sm, finally we have the following es-
timators of population mean Ȳ at the current (second) occasion:

Ti = ϕiTiu + (1− ϕi)Tm ; (i = 1, 2) (1)

where ϕi (0 ≤ ϕi ≤ 1)(i = 1, 2) are the unknown constants (scalars) to be
determined under certain criterions.

4. Properties of the estimators Ti (i = 1, 2)

Since, the estimators Tiu (i = 1, 2) and Tm are exponential type estimators,
they are biased of the population mean Ȳ , therefore, the resulting estimators
Ti (i = 1, 2) defined in Eq. (1) are also biased estimators of Ȳ . The bias B (.)
and mean square errors M (.) of the estimators Ti (i = 1, 2) are derived up-to the
first order of approximations using the following transformations:



298 G. N. Singh, M. Khetan and S. Maurya

ȳm = (1 + e1)Ȳ , ȳu = (1 + e2)Ȳ , ȳ∗u = (1 + e3)Ȳ , x̄m = (1 + e4)X̄, x̄n = (1 +
e5)X̄, z̄1m = (1 + e6)Z̄1, z̄2u = (1 + e7)Z̄2, z̄

∗
2u = (1 + e8)Z̄2;

where e
′

i(i = 1, 2, ..., 8) are the relative errors of estimates while estimating the
respective population parameters which satisfy the assumptions E(ei) = 0 and
|ei| ≤ 1 .
Under the above transformations estimators Tiu (i = 1, 2) and Tm take the follow-
ing forms:

T1u = Ȳ (1 + e3) exp

[
−1

2
e7

(
1 +

1

2
e7

)−1
]
, (2)

T2u = Ȳ (1 + e3) exp

[
−1

2
e8

(
1 +

1

2
e8

)−1
]
, (3)

and Tm = Ȳ (1 + e1)(1 + e6)
−1 exp

[
1

2
(e5 − e4)

(
1 +

1

2
(e5 + e4)

)−1
]

(4)

Thus, we have the following theorems:

Theorem 1. Bias of the estimators Ti (i = 1, 2) to the first order of approxi-
mations are obtained as

B(Ti) = ϕiB(Tiu) + (1− ϕi)B(Tm); (i = 1, 2) (5)

where B(T1u) = Ȳ

(
1

u
− 1

N

)(
3

8
− 1

2
ρyz2

)
C2

y , (6)

B(T2u) = Ȳ

[{(
1

u
− 1

N

)
+

(f2 − 1)W

u

}(
3

8
− 1

2
ρyz2

)]
C2

y (7)

andB(Tm) = Ȳ

{(
1

m
− 1

N

)
(1− ρyz1) +

(
1

m
− 1

n

)(
3

8
+

1

2
ρxz1 −

1

2
ρyx

)}
C2

y(8)

Proof. The bias of the estimators Ti (i = 1, 2) are given by

B(Ti) = E[Ti − Ȳ ] = ϕiE[Tiu − Ȳ ] + (1− ϕi)E[Tm − Ȳ ]

= ϕiB(Tiu) + (1− ϕi)B(Tm) (9)

where B(Tiu) = E[Tiu − Ȳ ] and B(Tm) = E[Tm − Ȳ ].

Substituting the expressions of T1u, T2u and Tm from Eq. (2), Eq. (3) and Eq. (4)
in Eq. (9), expanding the terms binomially and exponentially, taking expectations
and retaining the terms up to the first order of sample sizes, we have the expres-
sions for the bias of the estimators Ti (i = 1, 2) as described in Eq. (5).
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Theorem 2. Mean square errors of estimators Ti (i = 1, 2)to the first order
of approximations are obtained as

M(Ti) = ϕ2
iM(Tiu) + (1− ϕi)

2M(Tm) + 2ϕ(1− ϕi)Ci; (i = 1, 2) (10)

whereM(T1u) = E(T1u − Ȳ )2 =

[(
1

u
− 1

N

)(
5

4
− ρyz2

)
+

(f2 − 1)W

u

]
S2
y ,

(11)

M(T2u) = E(T2u−Ȳ )2 =

[((
1

u
− 1

N

)
+

(f2 − 1)W

u

)(
5

4
− ρyz2

)]
S2
y , (12)

M(Tm) = E(Tm − Ȳ )2 (13)

=

[{
2

(
1

m
− 1

N

)
(1− ρyz1)

}
+

{(
1

m
− 1

n

)(
1

4
+ ρxz1 − ρyx

)}]
S2
y

C1 = E
[
(T1u − Ȳ )(Tm − Ȳ )

]
= −

S2
y

N

(
1− 1

2
ρyz2 − ρyz1 +

1

2
ρz1z2

)
(14)

and C2 = E
[
(T2u − Ȳ )(Tm − Ȳ )

]
= −

S2
y

N

(
1− 1

2
ρyz2 − ρyz1 +

1

2
ρz1z2

)
(15)

Proof. It is obvious that the mean square errors of estimators Ti(i = 1, 2)
are given by

M(Ti) = E
[
ϕi(Tiu − Ȳ ) + (1− ϕi)(Tm − Ȳ )

]2
; (i = 1, 2)

= ϕ2
iE(Tiu − Ȳ )2 + (1− ϕi)

2E(Tm − Ȳ )2 + 2ϕi(1− ϕi)E
[
(Tiu − Ȳ )(Tm − Ȳ )

]
= ϕ2

iM(Tiu) + (1− ϕi)
2M(Tm) + 2ϕ(1− ϕi)Ci. (16)

Substituting the expressions of T1u, T2u and Tm from Eq. (2), Eq. (3) and
Eq. (4) in Eq. (16), expanding the terms binomially and exponentially, taking
expectations and retaining the terms up to the first order of sample sizes; we have
the expressions of mean square errors of the estimators Ti as it is given in Eq. (10).

Remark 3. The expressions of bias and mean square errors in the Eq. (5) and
Eq. (10) respectively are derived under the assumptions (i) that the coefficients of
variation and correlation coefficients of non-response class are similar to that of
the population, i.e. C2y = Cy, C2z2 = Cz2 , ρ2yz2 = ρyz2 and (ii) since, x and y
are the same study variable over two occasions and zk(k = 1, 2) is the auxiliary
variable on first and second occasion correlated to x and y, therefore, looking on the
stability nature of the coefficients of variation viz. Reddy (1978), the coefficients
of variation of the variables x, y and zk in the population are considered equal, i.e.
Cx = Cy = Cz1 = Cz2 .
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5. Minimum mean square errors of the estimators Ti(i = 1, 2)

Since, the mean square errors of the estimators Ti(i = 1, 2) in Eq. (10) are func-
tions of unknown constants ϕi(i = 1, 2), therefore, they are minimized with respect
to ϕi and subsequently the optimum values of ϕi are obtained as

ϕiopt =
M(Tm)− Ci

M(Tiu) +M(Tm)− 2Ci
; (i = 1, 2) (17)

Now substituting the values of ϕiopt in Eq. (10), we get the optimum mean square
errors of Ti as

M(Tiopt) =
M(Tiu)M(Tm)− C2

i

M(Tiu) +M(Tm)− 2Ci
; (i = 1, 2) (18)

Further, substituting the values from Eq. (11) − Eq. (15) in Eq. (18), we get the
simplified values of M(Tiopt) which are given below:

M(T1opt) =
a3 + µ1a2 + µ2

1a1
a6 + µ1a5 + µ2

1a4

S2
y

n
(19)

M(T2opt) =
a9 + µ2a8 + µ2

2a7
a12 + µ2a11 + µ2

2a10

S2
y

n
. (20)

where µi(i = 1, 2) are the fractions of fresh sample to be replaced for the estimators
Ti(i = 1, 2),

a1 = ac+k2f2, a2 = ad+ cb−k2f2, a3 = bd, a4 = c−a+2kf, a5 = a− b+d−2kf,

a6 = b, a7 = ac+ k2f2, a8 = ad+ cb′1 − k2f2, a9 = b′1d, a10 = c− a+ 2kf,

a11 = a−b′1+d−2kf, a12 = b′1, a = −fa0, b = a0+(f2−1)W, c = fc1+d1, d = (1−f)c1,

b′1 = a0 [1 + (f2 − 1)W ] , a0 =
5

4
− ρyz2 , c1 = 2(1− ρyz1), d1 =

1

4
+ ρxz1 − ρyx,

k =

[
−1− 1

2
ρz1z2 +

1

2
ρyz2 + ρyz2

]
, f =

n

N
, f2 =

u2

u2h

.

6. Optimum replacement strategies

Since, the mean square errors of the estimators Ti(i = 1, 2) given in Eq. (19)and
Eq. (20) are the functions of µi(i = 1, 2), therefore, the optimum values of µi are
determined to estimate the population mean with maximum precision and lowest
cost. To determine the optimum values of µi, we minimized mean square errors of
the estimators Ti given in equations Eq. (19)and Eq. (20) respectively with respect
to µi which result in quadratic equations in µi and the respective solutions of µi

say µ̂i (i = 1, 2) are given below:

p1µ
2
1 + 2p2µ1 + p3 = 0 (21)
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µ̂1 =
−p2 ±

√
p22 − p1p3
p1

(22)

p4µ
2
2 + 2p5µ2 + p6 = 0 (23)

µ̂2 =
−p5 ±

√
p25 − p4p6
p4

(24)

where p1 = a1a5 − a2a4, p2 = a1a6 − a3a4, p3 = a2a6 − a3a5, p4 = a7a11 −
a8a10, p5 = a7a12 − a9a10 and p6 = a8a12 − a9a11.

From equations Eq. (22) and Eq. (24) , it is obvious that real values of µi

(i = 1, 2) exist, if, the quantities under square roots are greater than or equal to
zero. For any combinations of correlations ρyx, ρxz1 , ρyz1 , ρz1z2 and ρyz2 , which
satisfy the conditions of real solutions; two real values of µ̂i(i = 1, 2) are possible.
Hence, while choosing the values of µ̂i , it should be remembered that0 ≤ µ̂i ≤ 1.
All other values of µ̂i (i = 1, 2)are inadmissible. Substituting the admissible values

of µ̂i say µ
(0)
i from equations Eq. (22)and Eq. (24) into Eq. (19)and Eq. (20)

respectively, we have the optimum values of mean square errors of Ti(i = 1, 2),
which are shown below;

M(T 0
1opt) =

a3 + µ
(0)
1 a2 + µ

(0)2
1 a1

a6 + µ
(0)
1 a5 + µ

(0)2
1 a4

S2
y

n
(25)

M(T 0
2opt) =

a9 + µ
(0)
2 a8 + µ

(0)2
2 a7

a12 + µ
(0)
2 a11 + µ

(0)2
2 a10

S2
y

n
(26)

7. Efficiencies comparison

7.1. Comparison with estimators under complete response:

The percent relative loss in efficiencies of the estimators Ti(i = 1, 2) are obtained
with respect to the similar estimator and natural successive sampling estimator
when the non-response not observed on any occasion. The estimator ξ1 is defined
under the similar circumstances as the estimators Ti but under complete response,
where as the estimator ξ2 is the natural successive sampling estimator and they
are given as

ξj = Ψjξju + (1−Ψj)Tjm; (j = 1, 2) (27)

where ξ1u = ȳu exp
(

Z̄2−z̄2u
Z̄2+z̄2u

)
,ξ2u = ȳu, T1m = ȳm exp

(
x̄n−x̄m

x̄n+x̄m

)(
Z̄1

z̄1m

)
.

and T2m = ȳm + byx(m)(x̄n − x̄m),T1m is same as Tm defined in section 3 and
byx(m) is the sample regression coefficient between the variables shown in suffix.

Proceeding on the similar line as discussed for the estimators Ti(i = 1, 2), the
optimum mean square errors of the estimators ξj(j = 1, 2) are derived as

M(ξ01opt) =
b3 + µ

∗(0)
1 b2 + µ

∗(0)2
1 b1

b6 + µ
∗(0)
1 b5 + µ

∗(0)2
1 b4

S2
y

n
(28)
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M(ξ02opt) =

[
1

2

[
1 +

√
(1− ρ2xy)

]
− f

]
S2
y

n
. (29)

µ
∗(0)
1 =

−q2±
√

q22−q1q3
q1

(fraction of the fresh sample for the estimator),

b1 = ac + k2f2, b2 = ad + ca0 − k2f2, b3 = a0d, b4 = c − a + 2kf, b5 =
a− a0 + d− 2kf, b6 = a0, q1 = b1b5 − b2b4, q2 = b1b6 − b3b4 and q3 = b2b6 − b3b5.

Remark 4. To compare the performance of the estimators Ti(i = 1, 2) with
the estimators ξj(j = 1, 2), we introduce an assumption ρyz2 = ρxz1 = ρyz1 , which
is an intuitive assumption and also considered by Cochran (1977) and Feng and
Zou (1997).

The percent relative losses in precision of estimators Ti(i = 1, 2) with respect
to ξj(j = 1, 2) under their respective optimality conditions are given by

Lij =
M(T 0

iopt
)−M(ξ0jopt)

M(T 0
iopt

)
100; (i, j = 1, 2) (30)

For N = 5000, n = 500, f2 = 1.5 and different choices of ρyx, ρz1z2andρyz2 , Tables

1 − 4 give the optimum values of µ
(0)
i and percent relative losses in precision

Lij(i, j = 1, 2) of estimators Ti(i = 1, 2) with respect to estimators ξj(j = 1, 2).

7.2. Comparison with Hansen and Hurwitz (1946) estimator under non-response:

In this section, the percent relative loss in efficiencies of the estimators Ti(i = 1, 2)
are obtained with respect to the Hansen and Hurwitz (1946) estimator ( ȳ∗n), when
non-response occurs at current occasion and when there is no matching from the
previous occasion;

ȳ∗n =
n1ȳn1 + n2ȳn2h

n
(31)

Since, ȳ∗n is an unbiased estimator of Ȳ , therefore, following Sukhatme et al. (1984)
the variance of ȳ∗n is given as:

V (ȳ∗n) = [(1− f) + (f∗
2 − 1)W ]

S2
y

n
(32)

The expression of the variance in Eq. (32) is written under the assumption S2
y =

S2
2y.

Remark 5. To compare the performances of the estimators Ti(i = 1, 2) with
the estimator (ȳ∗n), we introduce one more assumption f2 = f∗

2 .

The percent relative losses in precision of estimators Ti(i = 1, 2) with respect
to (ȳ∗n) under their respective optimality conditions are given by

Li =
M(T 0

iopt
)− V (ȳ∗n)

M(T 0
iopt

)
100; (i = 1, 2) (33)
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For N = 5000, n = 500, f2 = 1.5 and different choices of ρyx, ρz1z2andρyz2 ,

Tables 5 and 6 give the optimum values of µ
(0)
i and percent relative losses in

precision Li(i = 1, 2) of estimators Ti(i = 1, 2) with respect to estimator (ȳ∗n).

8. Interpretations of results

The following interpretations may be read out from Tables 1-6:
(1) From Table 1 it is clear that:
(a) For the fixed values of W and ρyx, no pattern is visible for the fix value 0.5

of ρz1z2 but for the fix value 0.7 of ρz1z2 we get increasing values of µ
(0)
1 and L11

with the increasing values of ρyz2 .
(b) For the fixed values of W and ρyz2 , no pattern is observed for fix value 0.5 of

ρz1z2but for the value 0.7 of ρz1z2 we get increasing values of µ
(0)
1 and L11 with

increasing values of ρyx . This behavior is in agreement with Sukhatme et al.
(1984) results, which explains that more the value of ρyx , more the fraction of
fresh sample is required on the current occasion.

(c) For the fixed values of W , ρyx and ρyz2 , the values of µ
(0)
1 and L11 increase

with the increasing values of ρz1z2 . If less correlation is observed between auxiliary
variables from first and second occasion we get less amount of loss.

(d) For the fixed values of ρz1z2 , ρyx and ρyz2 , the values of µ
(0)
1 and L11 increase

with the increasing values of W . This pattern showed that the more the non-
response rate more loss is observed.

(2) From Table 2 it is visible that:
(a) For the fixed values of W , ρz1z2 and ρyx, no definite trends are noticed for fix

value 0.5 of ρz1z2 but for the value 0.7 of ρz1z2 we get increasing values of µ
(0)
2 and

L21 with the increasing values of ρyz2 . Though, the amount of loss is not as much
appreciable as one may see in Table 1 for the similar situation.
(b) For the fixed values of Wand ρyz2 , no pattern is observed for value 0.5 of

ρz1z2 but for the value 0.7 of ρz1z2 we get increasing values of µ
(0)
2 and L21 with

the increasing values of ρyx .This indicates that loss is reduces when the study
variables are remotely correlated.

(c) For the fixed values of W , ρyx and ρyz2 , the values of µ
(0)
2 and L21 increase

with the increasing values of ρz1z2 .

(d) For the fixed values of ρz1z2 , ρyxand ρyz2 , the values of µ
(0)
2 and L21 increase

with the increasing values of W . Thus, the higher the non-response rate on the
current occasion, the larger the fresh sample is desirable on the current occasion
which enhances the precision of the estimates.

(3) From Table 3 it is indicated that:
(a) For the fixed values of W , ρz1z2and ρyx, we did not get any pattern for the

value 0.5 of ρz1z2 but for the value 0.7 of ρz1z2 we get increasing values of µ
(0)
1 and

decreasing values of L12 with the increasing values of ρyz2 .
(b) For the fixed values of W , ρz1z2 and ρyz2 , the values of L12 increase with the
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TABLE 1
Percent relative loss in precision L11 of the estimator T1 with respect to ξ1

ρyx 0.5 0.6 0.7 0.8

W ρyz2 ρz1z2 µ
(0)
1 L11 µ

(0)
1 L11 µ

(0)
1 L11 µ

(0)
1 L11

0.05 0.6 0.5 0.2903 1.3057 0.2613 1.1180 0.1985 0.7626 * -
0.7 0.2823 1.2764 0.2480 1.0612 0.1714 0.6326 * -
0.8 0.4039 2.1549 0.4117 2.1241 0.4183 2.0728 0.4205 1.9732
0.9 0.4029 2.1650 0.4103 2.1310 0.4159 2.0728 0.4157 1.9544
0.6 0.7 0.4781 3.0971 0.5022 3.1495 0.5327 3.2248 0.5746 3.3443
0.7 0.4806 3.1352 0.5055 3.1925 0.5376 3.2758 0.5826 3.4106
0.8 0.5277 4.3504 0.5598 4.4627 0.6003 4.6173 0.6540 4.8457
0.9 0.5321 4.4186 0.5655 4.5398 0.6079 4.7074 0.6648 4.9578

0.10 0.6 0.5 0.3281 2.6903 0.3084 2.3668 0.2630 1.7526 * -
0.7 0.3220 2.6431 0.2983 2.2727 0.2423 1.5332 * -
0.8 0.4358 4.2957 0.4492 4.2616 0.4648 4.2034 0.4837 4.0879
0.9 0.4361 4.3205 0.4496 4.2831 0.4653 4.2172 0.4848 4.0798
0.6 0.7 0.5065 6.0572 0.5341 6.1744 0.5700 6.3437 0.6203 6.6137
0.7 0.5098 6.1323 0.5386 6.2601 0.5765 6.4468 0.6309 6.7504
0.8 0.5540 8.3552 0.5887 8.5787 0.6325 8.8865 0.6910 9.3421
0.9 0.5591 8.4827 0.5951 8.7230 0.6411 9.0560 0.7032 9.5537

0.15 0.6 0.5 0.3653 4.1372 0.3549 3.7231 0.3266 2.9349 * -
0.7 0.3611 4.0816 0.3478 3.6079 0.3122 2.6602 * -
0.8 0.4671 6.4143 0.4861 6.4000 0.5105 6.3722 0.5459 6.3118
0.9 0.4686 6.4573 0.4882 6.4418 0.5139 6.4103 0.5528 6.3377
0.6 0.7 0.5342 8.8876 0.5654 9.0793 0.6065 9.3569 0.6651 9.8014
0.7 0.5383 8.9983 0.5710 9.2067 0.6146 9.5120 0.6783 10.0104
0.8 0.5796 12.0582 0.6167 12.3909 0.6639 12.8493 0.7270 13.5287
0.9 0.5852 12.2374 0.6238 12.5941 0.6733 13.0886 0.7405 13.8288

0.20 0.6 0.5 0.4020 5.6327 0.4006 5.1674 0.3895 4.2796 * -
0.7 0.3995 5.5764 0.3966 5.0446 0.3812 3.9782 * -
0.8 0.4979 8.5048 0.5223 8.5296 0.5554 8.5637 0.6073 8.6184
0.9 0.5005 8.5685 0.5261 8.5961 0.5616 8.6342 0.6198 8.6965
0.6 0.7 0.5613 11.5958 0.5961 11.8691 0.6422 12.2661 0.7091 12.9038
0.7 0.5661 11.7404 0.6027 12.0368 0.6518 12.4723 0.7247 13.1854
0.8 0.6045 15.4957 0.6440 15.9350 0.6943 16.5408 0.7621 17.4394
0.9 0.6106 15.7200 0.6518 16.1898 0.7047 16.8418 0.7768 17.8183

Note: ∗ indicate µ
(0)
1 do not exist.
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TABLE 2
Percent relative loss in precision L21 of the estimator T2 with respect to ξ1

ρyx 0.5 0.6 0.7 0.8

W ρyz2 ρz1z2 µ
(0)
2 L21 µ

(0)
2 L21 µ

(0)
2 L21 µ

(0)
2 L21

0.05 0.6 0.5 0.2770 0.8388 0.2447 0.7105 0.1758 0.4678 * -
0.7 0.2682 0.8183 0.2302 0.6711 0.1464 0.3783 * -
0.8 0.3893 1.1864 0.3946 1.1657 0.3971 1.1315 0.3917 1.0655
0.9 0.3878 1.1913 0.3923 1.1684 0.3934 1.1296 0.3842 1.0511
0.6 0.7 0.4623 1.4111 0.4842 1.4329 0.5118 1.4642 0.5491 1.5136
0.7 0.4643 1.4284 0.4870 1.4523 0.5158 1.4869 0.5555 1.5428
0.8 0.5101 1.5650 0.5406 1.6044 0.5788 1.6585 0.6293 1.7385
0.9 0.5142 1.5901 0.5458 1.6326 0.5857 1.6915 0.6392 1.7792

0.10 0.6 0.5 0.3017 1.7136 0.2755 1.4801 0.2180 1.0374 * -
0.7 0.2943 1.6778 0.2632 1.4101 0.1928 0.8766 * -
0.8 0.4071 2.3698 0.4155 2.3375 0.4230 2.2836 0.4268 2.1789
0.9 0.4063 2.3811 0.4142 2.3455 0.4209 2.2844 0.4227 2.1599
0.6 0.7 0.4753 2.7937 0.4989 2.8402 0.5289 2.9070 0.5700 3.0131
0.7 0.4777 2.8280 0.5022 2.8789 0.5337 2.9529 0.5777 3.0726
0.8 0.5196 3.0838 0.5510 3.1625 0.5904 3.2707 0.6426 3.4307
0.9 0.5239 3.1326 0.5565 3.2175 0.5977 3.3351 0.6530 3.5105

0.15 0.6 0.5 0.3262 2.6194 0.3061 2.3016 0.2598 1.6982 * -
0.7 0.3200 2.5729 0.2958 2.2090 0.2388 1.4825 * -
0.8 0.4247 3.5486 0.4362 3.5128 0.4486 3.4524 0.4616 3.3338
0.9 0.4245 3.5678 0.4359 3.5284 0.4482 3.4600 0.4608 3.3190
0.6 0.7 0.4881 4.1484 0.5134 4.2222 0.5459 4.3285 0.5907 4.4975
0.7 0.4909 4.1996 0.5172 4.2802 0.5513 4.3977 0.5996 4.5882
0.8 0.5290 4.5584 0.5613 4.6764 0.6019 4.8386 0.6558 5.0785
0.9 0.5335 4.6299 0.5670 4.7570 0.6096 4.9330 0.6667 5.1958

0.20 0.6 0.5 0.3505 3.5519 0.3364 3.1690 0.3013 2.4409 * -
0.7 0.3455 3.4987 0.3281 3.0605 0.2844 2.1846 * -
0.8 0.4421 4.7214 0.4567 4.6896 0.4740 4.6346 0.4962 4.5249
0.9 0.4426 4.7496 0.4574 4.7147 0.4751 4.6525 0.4985 4.5219
0.6 0.7 0.5008 5.4758 0.5278 5.5792 0.5626 5.7284 0.6113 5.9662
0.7 0.5040 5.5436 0.5321 5.6564 0.5688 5.8211 0.6213 6.0886
0.8 0.5383 5.9911 0.5715 6.1482 0.6133 6.3642 0.6689 6.6838
0.9 0.5430 6.0841 0.5774 6.2532 0.6213 6.4873 0.6803 6.8371

Note: ∗ indicate µ
(0)
2 do not exist.



3
0
6

G
.
N
.
S
in
gh
,
M
.
K
h
et
a
n
a
n
d
S
.
M
a
u
ry
a

TABLE 3
Percent relative loss in precision L12 of the estimator T1 with respect to ξ2

ρyx 0.5 0.6 0.7 0.8

W ρyz2 ρz1z2 µ
(0)
1 L12 µ

(0)
1 L12 µ

(0)
1 L12 µ

(0)
1 L12

0.05 0.6 0.5 0.2903 -9.0503 0.2613 -7.1528 0.1985 -3.6519 0.0191 2.7849
0.7 0.2823 -9.6982 0.2480 -7.7578 0.1714 -4.1290 * -
0.8 0.4039 -29.4047 0.4117 -28.0393 0.4183 -25.1588 0.4205 -19.9006
0.9 0.4029 -30.4156 0.4103 -29.0691 0.4159 -26.1969 0.4157 -20.9262
0.6 0.7 0.4781 -56.2496 0.5022 -55.2468 0.5327 -52.4679 0.5746 -46.8240
0.7 0.4806 -57.7031 0.5055 -56.7325 0.5376 -53.9667 0.5826 -48.2952
0.8 0.5277 -94.8741 0.5598 -94.3728 0.6003 -91.6707 0.6540 -85.3084
0.9 0.5321 -97.0247 0.5655 -96.5590 0.6079 -93.8488 0.6648 -87.3882

0.10 0.6 0.5 0.3281 -7.5204 0.3084 -5.7996 0.2630 -2.6179 0.1278 3.0839
0.7 0.3220 -8.1795 0.2983 -6.4383 0.2423 -3.1852 0.0594 2.8337
0.8 0.4358 -26.5734 0.4492 -25.2431 0.4648 -22.4357 0.4837 -17.3140
0.9 0.4361 -27.5423 0.4496 -26.2310 0.4653 -23.4335 0.4848 -18.3048
0.6 0.7 0.5065 -51.4766 0.5341 -50.3980 0.5700 -47.5541 0.6203 -41.8576
0.7 0.5098 -52.8236 0.5386 -51.7660 0.5765 -48.9191 0.6309 -43.1675
0.8 0.5540 -86.7147 0.5887 -85.9987 0.6325 -83.0916 0.6910 -76.5519
0.9 0.5591 -88.6473 0.5951 -87.9454 0.6411 -85.0028 0.7032 -78.3268

0.15 0.6 0.5 0.3653 -5.9217 0.3549 -4.3298 0.3266 -1.3830 0.2354 3.7809
0.7 0.3611 -6.5811 0.3478 -4.9840 0.3122 -2.0042 0.1877 3.3156
0.8 0.4671 -23.7715 0.4861 -22.4456 0.5105 -19.6637 0.5459 -14.5939
0.9 0.4686 -24.6939 0.4882 -23.3840 0.5139 -20.6072 0.5528 -15.5200
0.6 0.7 0.5342 -46.9128 0.5654 -45.7416 0.6065 -42.8069 0.6651 -37.0153
0.7 0.5383 -48.1576 0.5710 -46.9955 0.6146 -44.0399 0.6783 -38.1624
0.8 0.5796 -79.1703 0.6167 -78.2428 0.6639 -75.1284 0.7270 -68.3987
0.9 0.5852 -80.9077 0.6238 -79.9747 0.6733 -76.7993 0.7405 -69.8978

0.20 0.6 0.5 0.4020 -4.2693 0.4006 -2.7647 0.3895 0.0216 0.3422 4.8242
0.7 0.3995 -4.9201 0.3966 -3.4192 0.3812 -0.6230 0.3146 4.2374
0.8 0.4979 -21.0067 0.5223 -19.6597 0.5554 -16.8629 0.6073 -11.7726
0.9 0.5005 -21.8796 0.5261 -20.5430 0.5616 -17.7414 0.6198 -12.6107
0.6 0.7 0.5613 -42.5461 0.5961 -41.2697 0.6422 -38.2234 0.7091 -32.3026
0.7 0.5661 -43.6933 0.6027 -42.4135 0.6518 -39.3276 0.7247 -33.2878
0.8 0.6045 -72.1668 0.6440 -71.0323 0.6943 -67.7105 0.7621 -60.7828
0.9 0.6106 -73.7288 0.6518 -72.5708 0.7047 -69.1646 0.7768 -62.0319

Note: ∗ indicate µ
(0)
1 do not exist.



S
o
m
e
E
ffi
cien

t
E
stim

a
tio

n
P
roced

u
res

u
n
d
er

N
o
n
-R

espo
n
se

etc.
3
0
7

TABLE 4
Percent relative loss in precision L22 of the estimator T2 with respect to ξ2

ρyx 0.5 0.6 0.7 0.8

W ρyz2 ρz1z2 µ
(0)
2 L22 µ

(0)
2 L22 µ

(0)
2 L22 µ

(0)
2 L22

0.05 0.6 0.5 0.2770 -9.5662 0.2447 -7.5944 0.1758 -3.9597 * -
0.7 0.2682 -10.2072 0.2302 -8.1826 0.1464 -4.3954 * -
0.8 0.3893 -30.6856 0.3946 -29.2931 0.3971 -26.3618 0.3917 -21.0108
0.9 0.3878 -31.7136 0.3923 -30.3386 0.3934 -27.4124 0.3842 -22.0403
0.6 0.7 0.4623 -58.9681 0.4842 -57.9984 0.5118 -55.2417 0.5491 -49.6048
0.7 0.4643 -60.4820 0.4870 -59.5500 0.5158 -56.8143 0.5555 -51.1629
0.8 0.5101 -100.5489 0.5406 -100.1881 0.5788 -97.6162 0.6293 -91.3595
0.9 0.5142 -102.8554 0.5458 -102.5451 0.5857 -99.9841 0.6392 -93.6551

0.10 0.6 0.5 0.3017 -8.5996 0.2755 -6.7605 0.2180 -3.3648 0.0518 2.8295
0.7 0.2943 -9.2521 0.2632 -7.3777 0.1928 -3.8732 * -
0.8 0.4071 -29.1205 0.4155 -27.7602 0.4230 -24.8894 0.4268 -19.6490
0.9 0.4063 -30.1274 0.4142 -28.7862 0.4209 -25.9242 0.4227 -20.6727
0.6 0.7 0.4753 -56.7388 0.4989 -55.7426 0.5289 -52.9685 0.5700 -47.3271
0.7 0.4777 -58.2033 0.5022 -57.2402 0.5337 -54.4807 0.5777 -48.8142
0.8 0.5196 -97.4546 0.5510 -97.0182 0.5904 -94.3765 0.6426 -88.0641
0.9 0.5239 -99.6758 0.5565 -99.2817 0.5977 -96.6406 0.6530 -90.2417

0.15 0.6 0.5 0.3262 -7.5987 0.3061 -5.8702 0.2598 -2.6746 0.1224 3.0590
0.7 0.3200 -8.2575 0.2958 -6.5077 0.2388 -3.2384 0.0530 2.8223
0.8 0.4247 -27.5615 0.4362 -26.2226 0.4486 -23.3955 0.4616 -18.2364
0.9 0.4245 -28.5456 0.4359 -27.2262 0.4482 -24.4092 0.4608 -19.2431
0.6 0.7 0.4881 -54.5545 0.5134 -53.5274 0.5459 -50.7291 0.5907 -45.0722
0.7 0.4909 -55.9703 0.5172 -54.9715 0.5513 -52.1809 0.5996 -46.4873
0.8 0.5290 -94.4502 0.5613 -93.9382 0.6019 -91.2259 0.6558 -84.8551
0.9 0.5335 -96.5893 0.5670 -96.1117 0.6096 -93.3900 0.6667 -86.9189

0.20 0.6 0.5 0.3505 -6.5684 0.3364 -4.9302 0.3013 -1.8989 0.1925 3.4578
0.7 0.3455 -7.2289 0.3281 -5.5802 0.2844 -2.5026 0.1365 3.0665
0.8 0.4421 -26.0104 0.4567 -24.6832 0.4740 -21.8845 0.4962 -16.7796
0.9 0.4426 -26.9703 0.4574 -25.6618 0.4751 -22.8725 0.4985 -17.7596
0.6 0.7 0.5008 -52.4141 0.5278 -51.3521 0.5626 -48.5235 0.6113 -42.8412
0.7 0.5040 -53.7821 0.5321 -52.7434 0.5688 -49.9151 0.6213 -44.1836
0.8 0.5383 -91.5312 0.5715 -90.9438 0.6133 -88.1601 0.6689 -81.7288
0.9 0.5430 -93.5916 0.5774 -93.0310 0.6213 -90.2280 0.6803 -83.6828

Note: ∗ indicate µ
(0)
2 do not exist.
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TABLE 5
Percent relative loss in precision L1 of the estimator T1 with respect to ȳ∗

n

ρyx 0.5 0.6 0.7 0.8

W ρyz2 ρz1z2 µ
(0)
1 L1 µ

(0)
1 L1 µ

(0)
1 L1 µ

(0)
1 L1

0.05 0.6 0.5 0.2903 -21.0924 0.2613 -23.8954 0.1985 -26.6432 0.0191 -28.4628
0.7 0.2823 -21.8119 0.2480 -24.5949 0.1714 -27.2262 * -
0.8 0.4039 -43.6945 0.4117 -48.0455 0.4183 -52.9207 0.4205 -58.4401
0.9 0.4029 -44.8170 0.4103 -49.2362 0.4159 -54.1891 0.4157 -59.7954
0.6 0.7 0.4781 -73.5038 0.5022 -79.5041 0.5327 -86.2874 0.5746 -94.0174
0.7 0.4806 -75.1178 0.5055 -81.2219 0.5376 -88.1186 0.5826 -95.9615
0.8 0.5277 -116.3935 0.5598 -124.7436 0.6003 -134.1858 0.6540 -144.8718
0.9 0.5321 -118.7816 0.5655 -127.2714 0.6079 -136.8471 0.6648 -147.6201

0.10 0.6 0.5 0.3281 -22.6205 0.3084 -25.6370 0.2630 -28.7685 0.1278 -31.5290
0.7 0.3220 -23.3721 0.2983 -26.3954 0.2423 -29.4805 0.0594 -31.8686
0.8 0.4358 -44.3492 0.4492 -48.7261 0.4648 -53.6367 0.4837 -59.2119
0.9 0.4361 -45.4541 0.4496 -49.8993 0.4653 -54.8887 0.4848 -60.5565
0.6 0.7 0.5065 -72.7498 0.5341 -78.5976 0.5700 -85.1562 0.6203 -92.5210
0.7 0.5098 -74.2860 0.5386 -80.2221 0.5765 -86.8689 0.6309 -94.2988
0.8 0.5540 -112.9367 0.5887 -120.8735 0.6325 -129.7499 0.6910 -139.6062
0.9 0.5591 -115.1407 0.5951 -123.1852 0.6411 -132.1481 0.7032 -142.0149

0.15 0.6 0.5 0.3653 -23.9761 0.3549 -27.1519 0.3266 -30.5668 0.2354 -34.0195
0.7 0.3611 -24.7479 0.3478 -27.9492 0.3122 -31.3669 0.1877 -34.6676
0.8 0.4671 -44.8684 0.4861 -49.2306 0.5105 -54.1098 0.5459 -59.6130
0.9 0.4686 -45.9480 0.4882 -50.3743 0.5139 -55.3249 0.5528 -60.9029
0.6 0.7 0.5342 -71.9541 0.5654 -77.6226 0.6065 -83.9149 0.6651 -90.8427
0.7 0.5383 -73.4111 0.5710 -79.1507 0.6146 -85.5028 0.6783 -92.4405
0.8 0.5796 -109.7100 0.6167 -117.2334 0.6639 -125.5404 0.7270 -134.5553
0.9 0.5852 -111.7435 0.6238 -119.3442 0.6733 -127.6923 0.7405 -136.6433

0.20 0.6 0.5 0.4020 -25.1713 0.4006 -28.4559 0.3895 -32.0594 0.3422 -35.9655
0.7 0.3995 -25.9526 0.3966 -29.2741 0.3812 -32.9109 0.3146 -36.8037
0.8 0.4979 -45.2639 0.5223 -49.5746 0.5554 -54.3618 0.6073 -59.6752
0.9 0.5005 -46.3119 0.5261 -50.6787 0.5616 -55.5222 0.6198 -60.8724
0.6 0.7 0.5613 -71.1212 0.5961 -76.5871 0.6422 -82.5764 0.7091 -89.0038
0.7 0.5661 -72.4983 0.6027 -78.0168 0.6518 -84.0350 0.7247 -90.4112
0.8 0.6045 -106.6797 0.6440 -113.7903 0.6943 -121.5254 0.7621 -129.6898
0.9 0.6106 -108.5548 0.6518 -115.7135 0.7047 -123.4460 0.7768 -131.4742

Note: ∗ indicate µ
(0)
1 do not exist.
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TABLE 6
Percent relative loss in precision L2 of the estimator T2 with respect to ȳ∗

n

ρyx 0.5 0.6 0.7 0.8

W ρyz2 ρz1z2 µ
(0)
2 L2 µ

(0)
2 L2 µ

(0)
2 L2 µ

(0)
2 L2

0.05 0.6 0.5 0.2770 -21.6653 0.2447 -24.4060 0.1758 -27.0194 * -
0.7 0.2682 -22.3771 0.2302 -25.0861 0.1464 -27.5517 * -
0.8 0.3893 -45.1168 0.3946 -49.4951 0.3971 -54.3905 0.3917 -59.9071
0.9 0.3878 -46.2583 0.3923 -50.7040 0.3934 -55.6742 0.3842 -61.2675
0.6 0.7 0.4623 -76.5226 0.4842 -82.6856 0.5118 -89.6764 0.5491 -97.6921
0.7 0.4643 -78.2036 0.4870 -84.4796 0.5158 -91.5978 0.5555 -99.7509
0.8 0.5101 -122.6949 0.5406 -131.4675 0.5788 -141.4501 0.6293 -152.8680
0.9 0.5142 -125.2562 0.5458 -134.1928 0.5857 -144.3432 0.6392 -155.9014

0.10 0.6 0.5 0.3017 -23.8512 0.2755 -26.7781 0.2180 -29.7058 0.0518 -31.8743
0.7 0.2943 -24.5954 0.2632 -27.5110 0.1928 -30.3438 * -
0.8 0.4071 -47.2540 0.4155 -51.7152 0.4230 -56.7156 0.4268 -62.3808
0.9 0.4063 -48.4024 0.4142 -52.9336 0.4209 -58.0141 0.4227 -63.7701
0.6 0.7 0.4753 -78.7510 0.4989 -84.9443 0.5289 -91.9503 0.5700 -99.9439
0.7 0.4777 -80.4211 0.5022 -86.7227 0.5337 -93.8478 0.5777 -101.9621
0.8 0.5196 -125.1849 0.5510 -133.9591 0.5904 -143.9106 0.6426 -155.2299
0.9 0.5239 -127.7180 0.5565 -136.6470 0.5977 -146.7516 0.6530 -158.1852

0.15 0.6 0.5 0.3262 -25.9390 0.3061 -29.0293 0.2598 -32.2303 0.1224 -35.0249
0.7 0.3200 -26.7100 0.2958 -29.8062 0.2388 -32.9563 0.0530 -35.3547
0.8 0.4247 -49.3044 0.4362 -53.8338 0.4486 -58.9158 0.4616 -64.6864
0.9 0.4245 -50.4563 0.4359 -55.0569 0.4482 -60.2213 0.4608 -66.0886
0.6 0.7 0.4881 -80.8984 0.5134 -87.1115 0.5459 -94.1176 0.5907 -102.0648
0.7 0.4909 -82.5555 0.5172 -88.8715 0.5513 -95.9873 0.5996 -104.0359
0.8 0.5290 -127.5943 0.5613 -136.3621 0.6019 -146.2716 0.6558 -157.4767
0.9 0.5335 -130.0981 0.5670 -139.0112 0.6096 -149.0587 0.6667 -160.3513

0.20 0.6 0.5 0.3505 -27.9313 0.3364 -31.1628 0.3013 -34.5962 0.1925 -37.9175
0.7 0.3455 -28.7242 0.3281 -31.9753 0.2844 -35.3936 0.1365 -38.4764
0.8 0.4421 -51.2707 0.4567 -55.8540 0.4740 -60.9947 0.4962 -66.8280
0.9 0.4426 -52.4230 0.4574 -57.0772 0.4751 -62.2997 0.4985 -68.2279
0.6 0.7 0.5008 -82.9673 0.5278 -89.1901 0.5626 -96.1817 0.6113 -104.0589
0.7 0.5040 -84.6095 0.5321 -90.9292 0.5688 -98.0198 0.6213 -105.9766
0.8 0.5383 -129.9259 0.5715 -138.6797 0.6133 -148.5368 0.6689 -159.6125
0.9 0.5430 -132.3994 0.5774 -141.2887 0.6213 -151.2683 0.6803 -162.4041

Note: ∗ indicate µ
(0)
2 do not exist.
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increasing values of ρyx and we also get increasing values of µ
(0)
1 for the value 0.7

of ρz1z2 . This implies that if one uses the information on low correlated study
variables there is an appreciable gain in the precision of estimates.

(c) For the fixed values of W , ρyx and ρyz2 , the values of µ
(0)
1 increase and L12

decrease with the increasing values of ρz1z2 . These behaviors are on the expected
lines as the efficiencies of the proposed estimators will increase when one utilizes
the information on highly correlated auxiliary variable over both occasions.

(d) For the fixed values of ρz1z2 , ρyxand ρyz2 , the values of µ
(0)
1 and L12 increase

with the increasing values of W . This behavior is similar to that discussed in 2 (d).

(4) From Table 4 it is seen that:
(a) For the fixed values of W , ρz1z2 and ρyx, no pattern is seen for the value 0.5 of

ρz1z2 but for the value 0.7 of ρz1z2 we get increasing values of µ
(0)
2 and decreasing

values of L22 with the increasing values of ρyz2 .
(b) For the fixed values of W , ρz1z2 and ρyz2 , the values of L22 increase with the in-

creasing values of ρyx and we get increasing values of µ
(0)
2 for the value 0.7 of ρz1z2 .

(c) For the fixed values of W , ρyx and ρyz2 , the values of µ
(0)
2 increase and L22

decrease with the increasing values of ρz1z2 . These results indicate that precision
of estimates will increase if auxiliary variables over both occasions are highly cor-
related.
(d) For the fixed values of ρz1z2 , ρyx and ρyz2 , the values of µ

(0)
2 and L22 increase

with the increasing values of W . This behavior shows that the larger the non-
response rate, larger the fresh sample is required at the current occasion.

(5) From Table 5 it is visible that:
(a) For the fixed values of W , ρz1z2 and ρyx, we did not get any pattern for the

value 0.5 of ρz1z2 but for the value 0.7 of ρz1z2 we get increasing values of µ
(0)
1

and decreasing values of L1 with the increasing values of ρyz2 . Thus, more the
correlation between study variables and auxiliary variable more gain is observed.
(b) For the fixed values of W , ρz1z2 and ρyz2 , the values of L1 decrease with the

increasing values of ρyxand we get increasing values of µ
(0)
1 for the value 0.7 of

ρz1z2 .

(c) For the fixed values of W , ρyx and ρyz2 , the values of µ
(0)
1 increase and L1

decrease with the increasing values of ρz1z2 .

(d) For the fixed values of ρz1z2 , ρyxand ρyz2 , the values of µ
(0)
1 increase and L1

decrease with the increasing values of W .

(6) From Table 6 it is observed that:
(a) For the fixed values of W , ρz1z2 and ρyx, no pattern is seen for the value 0.5 of

ρz1z2 but for the value 0.7 of ρz1z2 we get increasing values of µ
(0)
2 and decreasing

values of L2 with the increasing values of ρyz2 .
(b) For the fixed values of W , ρz1z2 and ρyz2 , the values of L2 decrease with the

increasing values of ρyx and we also get increasing values of µ
(0)
2 for the value 0.7

of ρz1z2 .
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(c) For the fixed values of W , ρyx and ρyz2 , the values of µ
(0)
2 increase and L2

decrease with the increasing values of ρz1z2 .

(d) For the fixed values of ρz1z2 , ρyx and ρyz2 , the values of µ
(0)
2 increase and L2

decrease with the increasing values of W .

9. Conclusions and recommendations

From above tables, it may be concluded that for all cases the percent relative
losses in precisions are observed wherever the optimum values of µ exist when non-
response occurs at the current occasion. From the Tables 1- 2, it is obvious that loss
is observed due to the presence of non-response, but the negative impact of non-
response is not appreciable due to the utilization of the sub-sampling technique of
non respondents. From the Tables 3-6, when the proposed estimators compared
with the natural successive sampling estimator and Hansen and Hurwitz (1946)
estimator, negative losses (gain) are observed, because of the presence of dynamic
auxiliary information in the form of exponential type estimators. Further, it is also
being noticed that for all parametric combinations, the estimator T2 is performing
much better than the estimator T1. Hence, if one has to make a choice between T1

and T2 then T2 is always preferable over T1. Finally, looking on the nice behaviors
of the proposed estimators one may recommend them to the survey statisticians
and practitioners for their practical applications.
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SUMMARY

Some Efficient Estimation Procedures under Non-Response in Two-Occasion Successive
Sampling

This paper deals with the estimation of current population mean under non-response
in two-occasion successive sampling. Information on a dynamic auxiliary variable has
been used and efficient estimation procedures have been suggested which are capable in
minimizing the negative impact of non-response when it occurred on current occasion
in two-occasion successive sampling. Properties of the proposed estimation procedures
have been studied and suitable recommendations are made.

Keywords: Non-response; successive sampling; dynamic auxiliary variable; bias; mean
square error


