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SOME ELEMENTARY EXAMPLES

OF NON-LIFTABLE VARIETIES
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(Communicated by Lev Borisov)

Abstract. We present some simple examples of smooth projective varieties in
positive characteristic, arising from linear algebra, which do not admit a lifting
neither to characteristic zero, nor to the ring of Witt vectors of length 2. Our
first construction is the blow-up of the graph of the Frobenius morphism of
a homogeneous space. The second example is a blow-up of P3 in a ‘purely
characteristic-p’ configuration of points and lines.

1. Introduction

Various theorems in modern algebraic geometry are proved using characteristic
p methods along the following lines. Given a complex algebraic variety X, one
reduces the variety mod p, exploits the Frobenius morphism on the reduction Xp,
and deduces statements about the original X. A remarkable application of this
approach is the Mori’s bend and break technique [Mor79] used for the proof of the
conjecture of Hartshorne. Similarly, characteristic zero (particularly complex ana-
lytic) methods are employed to study varieties in positive characteristic. The main
technical obstacle is that, while every characteristic zero variety can be reduced
mod p, not every variety in positive characteristic arises as the reduction mod p of
a variety in characteristic zero. The first example of such a variety was given by
Serre [Ser61].

It turns our that for many purposes, one does not need to lift a given variety
all the way to characteristic zero, and it suffices to have a lifting modulo p2. For
example, Deligne and Illusie [DI87] showed that for a smooth variety X over a
perfect field k of characteristic p > dimX admitting a lifting to W2(k) (the ring
of Witt vectors of length 2), the Hodge–de Rham spectral sequence degenerates,
and the Kodaira vanishing theorem holds. More recently, Langer [Lan16] showed
that the logarithmic Bogomolov–Miyaoka–Yau inequality holds for surfaces liftable
to W2(k) (as long as p > 2). Counterexamples to Kodaira vanishing in positive
characteristic given by Raynaud [Ray78] give the first example of varieties which
do not lift to W2(k). Subsequently, a rational example was given by Lauritzen and
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4718 PIOTR ACHINGER AND MACIEJ ZDANOWICZ

Rao [LR97]. In the positive direction, it is known that every Frobenius split variety
lifts to W2(k) [Lan15, Proposition 8.4].

In this paper, we construct new examples of smooth projective varieties that do
not admit lifts neither to characteristic zero, nor to W2(k) (some of them do not
even lift to any ring A with pA �= 0). However it turns out that they avoid standard
characteristic p pathologies, in particular they satisfy the following

Good properties:

(1) they are smooth, projective, rational, and simply connected,
(2) their classes in the Grothendieck ring of varieties are polynomials in the

Lefschetz motive L = [A1] with non-negative integer coefficients,
(3) their �-adic integral cohomology rings are generated by algebraic cycles,
(4) their integral crystalline cohomology groups are torsion-free F -crystals,
(5) their Hodge–de Rham and conjugate spectral sequences degenerate, they

are ordinary in the sense of Bloch–Kato, and of Hodge–Witt type (cf. §2.5
for the relevant definitions).

Since our constructions are very simple, we try to aim our exposition at non-experts,
and go for elementary arguments whenever possible.

The first construction is given by the blow-up of the two-fold self product of
a suitable projective homogeneous space �= Pn along the graph of its Frobenius
morphism. The easiest examples of such homogeneous spaces being the three-
dimensional complete flag variety SL3 /B (isomorphic to the incidence variety
{x0y0 + x1y1 + x2y2 = 0} ⊂ P2 ×P2) and the four-dimensional smooth quadric
hypersurface Q = {x2

0 + x1x2 + x3x4 = 0} ⊆ P5 (isomorphic to the Grassmannian
G(2, 4) via the Plücker embedding), the smallest non-liftable examples given by the
construction are of dimension six and eight, with Picard numbers five and three,
respectively.

Theorem (cf. Theorem 3.2). The blow-up BlΓF
(Y ×Y ) of a suitably chosen homo-

geneous space Y along the graph of its Frobenius morphism satisfies the properties
(1)–(5), but does not admit a lifting neither to W2(k), nor to characteristic zero.

The second construction is the following. Let X be the variety obtained from P3

by (1) blowing up all Fp-rational points, and (2) blowing up the strict transforms
of all lines connecting Fp-rational points.

Theorem (Theorem 4.1). The variety described above satisfies the properties (1)–
(5), but does not admit a lift to any ring A with pA �= 0.

Both in Theorem 3.2 and Theorem 4.1, the proofs of non-liftability use the key
observation (cf. [LS14], and Proposition 2.3 below) that if the blow-up of a smooth
varietyX along a smooth subvariety Z lifts, then bothX and Z lift. In Theorem 3.2,
if X was liftable, the homogeneous space Y would be liftable together with Frobe-
nius, which is known to be impossible by the work of Paranjape–Srivinas [PS89]
(for lifts to characteristic zero) and Buch–Thomsen–Lauritzen–Mehta [BTLM97]
(for lifts to W2(k)). In Theorem 4.1, we show that the liftability of X would imply
the liftability of the arrangement of all Fp-rational points in P2 preserving the in-
cidence relations; thus non-liftability is established by means of elementary linear
algebra. The properties (1)–(5) in both theorems are established quite easily using
standard formulas expressing the cohomology of a blow-up which we recall in §2.4.
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1.1. Notation. Throughout k denotes a perfect field of characteristic p > 0. For

any k-scheme X by X(1) we denote the Frobenius pullback X(1) def
= X ×Spec(k),F

Spec(k) and by FX/k : X → X(1) the relative Frobenius of X over k. We say that

a scheme X/k admits a W2(k)-lifting if there exists a flat W2(k)-scheme X̃ such

that X̃ ×Spec(W2(k)) Spec(k) � X. Finally, we say that a scheme X lifts to W2(k)

compatibly with Frobenius if there exists a W2(k)-lifting X̃ of X together with

a morphism F̃X/k : X̃ → X̃(1) def
= X̃ ×Spec(W2(k)),σ Spec(W2(k)) restricting to the

relative Frobenius morphism FX/k : X → X(1). For schemes defined over the field
Fp the absolute Frobenius morphism is in fact Fp-linear and therefore the relative

Frobenius morphism can be interpreted as an endomorphism FX : X → X(1) � X.
By LX/k we denote the cotangent complex of a scheme X over k. Moreover, by

DefX we mean the deformation functor of X, that is, a covariant functor from the
category ArtW (k)(k) of Artinian local W (k)-algebras with residue field k to the
category of sets defined by the formula:

ArtW (k)(k) � (A,mA) �→ DefX(A)
def
=

{
isomorphism classes of flat

deformations of X over Spec(A)

}
.

Similarly, if Z = {Zi}i∈I is a family of closed subschemes ofX indexed by a preorder
I (i.e., a set with a reflexive and transitive binary relation), such that Zi is a closed
subscheme of Zj whenever i ≤ j (in other words, I is a small category whose
morphism sets have at most one element, and Z is a functor from I to the category
of closed subschemes of X), we denote by DefX,Z the functor of flat deformations
of X together with compatible embedded deformations of the Zi, preserving the
inclusion relations given by the relation ≤. If f : X → Y is a map of k-schemes,
we denote by Deff the functor of flat deformations of X, and Y along with a
deformation of f .

2. Technical background

Here we review the necessary technical results regarding deformation theory of
products (§2.1), descending deformations along morphisms (§2.2), cohomology of
blowing up (§2.4), and Hodge–de Rham degeneration, ordinarity, and the Hodge–
Witt property of blow-ups (§2.5).

2.1. Deformations of products. Our goal is to show that given two k-schemes
X and Y such that H1(X,OX) = H1(Y,OY ) = 0, then every deformation of X×Y
comes from a pair of deformations of X and Y (Proposition 2.2). We begin with
a few remarks concerning deformation obstruction classes. First, observe that by
[Ill71] we know that for any k-scheme Z the obstruction class to lifting an element(

f̃ : Z̃ → Spec(A)
)
∈ DefZ(A)

to a thickening η : 0 −→ I −→ (B,mB) −→ (A,mA) −→ 0, satisfying mBI = 0,
is given by a class in Ext2(LZ/k,OZ) ⊗k I defined as the Yoneda composition of

Kodaira–Spencer class K
˜Z/A/Z

∈ Ext1(L
˜Z/A, Lf̃

∗LA/Z[1]) and the pullback f̃∗η of
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4720 PIOTR ACHINGER AND MACIEJ ZDANOWICZ

the extension class η ∈ Ext1(LA/Z, I). Moreover, by a simple diagram chase based
on the properties of the cotangent complex we obtain:

Lemma 2.1 (Additivity of Kodaira–Spencer). Let f : X → Z and g : Y → Z be
morphisms of S-schemes. Let pX : X ×Z Y → X and pY : X ×Z Y → Y denote
the projections, h : X ×Z Y → Z the composition h = f ◦ pX = g ◦ pY . Then,
Kodaira–Spencer class:

KX×ZY /Z/S ∈ Ext1(LX×ZY/Z , Lh
∗LZ/S)

equals the direct sum of pullbacks of Kodaira–Spencer classes:

KX/Z/S ∈ Ext1(LX/Z , Lf
∗LZ/S) and KY/Z/S ∈ Ext1(LY/Z , Lg

∗LZ/S).

Equipped with the above description, we are ready to prove:

Proposition 2.2. The morphism of deformation functors

prodX,Y : DefX × DefY → DefX×Y , (X̃, Ỹ ) �→ X̃ ×Spec(A) Ỹ

is smooth (in particular levelwise surjective) if H1(X,OX) = H1(Y,OY ) = 0.

Proof. By the above general considerations and the additivity of Kodaira–Spencer
class we see that the morphisms on tangent and obstruction space

TprodX,Y
: Ext1(LX/k,OX)⊕ Ext1(LY/k,OY )

→ Ext1(Lp∗XLX/k ⊕ Lp∗Y LY/k,OX×Y ),

ObprodX,Y
: Ext2(LX/k,OX)⊕ Ext2(LY/k,OY )

→ Ext2(Lp∗XLX/k ⊕ Lp∗Y LY/k,OX×Y ),

are given as direct sums of morphisms:

Ext•(LX/k,OX) → Ext•(LX/k, RpX∗OX×Y ) � Ext•(LpX
∗LX/k,OX×Y );

Ext•(LY/k,OY ) → Ext•(LY/k, RpY ∗OX×Y ) � Ext•(Lp∗Y LY/k,OX×Y ),

which arise from the natural distinguished triangles

OX −→ RpX∗OX×Y −→ CpX
and OY −→ RpY ∗OX×Y −→ CpY

,

induced by the structure morphisms p#X and p#Y of the projections. Here CpX
and

CpY
denote mapping cones in the derived category.

By the assumptions and the spectral sequence:

E2
ij = Exti(LX/k,Hj(CpX

)) ⇒ Exti+j(LX/k, CpX
)

we see that Ext1(LX/k, CpX
) = H1(Y,OY ) ⊗k Ext0(LX/k,OX) = 0. Analogously

we obtain Ext1(LY/k, CpY
) = 0. Therefore TprodX,Y

is surjective and ObprodX,Y
is

injective, which by [FM98, Lemma 6.1] implies that prodX,Y is a smooth morphism
of deformation functors. �
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2.2. Descending deformations along morphisms. One of our main tools is the
following proposition, which one can prove along the same lines as [LS14, Proposi-
tion 2.2]. See also [CvS09] and [Wah79], where this idea appeared previously.

Proposition 2.3. (1) Let f : Y → X be a map satisfying Rf∗OY = OX .
Then there exists a natural transformation DefY → DefX . More generally,
if W = {Wi}i∈I (resp. Z = {Zi}i∈I) is a family of closed subschemes of Y
(resp. X) parametrized by a preorder I (cf. §1.1), and if Rf∗OWi

= OZi

(in particular, Zi = f(Wi)), then there exists a natural transformation
DefY,W → DefX,Z .

(2) Let X be a smooth scheme, Z ⊆ X a smooth closed subscheme of codimen-
sion ≥ 2, f : Y = BlZ X → X the blow-up of X along Z, E = {Ej}j∈J the
set of connected components of f−1(Z). Then the forgetful transformation
DefY,E → DefY is an isomorphism (here the index set J is given the trivial
order). More generally, if W = {Wi}i∈I is a family of closed subschemes
of Y , then the forgetful transformation DefY,W�E → DefY,W is an isomor-
phism. Here by W �E we mean the family {Wi}i∈I �{Ej}j∈J parametrized
by I � J with no non-trivial relations between I and J .

As a simple corollary we obtain:

Proposition 2.4. Let f : X → Y be a morphism of schemes over a field k satisfying
H1(X,OX) = H1(Y,OY ) = 0. If BlΓf

(X × Y ) lifts to A ∈ ArtW (k)(k), then there
exist A-liftings of X and Y together with a lifting of f .

Proof. Assume BlΓf
(X×Y ) lifts toA. By Proposition 2.3 there exists a deformation

X̃ × Y of the product X × Y together with an embedded deformation Γ̃f of Γf .

By Proposition 2.2 the A-scheme X̃ × Y is isomorphic to X̃ ×Spec(A) Ỹ for some

deformations of X and Y . The restriction of the projection p̃X : X̃ ×Spec(A) Ỹ →
X̃ to Γ̃f is an isomorphism (as its restricton to Spec(k) is an isomorphism) and

therefore the tuple (X̃, Ỹ , p̃Y ◦ (p̃X |
˜Γf
)−1) gives the desired pair of liftings of X and

Y together with a lifting of f . �
2.3. Regular sequences and flatness. In the proof of Theorem 4.1, we need
the following simple claim: if R is a three-dimensional regular local k-algebra with
residue field k, L and H a smooth curve and a smooth hypersurface in X = SpecR
intersecting transversally at the closed point P , then any embedded deformation of
(X,L,H) induces a deformation of P inside L and H. This claim is implied by the
following general results regarding deformations and regular sequences.

Lemma 2.5. Suppose (A,mA) is an element of ArtW (k)(k) and R is a local k-
algebra. Moreover let S be an A-flat local ring such that S⊗A k = R. Then for any
element f ∈ S such that f ∈ R (we denote by f the image of f under the natural
map S → R) is a non-zero divisor the following assertions hold true:

(1) the element f is a non-zero divisor in S,
(2) the quotient ring S/(f) is A-flat.

Proof. The proof of the first claim follows by induction with respect to the length
of A. For the case len(A) = 1 we know that A = k and therefore the claim is
clear. For len(A) > 1, we observe that (A,mA) is an extension of (A′,mA′) ∈
ArtW (k)(k) of len(A

′) = len(A)−1 by a principal ideal I = (s) satisfying mAI = 0.
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Now, take an element g ∈ S such that gf = 0. By the induction hypothesis applied

for A′ the element [f ] ∈ S′ def
= S ⊗A A′ (we denote by [g] the image of g under the

natural map S → S′) is a non-zero divisor in S′ which implies that [g] = 0 and
therefore there exists an element g′ ∈ S such that g = sg′. Consequently from the
relation sg′f = 0 we infer that g′f ∈ Ann(s) which by the A-flatness of S means
that g′f ∈ mAS, that is, g′ · f = 0. By the induction hypothesis applied for A = k
we see that g′ ∈ mAS which yields that g ∈ mAI · S = (0). This implies that f is a
non-zero divisor and thus proves the first part of the lemma.

The proof of the second claim is a standard application of local criterion of
flatness applied to an A-flat resolution:

0 �� S
f · �� S �� S/(f) �� �� 0

implied by the first claim. �
Corollary 2.6. Let the rings (A,mA), R and S be as above. Moreover, let f1, . . . , fk
∈ S for k ≥ 1 be a sequence of elements such that their reductions f1, . . . , fk ∈ R
form a regular sequence in R. Then f1, . . . , fk is a regular sequence in S and
S/(f1, . . . , fk) is an A-flat lifting of R/(f1, . . . , fk).

Proof. The proof follows from Lemma 2.5 by induction with respect to the param-
eter k. �
2.4. Blow-up formulas. In this section, we review formulas for the cohomology of
the blow-up of a smooth proper scheme X along a smooth subscheme Z, and deduce
statements regarding Hodge–de Rham degeneration, ordinarity, and the Hodge–
Witt property. It is best to deduce the blow-up formulas for different cohomology
theories from a single motivic statement.

Proposition 2.7 (cf. [Voe00, 3.5.3]). Suppose that X is a smooth proper scheme
over a field k, Z ⊆ X a smooth closed subscheme of codimension c. Then there is
a decomposition of Chow motives

M(BlZ X) = M(X)⊕
c−1⊕
i=1

M(Z)(i)[2i].

In particular, [BlZ X] = [X] + (L+L2 + . . .+Lc−1)[Z] in the Grothendieck ring of
varieties, where L = [A1

k].

Corollary 2.8. Suppose that X is a smooth proper scheme over a field k, Z ⊆ X
a smooth closed subscheme of codimension c. Let Hn denote one of the following
families of functors of smooth projective varieties X:

(1) Hn(X ⊗ k̄,Z�) for some � invertible in k, treated as a Gal(k̄/k)-module,
(2) (if k is perfect of characteristic p > 0) Hn(X/W (k)), the integral crystalline co-

homology, a W (k)-module with a σ-linear endomorphism induced by the Frobe-
nius,

(3) Hn
dR(X) = Hn(X,Ω•

X/k), the algebraic de Rham cohomology, endowed with the

Hodge filtration,
(4) Hn

Hdg(X) =
⊕

p+q=n H
q(X,Ωp

X/k), Hodge cohomology, a graded k-vector space,

(5) Hn
HW (X) =

⊕
p+q=n H

q(X,WΩp
X), Hodge–Witt cohomology, a graded W (k)-

module endowed with σ±1-linear endmorphisms F and V satisfying FV = p =
V F ,
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(6) (if n is even) An/2(X), the n
2 -th Chow group of X (treated as an abelian group).

Moreover, let −(n) denote the Tate twist, i.e., the tensor product with H2(P1)⊗n

in the appropriate tensor category. Then there is a natural isomorphism of objects
in the appropriate category as listed above

Hn(BlZ(X)) = Hn(X)⊕
c−1⊕
i=1

Hn−2i(Z)(i).

Proof. This follows from Proposition 2.7 and the fact that the cohomology theories
H above all admit cycle class maps and actions by correspondences. For �-adic
and crystalline cohomology this is well known, and for Hodge and Hodge–Witt
cohomology it follows from the work of Chatzistamatiou and Rülling [CR11]. �

2.5. Hodge–de Rham degeneration, ordinarity, and the Hodge–Witt prop-
erty. LetX be a smooth proper scheme over k. The first hypercohomology spectral
sequence of the de Rham complex Ω•

X/k,

Eij
1 = Hj(X,Ωi

X/k) ⇒ Hi+j
dR (X/k) := Hi+j(X,Ω•

X/k),

is called the Hodge–de Rham spectral sequence of X. We say that it degenerates if
it degenerates on the first page, i.e., there are no non-zero differentials. As X is
proper, the cohomology groups are finite dimensional, and hence the degeneration
is equivalent to the condition that

(1) dimHn
dR(X/k) =

∑
p+q=n

dimHq(X,Ωp
X/k) for all n ≥ 0.

The Hodge–de Rham spectral sequence of X degenerates if k is of characteristic
zero, or if dimX ≤ p = char k and X lifts to W2(k) [DI87, Corollaire 2.4].

The schemeX is called ordinary (in the sense of Bloch and Kato) if the Frobenius
F : Hq(X,WΩp

X) → Hq(X,WΩp
X) on Hodge–Witt cohomology is bijective for all

p and q (cf. [BK86, Proposition 7.3]) for several equivalent criteria). It is called
Hodge–Witt if the Hodge–Witt groups Hq(X,WΩp

X) are finitely generated W (k)-
modules. It follows from [IR83, IV 4] that X is Hodge–Witt if it is ordinary, and
that X × Y is ordinary if X and Y are.

Corollary 2.9. Suppose that X is a smooth proper scheme over a field k, Z ⊆ X
a smooth closed subscheme of codimension > 1. Then

(1) The Hodge–de Rham spectral sequences of Z and X degenerate if and only
if the Hodge–de Rham sequence of BlZ X degenerates.

(2) The scheme BlZ(X) is ordinary (resp. Hodge–Witt) if and only if both X
and Y are ordinary (resp. Hodge–Witt).

Proof. The first assertion follows from Corollary 2.8 forHn
dR and Hn

Hdg and (1). For
the latter, use Corollary 2.8 for Hn

HW and the characterizations given above. �

3. The first construction

We fix a semisimple algebraic group G over k = Fp, a reduced parabolic subgroup
P ⊆ G, and set Y = G/P . We assume that either G is of type A and Y is not a
projective space, or that P is contained in a maximal parabolic subgroup as listed
in [BTLM97, 4.3.1–4.3.7] (these are the cases in which we know that Y does not
lift to W2(k) = Z /p2 Z together with Frobenius). For example, Y could be the
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4724 PIOTR ACHINGER AND MACIEJ ZDANOWICZ

Grassmannian Gr(n, k) (1 < k < n − 1) or the full flag variety SLn/B (n ≥ 3,
B = upper-triangular matrices), or a smooth quadric hypersurface in Pn, n ≥ 4.
Presumably all homogeneous spaces which are not toric (i.e., not a product of
projective spaces) do not admit a lift to W2(k) together with Frobenius.

Proposition 3.1. Let Y be a homogeneous space as described above. Then, Y
does not admit a W2(k)–lifting compatible with Frobenius. Moreover, it satisfies
H1(Y, TY ) = 0 and Hi(Y,OY ) = 0 for i > 0.

Proof. For the part of the proof concerning Frobenius liftability see [BTLM97, The-
orem 6]. Vanishing of H1(Y, TY ) follows from [Dem77, Théoreme 2]. Finally,
Hi(Y,OY ) = 0 is the consequence of Kempf vanishing (i.e., a characteristic p ana-
logue of the Borel–Weil–Bott theorem) as 0 is a dominant weight for the parabolic
subgroup of G corresponding to Y . �

Theorem 3.2. Let ΓF ⊆ Y ×Y be the graph of the Frobenius morphism FY : Y →
Y . Let X = BlΓF

(Y ×Y ) be the blow-up of Y ×Y along ΓF , and X ′ = BlΔY
(Y ×Y )

the blow-up of Y ×Y along the diagonal. Then X and X ′ share the properties (1)–
(5) of §1 and moreover:

(a) they are ‘étale homeomorphic’, i.e., their étale sites are equivalent;
(b) their �-adic integral cohomology rings are isomorphic as Galois representations;
(c) their integral crystalline cohomology groups are isomorphic torsion-free F -

crystals.

However, X ′ admits a projective lift to W (k), while X lifts neither to characteristic
zero (even formally), nor to W2(k).

Proof. The property (1) follows from Bruhat decomposition and the birational in-
variance of the étale fundamental group of smooth varieties. Properties (2)–(5)
follow from the results of §§2.4–2.5. Property (a) follows from the existence of the
following cartesian diagram:

X
u ��

f

��

X ′

f ′

��
Y × Y

id×FY

�� Y × Y,

where f and f ′ are the respective blow-up maps. Indeed, the Frobenius map FX′ :
X ′ → X ′ and the composition (FY × id) ◦ f ′ : X ′ → Y ×Y yield a map v : X ′ → X
making the diagram

X ′

FX′

��
v

��

f ′

��

X

FX

��
u

��

f

��

X ′
v

��

f ′

��

X

f

��
Y × Y

FY ×id��

FY ×Y

��Y × Y
id×FY ��

FY ×Y

��Y × Y
FY ×id�� Y × Y

commute. In particular, v ◦ u = FX and u ◦ v = FX′ . Since FX and FX′ are étale
homeomorphisms by [Gro77, XIV=XV §1 n◦ 2, Pr. 2(c)], u and v are étale homeo-
morphisms as well. Property (b) follows from (a). Finally, property (c) follows from
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the blow-up formula in §2.4. We remark that the crystalline cohomology algebras
H∗

cris(X/W ) and H∗
cris(X

′/W ) are not isomorphic, but become so after inverting p.
We now prove that X ′ lifts to W (k) projectively and that X does not lift either

to W2(k) or any ramified extension of W (k). For the first claim, we observe that Y
lifts to a projective scheme Y over W (k) and consequently X ′ = BlΔY (Y ×W (k) Y)
is a projective lifting of X ′.

For the second claim we suppose that there exists a W2(k)-lifting of X =

BlΓF
(Y ×Y ). By Proposition 2.4 there exist two liftings Ỹ and Ỹ ′ of Y together with

a lifting F̃Y : Ỹ → Ỹ ′ of FY : Y → Y . However, by the property H1(Y, TY ) = 0 the

homogeneous space Y is rigid, which implies that the lifting Ỹ ′ is isomorphic to Ỹ .
This implies that Y is W2(k)-liftable compatibly with Frobenius, which contradicts
Proposition 3.1.

Finally, we address characteristic zero non-liftability of X. Again, we reason by
contradiction. Any characteristic zero lifting of X induces a formal lifting of X
which by Proposition 2.4 and rigidity of Y gives a formal lifting of a non-trivial
endomorphism FY : Y → Y . By the Grothendieck algebraization theorem the
formal lifting of the finite morphism FY extends to an algebraic lifting which con-
tradicts the final result of [PS89] stating that homogeneous spaces in characteristic
zero not isomorphic to products of projective spaces admit no non-trivial endomor-
phisms. �

4. Second construction

We work over an algebraically closed field k of characteristic p. Let P = P3(Fp) ⊆
P3
k be the set of all Fp-rational points, and let Y = BlP P3

k, and let L be the set of

all lines in P3
k meeting P at least twice. Finally, let L̃ ⊆ Y be the set of the strict

transforms of all elements of L, and let X = BlL̃ Y .

Theorem 4.1. The three-fold X has the properties (1)–(5) from the introduction,
but does not admit a lift to any ring A with pA �= 0.

For the properties (1)–(5), we argue exactly as in the previous section. The proof
that X does not deform to any algebra A with pA �= 0 consists of the following
three propositions.

Proposition 4.2. Let A be an object of ArtW (k)(k), and suppose that X lifts to

A. Then P3
k lifts to A together with all Fp-rational points and lines, preserving the

incidence relations.

Proof. Let E be the set consisting of the preimages in Y of the elements of P , F the
set of preimages in X of the elements of L̃. Finally, let Q = (

⋃
L̃)∩ (

⋃
E) (treated

as a set of closed points). We have the following chain of natural transformations
between various deformation functors:

DefX DefX,F
��� �� DefY,L̃ DefY,L̃∪E

��� DefY,L̃∪E∪Q
���

�� DefP3
k,L∪P .

We remind the reader of our convention (cf. §1.1) that for a family of closed sub-
schemes Z = {Zi}i∈I of a scheme X indexed by a preorder I, DefX,Z is the functor
of deformations of X, together with embedded deformations of Zi, preserving the
inclusion relations Zi ⊆ Zi′ for i ≤ i′. Above, we give the families F, L̃, L̃ ∪ E the
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trivial order, and order L̃∪E∪Q and L∪P by inclusion. In particular, the functor
DefY,L̃∪E∪Q parametrizes deformations of Y together with the strict transforms

of the Fp-rational lines (i.e., L̃) and the preimages of the Fp-rational points (i.e.,

E) in P3
k such that their mutual intersections are flat over the base (i.e., induce

a compatible embedded deformation of Q). Similarly, DefP3
k,P∪L is the functor of

deformations of P3
k together with all the Fp-rational points and lines, preserving

the incidence relations. We discuss the maps in this chain below.
The maps DefX,F → DefX , DefY,L̃∪E → DefY,L̃, and DefY,L̃∪E∪Q → DefY,L̃∪E

are the forgetful transformations. The first two are isomorphisms by Proposi-
tion 2.3(2), and the last map is an isomorphism by Corollary 2.6 of Lemma 2.5

applied to the local equations of E and L̃.
The maps DefX,F → DefY,L̃ and DefY,L̃∪E∪Q → DefP3

k,L∪P are the maps of

Proposition 2.3(1). For the latter, strictly speaking, Proposition 2.3(1) yields a

map DefY,L̃∪E∪Q → DefP3
k,Z

, where Z = {Zs}s∈S is the ‘image’ of L̃ ∪ E ∪ Q,

defined as follows. Let S = L � P � K where K = {(x, �) ∈ P × L : x ∈ �},
given the ordering whose non-trivial relations are (�, x) ≤ � and (�, x) ≤ x for
x ∈ P, � ∈ L, (x, �) ∈ K. Then set Z� = � for � ∈ L, Zx = x for x ∈ P , and
Z(x,�) = x for (x, �) ∈ K. For an algebra A, an element of DefP3

k,Z
is thus given by

a deformation of P3
k together with deformations of the � ∈ L, x ∈ X, and Z(x,�) = x

for (x, �) ∈ K, preserving the relations Z̃(x,�) ⊆ x̃ and Z̃(x,�) ⊆ �̃ for (x, �) ∈ K
(here the tildes mean the corresponding deformations over A). But each x is a

point, so Z̃(x,�) ⊆ x̃ implies Z̃(x,�) = x̃, and the deformation of (P3
k, Z) simplifies to

a deformation of (P3
k, L ∪ P ) preserving the incidence relations. Thus DefP3

k,Z
can

be identified with DefP3
k,L∪P . �

Remark 4.3. Since we will have to deal with a little bit of elementary projective
geometry and matroid representability over arbitrary rings, let us fix some conven-
tions. Let A be a local ring with residue field k. A projective n-space P over A
is an A-scheme of the form PA(V ) for a finitely generated free A-module V , and
a d-dimensional linear subspace L of P is the image of a map PA(W ) → PA(V )
induced by a surjective map V → W . Zero-dimensional linear subspaces of P can
be identified with the set P(A). If x, y ∈ P(A) are points, given by the surjections
V → Lx and V → Ly respectively, whose images in P(k) are distinct, there ex-
ists a unique line (i.e., a one-dimensional linear subspace) �(x, y) containing both
x and y induced by the surjection V → Lx ⊕ Ly. We say that points x, y, z are
collinear (resp. coplanar) if they lie on one line (resp. two-dimensional subspace).
If x0, . . . , xn, z are points whose images in P(k) are in general position, there exists
a unique isomorphism φ : P → Pn

A such that φ(xi) = ei := (0 : . . . : 0 : 1 : 0 : . . . : 0)
(with 1 on the i-th coordinate) and φ(z) = f := (1 : . . . : 1). In particular, if
A ∈ ArtW (k)(k), and S is a configuration of linear subspaces of Pn

k ordered by
inclusion, containing the points e′i = (0 : . . . : 0 : 1 : 0 : . . . : 0) and f ′ = (1 : . . . 1),
we can identify the deformation functor DefPn

k ,S
(A) with the set of all families of

linear subspaces S̃ in Pn
A which yield the given S upon restriction to k, and such

that ẽ′i = ei and f̃ ′ = f .

Proposition 4.4. Suppose that P3
k lifts to an Artinian W (k)-algebra A together

with all Fp-rational points, preserving collinearity. Then P2
k lifts to A together with

all Fp-rational points, preserving collinearity as well.
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Proof. The key observation is that coplanarity is also preserved, i.e., that DefP3
k,L∪P

= DefP3
k,H∪L∪P , where H denotes the set of all Fp-rational hyperplanes in P3

k (with

H ∪ L ∪ P ordered by inclusion). Indeed, let A be an object of ArtW (k)(k), and
suppose we are given an element of DefP3

k,L∪P (A), which by simple rigidification

(e.g., the requirement that the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), and (1 : 1 : 1)

do not deform) can be identified with a configuration of points x̃ and lines �̃ in

P3
A, indexed by P and L respectively, such that x̃ ⊆ �̃ whenever x ∈ �. To get

an element of DefP3
k,H∪L∪P , it suffices to show that whenever x1, x2, x3, x4 ∈ P is

a quadruple of coplanar points, the points x̃1, x̃2, x̃3, x̃4 ∈ P3(A) are coplanar. If
two of the points xi coincide, there is nothing to show, and similarly if all four lie
on a line. Otherwise, let �12 = �(x1, x2) and �34 = �(x3, x4); then �̃12 = �(x̃1, x̃2)

and �̃34 = �(x̃3, x̃4). Since the xi are coplanar, the lines �12 and �34 intersect in a

unique point y ∈ P . Then ỹ ∈ �̃12∩ �̃34 = �(x̃1, x̃2)∩�(x̃3, x̃4). Thus the hyperplane
through ỹ, x̃1, x̃2 yields a lift of the hyperplane through x1, x2, x3, x4.

Since coplanarity is preserved, we can forget everything except for the plane
x0 = 0 (say) and get a desired lifting of P2

k. Equivalently, we could have used a
projection from one of the Fp-rational points. �

To finish, we prove that the matroid P2(Fp) does not admit a projective repre-
sentation over any ring A with pA �= 0. For A a field, this is well known (cf. e.g.
[Gor88, §2]), but we need to make sure that the proof works for arbitrary rings.

Proposition 4.5. Let A be a ring, ρ : P2(Fp) → P2(A) a map taking triples of
collinear points to triples of collinear points. Then pA = 0.

Proof. Changing coordinates in P2(A), we can assume that

ρ(1 : 0 : 0) = (1 : 0 : 0), ρ(0 : 1 : 0) = (0 : 1 : 0), ρ(0 : 0 : 1) = (0 : 0 : 1),

and ρ(1 : 1 : 1) = (1 : 1 : 1). Thus

ρ(1 : 1 : 0) = ρ (�((0 : 0 : 1), (1 : 1 : 1)) ∩ �((1 : 0 : 0), (0 : 1 : 0))) = (1 : 1 : 0)

as well. For n ∈ Z, let Pn = (n : 0 : 1), Qn = (n + 1 : 1 : 1) ∈ P2(Fp), and let

P ′
n, Q

′
n ∈ P2(A) be the points with the same coordinates as Pn, Qn. We check by

induction on n ≥ 0 that ρ(Pn) = P ′
n and ρ(Qn) = Q′

n: the base case is ok, and
for the induction step we note that Pn = �(Qn−1, (0 : 1 : 0)) ∩ �(P0, (1 : 0 : 0)),
Qn = �(Pn, (1 : 1 : 0)) ∩ �(Q0, (1 : 0 : 0)), and that the same statements hold with
the primes (see Figure 1). Thus (p : 0 : 1) = ρ(p : 0 : 1) = ρ(0 : 0 : 1) = (0 : 0 : 1),
and hence p = 0 in A. �

Remark 4.6. Note that the proof exhibits a sub-matroid (denoted Mp in [Gor88])

consisting of 2p+3 points sharing the desired property of P2(Fp). This means that
in our second non-liftable example we could have blown up a smaller configuration
of 2p+ 4 points and (strict transforms of) 4p+ 7 lines between them.

Remark 4.7. With the same proof, one can construct similar examples in higher
dimensions: blow-up Pn

k (n ≥ 3) in all Fp-rational points, (strict transforms of)
lines, planes, and so on. Such varieties were studied in [RTW13, Definition 1.2] in
relation to automorphisms of the Drinfeld half-space.

Remark 4.8. We also remark that in [Lan16, Proposition 8.4] it is proved that a
pair (X,D) where X is the blow-up of P2

k in all Fp-rational points and D is a union
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Pp−1 P0 P1 (1 : 0 : 0)

Qp−1 Q0 Q1

(0 : 1 : 0)

line at infinity

(1 : 1 : 0)

Figure 1. Proof of Proposition 4.5

of strict transforms of at least 4p− 3 Fp-rational lines does not lift to W2(k). The
argument above proves that the matroid Mp leads to a non-liftable example with
a fewer number of lines equal to 2p + 3. We do not know whether 2p + 3 is the
minimal number of lines necessary to exhibit W2(k) non-liftability.

Remark 4.9. Related non-liftable examples also appear in [BHH87, Section 3.5J]
and [Eas08]. The constructions are based on ramified coverings along purely char-
actersitic p line configurations instead of blow-ups.
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