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Some Equivalences Between Shannon Entropy 
and Kolmogorov Complexity 

SIK K. LEUNG-YAN-CHEONG, MEMBER, IEEE, AND THOMAS M . COVER, FELLOW, IEEE 

Abstmct-It is known that the expected codeword length L,, of the 
best uniquely decodable (UD) code satisfies H(X) <  L,, <  H(X) +  1. 
LetXbearandomvariablewhichcantakeonnvalues.Theni t isshown 
that the average codeword length L, :, for the best one-to-one (not 
necessBluy uniquely decodable)  code for X is shorter than the average 
codeword length L,, for the best mdquely decodable code by  no  more 
thau ( log2 log, n) +  3. Let Y be  a  random variable taking OII a  fiite or 
countable number  of values and  having entropy H. Then  it is proved that 
L,:,>H-log2 (H+l)-log, log2 (H+l)-... -6. Some relations are 
eatahl ished amoug  the Kolmogorov, Cl&in, and  extension complexities. 
Finally it is shown that, for all computable probability distributions, the 
universal prefix codes associated with the conditional Chaitin complexity 
have  expected codeword length within a  constant of the Shannon entropy. 

I. INTRODUCTION 

S HANNON has shown that the m inimal expected 
length L  of a  prefix code for a  random variable X 

satisfies 
H(X)<L<H(X)+l (1) 

where H is the entropy of the random variable. Shannon’s 
restriction of the encoding or description of X to prefix 
codes is highly motivated by the implicit assumption that 
the descriptions will be  concatenated and  thus must be  
uniquely decodable. Since the set of al lowed codeword 
lengths is the same for the uniquely decodable and  in- 
stantaneous codes [ 11, [2], the expected codeword length L  
is the same for both sets of codes. Shannon’s result 
follows by assigning codeword length li = [log 1  /piI to the 
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ith outcome of the random variable, where pi is the 
probability of the ith outcome. Thus the entropy H plays 
a  fundamental role and  may be  interpreted as the m inimal 
expected length of the description of X. The  intuition 
behind the entropy H is so compell ing that it would be  
disconcerting if H did not figure prominently in a  descrip- 
tion of the most efficient coding with respect to other less 
constrained coding schemes. In particular we have in 
m ind one-to-one (1: 1) codes, i.e., codes which assign a  
distinct binary codeword to each outcome of the random 
variable, without regard to the constraint that concatena- 
tions of these descriptions be  uniquely decodable. It will 
be  shown here that H is also a  first order approximation 
to the m inimal expected length of one-to-one codes. 

Throughout  this paper  we use L, :, and  Lu, to denote 
the average codeword lengths for the best 1: 1  code and  
uniquely decodable code, respectively. Since the class of 
1: 1  codes contains the class of uniquely decodable codes, 
it follows that L, : i < L,,,. We  show that L, :, > H-log 
log n  - 3  where 12  is the number  of values that the random 
variable X can take on. Perhaps more to the point, we also 
show that L,,, > H - log(H + 1) - 0  (log lo&H + 1)). 
Thus, to first order, a  1: 1  code allows no  more compres- 
sion than a  uniquely decodable or prefix code. 

As a  consequence of the work of Kolmogorov and  
Chaitin, a  notion of the intrinsic descriptive complexity of 
a  finite object hgs been  developed. This is closely related 
to the work of Siannon in which the complexity of a  class 
of objects is defined in terms of the probability distribu- 
tion over that class. The  complexity measures of 
Kolmogorov and  Chaitin, together with a  new complexity 
measure which we call the extension complexity, have 
associated with them universal coding schemes. We  shall 
establish that the universal encoding associated with the 
complexity of Chaitin [3] and  W illis [6] has an  expected 
codeword length with respect to any computable probabil- 
ity distribution on  the set of possible outcomes which is 
within a  constant of the Shannon entropy, thus connect- 
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ing the individual complexity measure of Chaitin and III. LOWER BOUNDS ON L, :, IN TERMS OF THE ENTROPY H 
Kolmogorov with the average statistical complexity 
measure of Shannon. 

In Section II, we consider a random variable which can 
take on only a finite. number of values, and we maximize 
(L,,- L, : i). In Section III we derive lower bounds on 
L, : i in terms of the entropy of a random variable taking 
values in a countable set. In Section IV we recall the 
definitions of the Kolmogorov and Chaitin complexities 
of binary sequences and introduce the notion of an exten- 
sion complexity. We then derive some relationships 
among these quantities. Finally, in Section V we show 
that, for all computable probability distributions, the uni- 
versal prefix codes associated with the conditional Chaitin 
complexity have expected codeword length within a con- 
stant of the Shannon entropy. 

II. MAXIMIZATION OF (L,, - L, : J 

Let X be a random variable (RV) taking on a finite 
number of values, i.e., 

With no loss of generality, assume pI >p2 > * * . Zp,,. 
Let li, i=1,2;-- ,n be the lengths of the codewords in the 
best 1: 1 code for encoding the RV X, where 1,. is the 
length of the codeword assigned to xi. 

Remark: Unless otherwise stated, all logarithms are to 
the base 2. The set of available codewords is 
{0,1,00,01,10,11$00,001,~~~}. 

It is clear that the best 1: 1 code must have I, < Z2 < Zs 
< . . . . Thus, by inspection, we have precisely I, = 1, I2 = 1, 
I, = 2, ’ ’ ’ ) 

The objective in this section is to obtain lower bounds 
on L, :, in terms of the entropy H of the random variable. 
As a first step, we consider transformations of 1: 1 to UD 
codes. The random variables considered may take on a 
countable number of values. 

Some Possible Transformations from I : 1 to UD Codes 

The aim here is to find efficient means of transforming 
1: 1 codes to UD codes. 

Let I,, I,, . . . be the lengths of the codewords for the 
best 1: 1 code; assume I, < I, < . - . . 

Let f be any function such that Z  i2-f(h) < 1. Then from 
Kraft’s inequality, the set of lengths {[f (li)l} yields 
acceptable word lengths for a prefix (or UD) code. If f is 
integer-valued and Zi2-f(t) > 1, { f (li)} cannot yield a 
prefix code. 

Theorem 2: The following functions represent possible 
transformations from 1: 1 to UD codes. 

i) f(l,)=I,+a[logI,l+log(z), wherea>l; 

ii) f(li)=J+2[log(li+1)]; ii 
iii) f(~)=~+[logZi+log(log~)+~~~~ ]+4. WV 

The proof of Theorem 2 follows from verification of the 
Kraft inequality for f (4) and is given in Appendix B. 

We now make use of Theorem 2 to prove some lower 
bounds on L, : i in terms of the entropy H. 

Theorem 3: The expected length L,: i of the best 1: 1 
code satisfies the following lower bounds 

(2) i) L,:,>H-a(l+log(H+l))-log(G) 

and wherea>l; (11) 

L,,,=~tpi~i=~tpi~log(~+l)]. (3) ii) Ll:+H-210g(H+2); (12) 
iii) L,:,>H-log(H+l)-loglog(H+l)-*-- -6. 

We now prove the following theorem which gives an 
upperbound on (L,, - L, : J. 

(13) 
Proof i) From Theorem 2 i) and the fact that the 

Theorem I: expected length for a UD code > H(X), we can write 

L, : I> L”, -loglogn-3. (4) 
Proof From (1) we have L,, < H (X,) + 1. Therefore 

max(L,,-L,:,)<l+max(H(X>l.-L,:,). (5) 
Noting from (3) that 

we can write 

(6) 

. (7) 

We then use the method of Lagrange multipliers to maxi- 
m ize the right side of (7). The proof is completed by using 
(5). Details of the proof are given in Appendix A. 

E(I+a[logIl+c)> H, 2”-1 where a> 1, c=log - 
( ) 2”-2 * 

Therefore El+a(l+E log I)+c>H where El=L,:,. 
From Jensen’s inequality and the convexity of -log I, we 
have El+a+a log El+c>H. But El<H+l, since I 
corresponds to the best 1: 1 code which is certainly better 
than the best prefix code, and we know that the expected 
length for the best prefix code is less than (H + 1). Thus 

E/>H-a(l+log(H+l))-log(s) 

ii) From Theorem 2 ii) and the fact that L,, > H, we 
have 

E(l+211og (I+ l)]) > H, 

E1+2E log (I+ 1) > H. 
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By Jensen’s inequality, El + 2  log(El+ 1) > H. But El < H We  now introduce a  new complexity measure that is 
+ 1  as before. Thus useful in prediction and  inference. 

El+2 log (H+2) > H Definition: Let U: (0, l}*+{O, l}* be  a  partial recursive 

I,,,, > H-2 log (H+2). 
function with a  prefix doma in. Then  the extension com- 
plexity of a  binary sequence x with respect to U is defined 

iii) From Theorem 2  iii) and  the fact that Lo, > H, we by 
have J%(x)= ,(g& l(P) (22) 

E(I+[logI+log(logI)+e..]+4)>H. (14 where U(p)> x means  that U(p) is an  extension of x, or 
Thus equivalently that x is a  prefix of U(p). 

E(l+logl+log(logI)+... +4)>H. (15) 
Definition: G iven a  complexity measure C,* : Q+N 

where Q  is countable and  B is a  partial recursive function, 
Definition: For convenience we will define the function we say that C* is universal if there exists a  partial recur- 

log* n  by sive function U, such that for any other partial recursive 
function A, there exists a  constant c such that for all 

log*nk logn+loglogn+***, (16) w Et& C&(w) < c, (w) + c. (23) 
stopping at the last positive term. Then  It has been  shown [3], [4] that the Kolmogorov and  

E(Z+log* Z+4) > H. (17) Chaitin complexity measures are universal. The  same re- 
Although log* I is not concave, we prove in Appendix C sult can be  shown to hold for the extension complexity 
that there exists a  (piecewise-linear) concave function measure. Thus from now on  we will assume that the 
F*(I) such that E*(l) < log* I< F*(1)+2. Thus E log* complexities are measured with respect to some fixed 
I < EF*(I) + 2  < P*(EI) + 2  < log*(El) + 2  yielding, from appropriate universal function, and  the subscripts will be  

(17), dropped. We  shall denote the Chaitin, Kolmogorov, and  

El+log* Eli-6) H. 
extension complexities of a  binary sequence x E (0, l}* by 

(l*) C(x), K(x]Z(x)), and  E(x), respectively. 

But El < H + 1  as before. Therefore Theorem 4: There exist constants c0 and  c, such that 

L,:,>H-log(H+I)-loglog(H+l)-.*. -6. (19) forallxE{o’l]*’ 
E(x)+c,<C(x)<E(x)+logI(x) 

IV. SOME RELATIONS BETWEEN KOLMOGOROV, +loglogI(x)+*** +c, 
CHAITIN, AND EXTENSION COMPLEXITIES =E(x)+log* I(x)++ (24) 

Let (0, l}* denote the set of all binary finite length 
sequences, including the empty sequence. For any x= 
( X1,X2,’ * ~)E{O,l}*u{O,l}OO, let x(n)=(x,,x,;**,x,) 
denote the first n  bits of x. 

Definition: A subset S of (0, l}* is said to have the 
prefix property if and  only if no  sequence in S is the 
proper prefix of any other sequence in S. 

For example, (00, lOO} has the prefix property, but 
{OO,OOl} does not. 

Definition: The  Kolmogoroo complexity of a  binary 
sequence x(n) E { 0, 1  }” with respect to a  partial recursive 
function A : {O,l}* x N+{O, l}* is defined to be  

(20) 

where 1(s) is the length of the sequencep,  and  N denotes 
the set of natural numbers.  

Here A may be  considered to be  a  computer, p  its 
program, and  x its output. We  shall use interchangeably 
the recursive function theoretic terminology and  computer 
terminology. (See, for example, Chaitin [3] for a  discus- 
sion of the equivalence of the two.) 

Definition: Let U : { 0, 1  } *+ { 0, 1  } * be  a  partial recursive 
function with a  prefix doma in. Then  the Chaitin complex- 
ity of a  binary sequence x with respect to U is given by 

Proof The  first inequality follows directly from the 
definitions of E(x) and  C(x). To  prove the second in- 
equality, note that the Chaitin complexity program p’ can 
be  constructed from the extension complexity program p  
as follows. Let s be  the shortest program (from a  set 
having the prefix property) for calculating Z(x). Thenp’ is 
the concatenation qsp where 4  consists of a  few bits to tell 
the computer to expect two programs and  interpret them 
appropriately. So we have 

C(~)\<E(x)+C(l(x))+c~. (25) 
From Theorem 2  iii) 

c(l(x))<logI(x)+loglogI(x)+~~~ +c,. (26) 
Combining (26) and  (27) yields Theorem 4. 

Let 

(27) 

be  the (conditional) Chaitin complexity of x(n) given n, 
where n* is the shortest length binary program for n  (see 
Chaitin [3] for definitions of conditional complexities). As 
before, the doma in of U( .,n*) has the prefix property for 
each n. 

The  conditional Chaitin complexity of x given its length 
I(x) and  the uncondit ional Chaitin complexity of x are 
closely related in the following sense. 
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Theorem 5: There exist constants c,, and ci such that expected word length equal to first order to the optimal 
for all x E (0, l}*, Shannon bound H(X,; * * ,X,). 

C(xll(x))+c,< C(x)< c(x]r(x))+log* Z(x)++ 
First we remark that Levin [7] has asserted (the proof 

does not appear) that for any finite alphabet ergodic 
(28) process (with computable probability distribution) 

Proof The lower bound follows from Chaitin [3, (l/n)K(Xi~‘* * ’ X,Jn)-+H(X) with probability one. Thus 
Theorem 3.l.e]. The upper bound follows from Chaitin [3, from Theorem 5 it follows that (l/n)C(X,,X,;-- ,X,Jn) 
Theorems 3.l.d, 3.l.f] where it is shown that -+H (X) with probability one. We shall show that the 

c(x)~c(x,I(x))+0(l)<c(x]z(x))+c(z(x))+0(1). 
behavior of C is good for finite n, for all n. 

But from Theorem 2 iii), C(l(x))<log* r(x)+ O(1). 
Theorem 7: For every computable probability measure 

Hence the theorem is proved. 
p : (0, l}*+[O, l] for a stochastic process, there exists a 
constant c such that for all n 

Theorem 6: There exist constants co and cl such that 
for all x E (0, l>*, 

H(X ,,..., X,)(E,C(X ,,..., X,ln)<H(X, ,..., Xn)+c. 

(31) 
K(xll(x))+c,< C(x)< K(xJl(x))+log K(xJl(x))+- Proof For each n, C(x(n)ln), x(n)E{O,l}” must 

+logI(x)+loglogZ(x)+- +c,. (29) satisfy the Kraft inequality. So we have 

Proof: The first inequality is a direct consequence of H(X,; . . ,X,> ( E,C(X,,* *. ,X,ln>. (32) 
the definitions. To prove the second inequality, we first 
note that the Chaitin complexity measure is defined with 

For the right half of the inequality, we must use a 

respect to a computer whose programs belong to a set 
theorem of Chaitin and Willis relating C and a certain 

with the prefix property. From Theorem 2 iii), we know 
universal probability measure P*. We then relate P* to 

that we can transform the domain of a Kolmogorov 
the true distribution P to achieve the desired proof. We 

complexity measure computer into one which has the 
d f. e me, for some universal computer U, 

prefix property by extending the length of the 
Kolmogorov complexity program from K(xJl(x)) to 

P*(+)b)= u(p ~-x~n~2~1(p)~ (33) 
,n* - 

K(x]I(x))+log K(xll(x))+ - -. + c2. Let us denote this Chaitin has shown [3, Theorem 3.51 (see also Willis [6, 
extended program by p. From the proof of Theorem 4, we Theorem 161) that there exists a constant c’ such that 
also know that a program s (belonging to a set with the 
prefix property) which describes the length of x need not C(x(n)ln) <log 

P*(xin)]n) +” (34) 
be longer than log I(x) + log log I(x) + . . * + c3. The 
Chaitin complexity program can be the concatenation qsp for all n. In addition, he has shown that for any other 
where q consists of a few bits to tell the computer to prefix domain computer A, there exists a constant c” such 
expect two programs and interpret them appropriately. So that 

P*(x(n)ln) > c”PA (x(n)ln) (35) 
C(x) < K(x]Z(x))+log K(xll(x))+ * * * for all n, where PA(-) is defined as in (33). 

+logI(x)+loglogl(x)+-* +c. In Lemma 1 below we show that, for the given comput- 
able probability mass function p: {O,l}*-+[O, l] for a 

This completes the proof of Theorem 5. stochastic process, there exists a prefix domain computer 
A such that PA(x(n)ln)=p(x(n)) for all n. The proof can 

V. RELATIONOFCHAITINCODELENGTHTO 
SHANNON CODELENGTH 

then be completed as follows 

E,Cb(nIn)= X pbtW(xtn)ln) 
qqE{O,l)n 

(36) 

Let {Xi}? be a stationary binary stochastic process 
with marginals p(x(n)),x(n)E{O,l}*, n=1,2;--,and ( 2 P (x(n)> log p using (34), 
Shannon entropy x(n)E(O,l}” ( 

P*&ln) +c’ 
) 

H(X) = ,jiir H (X,,X,; - . ,X,)/n. (30) (37) 

The Shannon entropy H (X,, - - - ,X,J is a real number, < 2 
while the Chaitin complexity C(X,, - * - ,X&I) is a random x(~)E(O,l)” 

p(x(n+g c,,p citn,ln,) +c’, using (3% 
A 

variable equal to the length of the shortest codeword (38) 
(program) assigned to (Xi, - - - ,X,J by U. The prefix set of = 2 P (x(4> log ’ “‘, using Lemma 1, 
codewords so defined may be thought of as a universal x(~)~(O,l]” p(x(nN +c 
prefix encoding of n-sequences for each n. Note in partic- (39) 
ular that the prefix encoding induced by U is completely 
oblivious to the true underlying statistics p(x,, - * - ,x,J. We = H(X,; + - ,Xn)+c”‘, for all 12. (40) 
shall show, however, that this universal encoding has an Q.E.D. 
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Lemma I: For any computable probability mass func- 
tion p  : (0, l}*+[O, I] for a  stochastic process, there exists 
a  prefix doma in computer A such that PA(x(n)]n)= 
p(x(n)) for all n. 

Remark I: W illis [6, Theorem 121  has proved a  similar 
lemma under  the constraint that p  ( *) be  “r-computable,” 
i.e., that p(x,; . * ,x,) have a  finite base-r expansion for 
every x1,x2; - - ,x,. 

Remark 2: Here we define a  number  to be  computable 
if we can calculate its nth bit in finite time  for all finite n. 
An analogous result can be  proved if by a  computable 
number  we mean  instead of a  number  which we can 
approximate arbitrarily closely. 

Proof Letp@)(x(n)) denotep(x(n)) truncated after k 
bits. For example, if p(x(n)) =0.001011001~ * . , then 
p(5)(x(n))=0.00101. Define 

F(@(x(n)) = 2  p@)(x’(n)) 
x’(n)<x(n) 

(41) 

where x’(n) < x(n) means  x’(n) precedes x(n) in a  lexico- 
graphic ordering of the n-sequences. Note that p(x(n)) 
being computable does not guarantee that F(x(n)) is 
computable. 

Let A be  a  computer that has n* on  its work tape. It 
also has at its disposal for inspection a  random program 

P =PIP2P3P4’ ’ ’ E{“~ l}“* We now describe how A oper- 
ates. 

Step 1: Calculate n. 
Step 2: Set m=l. 
Step 3: Compute F(“)(x(n)), for all x(n)E (0, l}“. 
Step 4: The  error in summing 2” binary terms each in 

[0, I] and  each truncated after m  places is bounded  above 
by 2”-“. Using this crude bound  on  the difference be- 
tween I;(“)(x(n)) and  the true distribution function 
F(x(n)) L  Cx++,x~n~p(x’(n)), and  between -pcm) = * 
P1P2’ ’ *p, and  -p, decide if at this stage it can be  guaran- 
teed that 

*pE(F(x*(n)),F(x*(n)+ OO;~l~l)] (42) 

for some x*(n)E{O,l}“. Here x(n)+OO-**OOl means  the 
sequence obtained by adding *x(n) and  (i>” and  reinter- 
preting it as a  sequence. If (42) can be  decided, proceed to 
step 6. 

Step 5: Increment m  by 1. Go  back to Step 3. 
Step 6: Print out x*(n) and  stop. 
It is easily seen that 

Pr 
i ( 

*PE F(x(n)), F  ( 

=p(x(n)) (43) 
for all x(n) E (0, l}“. Since limm+m -p(‘@  = *p and  
1i~m-m F(“)(x(n))= F(x(n)), A will fail to halt only if 
.p = F(x(n)) for some x(n) E (0, l}“. This event has proba- 
bility zero. Thus there exists a  computer A such that a  
Bernoulli random program p  will induce the stochastic 
process {Xi} as its output. Q .E.D. 

VI. CONCLUSIONS 

This study can be  perceived in three parts. F irst, the 
m inimal average code length with respect to a  known 
distribution has been  shown to be  equal  to the Shannon 
entropy H to first order under  different coding con- 
straints. Second, the individual complexity measures of 
Kolmogorov, Chaitin, and  others have been  shown to be  
equivalent to one  another, also to first order. F inally, the 
expected code length of the individual algorithmic code 
has been  shown to be  equal  to first order to the Shannon 
entropy, thus identifying the statistical and  the logical 
definitions of entropy. 
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APPENDIX A: PROOF OF THEOREM 1. 
Theorem I: 

L1 : 1 a LUD -loglogn-3. 
Proof: From (1) 

We  now proceed to find max(H(X)- L, : ,). Let A g H(X) - 
L, : ,. Then 

A= 5  pil”g~-~~pi~log(f+l)] Cm) 
i-1 

n  
<~pilog~-log ;+1 

i=l ( ( )I 
, 

I 

maxA <max i pi 
( 
log +-log 

I ( 1) 
;+1 . (-44) 

i=l 

Let 

Let 

J(P,,. * * CA6) 

Differentiating J(p,, . . . ,p,J with respect top;, we obtain 
CIJ -=- 
aPi 

q+h--l+ln $. 
I 

Setting aJ/api = 0, we obtain 
lnp,=X-(q+l) 

i.e., 
648) 

p.=e”-(c,+‘)=ae-c, 

where a is some constant. Now 
(A9) 

WO) 
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Substituting (AS) in (AlO) and using (A5) we get But there are 2k 1: 1 codewords of length k. Therefore 

(Al 1) 2ai 1=1. 
ill I+2 

Let 

Then (Al 1) can be rewritten as 
~u(H,+~-H~)= 1. 

From (A9) and (A5) 
2a 

pi=i+2. 

Therefore 

max $,Pi(ln A--ln($+l)) 

=ln A . 
( 1 

So from (A4) 

maxA(log i = 
( 1 1 +log (f&+2-Hd 

Using (Al) we obtain 

m~(L”D-L1:1)<2+10g(&+2-H2). 

Knuth [5] has 

6412) 

6413) 

(B5) 

=2-” $++.,+-$2l+$ 
( 

*22+ . . . +&k-l+... 
2k” 

m 

@7) 

S diverges if a < 1. To make S < 1, it is sufficient (and necessary) 
(A14) to have a > 1 and C > log[(2O - 1)/(2O -2)]. This completes the 

proof of i). 

Proof of ii): In this case, define 

= 2 2-~2-21’“9(1,+01 W) 
i=l 

6415) 

= /g* 22,1ag:r+1), ’ 
using the fact that there are 2k 
1: 1 codewords of length k, 

(339) 

Wf5) 
=($).2+(-&)22+(-$)23+... 

6417) ,1+1+1+ 1 2 22 23 -. . + --$ + * * * 

WO) 

H,=lnn+y+&--- l+l 
12n2 120n4 -E9 (‘418) ,I 1 =I* 

( 1 2 1-i 
03 12) 

where 0< e < 1/252n6 and y=O.577. . . is Euler’s constant. 
Therefore, This proves ii). 

mm(LUD-Ll:,)<2+log(h(n+2)) 6419) 

< 3+log log n. bQ0) Proof of iii): Let 
Thus we conclude that f(~i)=li+~logli+log(logli)+~~* 

L,:,>L”,-log~ogn-3. (i-w +log(log*~*(log~i)***)]+c 

where it is understood that we only consider the first k iterates 
APPENDIX B: ADMISSIBLE LENGTHS FOR UNIQUELY for which log(jog(. . . (log 4). . . )) is positive, for example, if 

DECODABLE CODES. fi=2,f(fi)=2+1+c=3+c, and if li=5,f(li)=5+[2.322+1.215 

In this appendix, we prove Theorem 2 which states that the 
+0.281]+c=5+13.818]+c=8+c. Now 

following functions represent possible transformations from 1: 1 
to UD codes. Recall Ii = [log (i/2 + l)]. 

s ii 2 2--m) 
i=l 

i) f(li)=li+a[log cl 
+log ((2”- 1)/(2”-2)), where a> 1; (Bl) 

=2-c 5 2-62-L ,Og/,+,Og(lOg/,)+~~~+lOg(lOg(~~~(,Og~,)~~~))~ (B13) 
i=l 

ii) f(li)=1,+2[lOg (/i+ I)]; 032) 
iii) f(~)=Zi+]logli+log(logZi)+*~~]+4. (B3) 

=2-c 2 2-~loPl+log(logI)+...+log(log(...(log/).. ))J, 
W4) 

I=1 

Proof of i): Define 

s= 5 2-f(4) 
i=l 

since there are 2k 1: 1 codewords of length k, 

<2-c+' 5 2-(‘Og/+lOg(,Og[)+... +lOg(lOg(...(lOgl).-.))) (B15) 

I=1 

= 5 2-42-“rlogli12-c* 

i=l 
034) 

=2-c+1 -g 1 
/=, Iloglloglogl~*~ (W 
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where the denominator of the last expression includes all the 
first j iterates for which 

log (log ( * * * (log I) * * * )) 
j times 

is greater than 1. 

We  now prove a lemma which will be useful in bounding 
(B16). 

Lemma B.1: Let 

E%(x)= 
1 

x log, x log, (log, X)’ * * (Bl7) 

where the denominator is to be interpreted as in (B16). Then 

&A m J 
1 dx 

’ x log, x log,(log, x)* . . 

Proof 

ifb>e 
if b<e. 

s 
eee  

+ 1 
e’ x log, x log, (log, x) 

+... 

= log, x1; + log, (log, x,1:’ 

+ loge (loge @ze 4q;:’ 

+... 

=1+1+1+*** 
=CO. 

o318) 

dx 

W ’) 

0320) 

(B20) can be verified by inspection. Thus we have shown that if 
b  > e, then Zb diverges. 

Now suppose b  < e. Let M  A log, e  where M  > 1. 

zb= * J 
1 dx (B21) 

1 x(M log, x)(M log, (M log, x)) f. * 

< s 1 
*mx(M log, x)(M log, (log, x)). * * 

dx 

s t-e* + 1 
.c M2x log,x log,(log,x) 

dx 

+... 

=,+~+L+... 

1  = =-$$<oc, sinceM>l. 

This completes the proof of Lemma B.1. 

In particular, from (B24) we have 

12 ( 
log2 e 

log, e  - 1  

< 3.26. 

PW 

But 

Fig. 1. Sketch of log* I and F*(I). 

Using (B16) we obtain S <5.2-‘+‘. If we choose c=4, then 
S < 1. This proves iii). 

APPENDIX c 

In this Appendix, we exhibit a  piecewise-linear concave func- 
tion F*(I) such that 

F*(l)<log* I<F*(Z)+2, I> 1. (Cl) 

Recall log* I= log I+ log log I+ . . . , stopping at the last 
positive term (see Fig. 1). The function F*(Z) is also sketched in 
Fig. 1. For 1 < I< 4, E*(l) = I - 1  and for I> 4, P(Z) is defined 
as follows. Consider the following sequence of values for I: 4, 
4ti,8,8fi, 16;.. , i.e., a  geometric sequence with a ratio of 
ti . Then F*(I) is obtained by joining adjacent points on the 
log* I curve by straight line segments for the I values mentioned 
above. 

In the following, define 
2” 

./ 
r times 

and 

exp$)(x) = 2’+ 

log(‘) (I ) = log log * . . log I, 
r times 

i.e., the r-fold composition of the exponential and log functions, 
respectively. 

First we prove the concavity of P(/), I > 1. Let us look at 
F*(Z) for I > 4. It is clearly sufficient to prove concavity at 
points expg)(2), r = 3,4,. f . since concavity is automatically 
satisfied at all other points. Thus we need to show that 

rc’,-r(+) >  f(flZ)-f(Z) 

Z-5 ez-z ’ 
Zcexp$r’(2), r=3,4 ,... 

i.e., 
(C2) 

~(f(I)-I(~))>f(~Z)-f(l) (C3) 
(~25) .- ., 
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I 
log 1 

i.e., 

(expf+‘) (2))fi -‘>fi, (Cl4) 
which is clearly satisfied for r > 1. 

By inspection log log log log 16fi =0.16, which is less than 
(fi - 1)/2 so that (C3) is satisfied for Z=exp$“) (2), r > 3. To 
complete the proof of the concavity of F*(l), it can easily be 
verified that concavity of F*(I) also holds at I= 4. 

We proceed to show that 

F*(l)< f(l)< F*(I)+2, forl>l. (C15) 
Define an auxiliary function a(l) 2 4 log 1. Consider the deriva- 
tive f’(Z) off (I). If exp$“) (2) 6 I< exp$‘+ r) (2), then 

Fig. 2. Graphical interpretation of inequality (C9): a > p. 

where for convenience we have set log* l=f (I). By definition, 

f(z)=logz+loglogz+*~* +log(‘)(z) PI 

f’(l)=-- - 
loge loge loge+... 

I +logl’ I 

+ loge log e -. 
log(‘) (I) log+‘) (I) 

y. (C16) 

+log(‘-‘) (log I)-; 
( (C5) 

f(Vzz)=((logz)+;)+log((logz)+~)+... 

+log(‘-‘) ((log I)+ ;) + log”) ((log I) + ;). (C6) 

Consider the 1st terms in f(Z), f(Z/fi) and f(fi I): 

(C7) 

[f(\/ZZ)-f(Z)]lsttam=;. 0) 

Considering the 1st terms only, we see that (C3) is satisfied. In 
fact the difference between the left side and right side of (C3) is 
(fi - 1)/2 = 0.207. 

Now consider the 2nd terms in f(Z), f (Z/n ), f (a I). 
Because the log function is concave, it is clear (see Fig. 2) that 

loglogZ-log((logZ)-;) 

>log (logZ)+i 
( 1 

-1oglogZ. P) 

Considering only the 2nd terms of f(Z), f (Z/ fi ), f (fi I) we 
see that (C3) is again satisfied. It is clear that by the same 
argument as above, the 3rd through rth terms off (I) - f (Z/e ) 
exceed the corresponding terms of f (fi I) -f(Z). There is one 
remaining term in f (fi I) which we have to consider, namely 
log@+‘) (fi I) g g(r). We now show that g(r) is monotone 
decreasing in r, r > 1 

g(r)=log(‘+‘) (fi expf) (2)) 

= log(r+2) (p5 =Pp (29 

g(r+ l)=log(‘+2) (V2 expf+‘) (2)). 

So we need to show 

(C’O) 

(Cl 1) 

ww 

(expr+i) (2))fi >fi expf+‘) (2), (Cl 3) 

We will now show that 

f’(l)<4), forr>2, 
i.e., 

f’(l) <+-log e, 
i.e., 

(Cl7) 

((33) 

log e loge loge - -.- 
1ogZ + loglogI log1 +*.* 

+ loge log e log e -. 
log”’ (I) log(‘- ‘) (I) 

* f f log <3. (Cl9) 

It is clear that each term in the left side of (C19) is bounded 
above by (log e)2/log I, and there are r such terms. So it is 
sufficient to prove that 

(log ej2 .r < 3 
log ’ for r > 2. PO) 

But I 2 exp$‘) (2); hence it is sufficient to prove that 

(lots d2 
expg - ‘) (2) 

.r<3, forr>2, (C21) 

which is obviously true. 
Thus we have shown that for I > 4, the slope of f(l) is 

bounded by the slope of a(Z). But we know that a(Z) increases 
by 2 when I is multiplied by a factor of fl . Therefore f(l), 
I > 4, increases by at most 2 every time I is multiplied by fi . It 
is trivial to see that for 1~ I < 4 the difference between f (I) and 
F*(Z) cannot exceed 2. This completes the proof of (C15). 
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