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1. Introduction

We investigate the L2–error of interpolation on equidistant and sparse grids for peri-
odic functions from isotropic L2–Besov spaces and L2–Besov spaces of functions with
dominating mixed smoothness properties.

The interpolation of periodic functions by translates of a given function and the cor-
responding error estimates have been analyzed by several authors (e.g. [3, 8, 14]) in the
univariate as well as in the multivariate case. The periodic Strang–Fix conditions were
introduced in [2, 14]. There, they were used to find L2–error estimates for functions
from isotropic L2–Sobolev spaces.

The approximation of functions on sparse grids and the related field of hyperbolic
approximation have a fairly long tradition (e.g. [4, 5, 27]) as well. For bivariate func-
tions, the number of interpolation knots can be reduced to O(N log2 N) for the sparse
grids where the equidistant grid has O(N2) points. Nevertheless, the interpolation on
sparse grids yields error estimates for functions with dominating mixed smoothness
properties which are asymptotically only by a logarithmic term worse than the error
estimates for the interpolation on the corresponding equidistant grids.

The aim of this paper is to give error estimates for periodic interpolation for functions
from L2–Besov spaces which extend the results for the L2–Sobolev spaces [2, 14, 16] on
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one hand. On the other hand, there already exist error estimates for interpolation on
sparse grids for functions from Nikol’skij–Besov spaces [22]. But there, for the general
Lp–case, we needed conditions on the cardinal fundamental interpolant from which the
periodic fundamental interpolant was constructed via periodization. In the L2–case,
we don’t need the long way around with cardinal interpolation but can use conditions
on the periodic fundamental interpolant directly.

2. Besov Spaces

We start with recalling the definition and some basic properties of the function spaces
to be dealt with. For this, we follow [19, Chap. 3]. By Tn, we denote the n–dimensional
torus represented by the cube

Tn :=
{
x = (x1, . . . , xn) ∈ Rn ; |xr| ≤ π, r = 1, . . . , n

}
.

Let D(Tn) and D′(Tn) denote the set of all complex–valued, 2π–periodic (in each
component), and infinitely differentiable functions and its dual space, respectively. The
Fourier coefficients of a distribution g ∈ D′(Tn) are

ck(g) := g(e−ik·)

for k ∈ Zn. With the help of the inner product in L2(Tn),

〈f, g〉Tn :=
1

(2π)n

∫
Tn

f(x)g(x) dx,

the Fourier coefficients for functions g ∈ L1(Tn) can be written as ck(g) = 〈g, eik·〉Tn.
Then any f ∈ D′(Tn) can be represented by its Fourier series

f =
∑
k∈Zn

ck(f) eik· (convergence in D′(Tn))

and the Fourier coefficients satisfy an inequality of the type

| ck(f) | ≤ CM (1 + |k|2)M , k ∈ Zn, (2.1)

for some M ∈ N. Here and in the sequel, |k|2 := (k2
1 + k2

2 + · · · + k2
n)

1/2 is the
euclidian norm. Conversely, each formal Fourier series with polynomially bounded
Fourier coefficients as in (2.1) can be interpreted as a periodic distribution in D′(Tn).

The Wiener algebra of functions with absolutely summable Fourier series we denote
by A(Tn).

In the following, we restrict our definitions to the L2–case because all the estimates
in the forthcoming sections hold in this case only. We need the index sets

Qn
0 = {0},

Qn
j = {k ∈ Zn ; |kr| < 2j , r = 1, . . . , n}

\{k ∈ Zn ; |kr| < 2j−1, r = 1, . . . , n}.
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Definition 1 Let 1 ≤ q ≤ ∞ and s ∈ R. Then we define the isotropic periodic
L2–Besov space Bs

2,q(Tn) as

Bs
2,q(Tn) :=

{
f ∈ D′(Tn) ; ‖f | Bs

2,q(Tn)‖

=
( ∞∑

j=0

2jsq
∥∥∥ ∑

k∈Qnj

ck(f) eik· L2(Tn)
∥∥∥q)1/q

<∞
}

for q <∞ and

Bs
2,∞(Tn) :=

{
f ∈ D′(Tn) ; ‖f | Bs

2,∞(Tn)‖

= sup
j∈N0

2js
∥∥∥ ∑

k∈Qnj

ck(f) eik· L2(Tn)
∥∥∥ <∞

}
,

respectively.

For the definition of the spaces of functions with dominating mixed smoothness
properties, we restrict ourselves to the two–dimensional situation. We put the index
sets

Pj1,j2 = Q1
j1
×Q1

j2
, j1, j2 ∈ N0.

As a consequence, we have the splitting

Z2 =
∞⋃

j2=0

∞⋃
j1=0

Pj1,j2 with Pj1,j2 ∩ Pj′1,j′2
= ∅ if (j1, j2) 6= (j′1, j

′
2).

Definition 2 Let 1 ≤ q ≤ ∞ and r1, r2 ∈ R. Then the L2–Besov space Sr1,r2
2,q B(T2) of

bivariate periodic functions with dominating mixed smoothness properties is defined as

Sr1,r2

2,q B(T2) :=
{

f ∈ D′(T2) ; ‖f | Sr1,r2

2,q B(T2)‖

=
( ∞∑

j1=0

∞∑
j2=0

2(j1r1+j2r2)q
∥∥∥ ∑

k∈Pj1,j2

ck(f) eik· L2(T2)
∥∥∥q)1/q

<∞
}

for q <∞ and

Sr1,r2

2,∞ B(T2) :=
{

f ∈ D′(T2) ; ‖f | Sr1,r2

2,∞ B(T2)‖

= sup
j1∈N0

sup
j2∈N0

2(j1r1+j2r2)
∥∥∥ ∑

k∈Pj1,j2

ck(f) eik· L2(T2)
∥∥∥ <∞

}
,

respectively.
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Equivalent definitions of the Besov spaces using the moduli of smoothness and further
characterizations can be found in [18, 19, 21].

By construction, it holds that

B0
2,2(Tn) = L2(Tn) and S0,0

2,2B(T2) = L2(T2). (2.2)

The Besov spaces of bivariate functions with dominating mixed smoothness proper-
ties can be characterized as tensor products

Bs1
2,q(T)⊗λ Bs2

2,q(T) = Ss1,s2

2,q B(T2) (2.3)

of the corresponding univariate Besov spaces (equivalent norms). Here, the norm λ
which was used for the completion of the algebraic tensor product is the injective tensor
norm for 1 ≤ q <∞ and a certain modification thereof for q =∞, cf. [21] for details.
These norms have the main advantage to be uniform crossnorms, cf. [7, 21]. This means
(together with (2.2)) in particular that, for two operators P ∈ L(Bs1

2,q(T), L2(T)) and
Q ∈ L(Bs2

2,q(T), L2(T)), the tensor product operator P ⊗Q given by

(P ⊗Q)(f ⊗ g) := P (f)⊗Q(g)

is bounded, i.e. P ⊗Q ∈ L(Ss1,s2

2,q B(T2), L2(T2)), and its norm can be estimated as

‖P ⊗Q | L(Ss1,s2

2,q B(T2), L2(T2))‖ (2.4)

≤ C ‖P | L(Bs1
2,q(T), L2(T))‖ ‖Q | L(Bs2

2,q(T), L2(T))‖

with some constant C independent of P and Q.

Remark The Besov spaces of bivariate functions with dominating mixed smoothness
properties are tensor products

Bs1
p,q(T)⊗λ Bs2

p,q(T) = Ss1,s2
p,q B(T2)

of univariate Besov spaces for general p, 1 ≤ p ≤ ∞. The case p = 2 is the only one
where for s1 = s2 = 0, this reduces with (2.2) to

L2(T)⊗λ L2(T) = L2(T2).

In all other cases, B0
p,q(T) does not coincide with Lp(T). As a consequence, to take

advantage of the tensor product property one has to deal with error estimates in the
norm ‖ · | B0

p,q‖ which is more complicated as in the Lp–setting, see [22]. Whether the
estimate (2.4) extends to p 6= 2 seems to be open.

Because of the imbeddings Bs
2,q(Tn) ↪→ Bs

2,∞(Tn) for 1 ≤ q <∞ we may restrict our
error estimates in the following sections to the most interesting case q =∞.
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3. Interpolation on Equidistant Grids

This section is devoted to error estimates for periodic interpolation on equidistant
grids. We can apply the concept of periodic Strang–Fix conditions on the fundamental
interpolant in order to find such error estimates.

Let N be a natural number and denote by

JN =
{

k ∈ Zn ; −N

2
≤ kr <

N

2
, r = 1, . . . , n

}
a related set of indices. Further

TN =
{ ∑

k∈JN

ηk eik· ; ηk ∈ C
}

denotes a corresponding set of trigonometric polynomials. The discrete Fourier coeffi-
cients of a continuous function f are given by

cN
k (f) =

1

N

∑
`∈JN

f
(2π`

N

)
e2πik`/N , k ∈ JN .

Discrete Fourier coefficients and Fourier coefficients are connected by aliasing

cN
k (f) =

∑
`∈Zn

ck+`N(f),

as long as f ∈ A(Tn). We consider interpolation on equidistant grids of type

TN =
{ 2πk

N
; k ∈ JN

}
.

The continuous and 2π–periodic function ΛN is called a fundamental interpolant for
TN if

ΛN

(2πk

N

)
= δ0,k , k ∈ JN .

The associated Lagrange interpolation operator LN is defined as

LNf =
∑
k∈JN

f
(2πk

N

)
ΛN

(
· − 2πk

N

)
.

The Fourier coefficients of LNf can be easily computed

ck(LNf) = Nn cN
k (f) ck(ΛN) = Nn ck(ΛN)

∑
`∈Z

ck+`N(f)

for f ∈ A(Tn). Finally, we denote the N–th Fourier partial sum by

SNf =
∑
k∈JN

ck(f) eik·.
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For cardinal interpolation, one can use the Strang–Fix conditions [20, 25] on the
fundamental interpolant in order to characterize the reproduction of polynomials and
therefore the order of interpolation, too. Up to now there is no complete periodic
counterpart.

But we can use the concept of periodic Strang–Fix conditions introduced by Pöplau
[2, 14] for L2–error estimates. Here, the behaviour of the fundamental interpolant is
characterized by a certain decay of the Fourier coefficients of ΛN .

Definition 3 Let ΛN ∈ A(Tn) be a fundamental interpolant with respect to TN . Then
ΛN satisfies the periodic Strang–Fix conditions of order m > 0 if for all k ∈ JN the
inequalities

|1−Nnck(ΛN)| ≤ b0 |k|m2 N−m,

|Nnck+`N(ΛN)| ≤ b` |k|m2 N−m, ` ∈ Zn \ {0},

hold for some sequence {b`}`∈Zn ∈ `2(Zn) of non–negative numbers.

The periodic Strang–Fix conditions can be seen as the periodic counterpart of the
strong Strang–Fix conditions for cardinal interpolation [6].

Theorem 4 Let the fundamental interpolant ΛN ∈ A(Tn) satisfy the periodic Strang–
Fix conditions of order m > 0. Let n/2 < s < m. Then there exists a constant C
(independent of N) such that

‖f − LNf | L2(Tn)‖ ≤ C N−s ‖f | Bs
2,∞(Tn)‖

holds for all f ∈ Bs
2,∞(Tn).

Proof: Step 1. We investigate the case f ∈ TN first. Some computations and the
periodic Strang–Fix conditions yield

‖f − LNf | L2(Tn)‖2

=
∥∥∥∑

k∈Zn

(
ck(f)−NncN

k (f)ck(ΛN)
)

eik· L2(Tn)
∥∥∥2

=
∥∥∥ ∑

k∈JN

ck(f) eik·
(
(1−Nnck(ΛN))−

∑
`∈Zn\{0}

Nnck+`N(ΛN) ei`N ·
)

L2(Tn)
∥∥∥2

=
∑
k∈JN

|ck(f)|2
(
|1−Nnck(ΛN)|2 +

∑
`∈Zn\{0}

|Nnck+`N(ΛN)|2
)

≤
∑
k∈JN

|ck(f)|2|k|2m
2 N−2m

∑
`∈Zn

b2
`
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Let 2r−1 ≤ N < 2r. Then∑
k∈JN

|k|2m
2 |ck(f)|2 =

r∑
`=0

∑
k∈Qn`

|k|2m
2 2−`s2`s|ck(f)|2

≤ 22mnm
r∑

`=0

22(m−s)` 22ls
∑
k∈Qn`

|ck(f)|2

We apply Hölder’s inequality and obtain∑
k∈JN

|k|2m
2 |ck(f)|2 ≤ 22mnm

( r∑
`=0

22(m−s)`
)

sup
`=0,... ,r

22ls
∑
k∈Qn`

|ck(f)|2

≤ C1N
2(m−s)‖f | Bs

2,∞(Tn)‖2.

This means that, for f ∈ TN , we proved

‖f − LNf | L2(Tn)‖ ≤ C2 N−s‖f | Bs
2,∞(Tn)‖, (3.1)

where C2 does not depend on f .
Step 2. We investigate the general case f ∈ Bs

2,∞(Tn). Because of s > n/2 it

holds that Bs
2,∞(Tn) ↪→ B

n/2
2,1 (Tn) ↪→ A(Tn). The interpolation is well–defined and

aliasing is applicable. Using the periodic Strang–Fix conditions with n/2 < s′ < s and
Cauchy–Schwarz inequality, it follows

‖LN(f − SNf) | L2(Tn)‖2

=
∑
k∈Zn

∣∣∣Nnck(ΛN)
∑
`∈Zn

ck+`N(f − SNf)
∣∣∣2

=
∑
k∈JN

∑
r∈Zn

∣∣∣Nnck+rN(ΛN)
∑
`∈Zn

ck+rN+`N(f − SNf)
∣∣∣2

≤ C3

∑
k∈JN

∑
r∈Zn

b2
r |k|2s′

2 N−2s′
∣∣∣∑
`∈Zn

ck+`N(f − SNf)
∣∣∣2

≤ C3N
−2s′‖{br} | `2(Zn)‖2∑

k∈JN

|k|2s′
2

∑
`∈Zn
|k + `N |2s′

2 |ck+`N(f − SNf)|2
∑
r∈Zn
|k + nN |−2s′

2 .

Next we use that for s′ > n/2

sup
k∈JN

|k|2s′
2

∑
r∈Zn
|k + rN |−2s′

2 = sup
k∈JN

∣∣∣ k

N

∣∣∣2s′

2

∑
r∈Zn

∣∣∣ k

N
+ r

∣∣∣−2s′

2
= C4 <∞.
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This proves

‖LN(f − SNf) | L2(Tn)‖2

≤ C3C4 N−2s′‖{br} | `2(Zn)‖2
∑
k∈JN

∑
`∈Zn
|k + `N |2s′ |ck+`N(f − SNf)|2

≤ C5 N−2s′ ‖f − SNf | Hs′
2 (Tn)‖2,

where Hs′
2 (Tn) denotes the fractional order Sobolev space with the norm

‖f | Hs′
2 (Tn)‖2 :=

∑
k∈Zn

(1 + |k|22)s′ |ck(f)|2.

In case s > s′ one knows

‖f − SNf | Hs′
2 (Tn)‖ ≤ C6 Ns′−s ‖f | Bs

2,∞(Tn)‖, (3.2)

cf. e.g. [11]. This yields

‖LN(f − SNf) | L2(Tn)‖ ≤ C7 N−s ‖f | Bs
2,∞(Tn)‖, (3.3)

where again the constant C5 does not depend on N and f . To finish the proof observe
that (3.1), (3.2) and (3.3) (applied with s′ = 0) imply

‖f − LNf | L2(Tn)‖ ≤ ‖f − SNf | L2(Tn)‖+ ‖SNf − LN (SNf) | L2(Tn)‖
+ ‖LN (f − SNf) | L2(Tn)‖

≤ C N−s ‖f | Bs
2,∞(Tn)‖.

This proves the theorem.

Remark We note that the most constants appearing in the proof only depend on
the dimension n and on the smoothness s of the function to be interpolated. The
dependency on the used fundamental interpolant ΛN is reflected in the constants by
the term ‖{br} | `2(Zn)‖ from the Strang–Fix conditions.

Remark Recall, if X is a Banach space and W a subspace of X, then the linear
N–width is defined as

λN(W, X) = inf
UN∈LinN (X)

P∈L(X,UN)

sup
f∈W
‖f − Pf | X‖,

where the infimum is taken over all subspaces UN of X of finite dimension ≤ N and
all linear operators P from X to UN . Here we are interested in X = L2(T) and W the
unit ball in the Nikol’skij–Besov space Bs

2,∞(T), denoted by Bs
2(T). If s > 0, then

λN(Bs
2(T), L2(T)) ∼ N−s
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cf. [9, Theorem 14.3.8]. In this sense, approximation of univariate functions with
those interpolation operators LN is nearly optimal (nearly optimal means the order of
approximation is correct but may be not the constants). More details about widths
may be found in [9, 26].

Remark An interesting limiting case has been observed by Pöplau [2, 14]. If ΛN is
a fundamental interpolant which satisfies the periodic Strang–Fix condition of order
m > n/2, then there exists a constant C (independent of N) such that

‖f − LNf | L2(Tn)‖ ≤ C N−m ‖f | Bm
2,2(Tn)‖

holds for all f ∈ Bm
2,2(Tn). For a generalization in various directions, including different

function spaces (defined by using decay properties of the Fourier coefficients), we refer
to [23, 24].

Corollary 5 Let the univariate fundamental interpolant ΛN ∈ A(T) satisfy the peri-
odic Strang–Fix conditions of order m > 0. Let LN ⊗ LN be the interpolation operator
associated with the bivariate fundamental interpolant ΛN ⊗ ΛN . Let 1 < s < m. Then
there exists a constant C (independent of N) such that

‖f − (LN ⊗ LN )f | L2(T2)‖ ≤ C N−s ‖f | Bs
2,∞(T2)‖

holds for all f ∈ Bs
2,∞(T2).

Proof: Because ck(ΛN⊗ΛN) = ck1(ΛN)ck2(ΛN) one proves easily that also the bivariate
fundamental interpolant ΛN ⊗ ΛN satisfies periodic Stang–Fix conditions of order m.
Then, Theorem 4 is applicable.

Example: B–Splines
As an example, we may use the interpolation by the 2π–periodized centered B–Spline
MN,r of order r ∈ N. Its Fourier coefficients are known as

ck(MN,r) =
1

N

(
sinc

πk

N

)r

, k ∈ Z,

with sinc t := sin t/t. The fundamental interpolant ΛN,r corresponding to the 2π–
periodic centered B–spline of order r can be computed from

ck(ΛN,r) :=
ck(MN,r)

N cN
k (MN,r)

, k ∈ Z. (3.4)

Then, ΛN,r satisfies the periodic Strang–Fix conditions of order r (cf. [14]) with the
constants

b0 =


1

2r+1
for r odd,

1

2(2r − 1)
for r even,
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and

b` =
1

πr(2|`| − 1)r



1 for r = 1,

(r − 1)!

E(r−1)/2

for r > 1, odd,

r!

2r(2r − 1)Br/2
for r even,

for ` 6= 0. Here, Bs and Es (s ∈ N) denote the corresponding Bernoulli and Euler
numbers.

Example: Trigonometric Interpolation
Another example is the trigonometric interpolation. The de la Vallée Poussin means
VK

N (N, K ∈ N, N > K) of the Dirichlet are given by

VK
N (x) :=

1

4KN

N+K−1∑
`=N−K

(∑̀
k=−`

eikx

)
.

They are fundamental interpolants for the grid T2N . So, we have a lot of different
fundamental interpolants for the grids TN (N even) belonging to different parameters
K. We denote them by ΛN,K := VK

N/2 for N/2, K ∈ N, N/2 > K. Since the de
la Vallée Poussin means are trigonometric polynomials they of course satisfy Strang–
Fix conditions of arbitrary order. But the constants of the Strang–Fix conditions
depend on the quotient of the parameters K and N . For K = 1, we obtain the best
constants since ΛN,1 is only a slight modification of the Dirichlet kernel whose Fourier
coefficients are compared with the Fourier coefficients of the fundamental interpolant.
For K = N/2− 1, the corresponding de la Vallée Poussin mean is already very closed
to the Fejér kernel and the constants are much bigger (for details we refer to [23, 24]).

Example: Radial Basis Functions
A nice n–variate example can be found in [15]. Let the n–variate radial basis function
ϕ be given by its Fourier coefficients

Nnck(ϕ) := |k|−α
2 , k ∈ Zn \ {0},

for a fixed α > d. In case α ∈ 2N, we obtain the periodized version of the cardinal
polyharmonic splines [10]. The associated fundamental interpolant can be constructed
analogously to the spline case (3.4) from its Fourier coefficients

Nnck(ΛN,ϕ) :=


|k|−α

2∑
`∈Zn |k + `N |−α

2

for k ∈ Zn \NZn,

1 for k = 0,
0 for k ∈ NZn \ {0}.
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Because of α > d this fundamental interpolant ΛN,ϕ belongs to the Wiener algebra.
Furthermore, it satisfies the periodic Strang–Fix conditions of order α with the con-
stants

b0 = 2α
n∑

r=1

(
n

r

)
1

rα/2

(
2α− r

α− r

)
and

b` = 2α|v(`)|−α
2 , ` ∈ Zn \ {0}

where the vector v has the components vr(`) = δ0,`r(2|`r| − 1) for r = 1, . . . , n.
In addition to these examples one can find more examples of bivariate functions in

[13, 14] (3– and 4–direction box splines) satisfying periodic Strang–Fix conditions of
certain order.

4. Interpolation on Sparse Grids

Now we want to define the interpolation operators for interpolation on sparse grids
and give error estimates. The definition of the blending interpolation operator and its
basic properties can be found e.g. in [1, 4]. This definition needs the notation of a
chain of projectors.

The ordering relation P ≤ Q for projectors holds if PQ = QP = P . A family of
projectors {Pj}∞j=0 forms a chain if Pj ≤ Pj+1, j ∈ N0. For two interpolation projectors
LK and LN , the ordering LK ≤ LN holds if and only if the images Im LK ⊂ Im LN

as well as the grids TK ⊂ TN are ordered.

Fix d ∈ N. By the choice Nj := d 2j, we immediately insure TNj ⊂ TNj+1 . Further-

more, we assume

Im LNj ⊂ Im LNj+1 . (4.1)

This property has to be proved for every example by hand. Then, we have a chain

LN0 ≤ LN1 ≤ · · · ≤ LNj ≤ LNj+1 ≤ · · · (4.2)

of interpolation operators.
Given a chain (4.2) of interpolation operators LNj , j ∈ N0, for univariate functions.

For bivariate functions, we will consider the j–th order blending operator defined by
the j–th order Boolean sum

Bj :=

j⊕
r=0

LNr ⊗ LNj−r ,
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1
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4

5

6

Figure 1: Sparse grid T B
5 for d = 1.

where A⊕ B := A + B − AB. The representation of Bj in terms of ordinary sums is
known to be

Bj =

j∑
r=0

LNr ⊗ LNj−r −
j−1∑
r=0

LNr ⊗ LNj−r−1 .

The Boolean sums also form a chain. They have the range

Im Bj =

j∑
r=0

Im LNr ⊗ Im LNj−r

and the interpolate on the sparse grid

T B

j :=

j⋃
r=0

TNr × TNj−r .

The sparse grid T B
j has d2(j2j−1 + 2j) nodes which is essentially less than the d2 22j

nodes in the equidistant grid TNj × TNj .

Theorem 6 Suppose that the interpolation operators LNj , j ∈ N0, form a chain (4.2)
and satisfy

sup
j∈N0

Nsk
j ‖f − LNjf | L2(T)‖ ≤ Ck ‖f | Bsk

2,∞(T)‖

with some constants Ck independent of f and for some fixed s1, s2 with s1, s2 > 1/2.
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Then in case s1 = s2 = s, we find

‖f −Bjf | L2(T2)‖ ≤ C (j + 1) N−s
j ‖f | S

s,s
2,∞B(T2)‖

for all f ∈ Ss,s
2,∞B(T2), whereas in case s1 6= s2, it holds that

‖f −Bjf | L2(T2)‖ ≤ C N
−min(s1,s2)
j ‖f | Ss1,s2

2,∞ B(T2)‖

for all f ∈ Ss1,s2
2,∞ B(T2). In both situations C denotes a constant independent on j and

f .

Proof: Because of Ss1,s2

2,∞ B(T2) ↪→ A(T2) ↪→ C(T2) for s1, s2 > 1/2 interpolation is
well–defined. The remainder (P c := I − P ) of the blending interpolation has the
representation

Bc
j = Lc

Nj
⊗ I + I ⊗ Lc

Nj
−

j∑
r=0

Lc
Nr ⊗ Lc

Nj−r +

j−1∑
r=0

Lc
Nr ⊗ Lc

Nj−r−1
,

cf. [4]. With this, the assertion follows from the triangle inequality, the uniformity of
the norms (see (2.4)) and the assumption on the error for the univariate interpolation.

Corollary 7 Let the 2π–periodic fundamental interpolants ΛNj ∈ A(T) satisfy the
periodic Strang–Fix conditions of order m > 0 with same sequence {b`} of constants.
The corresponding interpolation operators LNj , j ∈ N0, form a chain (4.2). Let 1/2 <
s1, s2 < m.

Then, in case s1 = s2 = s, we can estimate

‖f −Bjf | L2(T2)‖ ≤ C (j + 1) N−s
j ‖f | S

s,s
2,∞B(T2)‖,

for all f ∈ Ss,s
2,∞B(T2).

In case s1 6= s2, it holds that

‖f −Bjf | L2(T2)‖ ≤ C N
−min(s1,s2)
j ‖f | Ss1,s2

2,∞ B(T2)‖

for all f ∈ Ss1,s2
2,∞ B(T2). In both situations C denotes a constant independent on j and

f .

The same ideas as before yield the following estimate. It shows that the order of the
interpolation error for equidistant grids does not improve for the smoother functions
with dominating mixed smoothness properties in comparison to the isotropic case. For
the functions with dominating mixed smoothness the error of interpolation on sparse
grids is only by a logarithmic factor worse the result for equidistant grids.
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Corollary 8 Let the univariate fundamental interpolant ΛN ∈ A(T) satisfy the peri-
odic Strang–Fix conditions of order m > 0. Let LN ⊗ LN be the interpolation operator
associated with the bivariate fundamental interpolant ΛN ⊗ ΛN . Let 1/2 < s1, s2 < m.
Then there exists a constant C (independent of N) such that

‖f − (LN ⊗ LN )f | L2(T2)‖ ≤ C N−min(s1,s2) ‖f | Ss1,s2
2,∞ B(T2)‖

holds for all f ∈ Ss1,s2
2,∞ B(T2).

Example: B–Splines
The fundamental interpolants ΛNj ,r belonging to the 2π–periodic centered B–spline of
even order r ∈ N satisfy (4.1) automatically since at the step from j to j +1 only some
new spline knots are added. Therefore, the corresponding interpolation operators form
a chain (4.2). The constants for Strang–Fix conditions given in the previous section
do not depend on Nj .

The fundamental interpolants ΛNj ,r belonging to the 2π–periodic centered B–spline
of odd order r ∈ N do not satisfy (4.1). For splines for the grid TNj+1 only totally new
spline knots are used compared to the j–th grid.

Example: Trigonometric Interpolation
The de la Vallée Poussin means ΛNj ,Kj satisfy the chain condition (4.1) only under
certain restrictions on Kj and Nj . In [17], it was shown that for Nj as before and

Kj :=

{
2j−κ−1 for j > κ,
1 for j ≤ κ,

κ ∈ N, 3 ≤ d 2κ,

condition (4.1) is satisfied. The case κ = ∞ is allowed. With this choice of the
parameters Nj and Kj, one can estimate the constants of the Strang–Fix conditions of
order m uniformly by

b` =


3m

2(2π)m
for ` = −1, 0, 1,

0 otherwise.

Example: Radial Basis Functions
The fundamental interpolants ΛNj ,ϕ constructed from the radial basis function ϕ satisfy
the periodic Strang–Fix conditions with constants not depending on Nj . Now we
restrict ourselves to the univariate case.

One can find constants ak, k = 0, . . . , Nj+1 − 1, such that

ck+`Nj+1(ΛNj ,ϕ) = ak ck+`Nj+1(ΛNj+1,ϕ), ` ∈ Z, k = 0, . . . , Nj+1 − 1.
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These constants are

ak =


1 for k = 1,
0 for k = Nj ,∑

`∈Z |k + 2`Nj|−α

2
∑

`∈Z |k + `Nj |−α
otherwise.

This yields the chain property (4.1), cf. [12].
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