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Synopsis 

The X-Y model of a linear chain of spins *, introduced by Lie b, Schu It z and 

Mat tis i), is studied in the presence of a magnetic field h along the z axis. In section 

A the Hamiltonian is diagolalized in terms of fermion operators. In section B the mag- 

netization along the z axis is calculated for arbitrary field and temperature. We find 

that there is no spontaneous magnetization and that only at zero temperature there 

is a phase transition of the second kind, the magnetic susceptibility being of the form 

c.lnlh - h,l in the neighbourhood of a critical field h,. In section C we derive an 

expression for the time-dependent correlation function &(B, t) of the z-components 

of spins separated by an arbitrary number R of lattice sites. Starting from this ex- 

pression we will show that there is no long-range order of the z components of the spins 

in the absence of the field and that in the presence of a field the long-range order 

corresponds with the magnetization. Furthermore we discuss the time-dependent 

autocorrelation function of the z component of one single spin, of the total magnet- 

ization of the chain, and the possibility that Im &(B, t) satisfies a kind of wave 

equation, for this special case, as has been proposed by Ruygroks) for more general 

cases. In section D the isolated chain is assumed to be in thermal equilibrium in a 

certain magnetic field, after which the field is suddenly changed by an arbitrary 

amount, and an exact expression is derived for the temporal development of the 

z component of the magnetization, which is found to reach an equilibrium value as 

time goes to infinity. In section E this exact time development is compared with the 

exact solution of the Kubo formalisms) and it is proved analytically that the Kubo 

formula holds for high temperatures and small perturbation, but some numerical cal- 

culations show that the development into powers of the perturbation converge very 

slowly. We conclude with a short discussion of the approach of Ma z u r and T e r w i e 1 4, 

to the relaxation of more general spin systems, in connection with our exact results on 

the chain. 

Introd~ctioti. In 1961 Lieb, Schultz and Mattisi) introduced a model 

for an antiferromagnetic linear chain of spins 3, with nearest neighbour 

interaction, which they called the X-Y model. They considered a chain of 

N spins +, governed by the Hamiltonian: 

H = 2J; [(I + y) S;S;+:+1 + (1 - y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS#'+,l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ>O 
i=l 

where the operators .Sj are half the Pauli spin matrices, and y is a parameter 

characterizing the degree of anisotropy of the interaction in the xy plane. 
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In our case a magnetic fiel(l I/  along the 2 axis is added giving rise to an 

extra term 

in the Hamiltonian. M?‘c will choose 0 G y -‘ ; 1 and J < 0, and since we will 

only use the fact that J is greater than zero, we take J = id. Furthermore 

we will consider the chain to be cyclic, i.e. S& , 1 = Sf. 

It is possible to determine exactly some equilibrium and non-equilibrium 

properties of this system in the thermodynamic limit. In equilibrium one 

is interested in calculating the magnetization per spin in the z direction as 

a function of 8, y and h, (@ = l/ KT), and in the correlation function 

<s:s:‘ ,#)> P = &,,(B, t), w h ere the shorthand <A>0 denotes 

Tr &HA 

Tr e-OH 

Because the Hamiltonian is invariant under translation by any number of 

lattice sites we have p~,?~ = pil-ml. It is the function pnL(p, t) which enters 

for example into calculations on the scattering of neutrons by spin systems. 

For t = 0, p&L 0) contains as special cases the so-called short- and long- 

range order, which are defined by: 

short-range order = py(/ 3, 0) = pf(p, 0) 

long-range order -= lim p!&(@, 0), if this limit exists. 
11 -ice 

For arbitrary y and h = 0 Lieb, Schultz and Mattis were able to 

derive exact expressions for ~f(@, 0), py(,Y, 0) and p,Z(b, 0). As to the long- 

range order they could prove for the special case y = 0 and A = 0 that 

lim p$,,(/ I, 0) = 0. 
,L m+cc 

For y # 0 their method yielded only very weak results. 

In section A the Hamiltonian is diagonalized in terms of fermion operators. 

In section B the magnetization (per spin) in the .z direction is calculated as 

a function of the field and the temperature: <Mz(h))o. It is found that 

<Mz(h)>~ is a continuous function of b and h, but that at zero temperature the 

magnetic susceptibility D(h) shows a singularity at a certain critical field h,. 

In the neighbourhood of this point the susceptibility can be written as 

Xz(lz) = c .ln jh - h,]. The ground state shows no spontaneous magnetization. 

For y = 1 the model reduces to the one-dimensional Ising chain in a perpen- 

dicular field, which has already been studied by K at sur a 13). 

In section C the time-dependent correlation function&(@, t) = <.S,ZS~_,,(t))~ 

of the z components of two spins separated by an arbitrary number R of 

lattice sites is calculated. From the result we show that when there is no 
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magnetic field there is no long-range order and when there is a magnetic 

field, the long-range order corresponds with the magnetization. Furthermore 

the autocorrelation functions of the z components of one single spin and of 

the total magnetization of the chain are discussed, and the possibility that 

the imaginary part of p$(/3, t) satisfies a king of wave equation is considered. 

In section D the system is taken to be in equilibrium at temperature T 

and external field hr for t < 0. At t = 0 the field is suddenly changed to a 

different value hs and the temporal development of (Mz(t)) is calculated 

exactly for all values of t. It is shown that <Mz(t)> approaches a limit as t 

approaches infinity, but no exponential decay is found. 

In section E it is proved analytically without making any assumptions 

that the usual way of treating relaxation phenomena, the Kubo formalism, 

holds, by developing the exact expression <Mz(t)> in powers of (hr - hs) and 

/ ? and retaining only the first term. In order to get an idea how fast the series 

in ,!? and (h1 - 122) converge and to see whether there is an exponential decay 

of the magnetization the expressions for <Mz(t)),,,,t and <Mz(t))Kubo were 

computed numerically for some cases. Both solutions behave like damped 

oscillations, of which only the first part can be described by an exponential, 

but the oscillations are not damped enough to permit the whole decay to be 

described by an exponential. It is shown that when the Kubo approximation 

is treated in the same way as Terwiel andMazur4) recently treated more 

general spin systems, the use of the combination of their basic assumptions 

and the weak coupling limit yields an incorrect result and the possible 

reasons for this behaviour are indicated. 

A, Diagonalization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Hamiltoniart. We consider a linear chain of N 

spins + in an external magnetic field along the z axis, having only nearest 

neighbour interaction, governed by the Hamiltonian : 

H = “c [(I + y) S;ST+:, + (1 - y) SyS:+, - h.S;]. 
f=l 

The S’s are half the Pauli spin operators, By first performing the trans- 

formation 

* 

ST = ai’ ; a5 ) sy = ai - a5 ) 
2i 

ST = $q - 3 

and then the transformation 

j-1 

uI* = exp[in 2 c;ck] c; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k=l 

af = c; 

f-1 

aj = exp[--in z tick] cj a1 = Cl, 
k=l 
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the Hamiltonian is transformed into 

-;{(c;;c~ + yc&) + h.c.) ‘tcxp(i7c C c;c~) -+ 1) 
j -1 

where the c’s are fermion operators, i.e. they satisfy anticommutation rules : 

(Ci, Cj} = (CT, CT} == 0, {c’, Cj> = bjj 

We have taken periodic boundary conditions, although the chain with free 

ends can also be solved exactly (see ref. 1, which we are following closely), 

and now we make use of the fact that for large systems the term proportional 

to 

(exp(in ; Ci*Cj) -t 1) 
i 1 

may be neglected, obtaining : 

.\ 
H = f C ((c,:q+~ + yc,:c;+ ,) $m kc., 1 -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 $ c;q + Yplz. 

j=- 1 i 1 

This Hamiltonian is of the form: 

H = C [c&q + ;(c;Bijcl: + h.c.)] 
i. Jo= I 

where A is a symmetric and H an anti-symmetric matrix, and the c’s are 

fermion operators. As is shown in appendix A of ref. 1, a Hamiltonian of 

this kind can be diagonalized by the following canonical (i.cs. the ~1 operators 

are apin fermion operators) transformation : 

‘\ 

where the coefficients gki and hki are real numbers. This transformation 

sends H into the form: 
.\ 

The coefficients gki and lzki are determined by the matrices A and 13 through 

the following equations : 

(A + B) @I, = AkWpk 

(A - B) W, = ilJ@k 

where the vectors @k and ?IJ’k are defined by: 

(@k)j = Rkj + / 2x-i 

(vi’,)+ = gkj - hkj. 
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The sets of vectors {@k} and {?P k can (and must) be chosen to be real and ) 

orthonormal. It is permitted to take all the ALs > 0, this can only change 

the sign of @k or ?.&‘pk and it simplifies the definition of the ground state 10) 

as the state for which qe / O> = 0 for every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. 

In our case the matrices A and B have the form: 

A= ,B=& 

0 Y --Y 

- y 0.. y.. 
‘._. ‘.. 

‘... ‘x. 0 

- y; ‘x . . . . “% . ...,, 
‘Y., 

‘...., +..., 
‘.., ., 

‘... ._., . .._ 

0 “x . . . .._.. “‘. . . . . . . . ‘x ..,,,,, 
‘... ‘., 

‘... ‘x. y 

Y --Y 0 

Due to the fact that these matrices are cyclic, the transformation coefficients 

@k* and y/ kj and the corresponding eigenvalues A% are found rather easily. 

It is easy to verify that they are given by: 

jp?k - lk - $ 

jmk + Ak _ I 

(1) 

(4 

where 

Lik = +J(cos qk - h)’ + y2 sin2 qlc (3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

qk=k$, k = 1, . . . . N 

and 

(4 

In order to avoid ambiguity we define: 0 < 2.k < z. 

The Hamiltonian now has finally assumed the desired diagonal form: 

H = ; “ lkq;qk - 3 ; (& - h). (5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k==l k=l 

The operator Mz for the magnetization per spin in the z direction in terms of 

the c-operators is: 

Since @ and !P are orthogonal matrices (where the k’th column of @ is 
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defined to be the vector @k, and accordingly for !P), we can easily invert the 

relations : 

.\ 

.\- 

r/k - 17; = c Y/l,i(Ci - CT) 

i;l 

to obtain : 
‘\ 

so that MZ takes the form: 

(6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. Magnetization and susce$h&lity. We arc now ready to evaluate the 

magnetization as a function of @, y and h, where / ? = l/ lz7’, in the canonical 

ensemble. This is most easily done not by differentiating the explicit ex- 

pression for the free energy with respect to the external field, but by directly 

calculating (Mz>~, where we use the abbreviation 

Using formulae (5) and (6) this is: 

<Mz>fi = 

Because of the simple form of the Hamiltonian, one easily verifies that : 

Inserting this into equation (7), one obtains: 
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The summation over I can be explicitly evaluated, and taking the thermo- 

dynamic limit, so that vm. = 74252/N) becomes a continuous variable ranging 

from 0 to 252, and the summation over m can be replaced by an integral, one 

finds : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2n 

<W(h)>J3 = - -$ 

‘sin&+ l)g,sinNp, 

sin cp 
__ tgh &9/l(~) dp, - 

0 

2n 

- & 
s 

cos 2A(q4 tgh @A(c/I) dp, 

0 

The first integral is zero, since its integrand is an odd function of q~, so we 

have : 

<Mz(k)>~ = - &- cos arctg 1 { ( c;ss$$}tgh GQU~) dp, (8) 

0 

One easily shows that 

lim (Mz(h)>fl = 0 
h-t0 

for all values of /? so there is no spontaneous magnetization. Furthermore 

one sees from (8) that the magnetization is a continuous function of /I and h. 

On differentiating the magnetization with respect to the field, we obtain 

the magnetic susceptibility, for y # 0: 

X,(h) = x1 + x2 = 

n 

1 y sin v Y sin v tgh G’~P) =-- 
2n Cos p - h (cos pl - h)s + ys sins v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 dg, + 

n 

y sin v B(cos V - 4 c o s q ~ - A cosh2 (#M(~I))). 24) 1 d 9. 
0 

For T > 0 both integrands are finite for all values of I%, and x(B, h) is a 

continuous function of both /3 and h. For T = 0, however, the integrand of 

~1 has a singularity when h = 1, since for T = 0 in the point M = 0 the term 

sin v/(cos q~ - h)2 is no longer compensated by the term tgh &IA(q). We will 

study xl,T=O a little closer near h = 1 and put h = 1 + h’, with h’ 2 0. 

Splitting the integration interval into two parts [0, 61 and [6, n], where 6 
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is a small positive number, we can write: 

The integrand of X” is finite for every v _- 16, ;c] and e\w-Jr h’ so X”(h’) is a 

continuous function of Iz. Since 0 is a small number we can writr in the 

integrand of X’ : sin y = y and cos ~1 = 1 - Y$c,L~, obtaining: 

Since 6 is small we can neglect c/” with respect to q?, obtaining 

This integral is easily evaluated to yield: 

The last term of this expression is seen to equal 

p 1 
~- ‘12 log 12’ 

4; 372 + Y”)Z 
- log(h’2 + y”)) 
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and diverges logarithmically as h’ approaches zero, or F, approaches the 

critical value h, = 1, the asymptotic behaviour of x&(h) being: 

log (Ih - 11) with kN 1. 

The total susceptibility can be written as: 

x;L,(h) = - & log(lh - 1 I) + f(h) 

Where f(h) is a continuous, finite function of h. 

When h is large compared to 1, we can write the magnetization as: 

n 

<Mz(h)>o = & tgh @h 
s 

1 

0 J 

y2 dq 

1 + h2 sin2 v 

1 
_- 
- 7d Jl +‘ydlhytght8h-li 

where K is the complete elliptic integral of the first kind. In fig. 1 the 

magnetization is plotted for y # 0, T = 0 and T > 0, and in fig. 2 the 

susceptibility is plotted for T = 0. 

This behaviour of X,=,(h) corresponds with a phase transition of the second 

kind at zero temperature. It can be considered as an extension to a spin 

system with anisotropic interaction of the so-called theorem of Jacob- 

k -h 

Fig. 1. (Mz> as function of h for T = 0 Fig. 2. p(h) as function of lz for T = 0. 

(solid line) and T > 0 (dashed line). 
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sohnrl), which states that a system of spins g in an external magnetic field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h, governed by the Hamiltonian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J > 0, 

where {zi} is the collection of neighbours of the i-th spin, has a discontinuity 

at zero temperature in either the magnetization or the magnetic susceptibi- 

lity at a certain critical field. For y = 0 the magnetization of the ground 

state is found to be 

for 

for 

The magnetization and susceptibility of the ground state are sketched in 

fig. 3 and fig. 4: 

Fig. 3. Susceptibility of the ground state Fig. 4. Magnetization of the ground state 

for y : 0 as function of If. as function of /L for 7~ 0. 

The spins line up gradually when the field is increased, above the critical 

field h, = 1 they are all parallel and the susceptibility again shows a dis- 

continuity at h,. The case of y = 1 corresponds to the familiar antiferro- 

magnetic Ising chain, but with a perpendicular field. Upon rotating the 

coordinate system the Hamiltonian becomes : 

whereas usually the case 

H = C [S;S;+, - / ?S;] 
-1 
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is considered. The transverse magnetization of the Ising chain has been 

calculated by Ka t surarz). It follows from the foregoing that this is 

<MZ(h)>B = 

n 

1 sin v 
=-- 

2n cos pl - h 
tgh #J(cos v - h)2 + sin2v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 dv (10) 

0 

For T = 0 the magnetization and susceptibility in the x and .z directions are 

plotted in figures 5 and 6: 

Fig. 5. Magnetization in the x and z Fig. 6. Susceptibility in the x and y direction 

direction of the Ising chain at T = 0, of the Ising chain at T = 0, resp. dashed and 

resp. dashed and solid line. solid line. 

For more practical purposes, if chains of this structure actually appear 

in nature, it is necessary not to work with dimensionless quantities, and we 

can indicate conditions under which the susceptibility behaves almost 

logarithmically as a function of the external field. If we had started from 

the Hamiltonian : 

H = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2J i$ [(I + y) S;SF+ 1 + (1 -  Y) S#‘+ll - gzpH z S; 
i=l i 

where J is the exchange energy, gl the Land&factor, p the Bohr-magneton 

and H the external field, we would have found for the magnetization: 

<Mz(H)>,9 = - -& arctg 
y sin q 

cos F - 2gl,uH 
0 

tghE 
2grpH 2 

4 
cosq? -____ 

J > 
+ y2 sins q.dg, 
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Introducing 

this becomes 

(Alqa)?fl = I’ r ~ 
2-2 i 

cos arctg 
y sin q, 

1 

1.. 
(cos p -1 - a) J 

0 

. tg-h i/jJJ(cos p - 1 - LZ)~ + 11” sin2 9. dp 

For 0 < a < 1 the larger part of the susceptibility again is given by: 

where 6 again is chosen to be a number so small that we could write sin q~ N (I 

and cos p N 1 - Be”, so that 

(cos q - 1 - a)2 + 712 sin” p z y%pz + ad. 

Under the condition that pJ/n >a 1 we can write for all cp in this interval: 

tgh -!? 
a’ 

4 
‘I2 + 

BJa 

1 
,2 N tgh 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SO 

This is easily evaluated to be: 

Thus we have found that under the conditions 

~Ju > 1 and 0 < a < 1 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

BJ> 1 and 2gz,uH = J 

we can write for the susceptibility: 

BJ GwH - 1) 
x(H) cz - tgh 4- 

_--~_--.log(~~~? _ 1) + f’(H) 4 

where f’(H) again is a finite, continuous function of H. 
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C. Correlation fmctions. In this section we will study the time-dependent 

correlation function of the z components of spins on different places, of one 

single spin and of the magnetization. We will discuss the result and some 

related subjects. The time-dependent correlation function of the z com- 

ponent of two spins, respectively on lattice points 1 and 1 + R is defined by: 

P; 2+R(BJ t) = W-X+&))P 

Since the Hamiltonian is invariant under translations, it turns out that it is 

easier to write: 

- (77: + 1lfG2 - 73 e-iHth (‘1) 

Again on account of the simplicity of the Hamiltonian, the trace which 

occurs in this expression is found to be: 

<<(vi + r&17* - v*,) eiHt (or* + qr)(rls - ~3 e-iHt>O = 

= tgh WI, tgh +&4&y&s + f+(m) f+(pq) 4& - 

- f-(m) f-h) bls47r (12) 
where 

and 

f+(v) = cosA(q~) t + i sinrl(q) tetgh @4(v) 

f-(v) = i sinrl(v) t + cosA(pl) t*tgh &%I(cJJ) 

Inserting this into equation (11) we get: 

(13) 

+ @PZ~&~P, l+Ryq, Z+R f+b) f+(%) - @PZ~/,@,, l+Ry,, Z+Rf-(%) f-(%)1 

+ @pl~pl@wn~qmf+(%) f’h) - %lyql@‘qm~w,f-(%) f-h)] dm-l,R (14) 

For the Kronecker delta we can write: 

ei~k(R+z--nz’, ~)k = k $, k = 1, . . . , N, 

and introducing a matrix B(cpk) by 

&(qk) = g eizplb Y&j,5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z=l 

(15) 
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we can rcwritc (14) as: 

where the abbreviations are obvious. We will compute the functions Ii, I2 

and 13 separately. In formula (15), inserting the values of !?‘il and Q/l, the 

summation over 1 can again be performed explicitely, and introducing the 

abbreviations : 

we can write for the matrix element Bij(v) : 

Blj(p) = GN [sin A .S(q - q9~ - yq) - sin B.S(pj $- pi + qj) -( 

+ cos C..S(cp + ~1~ - qj) + cos D..S(cp - pi + qy)] 

+ ~~-[-cOSA.S(Cr-(ri-~,)+COSB.s(~~+r)i+lfil)+ 

+ sin C .S(p, + Eli - cpg) + sin D ..S(p; - cpi + vf)] 

where 

N 

(17) 

We can now deal with 11. Inserting (15) into Ii one has 
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+ cos “2’ (9’ + 2vj) S(q, + 24 + i sin 
N-l 

24 + z- V 
> 

S(V) + 

+ i sin 
N-l 

-24 + -2- Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1 S(V) . 
The first, second, fifth and sixth term change sign under the inversion 

e)j + -qq and can be omitted. For large N the summations can be replaced 

by integrals : 

-?I -2% 

where expression (8) has been used in the last step. 

We can calculate 13, using expression (17) for Bij(i~~k) : 

1 N 
12=-- 

8N4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,i,jz=l __ 

eiRplk [{sin A .S(p, - qr - q~) - sin B .S(p, + qi + plj) 

+ cos C .S(M + vi + qq) + cos D *S(g, - plz - ~j)}~ 

+{-cosA.S(g,-q%-~j)+cosB.S(P,+Vz+~j)+ 

+ sin C*S(Q, + Ed - ~)j) + sin D*S(q - YJ~ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqq)}21 f+(& f+(&. 

The underlined terms change sign under the inversion 9~ + --q~, ~13 --+ -q.q, 

the other ones are invariant; so for large N we obtain: 

n 

1 
I3 = ___ 

2%3N sss 
e”Rp[{sin A .S(p, - yi - qq) - sin B*S(p, i- or -k ~j)>” 

+ (~0s C . S(y i=yt - yj) + ~0s De S(y - yc + ~j)}~ 

+ {--cos A *Sk-) - yi - yj) + cos B-S(y + yc + yj)}2 

+ bin C.%J + YZ - CPA + sin D.S(p, - yt + Y~))~I f+(w) f+(yf) 
n 

1 
=- 

2%3N sss 
eZRVlS2(pl -9~ - 94 + S2(q + VI + 94 + S2(g, - cpi+ ~)j) + 

--n 
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+ .syp + pi - ff’j) - 2cos (‘1 -B) S(y-cp--cpj) .S(p + y*,j + c/‘j) -I- 2cos(c-~L4 

‘S(lJT + $Fi-$9j).S(p_pi + fpj)j fm’(pi) Ir(u)j) d$L tlvi Clyj. 

The underlined term changes sign under the transformation C+O~ - --pji, and 

so : 
.7 

Since the integrand is periodic in cp, we can extend the integration interval 

of ‘p from [-n, n] to [-2n, 2x1, and introducing new variables $1 = p!f + p?i 

and $2 = pli - qf we obtain : 

2n 

In the limit N + CO the function .V(O)/N behaves like a delta function, 

the norm being determined by: 

n 

dO = Nn (Fejer’s integral). 

Inserting this into equation (18), and putting 

we finally obtain : 

In the same way we can deal with 1s. Introducing the abbreviations 

we can write: 

Bdy) B;(Y) = k2- [{sin A .S(cp - cpi - qq) - sin B..S(y + pi + pj) + 

+ cos C.S(p, + pi - cpj) + cos D.S(p, - cpi + $q)} 

+i{-cosA.S(p,-_~-~i)+cosB.S(g,+~i+~’3)+sinC..S(~+cri--~)-/- 
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+ sin D*S(cp - 94 + yj)}l* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~[{sinA’~S(~--_~-~~)-sinB’~S(p,+~i+plj)+cosD’~S(p,+~c-~,) _____ 

+ cos C’ . S(y’ - q% + fpj) 

+ sinD’-S(p, - p?i + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw))l. 

The underlined terms again change sign under the inversion vi -+ -vi, 

vj -+ -ply and so we obtain, also using the fact that we need only retain 

the real part of BuB?G: 

BtjB,*, = & [cos(A - A’) S2(g, - vi - pj) + WB - B’) S2(p, + vi + yj) 

+ cos(C - D’) S2(pl + vi - 4 + MD - C’) S2(p, - vi + PI) + 

+ {cos(C - C’) + cos(D - D’)> S(P, - ~6 + ~j) S(v + vi - ~1) + 

+ (cos(A - B’) + WB - A’)} S(P + w + FJ) Sk - w - ~41 

Under the transformation p12 + -pi, one finds that: 

C+n+A, C’+n+B’ 

D+n+B, D’+n+A’ 

so the last two terms cancel each other and we obtain : 

B&P) B&4 = & cW%4 + 24m)) S2b + w - w). 

Inserting this into the expression for 1s we obtain: 

n 

1 
1s = ~ 

2%3N sss 
eiR@ cos(24w + 2494) S2b + w - 94 * 

n 

1 
_ -.___- 

26n3N sss 

eiRw cos 2494 cos 2Qq) S2(y + pi - pi) * 
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which in the limit N --z 00, analogous to I?, reduces to: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
2 

sin 24~7) f-(e) dy . 

- .? 

So we have found an explicit expression for the time-dependent correlation 

function of the z components of two spins in the chain that are separated 

by R lattice points: 

eiR@ sin 21(p) f-(p) dp 2 (20) 

n 

Starting from this formula we will discuss the following subjects: 

a. The long-range order 

b. The time-dependent autocorrelation function of one spin 

G. The autocorrelation function of the magnetization 

Lz. The possibility that in &(/ 3, t) satisfies a wave equation. 

a. The long-range order is usually defined in terms of sublattices, but 

since the Hamiltonian is invariant under translations, this is not useful in 

our case, and the quantity lim,_,, pfR(fl, t) is used. 

The well known theorem of Iiiemann-Lebesque5) states, that if the 

integral Ji f(x) d x exists and f(x) has a limited total variation in the range 

(a, b), then, as I -j 00, one has 

lim P/ (X) sin Ax dx -z lim f/ (x) cos 1% dx = 0. 
A4cc (1 A~Cc U 

Since these conditions are clearly satisfied by the functions. 

eiR@ F+(q), eiR9 cos 22(y) F-(q) and eiRQi sin 2il(q) f-(q), 

we have: 

lim pg(B, t) = <Mz(/ z)ii. (21) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R-m 

Since <Mz(O))fl = 0 there is no long-range order when there is no magnetic 

field. In the next section it will be shown that 

<W”(h))fl - <Mz(h)>; = 0; 

so we can write (20) as: 

lim ps(/ 3, t) = <M” ‘(h))fl 
Plrn 

(22) 
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From (22) it can be seen that in this model the magnetization is the square 

root of the long-range order (in this way one also calculates the spontaneous 

magnetization of the two-dimensional Ising lattice), since in the expression 

the devision by N eliminates all except the long-range correlation. 

b. For R = 0 the formula (20) reduces to the autocorrelation function 

of one arbitrary spin: 
n . . 

&?, t) = <Mz(h))z + {cosclt + i sin At tgh +/ ?A} dv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
2 

0 
n 

2 

cos 21(v) {i sin At + cos Alt tgh @A} dp, 1 . (23) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

Making use of the theorem of Riemann-Lebesque one sees that the last two 

terms vanish as t approaches infinity, so: 

lim <S;Sf(t)), = <Q2. 
t+w 

Thus the correlation for one single spin is seen to vanish and the autocorrela- 

tion function simply goes over into the square of the expectation value of the 

operator ST. This is an expression of the fact that the memory of one single 

spin is completely destroyed by the interaction with the rest of the chain, 

if this chain is infinite. Further on we will also consider the autocorrelation 

function <MzMz(t)),v; in this case there is a memory effect and the reason 

for this will be explained. 

We want to study the time dependence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApz(fi, t) a little better and con- 

sider the special case that there is no magnetic field. The integrands in 

expression (23) are even functions of v, so the integration can be restricted 

to the interval [0, n]. Since 

y sin v 
2jz(pl) = arctg ~, 

cos q 

with 0 < iz < z by definition, we can now without ambiguity write 

cos 22(v) = 5 

and so: 



396 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATH. NIEMEI JER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

For the case h = 0 we have 4(y) = il(n - e) and since cos(n - pj) = ---cos p 

the second term is seen to vanish. Going over to 4 as integration variable 

in the first term we obtain: 

with 

As a check we easily verify that D(fl, 0) = 4, or pz(/ ?, 0) = $ as it should be. 

For high temperatures we need only to retain the term which is linear in / I: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

D(P, t) = l s \ -~ 
~ 

J 
., 

and 
I 

.&I = _!f Jl(t) 

where Jo(t) and Jl(t) are Bessel functions of the first kind, respectively of the 

order zero and one, so for y = 0 one obtains for the high temperature limit 

and no external field: 

iJo + $ Jr(t) 
1 
’ 

Using the approximations for Bessel functions for small and large arguments 

J%(t) = (&)“P’(n + 1) for 

Jn(t) = 
476 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t - gm - >- for t> 1 
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we find for pz(/ ?, t) for large or small times: 

If we had not made the Hamiltonian dimensionless but had kept the factor 

J in front, this would be: 

pq#L 4 = & 1 + [ T]”  for tJ< I 

PZ(BJ t) = -&[“0s(2Jt - f) +zsin(2Jt - :)] for tJ> 1. 

If y = 0, we have 

,; S;, H] = 0, but [ST, H] # 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z=l 

and as a consequence one can see directly that pz(/?, t) still depends on t, even 

when y = 0. 

For y f 0 one can approximate the functions Di and Ds for either small 

t, by expanding in powers of t and retaining only the linear part, or for large 

t, by using the stationary phase approximation, obtaining 

pq?, t) N * 1 + .F (1 + 72) 
[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 for t<1 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P%K 4 = ,,~[~2y)o0~(yt-~)...~(,-~). 

+z{y(2y)&sin(yl - +)+sin(I-+)js for t% I 

It is clear that pz(,!?, t) h s ows no exponential decay; except for the super- 

imposed wiggles it is proportional to t-l for large t. 

For y = 0 and p < 1 we can examine pz(j3, t) a little better since then it is 

given by pz(/3, t) = $Ji(t). On differentiating we obtain dpz/ dt = -Jo(t). 

Since Jo(t) and Jl(t) are tabulated one easily checks, that dpz/ dt is a negative 

decreasing function in the interval 0 < t < 1, reaching a minimum for 

t N 1.1. So in the interval 0 < t < 1.1, where p”(t) drops almost exactly to 

half its initial value, we have dspz/ dts < 0 and the behaviour of p”(t) can 

never be described by a linear combination of exponentials & eeTJt. 
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At t = 2.4 p”(t) = 0 after which it rises again to a maximum O.l6pz(O) 

at t = 3.9. The decay of p”(t) from its value at t = 1 to where it first takes on 

the value 0.16 pz(0) at t N 1.8 can be rather well described by an exponential, 
namely e-r.%%-r). At t’  rmes later than t il: 1.8 this is of course impossible 

since pZ(t = 1.8) = p(t = 3.9). 

c. From formula (20) one can also calculate the time-dependent auto- 

correlation function of the z component of the magnetization. The quantity 

2 ;_ p” ,,,(Pt 4 

will be of the order N” , but in the Kubo-formula (34) we use 

this quantity should be of the order N. So the function R(b, t) defined by: 

R(B, t) = a-i, ,~tuP> 4 - +:) (25) 

should, on taking the limit N + co, be a finite function of b and t, which 

it indeed turns out to be. By substituting (28) into (25) we find: 

.;= eiR(‘~limvJ)f+(Cpi) f’(pi) i+(pj) 
91.1, 1 

1 LV 

-~ c 
4Ns tl,i,i=r 

eiH(yL+rpJ) cos 21(pli) cos 22(9~j) / -(vi) f-(ej) 

1 s 

-~ c 
4N2 I?, i, i= 1 

eiz’(yr- pi) sin 2ii(5~) sin 2A(pj) / -(vi) f-(yj) 

z 

= 4; [(f+ (P))”  - 
j 

{COST aA -- sin”  21(p)) (f- (F))~] do+ 

0 
IT 

= & [(f+ (v))’ - (i- (P))”  + 2 sin2 2n(~)(t- (p;))“ I dp, 
i s 

0 

One can split this autocorrelation function into a timedependent and a con- 

stant part as follows: 

i 

cos 211(p) t 
- i sin 211(y) t + ~---~- 

w iw4P) 
de 
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For y = 0 the time-dependent part is zero, since then sin 21(v) = 0. This 

agrees with the fact that for y = 0 the operator for the magnetization in the 

z direction commutes with the Hamiltonian. The constant part is not equal 

to zero, not even when there is no external field. By means of the Riemann- 

Lebesgue theorem the time-dependent part of R(p, t) is seen to go to zero as 

t -+ co. The fact that the autocorrelation function reaches a non-zero value 

as t -+ co at first looks disturbing, but it turns out that (section E) it is 

actually necessary and due to the circumstance that we consider thermally 

completely isolated system. 

In section E we will need the high-temperature limit of 

R(0, t) = --& 
s 

(1 - 2 sin2 2417) sin2 A(p)t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

R(fl, t), i.e. 

dg, (26) 

We will not yet comment upon the way this function depends on time, this 

will be done in section E. 

From the fact that the autocorrelation function is not of the form aeect + b 

we may not conclude that, if the external field is changed a little, the change 

of the magnetization cannot be described by a Markoff process. We can 

conclude, however, that the change in the magnetization cannot be de- 

scribed by a Gaussian Markoff process, since one can prove that for such 

process the autocorrelation function is an exponential. 

(For more general spin systems a master-equation, which governs the 

temporal behaviour of the magnetization, was constructed by T j on6)). 

b. The possibility that Imp& is determined by some kind of wave equation. 

In an article on the quasi-elastic magnetic scattering of slow neutronss), 

Th. W. Ruygrok has studied the function p$l, t), where the coefficients i 

and j may stand for the coordinates x, y and z respectively. He showed that 

Im ~$9, t) in a three-dimensional crystal, can be interpreted as the change 

in the i component of the local magnetic moment, at the time t and place R, 

due to the flashing on and off at time zero and place R = 0 of a neutron 

which is polarized in the i direction. 

So, from the point of neutron scattering, it is important to know what 

kind of function Im pz(/?, t) will be, or what kind of equation it satisfies. For 

the case of a ferromagnet, magnetized in the z direction, Van Hove 8) derived 

exact expressions for p$(B, t) in the spin wave approximation. From these 

Ruygrok showed that Im pg(,!?, t) satisfies the following “wave equation” 

in the spin wave approximation: 

where the summations x6 are over nearest neighbours. Considering only 
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unmagnetized ferromagnetic, cubic materials, so that the full cubic symmetry 

is preserved, he argued that at higher temperatures than those at which 

the spin wave approximation is applicable, the lifetime of a spin wave is 

shortened. He tried to take this effect into account by adding- a damping 

factor and postulated for t > 0 an equation of the form (putting pii = pi) : 

Pm ~i~+~,~++~~ (Pj 4 - 2 Im Pi!+*, (P, 4 + Im f&B, 4) = 0, 

where ~1 and ra are suitable parameters, and suitable boundary conditions 

are chosen. 

In the case of the X-Y model, where we know Im &(@, t) exactly, it will 

be found that for the case that there is no external field we can write : 

where A&?, t) satisfies a “wave equation”  for all temperatures if y is small 

e.g. y < &. From formula (19) one easily vrerifies that we have : 

1 
Im &@, t) = -i3;5~ cos Kp . cm l&J cos A(y) t ’ cos A (II,) t 

.tgh @4(~) tgh &4($){1 - cos 21(q) cos 2/ 1($)} do,: d#. 

We will consider the case that R is an even number, for odd IZ 

analogous results. Since h = 0 the second term between the curly 

in the integrand is odd in yl and 4 and we obtain : 

s cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARep cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(q) t tgh &!&l(q) dv. 

0 
x 

.j cos R$ sin A($)t tgh _/ Pl($) d+. 
0 

Since y is supposed to be small we can write cos ./ l(v) t e cos(/cw 

sin A(q) t _N sin (jcos ~1 t), so: 

Im PW. 4 = &(A 4 34% t) 

where we have introduced 

one gets 

brackets 

A& t) = $ 
s 

cos Ry.cos((cos~) t>.tgh @A(pj) dy 

0 
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and 
tn 

BR(~, f) = G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s 

COS R$.sin((cos z,!J) t}. tgh &!?,!I(#) cl+. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

Obviously one has: 

~BR(B> t) 
-~ = &tl(B, t) f AR-l(B, t), 

at 
with BR(P, 0) = 0 

so: 

Im f&(/k t) = AR@ t) * ! (AR+@> 7) + AR-l@> T)} dT. 

Thus for h. = 0 and small y, Im pk(/ ?, t) can be expressed as a function of 

A@, t), and it is easily seen that it is this function which satisfies the follow- 

ing wave equation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

@ AR@ > t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

at2 
- + $[AR-2(/3, t) + 2AR(B, t) + AR+2@, t)l = 0, (264 

In a certain sense equation (26~) can be considered to be an extension of 

equation (38) of ref. 2. We have found that Im pg(j3, t) is completely de- 

termined by a function AR@, t) which satisfies a wave equation like (38) 

in ref. 2, only in ref. 2 we have Im p&(b, t) = AR@, t). The fact that in our 

case we no longer have Im pk(j3, t) = AR@, t) is probably due to the fact 

that the derivation of (38) of ref. 2 is heavily dependent on the isotropy of 

the Heisenberg interaction; the fact, however, that our wave equation is 

valid for all temperatures probably comes about because the diagonalization 

of the Hamiltonian of the chain is not dependent on temperature, whereas 

the diagonalization of the isotropic Heisenberg Hamiltonian to non- 

interacting magnons is only valid at very low temperatures. Still, the 

equations for A&?, t) or Im ~$9, t) may radically change for larger values 

of y. 

D. Behaviour of the model in a non-equilibrium case. Due to the fact that 

the Hamiltonian of the model can still be diagonalized in the presence of an 

external magnetic field along the .z axis, it is possible to solve exactly a 

non-equilibrium situation, which has been considered by many authors12) 

for more general spin systems, including for example dipole-dipole interaction. 

We will consider the following situation: let the chain be in thermal e- 

quilibrium at temperature T in an external magnetic field hr at time t < 0. 

Working in the Heisenberg representation we denote the canonical ensemble 

corresponding with this situation by the symbol jE>. At t = 0 the external 

field hl is suddenly changed to hz and since the operator for the z component 

of the magnetization 442 = $ C;y, Sf does not commute with the 
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Hamiltonian, the expectation value <LVz(t)) will be a function of time for 

t > 0, since in the Heisenberg picture Mz(t) is a time dependent operator. 

In section A we have calculated the quantity <Mz>/ ~ = (E jizlz] E> for 

t < 0. We now propose to calculate the quantity: 

@P(t)) = <E lM”(t)i E: 

= (E leifft Mz e-ifftl E> for t>o (27) 

to determine the time dependent behaviour. Since 

by: 
s 

and 

H = C [(l + y) S$5.;+, + (1 - y) S;S;+i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j=l 

,V 

the Hamiltonian is given 

- 1&S;] for t<o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H’ = C [( 1 + y) 3;s;;~ l  + (1 - y) SyS;+i - hzS;] for t > 0, 
i=l 

the transformation coefficients needed to diagonalize the Hamiltonian for 

t < 0 will differ trom those at t > 0, if hi f hs. The coefficients §u, and 

!Pgj, the corresponding eigenvalues ill amd the operators q etc., for th< 

initial field hi will be denoted without a prime, those corresponding to the 

field hs, will be denoted by a prime: 

[ <Mz(hr))~ for t < 0 

.I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
<hfz(t)) = Tr e-OH eiH’t c ST e-iH’t 

z= 1 
for t>o (28) 

We will follow the following procedure: first express the operator Mz in 

terms of the q’ operators to determine the time dependence and next 

transform the q’ operators, which appear in the matrix elements, into the 

17 operators, via the Mz operator, in order to be able to calculate these matrix 

elements. In formulae this goes as follows: 
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Using the fact that for fermion operators one has 

(exp it 5 Ad1;1;!vjj} vi* {exp ---it z Ai$*rj} = qic* exp itili, 
j=l f=l 

and 

{exp it g A;$‘$} vjk {exp ---it g Ajq;‘qj} = ric exp --it& 
i=l j=l 

we can take the time-dependent part out of the trace, and, introducing the 

abbreviation t& = CXk, we obtain: 

am ~0s an <E I ($n* + $n) (VA - ok*) I E) 

+ sin mm sin ~12 <E [(VA* - r&)(qL + vii*) I E> 

+ i sin a, cos an <E I(&* - &)(T& - &*)I Ei 

- i cos am sin an <E I(&* + &)(rlh + q;l*)I E>l 

Upon transforming from the q’ operators to the 7 operators by means of 

q;n + $n* = C @A& + CP) =P~l$.@,Pirir + r;, 
p=l 

$& - &* = 2 Y&r -- c,*) =? &Y:,Y&S - rf) 
r=l 

and assuming that <Mz(t)) does not change discontinuously in the point 

t = 0, one gets: 

- i cos am sin u~~~ly~l~~,~,~~~~~~~. &,I. 

Using the orthogonality of the matrices @ and Y the imaginary part of this 

expression is easily found to equal zero: 

.v 
C [sin a, cos ,,,~~lY~,Y~,Y~~Y~~Y~~~~~ - 

l,wt,n 
p,q,r,s=l 

cos am sin %@&l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYnl@inp@qp@nr@sdgs] 

since 

I2 Yy,,Yq, = 6,r and IZ @qp%r = d,r 
P Q 

this expression reduces to zero: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

C [sin gllz cos an@~~Y;t&8, n - cos am sin a&&Y;l&& = 0 
m,l,n=l 
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This should be the case of course, since <M”(t)) is real. The expression for 

<IlIz( now simplifies to : 

The rest of this section consists mainly in showing that this sixfold sum 

reduces, as N --f co, to one single integral. Substituting the explicit form 

of the transformation coefficients we get 

h 

(Mqt)) = - A- c 
LTV" I L cos cY,,i cos o& cos ( lgs, -- l’(cp,) -- 

( ,,I ( ,I = 1 
.;. 1 

I),(/.? 

cos ( zy, + l’(p,,) - -I~- > ( cos ppm - A’(@J - -; ’ ) . 
'COS ( ppq - qpq) - T > ( cos rep, + A’(fq&) - -4~ ) . 

As in the former section the summations over I, p and Y can be performed 

explicitly, and, on replacing the summations over m, n and q by integrations 

over ~1, qs and ~713, ranging from 0 to 2n, we obtain: 

where : 

<aP(t)) = - 

J J J 
-.?z 

Ntl 
il’(rpa) - / I’(q~r) + --- 
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cos 
i 

--il’hpl) - A’(9721 + +l h - v2,) sbm - 4 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin 

[ i 

Nfl 
-n’(qJl) - 4y3) + 2-- (w + 313) Sh + 973) + 

1 

N+l 
COS A’(pl2) - jz(q3) + 2 (92 -83)}s(~2-~3)] 

and 

n 
n 

L2 = 
SJS 

dvl dv2 dq3 sin +1) sin 4~2) tgh &3&73) * 

-n 

N+l 
-n’(w) + n’(v2) + 2 

N+l 
-3L’(pll) - 1’(92) + 2 h --sr)}Sh-vzi] 

N+l 

1’(w) + 4~3) + 2 

N+l 
COS A’(& - l(v3) + 2- (w - VS))S(Pl -v3)] 

. sin 

[ { 

4’(92) - 4v3) + v (y2 + 93) S(v2 + v3) + 

1 

N+l 
cos -n’(y72) + 4v3) + 2- b?‘2 - Y3)}%‘2 -v3)] 

Again the abbreviation 

%P) = 

sin -Y 
0 2 

has been used. 

It turns out that the expressions for L1 and L2 can be greatly reduced, due 

to certain symmetry properties of the coefficients. Since by definition 0 < il 

< TC, we have A(-v) = z - A(v). 

We will perform the reduction of Ll; LZ can be treated in the same way. 
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Introducing the abbreviations : 

-~'(rpl) - q/a) + 

x-t-_ 1 
-2 -- (cpl + $73) = A, 

A’(v2) - 493) + 

N+l 
-- 2 __ (972 - p13) = D, 

the part between the last two pairs of brackets of the integrand of L1, which 

we will call X, becomes: 

X = sin A sin CS(g7r f 973) S((p2 + ~3) + cos B cos DS(yl - q73) .5((p2 -- 593) 

+ sin A ~0s DS(w + (~3) S(w - 593) + cos B sin CS(pll - ~3) S(q2 + 4. 

In the second and fourth term of this expression we now perform the trans- 

formation 933 + - ~3, this has the effect that 

B+A+n,C+n+D,D-C-n 

yielding, on rearranging the terms: 

X = @A - C) S(w + CI) S(p2 + ~3) + sin@ + D) S(w + 593) S(w - ~3) 

In this way we obtain for Ll: 

n 

L1= dvi dqz dqr cos c&i) cos 472) tgh &3A(sj3). 

. sin 

[ i 
A’(v2) - A’(w) + 

N+ 1 
-5y (Pl + p2) S(y1 + 972) + 

1 

cos -A’(qQ) - A’(p2) + -y-;-L ( m -a?))%w4 

[ i 

N+1 
* cos -~‘(‘?Q) - A’(‘P2) - 22(~“3) + ~m-zm --- (WI - $92) s(992 + ~3) . 

Sk2 + ~3) + sin -I’ + l’(‘P2) - 2A(v3) + 

N+l 

+ 2 
____ (P)l + P3) (sgl+ y3) ($2 - q3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Between both pairs of brackets the first terms change sign under the in- 

version, ~1 + -_SPI, p2 + -92, p3 --f -y3, the other terms are even. This 
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reduces L1 to: 

n 

L1= 
sss 

dql dqz dwcos +d ~0s 492) tgh h94~3)~ 

--n 

N+l 
. n’(912) - n’(w) + 2 -A’(w) + J’(v2) 

N+l 
- 2+$‘s) + 2 h + w) S(w + 92) Sh + Pj3) 5%2 - v3) 

+ COS --n’(yl) - A’(q2) + - 

f 

“+ (Yl - s2))cos { -nf(vl) - w4 

N+l 
--21(~3) + 2 (w - w) 

1 

S(w - v2) S(w + v3) S(p2 + 973) 

1 

Now, performing a last substitution ~2 --f -q?z in the last term of this 

integral, we arrive at: 

x 
. 

L1= 
IfS 

dvl dvz dwcos+d ~0s 4972) tgh Qj34p3) 

--n 

Sbl + w) Sh + 93) S(9”2 - v3) 

The function L2 can be simplified in an analogous way, resulting in the 

following expression for <Mz(t)) : 

n 

<w(t); = - & 

p 

JSS 

dv1 dv2 @a [COS a(w) cm c&2) ~0s 21(~3) + 

--I 

+- Sin 4~1) Sin +2) CoS W’(n) - n’(p2) + 2’(973))1* 

.tgh 3Wb3) S(w + 412) Sk1 + 93) S(v72 - ~3) 

Introducing new variables 

91 + 972 = 

2 

and defining : 

n 

Fl, 
w + v3 

2 
= y2, v3 = y3, 

f(%, F2) = j [ cos tA’(2Y2 - Iy3) cos tA’(2Y1 - 2Y2 + Y3) cos 2jl(Y3) 

+ sin tr1’(2Gi - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY3) sin tA’(2Yl - 2Y2 + Y3). 

cos 2{A’(2Y2 - Y3) - A’(2Yl - 2Y2 + Y,) + 4(p3))]. tgh &X4(Y3) dY3 (30) 
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wc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan write: 

1 sin NYr sin IVYa sin N(rVr - Yu,) 

N sin !Pr sin Ya sin(TPr - via) 

behaves like a series of &functions in the !?‘~!&‘a plane as N goes to infinity, 

the peaks lying in the points (WC, WC), with +z and m integers. Since a few 

peaks are lying on the integration boundaries, we shift the integration area a 

little in the right upward direction (see figure 7), which is allowed since the 

I I 

I 
I f 

I 
3 

I 

I 

I 
:_ ._____ -_-__- ____ _ _-_ 

Fig. 7 

integrand is a periodic function, in order to get only contributions from the 

points (0, 0), (?t, 0), (0, TZ) (x, TC), so obtaining 

G@(Q) = - j:F L/ (0, 0) + f(O, 4 + f(% 0) + f(% 41 (31) 

where c is the normalization constant of the &-function. Substituting (30) 

into (31), one finds: 

s [cos 2A(rp) - sin2 tA’(~)(cos 21(q) - 

-72 

- cos(2%) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4~'b))HW &P~(F) dg, 

Since, at t == 0, this must be equal to <MZ(h)>~, which is given by formula 
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(8), we find for the normalization constant : c = S/ 2, so: 

n 

<&P(t)> = - ; 
s 

[cos 21(v) - sin2 tA’(p) {cos 2il(9) - 

0 
- cos(2%) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4~'(dN W UWP) dv (32) 

Another way to determine c would be to put hr = hz = h, since then we 

should also have <Mz(t)) = (Mz(h))p; it gives the same value for c. 

So we have found the exact evolution in time of a macroscopic observable 

of a many-body system in a non-equilibrium situation. We can split <Mz(t)> 

in a constant and a timedependent part : 

O@(t)> = - ; [ ~0s 2W + co$W~,) - 4~'bd)lW iWh~) dv 

0 
n 

-- J& cos 2Ul’(qJ){ 
c 

cos 2@) - cos(2l(~) - 41’(q))} tgh @A(V) dp 

0”  

where the time-dependent part is seen to go to zero, by means of the theorem 

of Riemann-Lebesque, as t + co, so: 

n 

lim Mz(t) = - & 

s 

( ~0s 21(y) + cos(2% 7) - 4%))> tgh ~/ Q&P) dp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t+cn 

0 

This is obviously not equal to (MZ(h )) ( 2 0 compare eq. 8), but that could 

hardly be expected, since the system is isolated. 

Unfortunately we have not been able to evaluate the integral of the time- 

dependent part of <Mz(t)), but it is clear that there is no exponential decay. 

By developing in powers of t one finds that for small values of t the time- 

dependent part is proportional to t2, and, by using the method of stationary 

phase, that for large times it is proportional to 1 /,/t. In the next section some 

numerical results will be considered, to investigate whether there are intcr- 

mediate time scales for which the decay is exponential. 

E. Comparison of the Kubo approximation to the exact solution, somenumerical 

results and comparison with some other methods of solving the Kubo approxi- 

mation. The relaxation of more general spin systems has been considered 

beforers) 4). One usually considers a crystal composed of particles of spin 4, 

where the spin system is isolated from the lattice and the Hamiltonian is 

supposed to consist of a Zeeman term, exchange and dipole-dipole inter- 

action. A constant magnetic field H is applied along the z axis, plus a field 

h which is small compared to H and the system is supposed to be in e- 
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quilibrium at time t < 0. At time t = 0 the small field lz is suddenly switched 

off and one studies the temporal development of the magnetization in the 

in the x direction <Mz(t)). Since h is small compared to H, or, if we had taken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H = 0, small compared to the exchange energy, one usually restricts oneself 

to the response of the magnetization which is linear in h, i.e. one studies: 

@P(t)) - (Mz(H)>,j = Q&(t) lz (34 

where (Mz(t)> is the average magnetization at time t, <Mz(H)>b is the static 

magnetization in presence of only the field H, /3 = l/ kT and QZt(t) is the 

z - z component of the relaxation tensor. Using first order perturbation 

theory Kubo and Tomitaa) derived a general formula for Q,,(t), given 

by, the expression: 

('0) ii t<o 

@LZ(t) = j’ dA Tr poMzMZ(t $ ihA) - ~<hf”>~, t>o 
(35) 

0 

where xZZ is the z - z component of the static susceptibility tensor, po the 

equilibrium density matrix at temperature T(/ I = l/ kT) and external field 

H and Mz is the Heisenberg operator for the magnetic moment in the 

z direction. One usually considers the case where the temperature is so high 

that one can expand expression (35) in powers of / I, and retaining only the 

first term one obtains: 

Tr MzMz(t) 
(36) 

or 

Obviously, for the case of the linear chain we are studying the expression 

<<MzMz(t)>> is nothing but the function R(0, t) of section C. So for the chain 

we have an exact solution of Kubo’s high-temperature approximation of 

the z - z component of the relaxation tensor. On the other hand we have 

shown how to calculate the exact time development of the magnetization 

in the former section. We now want to compare the exact solution to the 

Kubo approximation. Since we are looking at cases with a high tempera- 

ture we can expand expression (33) in powers of ,5 and retain only the first 

term 
n 

c cos (24~) - 2X(y)) cos 2X(v) / l(q) dq 

6 

f 
cos 2&l’(q) sin(2I(q) - 22’(v)) sin 2L’(v) ii(q) dq (37) 

0 
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where 

244)) = arctg 
y sin v 

,212’(v) = arctg 
y sin v 

cos CP - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH - h cos p -  H 

&I) = &OS tp - H - h)2 + y2 sinsq, d’(y) = J(cos v - H)s + ys sins ~1 

This exact relaxation of the magnetization at high temperatures clearly is 

an analytic function of h, so in order to compare it with the Kubo formula 

we only have to develop (37) in powers of h and again retain only the first 

term. We then obtain the linear part of the exact time development at the 

magnetization : 

<~z(~)>,,*,t,*in. = <~Zw,xaot,h=ll + h 
ww))ex*o, 

ah > a=0 

x n 

B 
sins aA’ sins cl’(v) t} dp, - z 

s 
cos 21’(v)~l’(q) dp, (38) 

0 0 

On the other hand by inserting (26) and (8) (after replacing tgh &U(v) by 

&%4(v)) into the Kubo formula (36) we get: 

n 

s (1 - 2 sins an’(v) sin2n’(v) t} dp, 

6 27 

- $ 
s 

cos 2X(v) X(v) dv (39) 

0 

Formulae (38) and (39) give us the result that <MZ(t)),,,,t,lin. = <Mz(t)>,,,,,, 

for all times. 

Since the exact solution contains a constant part, it is natural that the 

approximation or R(0, t) also contains a constant part. It is due to the fact 

that when the external field is made smaller, the spins are not as much 

forced to align, which in turn, if the system would tend to thermodynamical 

equilibrium for t + 00, would correspond to a higher temperature, so: 

lim <Mz(t)) # <Mz(H)>,9. 
t-wm 

This means that we must have lim,,, R(0, t) # 0 as is indeed the case. 

As a peculiar feature, which is a freak of the model, we mention the fact 

that for h > 1 and H< 1 the exact solution and the Kubo approximation 

are equal to a very high degree, for in these cases we have (writing H + h = 

= hl, H = h2) : 

hl -  hz e hl 

4~) = hl 

21(v) N 7c 
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Inserting this into formula (39) we obtain: 

+ ‘J,fZ(h ))p ‘v !!“! ?4 - \ 2 
4jz J 

(1 - sin”  2A’(g!) sin2 n’(y) t> dy, + O(Az), 

0 

and in formula (33) : 

.z 

s [cos 21(y) - 2 sin2 tA’(q){cos 21,(5~) - 

0 

n 

- cos(2A(pi) + 4il’(y))}] tgh :@A(T) dq 

N - & 

s 

[- 1 - 2 sin”  tA’(q)(- 1 + cos 41’(y)}] tgh @‘l(q) dp 

0 

N ii(irlz;g& j;l - - sin’ aA’(p) sin”  A’(y) t} dpl + O(&). 

0 

So one sees that under these circumstances 

For several cases the integral expressions for 

[~~z(~)~,:,,,~, - <M~(~z))B] and I<L$fZ(t)>,,,,,,, - (1~Vz))sl 

8- 

M 

5- 

4- 

i 

\ 

2 \ ’ 
._A 

.-.- - -.-I- _ -- -._ .- - ____ ---- 
---- 

0 I I 

10 102 t lo3 

Fig. 8. [<AfP(t)) - <A4Z(lz2))~],1~1,~t~ = [:filqt)>- (M’(~~z))]Kubo’ 10-2 

for hl = 10, Aa = 0, /3 = 0.033 (solid line), ,9 = 0.020 (dashed line) and p =y 0.005 

(dash, point, dash); y = 0.25. 
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have been calculated numerically by Drs. E. H. de Groot in order to get 

an idea how these functions behave. In fig. 8 we have plotted 

for the cases /? = 0.053, 0.020 and 0.005 with hi = 10, hs = 0 and p = 0.25. 

We saw that under these circumstances 

I1Qw~)hm - <M2@2) >pl = C<M2L) jexact - <MZ(h2)>sl. 

It is seen that the magnetization behaves somewhat like a damped oscillator, 

whose amplitude becomes smaller as the temperature is increased. 

When hr and & are both much larger than 1, <M+)> is almost independent 

of time, since then we have: sin 2il(q~) N sin 22’(v) N 0 and cos 2A(v) N 

II cos aA’ N - 1. Upon inserting this into (33) and (39) the time de- 

pendent parts of the integrands are seen to vanish. 

An interesting case arises when both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhl and hz are not too large, so that 

the time dependence does not vanish, and hl - h2 is small compared to 

h2, while ,!l < 1, since under these conditions the Kubo approximation is 

supposed to be a good one for more general spin systems. For the X-Y 

model we can compare the exact solution to the Kubo approximation. We 

have plotted the following cases: 

fig. 9a: hl = 1; h2 = 0.9; /3 = 0.033; y = 0.75 

fig. 9b : the same with y = 0.25 

fig. lOa: h1 = 1; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh2 = 0.9; /3 = 0.005; y = 0.75 

fig. lob : the same with y = 0.25 

In figures 9c and 1Oc we have plotted {[(Mz(t)) - <Mz(hz)>~ - <Mz(m)>]) 

on a logarithmic scale versus t for h1 = 1, hz = 0.9; ,6 = 0.033 and 0.005; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10-4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 9~. [ 0W) > - <MV4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMexact~ and [@P(t) ) - (~9~) ),&‘&, . , 

resp. solid and dashed, for hl = 1.0; hs = 0.9; 7 = 0.75 and B = 0.033. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA96. The same as in fig. 9a but y = 0.25. 

f “y\\\,, _____,,;./----___j 
10 102 t 103 

Fig. lOa. [<Mz(t) - (ML(~B))&!&. and [@P(t)) - (M~(/z~)>~]&&, . 
for hl = 1.0; A2 = 0.9, /? = 0.005 resp. solid and dashed line y = 0.75. 

Fig. lob. The same as in fig. lOa, but y = 0.25. 
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Fig. 9~. [(Mz(t)) - (iW(w))~] on a logarithmic scale versus t for hi = 1.0; hs = 0.9; 

p = 0.033; the solid line represents the exact solution, the dashed line is the Kubo 

solution. Left: y = 0.75; right; y = 0.25. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c t x 

CM? t 

Fig. 

B= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10 
I I I 

10 
ctx - ’ ----I-= 

2- \ 2- 

\ 

\ 

‘0 

I I I 

150 y-- ‘0 

I I 1 I I 
50 100 100 200 300 400 500 t 600 

10~. [(W(t)) - <Mz(co),)] on a logarithmic scale versus t for hr = 1.0; hs = 0.9; 

0.005; the solid line represents the exact solution, the dashed line is the Kubo 

solution. Left: y = 0.75; right: y = 0.25. 

y = 0.75 and 0.25, in order to see by the straightness of the curve in how far 

the decay is exponential. 

One can observe that the Kubo approximation converges rather slowly. 

In all cases it is seen that the magnetization first makes a ,,main drop” after 

which there are oscillations which die out gradually. For large times the 

Kubo approximation appears to be rather bad, which probably corresponds 

to the fact that the Kubo approximation relies on first order perturbation 

theory. It improves fastly when y becomes smaller, which is understandable 

since y characterizes the strength of the non-secular part of the Hamiltonian. 

For y = 0.25 one observes that a part of the “main drop” can be considered 

to be exponential, but the following oscillations are too large to consider 

the whole process as an exponential decay. The same is seen in curves for 

smaller Ai - ha and y. This provides a good example of the danger of using 

the weak coupling limit, as developed by Van Haves), in order to obtain 

an exponential decay for more general spin systems as was done by T e r w i e 1 

and M azu r4). The X-Y model can serve as an example that their treatment 

of spin-spin relaxation probably cannot be extended to spin systems with 

an anisotropic exchange interaction, since their basic assumption together 

with the weak coupling limit yields an incorrect result for the case of the 
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X-Y model. The possibility that the use of the weak coupling limit may 

obscure the fact that after some time the exponential decay is submerged 

in the non-exponential part has been pointed out already by Zwanzigle). 

We can easily apply the method of Terwiel and Mazur to the X-Y model and 

we will shortly reproduce their argument. The Hamiltonian is split into a 

secular part Hr and a non-secular part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHe (of which the strength is charac- 

terized by the parameter y) which respectively commute and do not commute 

with the operator ll/lz: 

We will study the function ((A1z~Vz(l))) = R(0, t) which appears in the Kubo 

equation (36). In section D it was shown that R(0, t) reaches an equilibrium 

value R(0, 00) as t goes to infinity. Following Terwiel and Ma zur we define : 

where 

(In our notation we would have Q(t) = X(0, t) - R(0, m)). Without making 

any further assumption they derive an exact integral equation for Q(t) by 

a technique introduced by Zwanzigro) 

aQ(t) _ 
at 

- -y” ‘d7 G(T, y) Q(t - T) 
J 
0 

where 

G(T, y) = 
((pL' {exp iL0 + iL( 1 - I-‘,) yL’7) L’pu)) 

G2>> 

L is the quantummechanical Liouville operator which is split into two parts : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L = Lo + YL’ 
where 

Lo = i, !ffl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I 

L’ = m; [Hz, .] 

and Pti is a projection operator defined by 
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Introducing the Laplace transforms of Q(t) and G(t, y) : 

and 

.6(p) = rd7 e--p7 Q(T) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

G(;6, y) = J-d7 e--p7 G(T, y) 
0 

equation (40) can be written as 

G(f) = J-40) 
P + &PJ Y) . 

(41) 

They then deal with equation (41) in the so-called weak coupling limit, i.e. 

they take the limit y + 0, t + 00, while keeping yst finite. Equation (41) 

then takes the form: 

lim ys$y2p) = 
Q(0) 

p + ‘;‘“o q,zp,,, 
(42) 

Y-f0 

Their basic assumption now is 

lim G(ysp, y) = lim G(y2p, 0) 
Y-t0 Y+O 

so that (42) reduces to 

lim y2&(y2p) = 
Q(0) 

P + $dT G(T, 0) 

(43) 

(44) 

yielding a simple exponential decay for Q(t), with a relaxation time TV, defined 

bY 

Tr -’  = yzosdT G(T, 0). 

For the case of the X-Y model the validity of equation (44) can be checked 

since we can give explicit expressions for the quantities occurring in (44) 

and assuming that 

/ % G(T, 0) = a 

is finite. From (26) one immediately finds that Q(t) is given by 

x 
1 P 

Q(t) = & 
J 

sins 21(q) cos {211(v) t> dp 

0 
so we have 

9(O) = & sins 21(v) dy 
s 
0 

(45) 
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and for the Laplace transform: 

which reduces to: 

The integrals (45) and (46) can in principle be evaluated by using the sub- 

stitution cos p = x and the so-called “ third Eulerian substitution”  

J1 -G=t(x+ 1) h w ereupon the integrands become rational functions 

of t. It turns out, however, that the denominators are of such a high degree 

in t that they are quite intractable. If we confine ourselves to the case that 

the constant magnetic field is zero the integrals (45) and (46) are easily 

evaluated yielding : 

and 

_$p, = pr:. s 1_ sin”  P 

4n [p2 + 4{COS2 q + y2 sin2 q)][coss y + ~2 sins ~1 
drp 

0 

So the lefthand side of (44) is 

lim py3 1 

v-0 23 &-3y2 + 4 {1,‘&4 + 4 + Jpsys + 4} 

and the righthand side 

Y 1 
.__~__ 

4(1 + Y) P + a 

(47) 

(48) 

It is easily seen that (47) tends to zero when y --f 0, whereas the right side 

is unequal to zero, nor does (47) take the shape of (48) for very small values 

of y. So after we have made assumption (43), the weak coupling limit does 

not give us the correct result, as we could have expected, since the asympto- 

tic time behaviour of <M”(t)> is governed by a time dependence t-i. 

This makes it probable that the use of the weak coupling limit together 

with assumption (43) is not correct for spin systems with dipole-dipeol 
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interaction and anisotropic exchange interaction since it is not correct for 

the X-Y model which is a special case of the foregoing class of systems for 

vanishingly small dipole-dipole interaction. 
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