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SOME ESTIMATES FOR FINITE DIFFERENCE APPROXIMATIONS*

JOSE-LUIS MENALDIt

Abstract. Some estimates for the approximation of optimal stochastic control problems by discrete time
problems are obtained. In particular an estimate for the solutions of the continuous time versus the discrete
time Hamilton-Jacobi-Bellman equations is given. The technique used is more analytic than probabilistic.

Key words. diffusion process, Markov chain, dynamic programiing, finite difference, Hamilton-Jacobi-
Bellman equations

AMS(MOS) subject classifications. 65K 10, 65G99, 49D25, 93E25, 93E20

Introduction. We are interested in the approximation of optimal control problems
for diffusion processes by means of finite difference methods. It is well known (e.g.,
Kushner [16], {17]) that a basic probabilistic counterpart is the approximation of a
diffusion process by a Markov chain. A typical problem in stochastic control theory
is the following.

In a complete filtered probability space (Q, P, %, F(t), t=0) suppose we have
two progressively measurable processes (y(t), A(#), t=0) satisfying the following
stochastic differential equation in the It6 sense:

dy(1)=g(y(t), A(1)) dt+o(y(1), A(1)) dw(t), =0,
y(0) =x,

for given x, g, o, and some n-dimensional Wiener process (w(t), t =0). The processes
(y(1), t=0) and (A (1), t = 0) represent the state in ¢ and the control in A (a compact
metric space) of the dynamic system, respectively.

The cost functional is given by

(0.1)

(0.2) J(x,/\)=E{JTf(y(t),/\(t)) e’“'dt},

where f is a given function, @ >0, and 7 is the first exit time of a domain D in R
for the process (y(t), t=0).

The associated Hamilton-Jacobi-Bellman (HJB) equation (e.g., Bensoussan and
Lions [2], Fleming and Rishel [9], Krylov [14]) to be satisfied by the optimal cost

(0.3) u(x)=inf {J(x, A): any control A(-)}
is indeed

0.4) au=inf {L(M)u+f(-,A): A €A} in D,
‘ u=0 on €3D,

with the differential operator

1 d n d

(05) L(A):E Z (kz a-ik(.al\)a-jk(',)\)>aij+z gi(‘;A)ai’
ij=1 \ k=1 i=1

where d;,0; denote the partial derivatives and g=(g;,i=1,-+,d), o=(oy, i=

1,--‘,d,k=1,"~,n).
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580 JOSE-LUIS MENALDI

Let R denote a h-finite difference grid in %“. Consider the finite difference
operator

Li0)e(x)=h" 3 {BL(x A Mo+ i (% A1) = ()]
(0.6) -
T B A, h)e(x+vyi(x A, b)) — ()]},
where the coefficients satisfy

Bilx, A, h)=0 V¥x, A, h,

(0.7)
x+yi(x, A, h)eR] VxeRi, AreA.

The finite difference approximation of the HIB equation (0.4) using the operator
(0.6) is

au, =inf {L,(Mu,+f(-,A): A€ A} in D,

(0.8)
u, =0 in RIN\D,,

where D, is the set of points in R belonging to D.
Our purpose is to estimate the difference

(0.9) sup {|u(x) —uy(x)|: x € Dy}
in terms of the parameter h. We expect to dominate (0.9) by

(0.10) sup {inf {|{1(x, A) —1(x', A)]: x'e R} xe R, A € A},
' for I=f g, ou,i=1,--,d k=1, n.

For instance, if f, g, o are Lipschitz-continuous in x, then
(0.11) lu(x)—u,(x){=Ch"? VxeD,, he(0,1],

for some constant C independent of x and h.

Let us mention that finite difference operators of the form (0.6) satisfy automatically
the so-called discrete maximum principle. Problem (0.8) is indeed the discrete HJB
equation associated with some suitable optimal control problem of a Markov chain.
We remark that several computational methods are available for the discrete HIB
equation (0.8) (e.g., Kushner and Kleinman [18], Puterman [29], Puterman and
Brumelle [30], Quadrat [31], and Theosys [33]).

Actually, the objective of the paper is to show how the underlying technique can
be used with a typical problem (0.1)-(0.5). The probabilistic interpretation of the finite
difference operator (0.6) is part of the key idea. From a purely stochastic control
viewpoint, an estimate on an approximation to the optimal cost is certainly of great
value. However, we may question how optimal the discrete optimal feedback is when
it is applied to the actual continuous time problem. Toward an answer to the preceding
questions, we can argue in the following way. First of all, what really matters for the
optimizers is to know how far they are from the minimum cost in the real model. The
stochastic equation (0.1) is only an approximation of the real evolution, as well as
being the Markov chain associated with the operator (0.6). Our claim is that by
preserving the structure of the problem, i.e., to have a probabilistic interpretation of
the approximating HJB equation (0.8), and by getting some estimates of the convergence
of the corresponding optimal costs, we cannot be far away from the real model.

Even if the Markov chain associated with the operator (0.6) always has finite
state, we may want to discretize the set A, just to improve the implementation of the
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infimum in equation (0.8). In this case, we can replace A in (0.7) and (0.8) by a
discretization A(h), and similar results hold true (cf. [24]).

Deterministic versions along with the same kind of ideas can be found in Capuzzo-
Dolcetta [4], Capuzzo-Dolcetta and Ishii [5], Crandall and Lions [6], Falcone [8],
Gonzalez and Rofman [12], Menaldi and Rofman [27], and Souganidis [36].

The cases where the discount factor « is actually a function, the coefficients g, o
are time-dependent, the horizon is finite, the HIB equation is indeed a set of inequalities,
and the domain D is unbounded can also be studied.

In § 1 we consider the one-dimensional case. Even if this case is very restrictive,
we obtain enough information from it to deal with the multidimensional case. Moreover,
this section can stand by itself, but we believe it is a natural step in the technique to
be developed. General problems are treated in § 2.

1. One-dimensional case. It is clear that for one-dimensional problems we dispose
of many classic tricks, probably more efficient in practice than the one we will describe.
However, we claim that by studying this simple case we may obtain some nonstandard
ways of looking at a multidimensional finite difference scheme.

Let g, o be real continuous functions on & X A such that

1) lg(x, )| +|o(x, \})=C VxeR, ArecA,
1.1

lg(x, A)—g(x', Dl+|o(x, ) —a(x', M) =K|x—x"] Vx,xX'e¢R, ArecA,
for some constants C = C(g, o) and K = K(g, o). The set A is a compact metric space,
generally a compact subset of %™

On a complete Wiener space (Q, P, &, #(t), w(t), t=0), i.e., (0, P, ) is a com-
plete probability space, (¥(t), t=0) is a right-continuous family of complete sub-o-
algebras of &, (w(t), t=0) is a one-dimensional standard Wiener process adapted to
(F(t), t=0), we consider the controlled diffusion process

(1.2) dy(1)=g(y(1), A(1)) di+o(y(1), (1)) dw(t), >0,

where the control (A(?), t=0) is a progressively measurable process taking values in
A. Tts associated infinitesimal generator L(A) is the second-order differential operator

(1.3) Lo =20"(-,M)e"+g(-,\)¢',  a(+,)=0,

where ¢’ and ¢" are the first and second derivatives of ¢.
For the moment, let us forget about the h-finite grid &, i.e., the last condition
of (0.7) is disregarded. Consider the finite difference operator

Lh(/\)<p=l[l¢(-+gh+07\/ﬁ)+l<p(-+gh—07\/ﬁ)—<p],
(1.4) nl2 2
g=g(x,A), o=a(x,r), y=vy(xAh),

the function y =0 is to be chosen later (cf. (1.8)).

In § 1.1 we will construct a controlled Markov chain associated with the finite
difference operator, from which a piecewise constant (on stochastic time intervals)
process (y,(t); t=0) is defined in such a way that

(1.5) E sup {|y(t) —yu(t)|" e *": t=0}= Ch""* Vhe(0,1],

for some constants C, « >0 depending only on g, o, and p >0 uniformly with respect
to a class of controls to be specified.

Next, we use this estimate to obtain (0.11) for a linear equation, i.e., without
control A.
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In § 1.3 we realize the above technique gives only a one-sided estimate of the type
(0.11) for nonlinear problems. The difficulty is the lack of information on the optimal
control A(-). At this point, we need to use analytic techniques to obtain (0.11).

1.1. A Markov chain. Define
7(x, A, h, w)=inf {t = 0: g(x, \)(1 —h)+o(x, A)w(t)
equals either 8(x, A, h) or —8(x, A, h)},
(x, A, h) =a(x, \)y(x, A, R)Vh,  w(0)=0,
E(x, A, by w)y=g(x, A)7(x, A, h, w)+o(x, \)w(r(x, A, b, w)).

Note that w(-) is a standard Wiener process and 7= h and ¢ = gh whenever o vanishes.

Let A(+) be a feedback control, i.e., a Borel-measurable function from & into A.
We construct by induction the sequences of random variables (X,,, 6,, n=0,1,-- ) as
follows. For a given initial data x,

Xo=x, 0,=0, wy(t)=w(1),

X1 =X+ §( X, AM(X,), b, W),

B = 0, + 7(X,,, A(X,,), h, w,),

W, (1) =w(t+80,)—w(8,), n=0,1,---.

If instead of a feedback control A(:) we have a nonanticipating control (A,,n=
0,1, --), where A, is a random variable valued in A and adapted to (X,, - -, X,_1),
then the procedure (1.7) still works.

Let us define the function y(x, A, h) by

y=0 if0=o0<|glVh,
vy=1v(goe"Vh) if 0<|gWh=ga,

(1.6)

(1.7)

where

(1.9) vo(r) = (2r) ' In[e> +sign (r)(e*” —1)V?],
for r#0, —1=r=1. Note that y,(r)>0; moreover,

(1.10) 0<yr)—1=|r| Vre[-1,0)U(0,1].
This implies the inequality

(1.11) lo(x, M) y(x, A, h)—o(x, A)| =2|g(x, \)Wh,

for every x, A, h.

TueoREM 1.1. If we choose y(x, A, h) by (1.8), then for any feedback A(-) the
procedure (1.7) defines a Markov chain (X,,n=0,1,---) with transition probability
determined by

E(@(Xn11) | X, = x) =I1(A(x))e(x),
(1.12) (M) e(x)=3p(x+g(x, \h+a(x, A)y(x, A, h)Vh)
+30(x+g(x, A)h—o(x, A)y(x, A, h)\Vh),

and a sequence (0, n=0, 1, - - -) of stopping times relative to (F(t), t 2 0), with indepen-
dent increments v,=6,—0,_1,

(1.13) Er,=h ¥Yn=1,2,---.
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Proof. Without loss of generality, we may assume g and o constants. Consider
the two functions u(x) and v(x) defined by the equations

fc%u"+gu'=—1 in (§,8), u(—8)=u(8)=0,
100"+ gv'=0 in(=§,8), v(-8)=0, v(d)=1,
where 6 = oyvh. If —8 = —gh = 8, then
(1.14) Er(h,-)=u(-gh),  P(&(h,-)=gh+8)=uv(-gh),

with the notation (1.6). Since we can compute explicitly,

x 8 ea8+e—a8_zeax _ a&__e——ax
u(x)=—g*ﬁ-—g—(-—-——emﬁ_e_m5 ), a=2g0"" U(x)=m,
yielding
'yh e2ry+e—2ry_2e2r2 le‘y____e2r2 ~
u(—gh):h+7< ley__e—Zr'y ’ v(—gh)zm’ r=go 1\/}_"

Suppose we have chosen vy such that u(—gh)=h, i.e.,
(1.15) X e =22 =0, y>1.

Since

2r? 2r
e —e’”

l—v(~gh)=m,

the relation (1.15) implies v(—gh) =3, i.e.,
(1.16) Er(h,-)=h,  P(¢(h-)=gh+ay/h)=3,

whenever 0 <|g|vh = oy. Note that (1.16) still holds if we take y =1 for g =0 and that
(1.15) gives y = y,(r) as in (1.9), for 0<|g|vh = o, because y> 1.
If 0 = o <|g|vh, then the equalities (1.14) hold true for functions u and v satisfying
jo'u"+gu'=~1 in (-0, —8), u(—8)=0, u with polynomial growth,
10°0"+gv'=0 in (=%, —8), v(—8)=1, v with polynomial growth,

for g >0 and replacing the interval (—oo, —~8) by (8, +o0) if g <0. It is clear that v=1
and

8
u(x)= —5+——.
g gl

So
u(=gh)=h+|g|"'oyvh,

and y =0 is the right choice.

All of the above proves (1.12) and (1.13) after using standard facts on Brownian
motions. 0

Remark 1.1. If g=0 and o =1 then the construction (1.7) coincides with the
classic Skorokhod’s representation (cf. [35]).
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For a given feedback A(-) let us denote by (y"(¢, A(-)), t=0) and (A"(1), 1=0)
the processes

yuULA(N=X, if6,=t<8,.,, n=0,1

(1.17) , T
A(O=MX,) i 0,=1<0,,,, n=0,1,"",

where (X, 0,, n=0,1, - ) are defined by (1.7) with the choice (1.8) of function 7.

Note that these processes are adapted to (%(t), t=0) and piecewise constants on
stochastic intervals. This approach is different from the one used by Pardoux and Talay
[28]. Our partition is on the range, i.e., X, takes values in a variable grid of %, and
the time partition is chosen accordingly; our time intervals are random.

Now consider the controlled diffusion process (y(t) = y.(t, A"), = 0) given by the
stochastic equation (1.2) with initial data y(0)=x and control process A(t)=A"(1).

THEOREM 1.2. Let the assumption (1.1) and the choice (1.8) hold. Then for any
positive number p there exist two positive constants C, « depending only on p and the
constants C(g, o), K(g, o) of (1.1) such that

(1.18) E sup {|ly(t, \") =yi(t, A(-)IP e 12 0} = Ch™72,

uniformly for any feedback A(-) and x in R.
Proof. Based on the procedure (1.6), (1.7) we have

Xn+1 :Xn+g(Xn9 )\(Xn))(enﬂ-l_ Gn)+o-(Xn: )\)(W(Bn+1)“W(0n)), n :0’ 17 T,
which gives
xn=x+j " (" (1), A" (1) dt+J "o (" (1), A" (1)) dw(1),

where y"(t)=y"(t,A(+)) and A"(t) are the processes defined by (1.17). If we set

i t

g(y"(s),A"(s)) ds+‘[ o(y"(s) dw(s), 120,

0

qh(t)=x+J

0

then

q" ()= y" (1) = g(X,, M(X)) (= 0,) + (X, M(X, ) (w(t) —w(8,)) if 6,=1<8,,,.
Again, in view of the definition (1.6) we deduce
(1.19) lg"()—y"(D)=C(g, o)Wh V=0, 0<h=1,

where C(g, o) is the constant of the assumption (1.1).
Now, consider the process z(t) = y(t)—q"(t), with y(t) =y (1, A"),

dz(t) =[g(y(0), A"(1)) — g(y"(1), A*(1))] dt
+Ho(p(), A ")) =a(y" (D), A" ()] dw(r), =0, z(0)=0,
and apply [td’s formula to the function
ez, )=(B*+2)"?e™™,  «B,p>0,
to get
de(z(1), 1) ={pz(1)[g(¥(1), A" (1)) = g(¥" (1), A"(1))](B*+2°(1))
+3(pB*+p(p—DZ(NNa(y(1), A" (1)) = (3" (1), A\"(1))]?
— (B 2 (OPHB () e dr
+pz(D[a(y(0, A"(1) = o (y" (1), A"(D)I(B+ 22())"> 7 ™" dw(1).
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If we take a > a,,

(1.20) a,=psup{lg(x,A)—gx, A)](x—x)"
. +(pvDlo(x,A)—a(x, ) (x—x)"x#x"in R, A in A},

where v denotes the maximum, and
B=sup{lg"()-y"(N]: 120, in O}
then we obtain
de(z(1), ) =(a,—a)e(z(1), t) dt + dM,, t=0,
() =y" (O e =e(2(0),1), 120,

with M, being the martingale term. In virtue of (1.19) we deduce

t

E{|y(t)—yh(’)|peAm‘F(a—ap)J ly(s)—=y"(s)|" e ds}

0

(1.21)
=[C(g, o)Wh]” Vi=0, 0<h=1.

Next, by means of the stochastic inequality

=<} 1/2
: tgo} §3E{<J @*(t) dt)- }
0
we bound the martingale term

t 0 1/2
I dM, :téO}é3pK(g,0)<E{J o (z(1), 1) dz}) ,

{(z(1), D} =[C(g, oWR]" ™2 ), 120,

Hence we obtain (1.18) for 2a > a5, as in (1.20) and

E sup { ‘ Jl o(s) dw(s)

Esup{

C=C(g o)[1+3pK(g 0)2a—a,,) '],

where C(g, o) and K(g, o) are the constants of (1.1). 0
Remark 1.2. Notice that the constant «, defined by (1.20) is bounded by
p(pv1)K(g, o), the constant of (1.1). It is clear then that «, vanishes as p goes to zero.
Remark 1.3. Similarly, we can show for any =0 the estimate
(1.22) E{lys(t, A(-)) =y, A\(- DI €™} = (C¥(g, o) h+|x —x' |2,
where C(g, o), «, are the constants of (1.1), (1.20) and x, x’ belong to &, k in (0, 1],
and the feedback A(-) is arbitrary.

1.2. The linear equation. In this section we consider the case without controls,
i.e., the set A reduces to one element, and we drop it.
Recall the stochastic differential equation

(1.23) dy(t)=g(y()+ol(y(1)) dw(t), 120, y(0)=x,

where g, o are bounded and Lipschitz-continuous. For a bounded and uniformly
continuous function f we set

(1.24) u(x, t)=E{Jrf(yx(s)) ds}, Vxe®R, t=0.
0
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This function is the unique solution of the following partial differential equation that
is bounded and uniformly continuous:

(1.25) gu(x, t)=Lu(x, t)+f(x) VxeR, t>0, u(x,0)=0 VxeR
where 9, denotes the partial derivative in ¢t and L is the differential operator
(1.26) Lo(x, 1) =30%(x)a3¢(x, 1)+ g(x)a.p(x, 1).
The partial differential equation (PDE) (1.25) is understood in the Schwartz’ distribu-
tions sense. On the other hand, we set
wy(x, nh) = h ‘io E{f(X)}, n=0,1, -,

where (X, 0,,n=0,1, - ) is the sequence of Theorem 1.1. It is clear that

(1.27) u,(x, nh) = E{Je (1)) dt}, n=0,1,+--,

with the notation of Theorem 1.2. For convenience we set
up(x, t) =u,(x, nh) if nh=t<{(n+1)h
By means of Markov’s property, we can deduce
Vaun(x, t) = Lyu,(x, ) +f(x) YxeR, >0,
(1.28) u(x,0)=0 Vxe®R,

where L, is now the finite difference operator

Lip(x) = 5o+ g()h+ o(x)y(x, V)

(1.29)

+o(x+g(x)h—o(x)y(x, H9Vh)—2¢(x)] Vh in (0,1],
and
(1.30) Vh<p(t)=%[(p(t+h)—(p(t)] Vhin (0,1).

Note that x belongs to %, so our Markov chain has states in %. Actually, we
discretize first the time variable and then the state variable.
Denote by p(r) the modulus of continuity of f, i.e.,

(1.31) p(r)=sup{|f(x)—f(x")]: x, x'e R, |x - x| = r}.

THEOREM 1.3. Under the assumptions of Theorem 1.2, for any p, T > Q there exists
a constant C depending only on p, T, the Lipschitz constants of g, o, and the bound of f,
such that

(1.32) lu(x, t) —u,(x, 1)|= C[Vh+p(r)+(r 'Vh)’] Vr>0,
valid for any x in R, t in [0, T], h in (0,1].

Proof. In view of the representations (1.24) and (1.27) we have

lu(x, £) —un(x, )] = E{L |f(r(s) =F(" ()] dS} +C(f)E{|6, —tl}=T+11,
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where

If(x)—f(x)=C(f) VYx,x'eR.
Thus,

t

I=a'(e™— l)C(f)r"’E{J

. ly(s)=y"(s)” e~ dS}
+p(ry=a (e —1DC(f)Ci(r VR + Tp(r),
with a, C = C, being the constants of (1.18) in Theorem 1.2. Also,
E{|6,— )= h+E{|6,— nh[}= h+(E{|(r,~ h)+- - -+ (7, — B}
=h+(nE{(r,— h)’})"*<s h+ Cx/th,
where 7, =6, —6,_,, and C, is a constant such that
(1.33) E{(m;—h)}=(Ch)> Vhe(0,1].

It is clear that the above proves (1.32) provided we have established (1.33).
To show (1.33), we see that if ~6=—gh=8, 6=cyvh then the characteristic
function of =,

u(x, s)y=E{e™}, s> 0 fixed,
is the solution of the differential equation
Io*u"+gu' —su=0 in (=8,8), u(—8,s)=u(~8,s)=1,

and

E{(r)% =1—:(—gh, 0).

Hence, after some calculations we obtain (1.33). ]
Remark 1.4. Analogously to the above theorem, and by means of Remark 1.3, we
can prove that

(1.34) [, (x, ) —u(x', )| = CWR+p(r)+r " [h+|x—xT*1"} Vr>0

for any h in (0,1], x in &, t in [0, T] and some constant C depending only on the
bound of f, the Lipschitz constants of g, ¢ and the constants T, p > 0. Actually, we can
do better, i.e., in the estimates (1.22) and (1.34) we may have the right-hand side with
h =0, but this requires the use of another explicit Markov chain, the one used in § 1.3.

1.3. Fully nonlinear equation. Let us return to the control problem (0.1)-(0.5) for
one dimension, i.e., D is the whole real line &, A is some compact subset of &,
n=d =1 in (0.5). Recall that for any adapted control process (A(f), t=0) we obtain
the state process (y(1)=y.(t,A), t=0) as the solution of the stochastic differential
equation (1.2) with initial condition y(0) = x. Next, the cost functional is defined by

(1.35) J(x,/\)=E{JOOf(y(t),/\(t)) e_‘"dt},
0

and the optimal cost is

(1.36) u(x)=inf {J(x, A}: A any control process}.
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The associated HJB equation is
(1.37) au=inf {L(M)u+f(-,A): A€ A} in &,

which is indeed an ordinary differential equation in the real line, since L(A) is given

by (1.3). If the data are smooth and the operator is uniformly elliptic, then the HIB

equation (1.37) has one and only one solution with Lipschitz second derivative (cf.

Krylov [13]). In general we use either the viscosity solution (cf. Lions [20]) or the

maximum subsolution in the Schwartz’ distribution sense {cf. Lions and Menaldi [21]).
The approximate control is then

Jh(x,)t('))=EH f(yh(t),/\(y"(t)))xi‘(t)dt},
(1.38) 0
xi()=QQ+ah)y" if6,=t<6,,,, n=0,1,---,
where (y"(t) = y(t, A(+)), t=0) and (6,, n=0, 1, - - -) are defined by (1.17) and (1.7).

Note that

(1.39) Jh(x,/\(-)):E{h §f(X,,,)\(X,,))(1+a+ah)_”}.
The optimal cost is

(1.40) u,(x)=1inf {J,(x, A(+)): A(+) feedback control},
(1.41) au, =inf {L,(Mu, +f(-,A): AeA} in &

It is clear that an estimate of the type (1.18) will provide only a one-side bound
for the rate of convergence of u, toward u. Then we will modify the continuous time
control problem as follows.

To simplify the exposition we assume g, o Lipschitz-continuous in the control
variable, i.e.,

(1.42) |glx, \)—g(x, A+ |a(x, \)=a(x, AN=K|A =Xl VxeR, A, A'eA,

for some constant K = K(g, o), and we call A(-) an M-feedback control if A(-) is
Lipschitz-continuous, i.e.,

(1.43) A(x)-AXN=M|x—x'| VYx,x'eR
Consider the M-optimal cost
(1.44) u(x, M)=inf {J,(x, A(+)): A(-)M-feedback control},

for any M >0, M destined to become infinite.
It is clear that u(x, M)= u(x) and, under reasonable assumptions we will have

u(x, My->u(x) Vxe& as M-,

Moreover, sometimes the M-optimal cost is meaningful by itself.

THEOREM 1.4. Let the assumptions of Theorem 1.2 and (1.42) hold. Then for any
M, p>0 there exist two constants C(M), C >0 depending only on p, a, the bound of f,
and the constants of hypothesis (1.1); C(M) depends also on M and the K(g, o) of
(1.42), such that

u(x)—u,(x)= C[Vh+p(r)+(r VB VYr>0,
u,(x) —u(x, M)= C(M)[Vh+p(r)+(r"'Wh)'] Vr>0,
Sfor any x in &, hin (0, 1] and p(r) given by (1.31), uniformly for A in A.

(1.45)
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Proof. Starting from

u(x) —up(x)=sup {J(x, Ay) =S (x, A ) A0,
e =xysn=e " V=0

and in view of the estimate (1.18), we deduce the first part of (1.45) as in Theorem 1.3.
For the second part of (1.45) we use

up(x) = ul(x, M)=sup {J(x, A\(-))=J(x, A(+)): A(+) any M-feedback control}
and we prove
(1.46) E sup {{y(6, A(:)) = yi(t, A())P e 1 1= 0} = C(M)R"?,

as in Theorem 1.2, but now, C(M) depends also on the Lipschitz constant M of the
feedback control A(-), as well as on the constant K(g, o) of (1.42). Thus, we complete
the proof of the estimate (1.45). 0

Until now, we have used only estimates on the stochastic state equation to obtain
some bounds for the rate of convergence of the discrete HIB toward the continuous-time
HJB.

Now we will look at the approximation problem in a more analytic way.

Suppose ¢(x) is a smooth function; then we can write

1 1
(1.47) Lh(A)¢=%02J @"(++gh+tavh)(1—|t|) dt+gj o'(-+1tgh) dt
—1 0

where the primes denote derivatives and we must take y =11in(1.4), i.e., for g=g(x, A),
o=0(x, ),

(1.48) Lh()\)<p=-;:|:%go(~+gh+a'\/ﬁ)+%(p’(~+gh—0'\/;l_)—go(x):|.
First,
(1.49) IL(M)e(x)— Lixg(x)| = C,h"* ¥xeR, he(0,1],

and A in A, and some constant C, depending on the bounds of g, o, ¢”, and the
p-Holder constant of ¢”, i.e., the constant K = K (") satisfying

(1.50) lo"(x)—@"(x)|=K|x—x'|P Vx,x'eR,

for some exponent 0<p=1.
Let us define [¢], as the infimum of the set of all constant C satisfying

inf {L(\)e(p): [y —x|= CVR} = Ch™ = L,(\)g(x)

1.51
(1.31) ssup{L(A)o(y): |y —x|=CVh}+Ch"* Vhe(0,1],

for any x in A. It is clear that |¢|, can be bounded by the constant C, of (1.49).
However, here we can do better:

(i) [¢], is dominated by the bounds of the second derivative ¢" and the constants
C(g, o), K(g, o) of hypothesis (1.1).

(ii) If o=0(A), i.e., constant in x, then [¢], is dominated by the p-Holder
constant and the bound of the first derivative ¢’, and C(g, o), K(g, o).
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(iii) If g=0 and o =0(A), then [¢], is dominated by the bound of o and does
not depend on ¢.
Suppose that f is bounded continuous and for some constant C, K>0,0<p=1,

If, AD|=SC VxeR, AeA,

(1.52)

O, M) —f(x,M)|sK|x—x'|" Vx,x'eR, AecA,
and
(1.53) a > a,, the constant given by (1.20).

THeEOREM 1.5. Under the assumptions {1.1), (1.52), and (1.53) there exists a constant
C depending only on the constants C(g, o), K(g, ), C(f), K(f) of (1.1), (1.52), the
constant o of (1.53), and the value [u], with u being the maximum solution of the HJB
equations (1.37), such that

(1.54) lu(x)—u,(x)| = Ch*’? VxeR, he(0,1],

where u,(x) is solution of the discrete HIB equation (1.41) with the finite difference
operator (1.48).
Proof. We remark that the fact that [u], is finite is implicit. To check that the

discrete HIB equation (1.41) has a solution, we rewrite it as follows:
(1.55) w, =inf {15 (MDu, +hf(-,A): A €A} in R,
1.
IF(A) e =(1+ah) '[RL,(M)e — @],

and we note that the operator involved is a contraction map in the space of bounded
continuous functions on &.
First we will show that for some constants C, K >0 depending only on the

constants in the assumptions (1.1), (1.52), and (1.53) such that
lup,(X)|+Hu(x)|=C VxeXR,

(1.56)
Jup () — up (XD + | u(x) —u(x)| = K|x—x"P Vx,x'eR,

for any h in (0,1], 0<p=1, the same p as in (1.52). It is relatively easy to obtain
(1.50) for u from the stochastic representation (1.36); however, we prefer to use analytic
arguments to present the technique used.

Consider the function

(1.57) m(x, g, &)= (e?+x)¥? Vxe®,

for g, £ >0 fixed, and the solution u(x) of the HIB equation (1.37). To prove the
second part of (1.56) we look at the point (x,, y,) of R X R where the function

w(x, y)=u(x)—u(y)—Km(x—y,p,e)m(x+y,q,1)

attains its maximum value, for a fixed K to be selected later. We want to show that
w(Xq, o) =0 for an appropriate choice of K.

The extended operator
(158) LA )e(x,y) =30(x, Vel +o(x, Moy, \)el,
+302(y, Moy, +8(x, Mok +g(y, Mo},

is elliptic and satisfies

LOO)[u(x) = u()]= L(A)u(x) = L) u(y).
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After some calculations, we have
~ b
L(A)[m(x—y, p, e)m(x+y, q, l)]=5[0(x, A =a(y, M)

. m(x—ysp_za E)m(x+y7 q, 1)
Up—D(x—yPm(x—y,—2,e)+1]

+§[a<x, N +a(y, VPm(x—y,p,e)

m(x+y,1,q-2)
g=-D(x+y)Y’m(x+y, —2,1)]
+pglo(x, A)+a(y, M)lo(x, A)—a(y, A)]
(x=y)x+y)m(x-y,p=-2,¢)
“m(x+y,q-2,1)+plg(x,2)—g(yA)]
(x—y)m(x—y,p—2,e)m(x+y,q,1)
+qlglx, A)+g(y,A)]
(x+y)m(x—y,p,e)m(x+y, q—2,1),

which shows that

(1.59)  LQ)[m(x—y, p,e)m(x+y,q,1)]=(a,—qC)m(x -y, p, e)m(x+y, g, 1),

where «, is the constant defined by (1.20) and C is a constant independent of A, x,
¥, & p, and 0<<g <1, We choose ¢>0 such that « —a, +gC = ;> 0.
Now, by means of the maximum principle, we have L(A)w(x,, yo) =0, i.e.,

(1.60)  L(A)u(xe) = L(A)u(yo) = (@ — ap) Km(xo = yo, p, £)m(xo+ o, 1, q),
assuming that u is smooth and after using (1.59). But, from HJB equation (1.37) we
deduce
afu(xo) —u(yo)1=[K(f)+(a—ag)K]m(xo—yo, p, e)m(xo+yo, 1, q),
where K (f) is the p-Holder Lipschitz of f in (1.52). Hence, if we choose K = a5 ' K(f),
then we conclude that w(x,, y,) =0. Therefore, we should have
u(x)—u(y)= Km(x—y, p,e)m(x+y,q,1).

Because the constant K does not depend on ¢, g, we send ¢, g to zero to obtain the
second part of (1.56) for u, assuming that u is smooth.

Similarly, we show the Holder-continuous estimate for u,. In that case we use the
extended operator

Lo 1 =1 36705 0, 7000 o0 20, 70000 - 050
(1.61)
25, A) = +g(-, \)hta(-, A)Wh.

Note that if u is not smooth then we have to approximate u by a smooth function u,,
either by regularization, i.e., o+ ¢ replaces o, or by the so-called infimum convolution.
The proof of the first part of (1.56) uses a technique analogous to the above.

Let us prove the estimate (1.54). Consider the function

w(x, y) = uy(x) —u(y)— Cym(x—y, p, e)m(x+y, g, 1) — C,h""?
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for some constants C;, C,, g, £ >0 to be selected later, and let (x,, y;) be a point
where w(x, y) attains its maximum value. A calculation similar to the one to obtain
(1.59) shows that

(1.62) LyIm(x—y, p,e)ym(x+y, ¢, V1=(a, — rq)m(x -y, p, e)m(x+y, g, 1),

forany x, y in &, A in A, h, q in (0, 1], some constant r>0 and the same «, of (1.20).
We take g > O~such that o, ~rg=a —a,, as>0.
Because L,(A)w(xy, vo) =0 we deduce

Ly (A)up(x0) — L (M u(ye) = (@ = ag) Cym(xo = yo, p, £)m(Xo+ ¥0, 4, 1),
and in view of (1.51),
(1.63) Ly(Mu(yo) = L u(y)+[ul,h™?, yo=yil=[ul,Vh.
From the HIB equations satisfied by u, and u we obtain
alu,(xo) —u(y)]=sup {|f(x0, M) —f(y1, V)]s A € A}
+ (o — ) Cm(xy— yg, p,£)m(xy+ yo, q, 1)+[u],,h”/2,
and by means of (1.52), (1.56), (1.63) we get
|f(x0, A)=f (1, M+ [ulyo) —u(p)I =[K(f) + K(u)Im(xo— yo, P, €),
provided & =[u],Vh.
Collecting all, we have
afun(xo) —u(yo) I=[K(f)+ K(u) +(a —ao)Cilm(xo—yo, p, €)
~m(xo+yo, g, 1) +[ul,h">.
Hence, if we choose
Ci=ag [K(f)+K(w)], Cy=[ul,, e=[ul,Vh,
then w(x,, yo) =0, i.e.,
(1.64) u,(x)—u(y)=Cim(x—y, p,e)m(x+y, g 1)+ C,h*"?,

for any x,y in &, h, q in (0, 1]. Letting g vanish and taking x =y, we establish one
side of (1.54).

Reversing the role of u, and u we complete the proof. 0

Remark 1.5. Note that in the proof of Theorem 1.5 we assume implicitly that the
function u is smooth. However, once the estimates have been established, we can
remove that assumption on u, only [u], needs to be finite.

1.4. Extension and comments. The fact that the functions g, o are bounded is not
really important, we need only to assume linear growth, i.e.,

(1.65) lg(X)+|o(x)N=Ca+]x]) VxeR,
for some constant C = C(g, o). In this case the estimate (1.18) of Theorem 1.2 becomes
(1.66) E sup {{y.(t, AN =yi(e, A( )P e ™ t=0}= C(A+|x[)"?h?? VYxeR,

for some constants C, « > 0.
To adapt Theorem 1.1 to the time-dependent case, we modify the construction
(1.6), (1.7), for instance,
7(x, 1, A, h wy=inf{s=0: g(x, s+, A)(s—h)

(1.67)
+o(x, s+, A)w(s) equals £6(x, ¢, A, h)}.
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A generalization to dimension d =2 is possible but more delicate. Let us describe the
procedure. We write o as the matrix formed by the column vectors o, 05, -,
the drift vector g is expressed as g=g'e,+- - -+g"¢,, where g’ are scalars and ¢; are
vectors in the direction o3, i.e., o; = o'e;, o' is scalar. We want to define 7; as the first
time for which

g,

nos

gle(ri—h)+aew (r)=xa'y'Vhe,.

This is the same as cancelling the vector e¢; and defining 7; as in (1.6) with g, 