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SOME ETA-IDENTITIES ARISING FROM THETA SERIES
GUNTER KOHLER

1. Introduction and results.

For Im(z) > 0 the Dedekind n-function is defined by the product formula

n(z) = e( > H (1 — e(nz)

where we use the notation e(w) = ™" for any win C. For rational integers m and
n, (gz_) denotes the Legendre-Jacobi-Kronecker symbol. In the following the-
n

orem I list seven identities for 5. They will be derived from theta series identities in
my previous paper [4].

THEOREM. The n-function satisfies the identities
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The identities (1), (2) and (3) appear as special cases of the Macdonald identities
in the theory of affine Lie algebras; see the introduction and the appendix in [6].
The identities (2) and (3) have already been deduced by Gordon (formulas (11)
and (12) in [1]) from a “quintuple product identity”, just as Euler’s and Jacobi’s
identities for # and n> follow from the Jacobi triple product identity. Klyachko
[3] exhibited a new proof of (2) as a corollary from his results on projective
representations of symmetric groups over fields of characteristic p. Klyachko
also rediscovered the identity
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n=1(mod6)

which is contained as an example in Kac [2] and which I cannot prove by my
methods. There are more n-identities in the lists of examples in Kac [2] and in
Lepowsky [5] which I cannot prove by my methods. On the other hand, these
lists do not contain (4) or (5). I do not know whether the identities (4) to (7) are
new.

The identities (1) to (5) resemble the Jacobi identity

ro- £(5)(5)

while the above mentioned Kac-Klyachko identity and several others in [2], [5]
resemble the Euler identity

3 n?z
= %, (z> ¢ (ﬁ)

The proof of the Theorem is summarized as follows. In a recent paper [4]
Ilisted many modular forms on the theta group I'g which are represented by theta
series with a grossencharacter attached to an imaginary quadratic number field

Q(\/ —d)with de{1,2,3, 6}. These results can as well be stated for the conjugate
group I'y(2). Some of the partial series of these theta series, representing modular
forms of weight 2 or 3 on I'y(2), turn out to split into a product of two simple
series. One of the factors can be identified, by means of Jacobi’s identity or some
previously proved identity, with a well known function. In this way all of the
results in the Theorem will follow.

The classical theta function

- 1)

n= -

will occur in the proof. It is a modular form of weight 4 on the theta group I'y



SOME ETA-IDENTITIES ARISING FROM THETA SERIES 149
which is generated by the transformations
1
z—>z+2andz—» ——
z

of the upper half plane. The congruence group I'y(2) consists of all transform-

. . b\ . o
ations of the upper half plane with matrices (Z d) in SL,(2) satisfying
¢ = O(mod 2). We have

Ig = M~ 'T,(2)M with M(z) = %(z +1).

It follows that f(z) is a modular form of weight k on Iy if and only if
g(z) = f(2z — 1) is a modular form of weight k on I'y(2). The identity

82z — 1) = n*(2)/n(22)

is well known and will be needed; it is due to Gauss.

2. Proofs.
2.1. From [4, Theorem 11] we know that

93 _3 15 1 _Z
I2n2(z) + 89" 2(2) = Os(xs,2) = z'ZXs(u)uze <H#E>
"

where the summation is on all u in the ring Z[i] of Gaussian integers and yg is
a Dirichlet character modulo 8 on Z[i] which can be defined by its values
1) = —1, xs(3) =1, x5(2 + i) = —i at the integers i, 3, 2 + i whose residue
classes modulo 8 generate the group of coprime residues modulo 8 in Z[i]. We

obtain 9‘%1112—5 by restricting the summation to ujt = 5(mod 8). In that case we
have yg(it) = — xs(n), and we can choose u = a + bi uniquely among its associates
such that a is positive and odd, and b = 2(mod 4). Since u?> — i* = 4abi, we get

8- 3'5(z) = Y. ixg(m + 2niymne ((m2 + 4n2>—z—>
m>0odd 16
n>0odd
We replace z by 2z — 1, use the Gauss identity, and obtain
9 2 2
n°(22) (S—m -4n>. . (( 2 2)2)
— = el ————— Jiyxg(m + 2ni)mne| | m* + 4n” )= ).
P@ "\ 16 )t 8
n>0o0dd

The definition of yg yields

. 2\ /-1
e<5 m16 . )ix”(m”ni):(—m_).(#n*)
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for m,n odd. Thus the double series splits into a product of simple series,
9 @ 2 2
22 _ s (Z2),("2). 5 (L) (22
7@ ‘,.g,( w )"\ s ) ) )
The series on n is n3(4z). This proves (4).

2.2. From [4, Theorem 20] we know that

4./—693y% and 8./ — 69557

are components in a theta series

1 _z
O3(024,7) = 3 X @24(W)’e (mt ;@)
"

attached to the field 0(\/——6). Here, p runs through a set I of ideal numbers for
this field, and ¢, is a certain character of the group of coprime residue classes
modulo 24 in I. We obtain S%n% by restricting the summation to all
u=m+ n\/—_6 which satisfy up = 7(mod24), i.e, m= +1(mod6) and
n=1(mod2). For these u we have ¢,4()) = —@,4(1), and from
pr—pt= 4mn\/:z we get

5 7 1 z
82n2(z) = ®24(1) 2e(uﬁ——>
) 8,/—6 m‘tEZ7(24) 210K 48

) ®24(m + ny/ —6)mne((m2 + 6n2> 4i8>

m,n>0
m= 1 1(6),n=1(2)

We replace z by 2z — 1 and obtain
n’(2In(2z) =
7 — 2__62
= Yy e(—-—%s—n> ©24(m + ny/ —6)mne((m2 + 6n2> -2%>
m= tTZ’é;,?a 12)

The definition of ¢,, yields

— m2 2 _
(i ns=- (5)(5)

n

for m, n asin the summation. Thus the double series splits into a product of simple

series,
2 0 — 1 2
Wil = m>§odd <I;) e (1"2—;—) - ngl (—n—) " <_n4_z) .

The series on n is #3(2z). This proves (2).
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Identity (2) can also be deduced, essentially in the same way, from a formula for

S%q% in [4, Theorem 19]. Here, a theta series of weight 2 appears which is attached
to another character modulo 24 on I.

. ool 11 .
Dealing now with 3212 in the same way, we obtain

S2y2(z) = Y @24my/3 + 2./ —2) mne <<3m2 + 8n2) Zzg)

m,n>0
m=1(2),n=11(3)

and

n(zn*(2z) =

11 _ 2 __ 2
Y e (—%ﬂ)%‘,(m 3+2n/— 2)mne<<3m2 + 8n2)522>

mn>0
m=1(2),n= +£1(3)

EG(5) B (3)(5)

This proves (1).

2.3. The identity (1) can also be deduced from a formula for 3~ '5° in [4,
Theorem 12]. According to this theorem we have

1
$n(2) + 497'1°(2) = Ox(x12,2) = Zzhz(ﬂ)l‘e (”ﬁi%)

where u runs through Z[i] and x, , is a certain Dirichlet character modulo 12 on
Z[i]. We obtain 3y by restricting the summation to ufi = 1 (mod 12). In that case
we can choose u = a + bi among its associates such that a is positive and either
a= +1(mod6), b =0(mod6), or a =3(mod6), b = +2(mod 6). Combining
the contributions of u and i, looking at the definition of y, ,, and replacing z by
2z — 1, we get

6 _ 2
:2((22.:) 2 (‘l)'"e<wll—2z>z(_”"e(3"zz)

m>0 m neZ
m= 1 1(6)
© (-1 6m?z n’z
_— —1)el — ).
+3m2='-:l( m )me< 8 ) n§e:Z ( )e< 3 )

n=11(3)

From Jacobi’s identity we infer that

Y (-:—n}-) me (mTzz_z_) =n (%Z—) + + 31%(62).
m>0

m=11(6)

Similarly, the series on n can be expressed by values of §. Thus a final replacement
of z by 3z yields the identity (6).
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2.4. From [4, Theorem 13] we know that

1
$n(z) + 89n°(2) = O5(712,2) = 22212(#)#29 (,uﬁ ’2‘24—)

where u runs through Z[i] and ¥ is another Dirichlet character modulo 12 on
Z[i]. We obtain 97° by restricting the summation to ufi = 5(mod 12). In that case
we have 7,,(i) = —J;.(w), and we can choose y = a + bi uniquely among its
associates such that

a>0,a= +1(mod6), b = +2(mod6).

Combining the contributions of u and fi, replacing z by 2z — 1, and looking at the
definition of ¥, ,, we get

2 © 2
sortr= 3, (Sm() 5 6)+(5)

Because of (2), the series on m is #°(2z)/n%(4z). This proves (3).
2.5. From [4, Theorem 15] we know that

17

249~y and 169342

are components in a theta series

1 _z
O3(X24,2) = 7Y X2aWp’e| pii—
44 48

where u runs through Z[i] and y,, is a certain Dirichlet character modulo 24 on

Z[i]. We obtain 8"%n173 by restricting the summation to uji = 13(mod 24). In
that case we have y,,(1) = —x,4(), and we can choose y = a + bi uniquely
among its associates such that a is positive and either a = +1(mod 6),
b = 6(mod 12),0ra = 3(mod 6), b = +2(mod 12). Combining the contributions
of u and [, replacing z by 2z — 1, and looking at the definition of y,,, we get

n'(2z) =2 mz\ & (-1 3n?z
rER (m)"’e(%)n;( n )"e< 2 )
m=+1(3)
® (-2 3m?z -1 n’z
+m§l (T)me< 8 ) ngo (T>ne<T)
13

n=11(3)

As in subsection 2.3, the series on n can be expressed by values of n>. Similarly, we
use identity (4) to express the series on m by combinations of y-values. Thus a final
replacement of z by 3z yields the identity (7).
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Now the summation in @ 5(),4, z) is restricted to uit = 17 (mod 24). Then the
same procedure as above yields

"'z & (-6 m?z\ & w11 2n%z
o~ £ ()5 £ oo (5)=(5)

Because of (1), the series on n is n°(4z)/4%(2z). This proves (5).

3. Remarks.

3.1. There are some more identities which can be deduced from the results in
[4] and which express combinations of n-values explicitely as Fourier series.
However, these identities concern non-cusp forms and look less spectacular. Two
examples of this kind are

n%Q2) _ nz
’14(2) - n>§md <d§ d) e( 2 ),

122 1 -1
e % (52(G)e)(%)
n=3(4)

In the theta series of section 2 we can restrict the summation to subseries in
which the character-values at u and i agree. Then we obtain identities which
express combinations of n-values as double series which do not split into a prod-
uct of two simple series, but which nevertheless may be of some interest. For
example, if we restrict the summation in @ 5(x,4, z) to ujt = 5(mod 24) then we get
the identity

1"(z) —3\/6\4m? — n? ., 5\ 2
n22) Z.,d( m )73 A\
3.2. Several easy consequences can be deduced from the Theorem. For

example, it follows from (1), (2), (3) that
n°2z) | n*(2n*@z) _ ., n°@82)

n*(z) n2z) T n*(162)°
n*Q22) _ n’(An’4e) _ , n*(42n’(162)
n*(z) n(2z) n8z)

3.3. We can also deduce some identities for the representation of integers by
ternary quadratic forms. Let us write
n°(22) n*(z) n’(4z)  n'3Q22)

(e = e 10D s = v e Ten
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Here we insert (1), (2) , (4), (5), and Jacobi’s identity, and we compare coefficients.
Then we obtain

-1 —1\/ -2
— ) xyt = — )|\ )Xt =
x2+y;-t2=n<xyt) Y x2+4y;t2=2n<xy>( t > Y

) (—l)y*‘@)(—_—G)xw
x2+16yZ +12=6n 3 t

where x, y, t run through all positive integers which satisfy the stated equalities.
These identities can be used to check the results against errors. Similarly, we write

n°(22) _ n°(22)
n*(4z) n(2)

and use (1), (2) and Euler’s and Jacobi’s identity. This yields

3 —1 3 t
x2+y2;312=n<xy)< t ) 2x2+2§+12=n<xy><3)
3 t
o (5)6):
x2+y2+28t2=2n ) Xy 3

where x, y, t run through positive integers and x, y are odd.

n(22))* - n*(22) = (n(42))*- (n(z))*-

3.4. Jacobi’s identity for > can also be recovered from the results in [4]: use

the formula for .9%17% in [4, Theorem 16].
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