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	is paper gives an overview of the main components of operational modal analysis (OMA) and can serve as a tutorial for research
oriented OMA applications. 	e paper gives a short introduction to the modeling of random responses and to the transforms
o
en used in OMA such as the Fourier series, the Fourier integral, the Laplace transform, and the Z-transform. 	en the paper
introduces the spectral density matrix of the random responses and presents the theoretical solutions for correlation function and
spectral density matrix under white noise loading. Some important guidelines for testing are mentioned and the most common
techniques for signal processing of the operating signals are presented.	e algorithms of some of the commonly used time domain
and frequency domain identi�cation techniques are presented and �nally some issues are discussed such as mode shape scaling,
and mode shape expansion. 	e di�erent techniques are illustrated on the di
cult case of identifying the three �rst closely spaced
modes of the Heritage Court Tower building.

1. Introduction

While in traditional experimental modal analysis (EMA) the
forces exciting the test specimen are controlled and normally
the testing is carried out in the laboratory, in OMA the
forces are just the ones that are naturally present during the
operation of the structure and the test should be carried
under the actual operating “in situ” conditions. For a civil
engineering structure forces thatmight be ambient forces like
wind and waves and for a mechanical structure that might be
the operating forces on an engine or a gearbox, in both cases
nothing is done to control temperature and other conditions
that might in�uence the result.

In OMA all modal parameters are to be determined
without knowing the excitation forces. 	erefore it is nor-
mally assumed that the excitation forces are Gaussian white
noise, or at least that spectral densities of these forces are
all �at. It is not necessary to satisfy that assumption for the
actual physical forces because the physical forces acting on
the structure can be thought of as created by a linear �lter
loaded by white noise, Figure 1. In this case we maintain
the assumption of white noise system input but add the

properties of a linear �lter to the system that is going to
be identi�ed. 	e properties of the �lter do not change
the properties of the structural system to be identi�ed,
Asmussem et al. [1], but of course we have to deal with the
challenge of separating the “modes” of the loading system
from the structural modes of interest.

In this paper we shall focus on the theories behind the
OMA technology. 	e paper can serve as a short overview of
the present knowledge of these theories andmethods.Details,
derivations, and more references and information related to
the treated subjects can be found in Brincker and Ventura
[2] and for a more broad description of the subject, in the
literature onOMA from the IMAC and IOMAC proceedings,
we refer the reader to [3, 4].

2. Random Modeling

Since in OMA we assume the forces to be unknown we need
to treat everything from a probabilistic point of view. Any
parameter that we are going to observe is considered as a
stochastic variable, say �, and is in principle only known in
terms of its probability density function �(�). If we know the
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Figure 1: 	e commonly accepted assumption of white noise input
should be thought of as loading an imaginary linear �lter that
produces the unknown forces.	us the actual physical forces do not
need to be white noise or have a �at spectrum.

density function we can �nd, for instance, the mean �� and
variance �2� as follows:

�� = ∫∞
−∞

�� (�) ��
�2� = E [(� − ��)2] = ∫∞

−∞
(� − ��)2� (�) ��.

(1)

However, since we seldom will know the density function in
OMA we use time averaging. If we have observed the signal�(
), then we can calculate the mean and variance for that
signal using time averaging as, Newland [5], follows:

�� = 1� ∫�
0

� (
) �

�2� = E [(� (
) − ��)2] = 1� ∫�

0
(� (
) − ��)2�
.

(2)

As a main rule in OMA, we cannot use the mean values for
much in practice due to large measurement errors in the low
frequency region, and therefore normally we will remove the
mean from the signals and calculate correlation based on the
resulting zero mean signals as follows:

cor [� (
) , � (
)] = E [� (
) � (
)] = 1� ∫�
0

� (
) � (
) �
. (3)

Since we are considering dynamic systems where the
response is a linear combinations of the responses to many
independent force impulses from the past, according to
the central limit theorem, a random structural response is
Gaussian or nearly Gaussian distributed. 	erefore, since a
Gaussian distribution is totally described by its second order
properties (we discard the �rst order properties as explained
above), we only need second order properties to describe
random responses and in case of two signals �(
) and �(
)
all information is contained in the correlation functions

��� (�) = E [� (
) � (
 + �)] = E [� (
 − �) � (
)] ,
��� (�) = E [� (
) � (
 + �)] = E [� (
 − �) � (
)] . (4)

	e correlation functions possess the following symmetry
properties that rely on the fact that we assume stationary

signals and thus the time can be shi
ed arbitrarily so that���(�) = E[�(
� − �)�(
�)] = ���(−�). In the general case of a
vector response containing the individual response channels
similarly we estimate the correlation function matrix as
follows:

R (�) = E [y (
) y� (
 + �)] = 1� ∫�
0
y (
) y� (
 + �) �
. (5)

Again we assume stationary conditions and we can also

calculate the correlation function matrix as E[y(
 − �)y�(
)]
and we get the symmetry relation for the correlation function
matrix

R (−�) = R
� (�) . (6)

3. Transforms

	e many transforms used in signal processing and devel-
opment of methods and theories in OMA constitute a
problem for an easy introduction to the �eld. However, all the
transforms are closely related. 	e classical Fourier series

� (
) = �0 +
∞∑
�=1

(�� cos 2��
� + �� sin 2��
� ) (7)

is used to describe signals with the period �. However, it is
normal to write the series in the complex form

� (
) = ∞∑
�=−∞

����Δ
�� (8)

that allows us to express the Fourier coe
cients in the simple
way

�� = 1� ∫�/2
−�/2

� (
) �−�Δ
���
. (9)

	e Fourier coe
cients �� are discrete functions of the
frequency due to the limited period�. If we extend the period
to in�nity we then get the Fourier integral and its inverse

� (
) = ∫∞
−∞

� (�) ��
���,
� (�) = 12� ∫∞

−∞
� (
) �−�
��
.

(10)

Just like periodic time functions result in discrete fre-
quency, periodic frequency functions result in discrete time
functions, thus assuming also periodic frequency functions
introduce the discrete Fourier series and discrete Fourier
transform

�� = 
∑
�=1

����2�(�−1)(�−1)/
;

�� = 1�

∑
�=1

���−�2�(�−1)(�−1)/

(11)
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in this formulationwith time and frequency shi
ed to comply
with Matlab preferences. For the discrete time case it is
important to note that according to the Shannon sampling
theorem, we do not lose any information about the signal in
between the sample points.

	e Laplace transform can be seen as a generalization
of the Fourier integral where we limit our time functions
to the positive axis and multiply all time functions with an
exponential term so that all time functions are damped like��(
) = �−���(
). We can then de�ne the complex variable� = � +  � and the Laplace transform and its inverse

� (�) = ∫∞
0

� (
) �−���
,
� (
) = 12� ∫�+�∞

�−�∞
� (�) �����.

(12)

	e !-transform can be seen as the transform corresponding
to the discrete series given by (8) and (9) but where we have
swapped time and frequency, and thus we have continuous
periodic frequency and discrete time

� (") = ∞∑
�=−∞

��"−�. (13)

Here we have introduced the periodicity in the frequency

domain by de�ning the complex variable " = ��Δ� and as
before for the Laplace transform we are dealing with damped
version of time functions using � = � +  �.

	e reason for using the transforms is their attractive
properties that they all have in common, like, for instance, the
convolution property (that convolution in the time domain
corresponds to multiplication in the transform domain)

ℎ (
) ∗ % (
) ←→ * (�) - (�) (14)

here expressed for the Laplace transform.

4. Random Vibration

Random vibration is o
en characterized by the power spec-
tral density (PSD) function that for a time series �(
) is
de�ned as the Fourier transform of the correlation function��(�)

-�� (�) = 12� ∫∞
−∞

��� (�) �−�
���. (15)

	e PSD is popular mainly because modes are clearly
indicated by spectral peaks and according to the Parseval
theorem; the area below a PSD for any frequency band is
equal to the variance of the corresponding time signal (band-
pass �ltered to the same frequency band), and therefore
the PSD has a simple physical interpretation of energy
distribution (therefore the name “power” spectral density).

One of the most important equations in random vibra-
tions is the fundamental theorem that is relating the product

of the PSD matrix of the input and the FRF matrix of the
system to the PSD matrix of the response

G� (�) = H̃
∗ ( �)G� (�) H̃� ( �)

= H̃ (− �)G� (�) H̃ ( �) . (16)

	e last equation follows from the identity H̃∗( �) = H̃(− �)
and from the fact that the transfer function is symmetric.

Other central relations in random vibrations are the
modal decompositions of the correlation function and PSD
function matrices. 	e modal decomposition of the correla-
tion function matrix is due to James et al. [6]. Expressing a
general response by its modal decomposition and assuming
white noise input where the correlations functions all degen-
erate to the Dirac delta functions it can be shown that the
correlation function matrix for negative timesR�−(�) and for
positive times R�+(�) is given by

R�− (�) = 2� 
∑
�=1

(b�3�� �−��� + b
∗
�3�� �−�∗��) ,

R�+ (�) = 2� 
∑
�=1

(3�b�� ���� + 3∗� b�� ��∗��) ,
(17)

where b� is the mode shape for mode 5 and 3� is a vector
describing the modal participation of the considered mode.
It is important to note that the negative time part of the
correlation function matrix R�−(�) is in fact a free decay
because it is written as a linear combination of modal
contributions (terms proportional to the mode shape times a
complex exponential), whereas the positive time part R�+(�)
is in fact only a free decay if it is used in its transposed form

so the terms 3�b�� turn into the form b�3�� and the response
becomes proportional to the mode shapes. 	is means that
whenever correlation functions are used as free decays, using
the positive part of the correlation functionmatrix, thematrix
must be used in its transposed form. It should also be noted
that if we had not followed the de�nition given by (5) but
instead de�ned the correlation matrix as R(�) = E[y(
 +�)y�(
)] which is common in some presentations of random
vibration theory, then because of stationarity this is equal to

E[y(
)y�(
−�)]. So this swaps the time of the solutions for the
correlation function matrix in (17), and thus in this case the
positive part of the correlation functionmatrix can indeed be
used as free decays without taking the transpose.

	edecomposition in the frequency domain can be found
by taking the Fourier transformof (17) or by assuming awhite
noise input andusing the fundamental theorem (16), Brincker
et al. [7, 8],

G� (�) = 
∑
�=1

( b�3��− � − 7� + b∗�3��− � − 7∗� + 3�b�� � − 7� + 3∗� b�� � − 7∗�) .
(18)

As it appears, in the frequency domain we do not have a
modal decomposition that can be considered as a linear
combination of free decays from the system, because some
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terms are proportional to the mode shapes and some terms
are proportional to the modal participation vectors. 	is is
due to the fact that when taking the Fourier transform of (17)
the terms from the negative and the positive time axes get
mixed so that the �rst two terms in (18) are from the negative
time axis and the last two ones are from the positive time axis.

Including only the positive part of the correlation func-
tionmatrix in the Fourier transform de�nes the so-called half
spectrum matrix that consists only of the two last terms of
(18), and, as we can see, the half spectrummatrix is a spectral
representation of free decays, but again only in its transpose
form.

It is important to note that by using the transposed cor-
relation function matrix as free decays in any identi�cation
technique—or using its counterpart in the frequency domain
as the corresponding half spectrum—we see that we have as
many free decays as we have sensors. 	erefore OMA is so to
speak born as a multiple input technique. From (16) we can
see that a reduced rank of the input spectral density matrix
G�(�) will reduce the rank of the output spectral density
accordingly, so normally it is a common assumption in OMA
that the excitation of the structure is also multiple input, that
is, using many independent excitation sources.

5. Testing

	e most important concerning the testing part is to make
a clear plan for the test, to secure that all measurements are
carried out well, all data have the required quality, and the
testing is well documented. For each data set that is to be used
for OMA it can be argued, see Brincker and Ventura [2], that
the total length of the time series should not be shorter than

�tot > 202:<min

= 10:<min

(19)

and the sampling frequency should not be smaller than

<� > 2.4<max, (20)

where <min is the smallest natural frequency that we are
looking for and <max is the largest. It is important to secure a
reasonable signal-to-noise ratio. 	is is done by making sure
that the noise �oor of the sensors (and the total measurement
system) is well below the expected response level. Using
two sensors to measure the same signal, the PSD of the
measurement noise can be estimated as, Brincker and Larsen
[9], follows:

-� (<) = (1 − 312 (<)) √-1 (<) -2 (<), (21)

where �1 and �2 are the measured signals from the two
sensors, -1 and -2 are the corresponding auto spectral
densities, and 312 is the ordinary coherence between the two
signals.

6. Signal Processing

As we have concluded in Section 2, we extract the infor-
mation from the random signals by calculating correlation

functions. However before we do that we need to go through
some initial preprocessing steps as follows.

(i) Validate data quality (check for clipping, dropouts,
etc.).

(ii) Calibrate signals to refer to physical units.

(iii) Detrending (remove mean or slowly varying trend).

A
er this initial step the user might want to evaluate and
classify the operating condition during the test (for instance
one or many cars on a bridge), judge the stationarity of the
signals (make a time-frequency analysis), and �nally evaluate
the presence of harmonics (if possible remove them). Some
optional preprocessing steps o
en used in OMA are

(i) adjustments of the sampling frequency (upsampling
and downsampling, also denoted decimation),

(ii) �ltering to reduce the frequency band (low-pass,
band-pass, or high-pass �lters),

(iii) integration/di�erentiation of signals.

	e di�erent kinds of �ltering can be carried out using
digital FIR and IIR �lters o
en used in electrical engineering.
However, in OMAwe do not need real-time �ltering because
common practice is to store the raw data during testing and
to perform needed �ltering a
erwards. Because of this, FFT
�lters might be considered due to small phase and amplitude
errors.

When the preprocessing has been performed the corre-
lation function matrix can be estimated by direct calculation
according to (6) adjusting the integration to �t the total time
length of the data � = �Δ
 and to take the sampling into
account which lead to the following simple and unbiased
estimator

R̂ (�) = 1
(� − �) Δ



−�∑
�=1

y (5) y� (5 + �) Δ


= 1� − �

−�∑
�=1

y (5) y� (5 + �) .
(22)

	e tradition is to calculate the spectral density �rst by
segmenting the data and using Welsh method, Brandt [10]

Ĝ (�) = 1C
�∑
�=1

ỹ�(�)∗ỹ�� (�) , (23)

where ỹ�(�) is the Fourier transformed response of segment �.
	e correlation function can then be found by inverse Fourier
transform. In OMA one should be careful with possible bias
on spectral function and correlation function estimates that
eventually might result in large errors in the damping values.
It is worth making some comments about bias and theWelch
formula for spectral estimation given by (23) because inmany
so
ware implementations theWelch technique is the basis of
both spectral function and correlation function estimation.

It follows directly from (5) and the convolution property
of the Fourier series, corresponding to (14), that (23) is
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only a spectral density estimate under the assumption that
each data segment is periodic. Applying this technique
without any windowing on the data segments corresponds
to estimating the so-called circular correlation function in
the time domain, and this clearly will introduce bias on the
estimates. 	is bias is o
en denoted as “wrap-around” bias
due to the wrong correlation so introduced between the ends
of the data segment. In the frequency domain this leads to
blunting of the spectral peaks and since this can be seen
as energy “leaking” from the peaks to adjacent frequencies,
the phenomenon is also denoted as leakage bias. 	e bias
can be reduced giving the end points of the data segment
a smaller weight by applying a windowing function on the
data segments. 	is will reduce the leakage error but will not
completely remove it.

An alternative is to increase all data segments to double
size by zero padding. 	is corresponds to assuming that the
signal is zero outside of the data segment, which is also
wrong and introduces a bias, but it can be shown that this
bias is well de�ned and can be removed in the time domain
by dividing the circular correlation function estimate with
a triangular window. 	is correlation function estimate has

been known since the seventies and is o
en denoted as the
“unbiased” FFT estimate. 	e properties of this estimate are
very close to the properties of the direct estimate given by
(22).

Another unbiased alternative to the direct estimation
given by (22) or to zero padding is to use the random
decrement technique that allows for unbiased estimating of
both the correlation function and its derivative. It might also
be of interest to apply the random decrement technique in
cases where the user wants to apply only one single response
signal to check if modal parameters depend on the excitation
level of the structure.

In the later years it has become popular to skip the
negative part of the correlation functions so that according
to (17) when taking the Fourier transform to get the spectral
density the two �rst terms in (18) disappear and we obtain
a so-called half spectrum that is a spectral representation of
time domain free decays; see the discussion about this issue
in Section 4.	is allows for application of curve �tters known
from traditional modal analysis.

7. Time Domain Identification

In time domain identi�cation (TD-ID) it is normal to use
parametric models obtained by least square (LS) �tting. In
practice this is done by formulating an overdetermined set
of equations that is solved using the pseudo inverse of the
equation matrix. We will shortly summarize the ID recipes
when using some popular ID algorithms like the polyref-
erence (PR) technique, Ibrahim time domain (ITD), the
eigensystem realization algorithm (ERA), and the stochastic
subspace identi�cation (SSI) technique.

In PR the free decays are established (taking columns
from the transposed correlation function matrix) by the

correlation functions and the free decays are then arranged
in a Hankel matrix, Vold et al. [11, 12],

H1 = [[[[
[

y (1) y (2) ⋅ ⋅ ⋅ y (5� − 5�)
y (2) y (3) y (5� − (5� − 1))
...

... d
...

y (5�) y (5� + 1) y (5� − 1)
]]]]
]

(24)

and a “Hankel matrix” with only a single block row

H2 = [y (5� + 1) y (5� + 2) ⋅ ⋅ ⋅ y (5�)] . (25)

Here the operating responses y(5) are given in terms of
the discrete time 
� = 5Δ
. 	e matrix containing the AR
matrices of the free decays

A = [A��,A��−1, . . . ,A1] (26)

is then found by the LS solution

Â = H2H
+
1 , (27)

whereH+1 is the pseudo inverse ofH1. 	e modal parameters
can then be found by forming the companion matrix and
performing an eigenvalue decomposition. 	us PR is an
AR model-based technique. 	e order 5� of the AR model
determines the number of modes in themodel. If the number
of measurement channels is 5M, then the number of rows and
column of the companion matrix is 5� × 5M and the number
of eigenvalues is then also 5� × 5M corresponding to 5� × 5M/2
modes.

ARMA models where the response data can be modeled
directly have never become popular in OMA due to the large
convergence problems when several modes and channels of
data are present.

In ITD (in a modern formulation) a Hankel matrix is
formed with four block rows, Ibrahim [13–15],

H = [[[
[

y (1) y (2) ⋅ ⋅ ⋅ y (5� − 3)
y (2) y (3) ⋅ ⋅ ⋅ y (5� − 2)
y (3) y (4) ⋅ ⋅ ⋅ y (5� − 1)
y (4) y (5) ⋅ ⋅ ⋅ y (5�)

]]]
]

= [H1
H2

] (28)

that is split in the middle de�ning H1 and H2. 	e system
matrix is then simply found by the LS solution

Â = H2H
�
1 (H1H�1 )−1, (29)

where H�1 (H1H�1 )−1 can be considered as the pseudo inverse
of H1. 	e modal parameters are found performing the

eigenvalue decomposition of the system matrix Â. 	is
matrix de�nes the model order. With the previous de�ned
variables, we see that the number of eigenvalues is 2 × 5M, and
the model has 5M number of modes. 	is means that the ITD
model has a �xed model order corresponding to 5� = 2 for
the AR model.
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In ERA twoHankelmatrices are formed, Juang and Pappa
[16] and Pappa et al. [17, 18],

H (0) = [[[[
[

Y (0) Y (1) ⋅ ⋅ ⋅
Y (1) Y (2) ⋅ ⋅ ⋅
...

...
Y (� − 1) Y (�) ⋅ ⋅ ⋅

]]]]
]

;

H (1) = [[[[
[

Y (1) Y (2) ⋅ ⋅ ⋅
Y (2) Y (3) ⋅ ⋅ ⋅
...

...
Y (�) Y (� + 1) ⋅ ⋅ ⋅

]]]]
]

(30)

and an SVD is performed on the �rst matrix

H (0) = USV
�. (31)

We can then estimate the observability and controllability
matrices as follows:

Γ̂ = U√S

Λ̂ = √SV
�

(32)

and �nally the discrete time system matrix is estimated as
follows:

D̂ = Γ̂+H (1) Λ̂+. (33)

	e modal parameters are found performing the eigenvalue

decomposition of D̂, but in this case the eigenvectors must
be brought back to physical coordinates by the observation
matrix. It should be noted that using the number of block
rows of the block Hankel matrices equal to � = 5�, the ERA
has the same number of modes as an AR model.

	e above mentioned techniques are all based on using
the correlation functions as free decays. In SSI we use a
di�erent approach and we use the responses to construct the
block Hankel matrix with 2� block rows, Overschee and de
Moor [19], Peeters [20], and Peeters and de Roeck [21]

H = [[[[
[

y (1) y (2) ⋅ ⋅ ⋅ y (5� − 2� + 1)
y (2) y (3) ⋅ ⋅ ⋅ y (5� − 2� + 2)
...

...
...

y (2�) y (2� + 1) y (5�)
]]]]
]

= [H1
H2

] (34)

that is split in the middle de�ning H1 and H2. A projection
matrix is then formed by the LS solution

O = H2H
�
1 (H1H�1 )+H1. (35)

Parallel to the solution idea in the ERA we now take the SVD
of the projection matrix

O = USV
� (36)

and we estimate the observability and Kalman state matrix

Γ̂ = U�√S�,
X̂ = √S�V

�
� .

(37)

	e last matrix can be thought of as containing the initial
conditions of the free decays in the projection matrix. Finally
the discrete time system matrix and the observation matrix
can be found by solving a least squares problem and the
modal parameters are found performing the eigenvalue
decomposition of the system matrix. 	e number of eigen-
values of the SSI model is equal to � × 5M, and the number of
modes in the model is then equal to � × 5M/2.
8. Frequency Domain Identification

Frequency domain (FD) methods are mainly popular due
to their ability to appeal to our intuition by the nice plots
where we can inspect spectral peaks and have an idea about
modal participation by evaluating the height of each peak
and the damping by evaluating its width. But they tend
to su�er from bias problems due to leakage because even
though the spectral density can be estimated so that it
is asymptotically unbiased (bias is zero when information
approaches in�nity), in practiceweneed to dealwith a limited
amount of information, and thus the leakage bias will tend
to lead to overestimation of the damping in the frequency
domain. Also the missing modal (free decay) decomposition
of the spectral density as given by (18) is a problem because
no commonly known identi�cation techniques are designed
to deal with this form, but this problem can be solved by
working with the half spectral density functions. Similar to
what we did for time domain we shortly summarize the
ID recipes when using some popular ID algorithms in FD
like classical FD (also called basic FD), frequency domain
decomposition (FDD), and frequency domain polyreference
(FD-PR, also denoted Polymax).

In classical FD we have the simplest possible recipe,
Bendat and Piersol [22] and Felber [23]:

(i) natural frequency is estimated from the location of the
peak in the considered PSD;

(ii) damping is estimated from the width of the peak;

(iii) mode shape is estimated from any column or row in
the PSD matrix.

	is works well only in case of well-separated modes. Also it
is a problem that the user has to deal with the large number
of PSD plots. In case of closely spaced modes an alternative is
the FDD recipe where the PSD matrix is decomposed using
SVD, Brincker et al. [7],

G� (<) = USU
� = U [�2�]U�. (38)

In this case the application is even simpler for the user
because he is only inspecting a single PSD plot, that is, a
plot of the singular values taken from the diagonal matrix S.
	ese singular values can be considered as a combination of
estimates of the modal coordinate auto-PSDs and the noise
in the operational data. Just like in classical FD, the natural
frequency can be estimated from the location of a peak in
the plot, but in the FDD the mode shape is estimated as the
�rst singular vector (�rst column inU) at the same frequency
line. A better frequency estimate of the natural frequency
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(and damping) can be found by modal �ltering of the PSD
matrix isolating each modal coordinate in FD, taking the
modal coordinate PSD to time domain and �nally �nding
modal parameters from the 1DOF free decay, Brincker et al.
[24].

In FD-PR where the idea is to take the polyreference to
the frequency domain, we have the problem that we cannot
consider “just free decays” like in the TD, because in the
FD the whole time axis is transformed into every point in
the FD. 	erefore in principle we have to deal with a full
ARMA model in the FD; that is, the free decay in the TD
resulting in a homogeneous equation of motion becomes a
nonhomogenous equation of motion in the FD, Parloo [25]
andPeters et al. [26, 27].	e simplest possible case is achieved
assuming that the right hand side is a constant matrix (this
is of course only a reasonable assumption for a narrow band
estimator), Brincker and Ventura [2], and in this case the
corresponding recipe is quite simple. Taking the response to

be equal to the half spectrum transposed Y(<) = G��(<) we
form the two Hankel matrices

H1 = [Y�� (< (�1)) ,Y�� (< (�1 + 1)) , . . . ,Y�� (< (�2))]
H2 = [I, I, . . . , I] .

(39)

	e matrix containing the autoregressive matrices given by
(25) is found by the LS solution

Â = H2H
+
1 . (40)

And �nally the modal parameters are then found by forming
the companionmatrix based on the autoregressive coe
cient
matrices and performing an eigenvalue decomposition.

9. Example: The Heritage Court Tower Data

We will illustrate the OMA techniques on the well-known
case of operational data from the Heritage Court Tower
building.	e case is described in detail in Dyck and Ventura,
[28].

	e operational data was obtained using four datasets
measuring only horizontal acceleration; two sensors close
to the top of the building were used as references and the
remaining sensors were then roved down the building. 	e
�rst dataset applies 6 sensors placed close to the top of the
building, the second dataset applies 8 sensors, the six roving
sensors now moved downwards, the third dataset is similar
but the roving sensors again moved downwards the building,
and �nally the fourth dataset includes 8 sensors where the six
roving sensors are now close to the bottom of the building.
All datasets have a total measurement time of 328 s and a
sampling frequency of 40Hz. 	ree sensors were used on
each measured �oor.

	e simplest way to graphically illustrate the operational
data is to make an FDD plot. 	e results for the �rst dataset
are shown in Figure 2 showing the lowest quarter of the
frequency band. 	e �gure is also showing the results of the
FDD performing a modal �ltering taking mode shapes as the
�rst singular vector of (38) in the points indicated in Figure 2.
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Figure 2: Results of using FDD to identify the �rst three modes on
the �rst dataset of theHCT case.	e singular values of the SDmatrix
are shown in dotted line. In the plot the frequency lines where the
mode shape vectors are estimated are indicated by an asterisk and
the corresponding modal decomposition is shown in solid line.

As it appears the �rst three modes are in the frequency band
from 1.3 to 1.5Hz.

	e expected excitation of the building is a combination
of wind, tra
c, and excitation from people moving around
in the building, so it seems reasonable to assume that the
assumption ofmultiple input loading is ful�lled.	emultiple
input assumption is also supported by the fact that the SVD
plot in Figure 2 shows a relatively good modal separation
(su
cient rank of the spectral density matrix).

Since the lowest natural frequency is around 1.3Hz, and
if we assume the damping ratio to be around 1%, then
the total length of each record according to (19) should be
approximately 770 s. 	us the actual measurement time of
328 s is lower than the half of what is recommended by (19),
and since the three �rst modes of this example are relatively
closely spaced, it should be expected that we have some
di
culties identifying the three �rst modes of this structure
consistently. It, especially, should be expected that we have
di
culties identifying the modes for the datasets where the
roving sensors get close to the base of the building where the
response is low andwe have a decreasing signal-to-noise ratio
in the measurements.

	e results of the identi�cation of the �rst three modes
of dataset 1 are shown in Table 1 and the similar results for
dataset 4 are shown in Table 2.

For all the time domain identi�cations the modal par-
ticipation vectors 3� in (17) are used to �nd the relative
modal participation factor �� as described in Brincker and
Ventura [2]. Similarly in the frequency domain the modal
participation vectors 3� in (18) are obtained using the half
spectral density matrix including only the two last terms in
(18).

In the time domain the �rst three modes were isolated
using a band-pass �lter with a center frequency of 1.35Hz, a
�at characteristic in a band around the center frequency with
a band width of 0.4Hz, and a roll-o� band on each side with
a width of 0.4Hz.

For the AR, ITD, and ERA techniques the correlation
function matrices were estimated using the direct technique
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Table 1: Modal identi�cation on dataset 1 of the Heritage Court Tower case.

Modal quantity
Modal identi�cation method

AR ITD ERA SSI FDD FD-PR

Mode 1, <�, (Hz) 1.227 1.227 1.227 1.227 1.225 1.228

Mode 1, :�, (%) 0.96 0.97 0.96 0.53 1.29 1.32

Mode 1, ��, (%) 30.1 30.2 30.1 32.6 27.9 29.7

Mode 2, <�, (Hz) 1.285 1.285 1.285 1.284 1.287 1.290

Mode 2, :�, (%) 1.19 1.20 1.19 0.58 1.41 1.46

Mode 2, ��, (%) 19.2 19.3 19.3 18.5 17.4 19.0

Mode 3, <�, (Hz) 1.452 1.451 1.452 1.450 1.450 1.454

Mode 3, :�, (%) 1.11 1.11 1.11 0.63 1.59 1.36

Mode 3, ��, (%) 50.6 50.5 50.6 48.9 55.8 51.3

Table 2: Modal identi�cation on dataset 4 of the Heritage Court Tower case.

Modal quantity
Modal identi�cation method

AR ITD ERA SSI FDD FD-PR

Mode 1, <�, (Hz) 1.246 1.246 1.246 1.215 1.235 1.213

Mode 1, :�, (%) 1.12 1.05 1.12 1.92 2.72 2.52

Mode 1, ��, (%) 23.4 26.0 23.4 16.3 35.5 31.8

Mode 2, <�, (Hz) 1.299 1.300 1.299 1.279 1.293 1.301

Mode 2, :�, (%) 1.57 1.40 1.57 7.20 2.45 2.62

Mode 2, ��, (%) 3.4 3.6 3.4 10.0 0.7 0.2

Mode 3, <�, (Hz) 1.441 1.442 1.441 1.443 1.450 1.446

Mode 3, :�, (%) 0.33 0.31 0.33 0.89 1.27 1.08

Mode 3, ��, (%) 58.6 34.1 58.6 69.0 63.8 63.6

according to (22); the full correlation function matrix was
transposed as described in Section 4 and all columns (all
free decays) in the transposed correlation function matrix
were then used for the identi�cation. For the �rst dataset
500 discrete time lags were used in the correlation function
matrix; however, for the last dataset where the modes are
somewhat more di
cult to identify, 950 time lags were
used. For the AR, ITD, and ERA techniques a low model
(corresponding to 5� = 2) order was used including 6 modes
for dataset 1 and 8 modes for dataset 4.

	e PC algorithm using the stochastic algorithm 1 from
Overshcee and de Moor [19] was used for the SSI identi�ca-
tion. In SSI the need for an oversized model is larger than
for the previouslymentioned techniques and therefore in this
example a largemodelwith � = 80 block rowswas used for the
estimation. 	is corresponds to a model with 240 modes for
the �rst dataset and to a model with 320 modes for dataset 4.
	e SVDmatrices in (37) were reduced to the �rst 6 singular
values for the �rst dataset (corresponding to a reducedmodel
with only three modes) and to 18 singular values for the last
dataset (corresponding to a reducedmodel with ninemodes).
It was needed to use nine modes in the last dataset in order to
obtain a model including the three modes with a reasonable
participation factor.

In the frequency domain the modes were identi�ed using
the FDD and the FD-PR technique. In both cases the spectral
density matrix was estimated taking the discrete Fourier

transform of the directly estimated correlation function
matrix.

As it is indicated earlier, it is good idea to start any
OMA with the simple FDD analysis, just looking at the
plot of the singular values; see Figure 2. As it appears three
singular values are peaking inside the interval 1-2Hz, while
the fourth singular value is �at. 	erefore the fourth singular
value de�nes the noise �oor; the �rst three singular values
describe the physics of the system and it can be concluded
that three modes are present in the considered frequency
band. As mentioned earlier, the singular vectors at the three
indicated points close to the three spectral peaks were chosen
as mode shape estimates, and the modal coordinates were
then found solving the equation y(
) = Aq(
), where the
matrixA contains the estimatedmode shapes and q(
) are the
modal coordinates. We can �nd the solution to this heavily
overdetermined problem as the LS solution q̂(
) = A+y(
).
	is can also be done in the frequency domain, and the
modal coordinate estimates are indicated by the solid lines in
Figure 2. 	e modal coordinates estimates in the frequency
domain can then be taken back to time domain by inverse
FFT and the frequency and damping can be found from the
modal coordinate correlation function by simple means (in
this case using simple ITD for one single channel of data).

	e FD-PR identi�cation was carried out based on the
half spectrum matrix estimated with 1025 frequency lines in
the whole frequency band up to 20Hz. 	e autoregressive
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Figure 3: Mode shapes of the HCT building found by AR identi�cation and merging the mode shapes from the 4 data using the reference
DOFs. 	e units of the coordinate system are meters.

matrices were found using (40) over the frequency band
centered at 1.35Hz and with a band width of 0.6Hz. 	e
�rst dataset was identi�ed using a model order of 5� = 2
(corresponding to 6 modes for the �rst dataset); however, for
the last dataset in order to identify all three modes with a
reasonable modal participation, a model order of 5� = 8 was
used (corresponding to 32 modes).

Using that each �oor in the building is moving like a
ridged body in the horizontal plane the movements of all
points of a given �oor can be estimated using only the
measured three horizontal components and the di�erent
parts of the mode shape can be merged using the common
reference DOFs. 	e mode shapes of the three �rst modes
obtained by the di�erent techniques are quite similar. 	e
mode shapes of the HCT building from the AR identi�cation
are shown in Figure 3.

	e di�erences in the identi�cation can be discussed on
the basis of the results in Tables 1 and 2. For dataset 1 it
is clear that all techniques identify nearly the same natural
frequencies for all three modes. Concerning the damping
we can see a somewhat higher estimation uncertainty (as
expected), and we can see that frequency domain techniques
have a tendency to provide higher damping values than
the time domain techniques. 	e higher damping is most
probably due to leakage errors introduced by the discrete
Fourier transform of the correlation functions to frequency
domain. All techniques also agree that the relative modal
participation is around 30% for mode 1, it is around 19%
for mode 2, and it is around 50% for mode 3. 	e high
modal participation for all three modes secures the relatively
consistent identi�cation results.

Considering the results of Table 2 we clearly see that this
case is somewhat more di
cult. We have already mentioned
that in order to identify all three modes we needed to adjust

the identi�cation; for instance, the time domain techniques
needed more time lags in the correlation functions, and the
SSI needed to include more singular values to have more
modes in the model. Even doing these adjustments in order
to improve identi�cation accuracy, we clearly now see some
deviations of the natural frequencies. For the �rst mode we
see that SSI and FD-PR provide the value <1 = 1.215Hz,
whereas the AR, ITD, and ERA agree on <1 = 1.246Hz,
but we know from the results of dataset 1 that the right
natural frequency is <1 = 1.227. 	ese deviations are quite
large to what would normally be expected. Modes 2 and 3
show smaller, but similar, deviations that are also larger than
normally expected. Larger deviations on the damping value
are observed and, for instance, the SSI provides an unrealistic
estimate of more than 7% damping. 	ese di
culties are
most probably due to a small amount of data combined
with a smaller signal-to-noise ratio caused by having most
of the sensors close to the ground where the response is
small. Another important reason to the di
culties identi-
fying dataset 4 is that we see from Table 2 that the modal
participation of mode 2 is relatively weak.

	is example stresses the need for good testing practice
making sure that an appropriate amount of data is taken and
that a good signal-to-noise ratio is present in all datasets.	e
analysis of this example was carried out using the MATLAB
toolbox that comes with Brincker and Ventura [2].

10. Mode Shape Scaling and Expansion

	e most commonly used method in mode shape scaling
is to make a mass and/or sti�ness perturbation of the test
specimen and to use the corresponding change of natural
frequencies and mode shape to estimate the scaling factorY that is de�ned as Y = 1/√Z, where Z is the modal
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mass. Many formulas exist, but the most general one is the
following, López-Aenlle et al. [29]:

Y2� = (�20� − �2��) 
��
a�0� (�2��ΔM + ΔK) a�� , (41)

where the natural frequency �0� of mode \ in its unperturbed
state and the corresponding mode shape a0� and the natural
frequency ��� of mode  in its perturbed state and the
corresponding mode shape a�� are used to �nd an estimate
of the scaling factor so that the corresponding mass scaled
mode shape �� = Y�a� can be de�ned.	e terms 
�� are found
from the LS solution

T = [
��] = A
+
0A�, (42)

whereA0 contains the unperturbedmode shapes andA� con-
tains the perturbed mode shapes. In principle this equation
is exact and the only approximation is due to the estimation
of the projection terms in (42). 	e �rst formulation of this
kind of equation is due to Bernal [30]. However, because of
the small changes ofmass and sti�ness that are o
en used due
to practical reasons and because of the problems of detecting
these small changes due to measurement and ID noise, the
uncertainty on the scaling factor is o
en large and therefore
it might in many cases be more accurate to expand the mode
shapes and perform the scaling using the expanded mode
shapes on the FE mass matrix, López-Aenlle and Brincker
[31].

Mode shape expansion is based on the idea of �tting
a measured mode shape a with a limited number of mode
shapes (subspace) from an FE model. Given a �xed subspace
from the FEmodelwithmode shapes arranged inmode shape
matrix

B = [B�
B�

] , (43)

where B� contains the DOFs corresponding to the experi-
ment (active DOF’s) and B� contains the remaining DOFs
in the FE model (deleted DOFs), we then have the classical
�tting problem

a ≅ B�p (44)

that can only be approximately ful�lled since we are dealing
with overdetermined problem. We �nd the classical LS
estimate for the parameter vector

p̂ = B
+
�a (45)

and we have now a smoothed version of the experimental
mode shape

â = B�p̂. (46)

	e smoothed version can be expanded to all DOFs in the FE
model just by including all DOFs in the FE mode shapes

â = Bp̂. (47)

	e expanded version can be used for scaling as mentioned
above and in damage detection and updating. If the expanded
mode shapes are used for scaling together with the mass
matrix of the �nite element model as mentioned above,
this provides a simple procedure for the scaling of OMA
mode shapes. Assuming that the mode shapes from the �nite
elementmodel aremass scaled, themodalmass is obtained as
the inner product of the expanded experimental mode shape
over the mass matrix of the �nite element model

Z = â
�
Mâ = p̂

�
B
�
MBp̂ = p̂

�
p̂. (48)

	e result follows from (47), the well-known orthogonality
principle, and the assumption of mass scaled FE modes so

that the inner product B�MB is equal to the identify matrix,
Aenlle and Brincker, [32].

Using the above mentioned expansion assuming a �xed
subspace is equivalent to expansion using SEREP, O’Callahan
et al. [33]. One of the problems of the expansion as outlined
above is to know which modes should be included in the
subspace matrix B. It is obvious that the subspace should be
chosen minimal in order to obtain the best solution, (45),
and thus that the optimal choice of subspace must change
from mode to mode. 	is problem can be solved by the
local correspondence (LC) principle, Brincker et al. [34],
that states that any perturbed mode shape can be written as
a linear combination of modes of the unperturbed system
including only a few mode shapes around the corresponding
unperturbed mode.

11. Conclusions

Some of the main elements of operational modal analysis
(OMA) have been considered. It is argued that it is not
necessary to assume a white noise input in order to use OMA;
however, it is a central assumption in OMA that only second
order information is considered (correlation and spectral
density functions) and that the excitation is multiple input.
	e theoretical solutions for the correlation function matrix
and the spectral density matrix are discussed and it is pointed
out that care should be taken in order to use the second order
information in a form that in fact represents free decays of the
system. 	e identi�cation recipes for some commonly used
time domain and frequency domain techniques are presented
and their ability to identify the �rst three closely spaced
modes of the Heritage Court Tower building is illustrated.
Finally the important issues of mode shape scaling andmode
shape expansion are presented.
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