SOME ETA-IDENTITIES ARISING FROM THETA SERIES

GÜNTER KÖHLER

1. Introduction and results.

For Im(z) > 0 the Dedekind η -function is defined by the product formula

$$\eta(z) = e\left(\frac{z}{24}\right) \prod_{n=1}^{\infty} (1 - e(nz))$$

where we use the notation $e(w) = e^{2\pi i w}$ for any w in C. For rational integers m and n, $\left(\frac{m}{n}\right)$ denotes the Legendre-Jacobi-Kronecker symbol. In the following theorem I list seven identities for η . They will be derived from theta series identities in my previous paper [4].

THEOREM. The η -function satisfies the identities

(1)
$$\frac{\eta^{5}(2z)}{\eta^{2}(z)} = \sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{n}{3}\right) ne\left(\frac{n^{2}z}{3}\right),$$

(2)
$$\frac{\eta^5(z)}{\eta^2(2z)} = \sum_{n > 0 \text{ odd}} \left(\frac{n}{3}\right) ne\left(\frac{n^2 z}{24}\right),$$

(3)
$$\frac{\eta^2(z)\eta^2(4z)}{\eta(2z)} = \sum_{n=1}^{\infty} \left(\frac{n}{3}\right) ne\left(\frac{n^2z}{3}\right),$$

(4)
$$\frac{\eta^9(2z)}{\eta^3(z)\eta^3(4z)} = \sum_{n=1}^{\infty} \left(\frac{-2}{n}\right) ne\left(\frac{n^2z}{8}\right),$$

(5)
$$\frac{\eta^{13}(2z)}{\eta^{5}(z)\eta^{5}(4z)} = \sum_{n=1}^{\infty} \left(\frac{-6}{n}\right) ne\left(\frac{n^{2}z}{24}\right),$$

(6)
$$\frac{\eta^6(3z)}{\eta^2(6z)} = \frac{\eta^3(2z)\eta^2(9z)}{\eta(18z)} + 3\frac{\eta^3(18z)\eta^2(z)}{\eta(2z)},$$

(7)
$$\frac{\eta^{7}(6z)}{\eta(3z)} = \frac{\eta^{3}(4z)\eta^{9}(18z)}{\eta^{3}(9z)\eta^{3}(36z)} + \frac{\eta^{3}(36z)\eta^{9}(2z)}{\eta^{3}(z)\eta^{3}(4z)}.$$

The identities (1), (2) and (3) appear as special cases of the Macdonald identities in the theory of affine Lie algebras; see the introduction and the appendix in [6]. The identities (2) and (3) have already been deduced by Gordon (formulas (11) and (12) in [1]) from a "quintuple product identity", just as Euler's and Jacobi's identities for η and η^3 follow from the Jacobi triple product identity. Klyachko [3] exhibited a new proof of (2) as a corollary from his results on projective representations of symmetric groups over fields of characteristic p. Klyachko also rediscovered the identity

$$\frac{\eta(2z)\eta^2(3z)}{\eta(z)\eta(6z)} = \sum_{\substack{n \in \mathbb{Z} \\ n \equiv 1 \pmod{6}}} e\left(\frac{n^2z}{24}\right)$$

which is contained as an example in Kac [2] and which I cannot prove by my methods. There are more η -identities in the lists of examples in Kac [2] and in Lepowsky [5] which I cannot prove by my methods. On the other hand, these lists do not contain (4) or (5). I do not know whether the identities (4) to (7) are new.

The identities (1) to (5) resemble the Jacobi identity

$$\eta^{3}(z) = \sum_{n=1}^{\infty} \left(\frac{-1}{n}\right) ne\left(\frac{n^{2}z}{8}\right)$$

while the above mentioned Kac-Klyachko identity and several others in [2], [5] resemble the Euler identity

$$\eta(z) = \sum_{n > 0 \text{ odd}} \left(\frac{3}{n}\right) e\left(\frac{n^2 z}{24}\right).$$

The proof of the Theorem is summarized as follows. In a recent paper [4] I listed many modular forms on the theta group Γ_0 which are represented by theta series with a grössencharacter attached to an imaginary quadratic number field $\Omega(\sqrt{-d})$ with $d \in \{1, 2, 3, 6\}$. These results can as well be stated for the conjugate group $\Gamma_0(2)$. Some of the partial series of these theta series, representing modular forms of weight 2 or 3 on $\Gamma_0(2)$, turn out to split into a product of two simple series. One of the factors can be identified, by means of Jacobi's identity or some previously proved identity, with a well known function. In this way all of the results in the Theorem will follow.

The classical theta function

$$\vartheta(z) = \sum_{n=-\infty}^{\infty} e\left(\frac{n^2 z}{2}\right)$$

will occur in the proof. It is a modular form of weight $\frac{1}{2}$ on the theta group Γ_{ϑ}

which is generated by the transformations

$$z \to z + 2$$
 and $z \to -\frac{1}{z}$

of the upper half plane. The congruence group $\Gamma_0(2)$ consists of all transformations of the upper half plane with matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL_2(Z)$ satisfying $c \equiv 0 \pmod{2}$. We have

$$\Gamma_9 = M^{-1} \Gamma_0(2) M$$
 with $M(z) = \frac{1}{2} (z + 1)$.

It follows that f(z) is a modular form of weight k on Γ_{ϑ} if and only if g(z) = f(2z - 1) is a modular form of weight k on $\Gamma_0(2)$. The identity

$$\vartheta(2z-1) = \eta^2(z)/\eta(2z)$$

is well known and will be needed; it is due to Gauss.

2. Proofs.

2.1. From [4, Theorem 11] we know that

$$\vartheta_{2}^{9} \eta_{2}^{3}(z) + 8 \vartheta_{2}^{-\frac{3}{2}} \eta_{2}^{\frac{15}{2}}(z) = \Theta_{3}(\chi_{8}, z) = \frac{1}{4} \cdot \sum_{\mu} \chi_{8}(\mu) \mu^{2} e \left(\mu \bar{\mu} \frac{z}{16}\right)$$

where the summation is on all μ in the ring Z[i] of Gaussian integers and χ_8 is a Dirichlet character modulo 8 on Z[i] which can be defined by its values $\chi_8(i) = -1$, $\chi_8(3) = 1$, $\chi_8(2+i) = -i$ at the integers i, 3, 2+i whose residue classes modulo 8 generate the group of coprime residues modulo 8 in Z[i]. We obtain $9^{-\frac{3}{2}\eta^{\frac{15}{2}}}$ by restricting the summation to $\mu\bar{\mu} \equiv 5 \pmod{8}$. In that case we have $\chi_8(\bar{\mu}) = -\chi_8(\mu)$, and we can choose $\mu = a + bi$ uniquely among its associates such that a is positive and odd, and $b \equiv 2 \pmod{4}$. Since $\mu^2 - \bar{\mu}^2 = 4abi$, we get

$$9^{-\frac{3}{2}\eta^{\frac{15}{2}}(z)} = \sum_{\substack{m>0 \text{ odd} \\ n>0 \text{ odd}}} i\chi_8(m+2ni)mne\left(\left(m^2+4n^2\right)\frac{z}{16}\right)$$

We replace z by 2z - 1, use the Gauss identity, and obtain

$$\frac{\eta^{9}(2z)}{\eta^{3}(z)} = \sum_{\substack{m > 0 \text{ odd} \\ n > 0 \text{ odd}}} e^{\left(\frac{5 - m^{2} - 4n^{2}}{16}\right)} i \chi_{8}(m + 2ni)mne^{\left(\left(m^{2} + 4n^{2}\right)\frac{z}{8}\right)}.$$

The definition of γ_8 yields

$$e\left(\frac{5-m^2-4n^2}{16}\right)i\,\chi_8(m+2ni)=\left(\frac{-2}{m}\right)\cdot\left(\frac{-1}{n}\right)$$

for m, n odd. Thus the double series splits into a product of simple series,

$$\frac{\eta^{9}(2z)}{\eta^{3}(z)} = \sum_{m=1}^{\infty} \left(\frac{-2}{m}\right) me\left(\frac{m^{2}z}{8}\right) \cdot \sum_{n=1}^{\infty} \left(\frac{-1}{n}\right) ne\left(\frac{n^{2}z}{2}\right).$$

The series on n is $\eta^3(4z)$. This proves (4).

2.2. From [4, Theorem 20] we know that

$$4\sqrt{-6}\vartheta^{\frac{5}{2}}\eta^{\frac{7}{2}}$$
 and $8\sqrt{-6}\vartheta^{\frac{1}{2}}\eta^{\frac{11}{2}}$

are components in a theta series

$$\Theta_3(\varphi_{24}, z) = \frac{1}{2} \sum_{\mu} \varphi_{24}(\mu) \mu^2 e \left(\mu \bar{\mu} \frac{z}{48} \right)$$

attached to the field $Q(\sqrt{-6})$. Here, μ runs through a set I of ideal numbers for this field, and φ_{24} is a certain character of the group of coprime residue classes modulo 24 in I. We obtain $9^{\frac{5}{2}}\eta^{\frac{7}{2}}$ by restricting the summation to all $\mu \equiv m + n\sqrt{-6}$ which satisfy $\mu\bar{\mu} \equiv 7 \pmod{24}$, i.e., $m \equiv \pm 1 \pmod{6}$ and $n \equiv 1 \pmod{2}$. For these μ we have $\varphi_{24}(\bar{\mu}) = -\varphi_{24}(\mu)$, and from $\mu^2 - \bar{\mu}^2 = 4mn\sqrt{-6}$ we get

$$\vartheta_{2}^{\frac{5}{2}\eta_{2}^{\frac{7}{2}}}(z) = \frac{1}{8\sqrt{-6}} \sum_{\mu\bar{\mu} \equiv 7(24)} \varphi_{24}(\mu)\mu^{2}e\left(\mu\bar{\mu}\frac{z}{48}\right)$$

$$= \sum_{\substack{m,n > 0 \\ 160 \ n=1(2)}} \varphi_{24}(m+n\sqrt{-6})mne\left(\left(m^{2}+6n^{2}\right)\frac{z}{48}\right).$$

We replace z by 2z - 1 and obtain

$$\eta^5(z)\eta(2z) =$$

$$= \sum_{\substack{m,n>0\\m=+1(6)\\m=1}} e\left(\frac{7-m^2-6n^2}{48}\right) \varphi_{24}(m+n\sqrt{-6}) mne\left(\left(m^2+6n^2\right)\frac{z}{24}\right).$$

The definition of φ_{24} yields

$$e\left(\frac{7-m^2-6n^2}{48}\right)\varphi_{24}(m+n\sqrt{-6}) = \left(\frac{m}{3}\right)\left(\frac{-1}{n}\right)$$

for m, n as in the summation. Thus the double series splits into a product of simple series,

$$\eta^{5}(z)\eta(2z) = \sum_{m>0 \text{ odd}} \left(\frac{m}{3}\right) me\left(\frac{m^{2}z}{24}\right) \cdot \sum_{n=1}^{\infty} \left(\frac{-1}{n}\right) ne\left(\frac{n^{2}z}{4}\right).$$

The series on n is $\eta^3(2z)$. This proves (2).

Identity (2) can also be deduced, essentially in the same way, from a formula for $\theta^{\frac{7}{2}\eta^{\frac{1}{2}}}$ in [4, Theorem 19]. Here, a theta series of weight 2 appears which is attached to another character modulo 24 on I.

Dealing now with $9^{\frac{1}{2}}\eta^{\frac{11}{2}}$ in the same way, we obtain

$$\vartheta^{\frac{1}{2}}\eta^{\frac{11}{2}}(z) = \sum_{\substack{m,n > 0 \\ m \equiv 1(2), n \equiv \pm 1(3)}} \varphi_{24}(m\sqrt{3} + 2n\sqrt{-2}) mne\left(\left(3m^2 + 8n^2\right)\frac{z}{48}\right)$$

and

$$\eta(z)\eta^{5}(2z) =$$

$$= \sum_{\substack{m,n>0\\ m \equiv 1(2), n \equiv \pm 1(3)}} e\left(\frac{11 - 3m^{2} - 8n^{2}}{48}\right) \varphi_{24}\left(m\sqrt{3} + 2n\sqrt{-2}\right) \operatorname{mne}\left(\left(3m^{2} + 8n^{2}\right)\frac{z}{24}\right)$$

$$= \sum_{m=1}^{\infty} \left(\frac{-1}{m}\right) me\left(\frac{m^{2}z}{8}\right) \cdot \sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{n}{3}\right) ne\left(\frac{n^{2}z}{3}\right).$$

This proves (1).

2.3. The identity (1) can also be deduced from a formula for $\vartheta^{-1}\eta^{5}$ in [4, Theorem 12]. According to this theorem we have

$$\vartheta^{3}\eta(z) + 4\vartheta^{-1}\eta^{5}(z) = \Theta_{2}(\chi_{12}, z) = \frac{1}{4} \sum_{\mu} \chi_{12}(\mu) \,\mu e\left(\mu \bar{\mu} \frac{z}{24}\right)$$

where μ runs through Z[i] and χ_{12} is a certain Dirichlet character modulo 12 on Z[i]. We obtain $\vartheta^3 \eta$ by restricting the summation to $\mu \bar{\mu} \equiv 1 \pmod{12}$. In that case we can choose $\mu = a + bi$ among its associates such that a is positive and either $a \equiv \pm 1 \pmod{6}$, $b \equiv 0 \pmod{6}$, or $a \equiv 3 \pmod{6}$, $b \equiv \pm 2 \pmod{6}$. Combining the contributions of μ and $\bar{\mu}$, looking at the definition of χ_{12} , and replacing z by 2z - 1, we get

$$\frac{\eta^{6}(z)}{\eta^{2}(2z)} = \sum_{\substack{m > 0 \\ m \equiv \pm 1(6)}} \left(\frac{-1}{m}\right) me\left(\frac{m^{2}z}{12}\right) \sum_{n \in \mathbb{Z}} (-1)^{n} e(3n^{2}z) + 3 \sum_{m=1}^{\infty} \left(\frac{-1}{m}\right) me\left(\frac{6m^{2}z}{8}\right) \sum_{\substack{n \in \mathbb{Z} \\ n \equiv \pm 1(3)}} (-1)^{n} e\left(\frac{n^{2}z}{3}\right).$$

From Jacobi's identity we infer that

$$\sum_{\substack{m>0\\n\equiv\pm 1(6)}} \left(\frac{-1}{m}\right) me\left(\frac{m^2z}{12}\right) = \eta^3\left(\frac{2z}{3}\right) + + 3\eta^3(6z).$$

Similarly, the series on n can be expressed by values of ϑ . Thus a final replacement of z by 3z yields the identity (6).

2.4. From [4, Theorem 13] we know that

$$\vartheta^{5}\eta(z) + 8\vartheta\eta^{5}(z) = \Theta_{3}(\tilde{\chi}_{12}, z) = \frac{1}{4} \sum_{\mu} \tilde{\chi}_{12}(\mu) \mu^{2} e\left(\mu \bar{\mu} \frac{z}{24}\right)$$

where μ runs through Z[i] and $\tilde{\chi}$ is another Dirichlet character modulo 12 on Z[i]. We obtain $\vartheta \eta^5$ by restricting the summation to $\mu \bar{\mu} \equiv 5 \pmod{12}$. In that case we have $\tilde{\chi}_{12}(\bar{\mu}) = -\tilde{\chi}_{12}(\mu)$, and we can choose $\mu = a + bi$ uniquely among its associates such that

$$a > 0$$
, $a \equiv \pm 1 \pmod{6}$, $b \equiv \pm 2 \pmod{6}$.

Combining the contributions of μ and $\bar{\mu}$, replacing z by 2z-1, and looking at the definition of $\tilde{\chi}_{12}$, we get

$$\eta^{2}(z)\eta^{4}(2z) = \sum_{m>0 \text{ odd}} \left(\frac{m}{3}\right) me\left(\frac{m^{2}z}{12}\right) \sum_{n=1}^{\infty} \left(\frac{n}{3}\right) ne\left(\frac{n^{2}z}{3}\right).$$

Because of (2), the series on m is $\eta^5(2z)/\eta^2(4z)$. This proves (3).

2.5. From [4, Theorem 15] we know that

$$249^{-\frac{1}{2}\eta^{\frac{13}{2}}}$$
 and $169^{-\frac{5}{2}\eta^{\frac{17}{2}}}$

are components in a theta series

$$\Theta_3(\chi_{24}, z) = \frac{1}{4} \sum_{\mu} \chi_{24}(\mu) \mu^2 e^{\left(\mu \bar{\mu} \frac{z}{48}\right)}$$

where μ runs through Z[i] and χ_{24} is a certain Dirichlet character modulo 24 on Z[i]. We obtain $\vartheta^{-\frac{1}{2}}\eta^{\frac{13}{2}}$ by restricting the summation to $\mu\bar{\mu}\equiv 13\pmod{24}$. In that case we have $\chi_{24}(\bar{\mu})=-\chi_{24}(\mu)$, and we can choose $\mu=a+bi$ uniquely among its associates such that a is positive and either $a\equiv \pm 1\pmod{6}$, $b\equiv 6\pmod{12}$, or $a\equiv 3\pmod{6}$, $b\equiv \pm 2\pmod{12}$. Combining the contributions of μ and $\bar{\mu}$, replacing z by 2z-1, and looking at the definition of χ_{24} , we get

$$\frac{\eta^{7}(2z)}{\eta(z)} = \sum_{\substack{m>0\\ m\equiv \pm 1(3)}} \left(\frac{-2}{m}\right) me\left(\frac{m^{2}z}{24}\right) \sum_{n=1}^{\infty} \left(\frac{-1}{n}\right) ne\left(\frac{3n^{2}z}{2}\right) + \sum_{m=1}^{\infty} \left(\frac{-2}{m}\right) me\left(\frac{3m^{2}z}{8}\right) \sum_{\substack{n>0\\ n\equiv \pm 1(3)}} \left(\frac{-1}{n}\right) ne\left(\frac{n^{2}z}{6}\right).$$

As in subsection 2.3, the series on n can be expressed by values of η^3 . Similarly, we use identity (4) to express the series on m by combinations of η -values. Thus a final replacement of z by 3z yields the identity (7).

Now the summation in $\Theta_3(\chi_{24}, z)$ is restricted to $\mu \bar{\mu} \equiv 17 \pmod{24}$. Then the same procedure as above yields

$$\frac{\eta^{11}(2z)}{\eta^{5}(z)} = \sum_{m=1}^{\infty} \left(\frac{-6}{m}\right) me\left(\frac{m^{2}z}{24}\right) \sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{n}{3}\right) ne\left(\frac{2n^{2}z}{3}\right).$$

Because of (1), the series on n is $\eta^5(4z)/\eta^2(2z)$. This proves (5).

3. Remarks.

3.1. There are some more identities which can be deduced from the results in [4] and which express combinations of η -values explicitly as Fourier series. However, these identities concern non-cusp forms and look less spectacular. Two examples of this kind are

$$\frac{\eta^8(2z)}{\eta^4(z)} = \sum_{n>0 \text{ odd}} \left(\sum_{d|n} d\right) e\left(\frac{nz}{2}\right),$$

$$\frac{\eta^{12}(2z)}{\eta^6(z)} \sum_{\substack{n>0 \\ n \equiv 3(4)}} \left(-\frac{1}{8} \sum_{d|n} \left(\frac{-1}{d}\right) d^2\right) e\left(\frac{nz}{4}\right).$$

In the theta series of section $\underline{2}$ we can restrict the summation to subseries in which the character-values at μ and $\bar{\mu}$ agree. Then we obtain identities which express combinations of η -values as double series which do not split into a product of two simple series, but which nevertheless may be of some interest. For example, if we restrict the summation in $\Theta_3(\chi_{24},z)$ to $\mu\bar{\mu}\equiv 5\,(\text{mod }24)$ then we get the identity

$$\frac{\eta^{7}(z)}{\eta(2z)} = \sum_{m,n>0 \text{ odd}} \left(\frac{-3}{m}\right) \left(\frac{6}{n}\right) \frac{4m^{2} - n^{2}}{3} e\left(\left(4m^{2} + n^{2}\right) \frac{z}{24}\right).$$

3.2. Several easy consequences can be deduced from the Theorem. For example, it follows from (1), (2), (3) that

$$\frac{\eta^5(2z)}{\eta^2(z)} + \frac{\eta^2(z)\eta^2(4z)}{\eta(2z)} = 2\frac{\eta^5(8z)}{\eta^2(16z)},$$
$$\frac{\eta^5(2z)}{\eta^2(z)} - \frac{\eta^2(z)\eta^2(4z)}{\eta(2z)} = 4\frac{\eta^2(4z)\eta^2(16z)}{\eta(8z)}.$$

3.3. We can also deduce some identities for the representation of integers by ternary quadratic forms. Let us write

$$(\eta^{3}(2z))^{3} = \eta^{3}(z) \cdot \eta^{3}(4z) \cdot \frac{\eta^{9}(2z)}{\eta^{3}(z)\eta^{3}(4z)} = \frac{\eta^{5}(z)}{\eta^{2}(2z)} \cdot \frac{\eta^{5}(4z)}{\eta^{2}(2z)} \cdot \frac{\eta^{13}(2z)}{\eta^{5}(z)\eta^{5}(4z)}.$$

Here we insert (1), (2), (4), (5), and Jacobi's identity, and we compare coefficients. Then we obtain

$$\sum_{x^2+y^2+t^2=n} \left(\frac{-1}{xyt}\right) xyt = \sum_{x^2+4y^2+t^2=2n} \left(\frac{-1}{xy}\right) \left(\frac{-2}{t}\right) xyt = \sum_{x^2+16y^2+t^2=6n} (-1)^{y-1} \left(\frac{xy}{3}\right) \left(\frac{-6}{t}\right) xyt$$

where x, y, t run through all positive integers which satisfy the stated equalities. These identities can be used to check the results against errors. Similarly, we write

$$(\eta(2z))^2 \cdot \eta^3(2z) = (\eta(4z))^2 \cdot \frac{\eta^5(2z)}{\eta^2(4z)} = (\eta(z))^2 \cdot \frac{\eta^5(2z)}{\eta^2(z)}$$

and use (1), (2) and Euler's and Jacobi's identity. This yields

$$\sum_{x^2+y^2+3t^2=n} \left(\frac{3}{xy}\right) \left(\frac{-1}{t}\right) t = \sum_{2x^2+2y^2+t^2=n} \left(\frac{3}{xy}\right) \left(\frac{t}{3}\right) t =$$

$$\sum_{x^2+y^2+8t^2=2n} (-1)^{t-1} \left(\frac{3}{xy}\right) \left(\frac{t}{3}\right) t$$

where x, y, t run through positive integers and x, y are odd.

3.4. Jacobi's identity for η^3 can also be recovered from the results in [4]: use the formula for $\vartheta^{\frac{5}{2}}\eta^{\frac{3}{2}}$ in [4, Theorem 16].

REFERENCES

- B. Gordon, Some identities in combinatorial analysis, Quart. J. Math. Oxford Ser. (2) 12 (1961), 285-290.
- V. G. Kac, Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Adv. in Math. 30 (1978), 85–136.
- A. A. Klyachko, Modular forms and representations of symmetric groups, J. Sov. Math. 26 (1984), 1879–1887.
- 4. G. Köhler, Theta series on the theta group, Abh. Math. Seminar Univ. Hamburg 58 (1988), 15-45.
- 5. J. Lepowsky, Macdonald-type identities, Adv. in Math. 27 (1978), 230-234.
- 6. I. G. Macdonald, Affine root systems and Dedekind's n-function, Invent. Math. 15 (1972), 91-143.

MATHEMATISCHES INSTITUT UNIVERSITÄT WÜRZBURG AM HUBLAND D-8700 WÜRZBURG WEST GERMANY