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Econometrica, Vol. 62, No. 1 (January, 1994), 73-93 

SOME EXACT DISTRIBUTION THEORY FOR MAXIMUM 
LIKELIHOOD ESTIMATORS OF COINTEGRATING 
COEFFICIENTS IN ERROR CORRECTION MODELS 

BY PETER C. B. PHILLIPS1 

This paper derives some exact finite sample distributions and characterizes the tail 
behavior of maximum likelihood estimators of the cointegrating coefficients in error 
correction models. It is shown that the reduced rank regression estimator has a distribu- 
tion with Cauchy-like tails and no finite moments of integer order. The maximum 
likelihood estimator of the coefficients in a particular triangular system representation is 
studied and shown to have matrix t-distribution tails with finite integer moments to order 
T - n + r where T is the sample size, n is the total number of variables in the system, and 
r is the dimension of the cointegration space. These results help to explain some recent 
simulation studies where extreme outliers are found to occur more frequently for the 
reduced rank regression estimator than for alternative asymptotically efficient procedures 
that are based on the triangular representation. In a simple triangular system, the Wald 
statistic for testing linear hypotheses about the columns of the cointegrating matrix is 
shown to have an F distribution, analogous to Hotelling's T2 distribution in multivariate 
linear regression. 

KEYwORDS: Hypergeometric function, invariant measure, matrix Cauchy, maximum 
likelihood, orthogonal group, reduced rank regression, spherical distribution, Stiefel 
manifold, triangular system. 

1. INTRODUCTION 

SEVERAL PROCEDURES ARE NOW AVAILABLE for obtaining estimates of cointe- 
grating coefficients that are known to be asymptotically efficient under Gaussian 
assumptions. A commonly used method in practical work at present is reduced 
rank regression-see Johansen (1988) and also Ahn-Reinsel (1988, 1990). This 
method applies maximum likelihood to a systems error correction model (ECM) 
formulated with vector autoregression (VAR) dynamics. An alternative para- 
metric maximum likelihood method was developed in Phillips (1991) and is 
based on a triangular system representation of the cointegration model. The 
Phillips and Johansen procedures are, in fact, asymptotically equivalent when 
the same coordinate system for the cointegration space is used (see Park (1990) 
for a demonstration), but these procedures are not equivalent in finite samples. 
This is because the triangular system representation explicitly incorporates 
identifying conditions on the cointegration space that isolate a set of full rank 
integrated regressors and identify the cointegrating equations as individual 
structural equations. These conditions are analogous to traditional identifying 
restrictions in simultaneous equations models. The Johansen reduced rank 
regression approach places no prior restrictions on the cointegration space but 

1 This paper is a revised version of an earlier paper circulated in September, 1991 under the title 
"The Tail Behavior of Maximum Likelihood Estimators of Cointegrating Coefficients in Error 
Correction Models." My thanks go to a co-editor and three referees for helpful comments, to Glena 
Ames for wordprocessing, and to the NSF for research support under Grants SES 882-1180 and 
SES 9122142. 
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74 PETER C. B. PHILLIPS 

employs normalization rules that uniquely determine empirical estimates of the 
cointegrating vectors as generalized eigenvectors in a canonical correlation 
analysis between the levels and the differences of the time series. These 
distinctions between the procedures do have important effects, some of which 
will be explored in the present paper. In addition to the above mentioned 
procedures, several alternative efficient methods of estimation are now available 
including a fully modified least squares method due to Phillips and Hansen 
(1990) that also uses the triangular representation. 

Some attempts have been made to evaluate these different procedures by 
simulation. Recent work by Corbae, Ouliaris, and Phillips (1990), Gregory 
(1991), Hargreaves and Setiabudi (1992), Park and Ogaki (1991), Cappuccio and 
Lubian (1992), and Toda and Phillips (1993) is relevant in this connection. One 
common feature to emerge from these simulation studies is that the Johansen 
reduced rank regression procedure seems occasionally to produce estimates that 
are very unreliable in the sense of being extreme outliers, where the other 
methods do not. 

One aim of the present paper is to provide an analytical basis for understand- 
ing this phenomenon. The methods used are related to some earlier work by the 
author (1984, 1986a) on the exact distribution of simultaneous equations estima- 
tors. Formulae are derived for the exact finite sample distribution of the 
reduced rank regression estimator in the general case and the leading factor in 
this distribution is shown to be proportional to a matrix Cauchy distribution. 
Under a mild dominance requirement on the density of the squared canonical 
correlation matrix, it is shown that the density of the reduced rank regression 
estimator has Cauchy-like tail behavior and therefore no finite first moments, 
thereby providing an explanation for the outlier behavior observed in the 
aforementioned simulation studies. Maximum likelihood estimators that are 
based on the triangular representation are studied in a particular case and are 
shown to have quite different finite sample tail behavior. Unlike the reduced 
rank regression estimator, these estimators possess finite integer moments up to 
order T - m, where T is the sample size and m is the number of full rank 
integrated regressors. Some exact results for the same model on the distribution 
of Wald tests about the cointegrating coefficient matrix are given, including a 
version of Hotelling's T2 test in multivariate linear regression. 

Throughout this paper we use the symbol "-" to signify equivalence in 
distribution and IV(-) and W( ) to represent the null and range spaces of their 
respective matrix arguments. 0(n) = {H(n x n): H'H = In) denotes the orthogo- 
nal group of n X n orthogonal matrices, VI,n = {A(n X r): A'A = Ir} is the Stiefel 
manifold, and fn(a) = 7 - 1)/4 l -n F(a (1/2)(i - 1)), where Re(a) > 
(n - 1)/2, is the multivariate gamma function. The matrix variate X(n X r) is 
said to be spherically distributed if X C1XC2 for all C1 E 0(n) and C2 E 0(r). 
If, in addition, X'X= Ir then X has a uniform distribution on the manifold 
Vr n. This distribution on Vr,n is, in fact, uniquely determined by its invariance 
under the orthogonal transformations C, and C2. The reader is referred to 
Muirhead (1982, Ch. 1-3), James (1954), and Herz (1955) for more background 
on these matrix spaces and distributions. 
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MLE S OF COINTEGRATING COEFFICIENTS 75 

The plan of the paper is as follows. Section 2 develops a distribution theory 
for the reduced rank regression estimator and examines the tail behavior of this 
distribution. Section 3 derives the distribution of the maximum likelihood 
estimator of the cointegrating matrix and some Wald tests in a particular case of 
the triangular representation. The tail behavior of the distribution of this 
estimator is obtained and compared with that of the reduced rank regression 
estimator. Section 4 discusses the implications of these results and draws some 
conclusions. Technical derivations are given in the Appendix in Section 5. 

2. SOME EXACT FINITE SAMPLE THEORY FOR THE REDUCED RANK 
REGRESSION ESTIMATOR 

Suppose the n-vector time series yt satisfies an ECM of the form 

k-1 

(1) J(L)Ayt=FA'yt_1+t (t=l,...,T), J(L)= E JLi, Jo =I, 
0 

et-iid N(O, 

In (1) A' is an r x n matrix of cointegrating vectors and F(n x r) is a matrix of 
factor loading coefficients. 

Suppose that the matrix A in (1) is estimated by reduced rank regression. It 
may be assumed that the dimension of the cointegrating space r > 1 is pre- 
scribed or it could be chosen by the likelihood ratio trace statistic of Johansen 
(1988). (Even when F = 0 this outcome of the test, i.e. r > 1, occurs with 
positive probability.) The reduced rank regression estimator of A satisfies the 
optimization problem 

(2) A = argminAj Soo - S01A(A'S11A) 1AtSlo 

(see Johansen (1988, p. 234)) subject to the following normalization conditions 
which ensure the empirical uniqueness of A: 

A A 

(3) A'SliA =Ir, 

(4) A'SloSo-o SA = Ar, 
A 

(Al 

A A A A 

where Ar =diag(A,A2, ..., Ar) and A1> > Ar > O are the first r ordered 
roots of the determinental equation I AS11 - S1So-'1So1I = 0. The Sij in (2)-(4) 
are moment matrices of the residuals from the regression of A yt (i = 0) and 
yt - (i = 1) on the lagged differences Ayt_j (j = 1, ...., k - 1) that appear in (1). 
The notation is the same as Johansen's (1988) except that we use A' in place of 
his f3' and the index 1 in place of his k (the latter since we use yt - 1 rather than 
Yt-k in the ECM formulation (1)). Let S = S-1l/2S1OS - 1SOlS-1l/2. Then the 
eigenvalues of S are the squared canonical correlation coefficients, the first r of 
which comprise the diagonal elements of Ar. 

Let us now replace the empirical normalization rules (3) and (4) with the 
requirement that the leading submatrix of the cointegrating matrix A' is the 
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76 PETER C. B. PHILLIPS 

identity. That is, suppose we set 

(5) A'= [Ir,-B]. 

This condition corresponds to the a priori requirement that there be r struc- 
tural relations of the form 

(6) Ylt=By2.+Ult, 

where y= [y't], 7 is a partition of yt that is conformable with (5), y2t is a full 
rank integrated process, and u1t is a stationary error. This is the type of 
formulation that occurs frequently in applied econometric work. Note that the 
explicit form (6) is stronger than the empirical normalization given by (3) and 
(4). In particular, the form of (6) explicitly recognizes a subvector, y2t, of full 
rank integrated regressors and (6) involves r restrictions per equation (i.e. r - 1 
exclusion restrictions and one unit normalization restriction) on the parameters 
of the cointegrating matrix A', giving r2 restrictions in toto. The normalizations 
(3) and (4) also involve r2 restrictions but they apply to the estimate A', not the 
true cointegrating matrix A'. The difference is important because in the limit A' 
may not be uniquely determined by these empirical restrictions (as happens 
when there are multiple eigenvalues in the limit matrix Ar corresponding to Ar 
in (4)). 

Once the matrix A in (1) is estimated by reduced rank regression, ex post 
estimation of the submatrix B in (5) is always possible and this is often what is 
done in practice. Thus, partitioning A' and A' conformably with (5) as A'= 
[A1, A2], we have B = -A7 'A2 and the corresponding estimator B = -A - A 
Observe that B is invariant to rotations and scalings of the cointegration space 
defilrel by A'. For in,stankce, writing A =A(A'A) 1/2 E Vr, we could replace (3) 
by A'A = Ir, and -A7 -A2 = -A7 1A2 is clearly invariant to this rescaling of A. 
Thus, B is uniquely determined from A irrespective of whether the empirical 
normalizations (3) and (4) are employed. The finite sample distribution of B is 
therefore also invariant to these transformations. The following result gives a 
general expression for the density of B. 

2.1 THEOREM: The exact finite sample distribution of the reduced rank regres- 
sion estimator B of the structural coefficient matrix B in (6) is given by the density 

(7) pdf( B) F rw7n2/2+rm/2( r/2) lIr + BB'(+ 

x | I I rl (~~n Ai_ Aj f (C(B 
A KAC 

O<A <I ELEO(r) KeO(m)i<j 

X(B, L, K) )(dL)(dK) dA, 

where m = n - r, f(S) is the probability density of S = Sj1 /2S,oSo- 'SSjlj'/2 and 
the orthogonal matrix C = C( Bi, L, K) depends on B, L, K through the partitioned 
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MLE 'S OF COINTEGRATING COEFFICIENTS 77 

decomposition C = [C1, C2] with 

(8) Cl = [ ](Ir + )BB) L, C2= [I + BA) B"K. 

The matrices L and Kin (8) are in 0(r) and 0(m), respectively, and (dL) and (dK) 
in (7) represent the normalized invariant measures on these two spaces. 

2.2 REMARKS: (i) Formula (7) is a useful general expression for the density 
A 

of B. The formula applies even when the errors in (1) are not normally 
distributed, although of course any departure from normality certainly affects 
the form of the density ff ) in (7). 

(ii) The analytic form of the density f(S) of the squared canonical correlation 
matrix S that appears in (7) is not known even when the Et are normally 
distributed or in the scalar case where n = 1 and seems beyond reach, at least 
with existing methods. The problem of determining f( ) is related to the 
problem of finding the exact distribution of the estimated coefficients in a vector 
autoregression, a long standing problem that is unresolved even for the scalar 
first order autoregressive model. Nevertheless, (7) is useful because under what 
seem to be very reasonable conditions on the form of f( ) (7) may be used to 
determine the tail behavior of the estimator B. In particular, we shall assume 
that f( ) satisfies the following condition. 

CONDITION (D): There exists a function g( ) such that for each A= 
diag (A1 . n) with O < A < I 

A A 

(9) f(CAC') <g(A) for all Ce 0(n) and 

(10) J H( ^ ̂ X)() A) d A<oc. 

Condition (D) requires that f(CAC') be dominated above by a function g(A) 
that satisfies the integrability condition (10). This seems like a rather mild 
requirement but it is also very difficult to confirm that it is satisfied, and we have 
not been able to do so even under Gaussian errors, let alone more generally. 
However, there are conditions and model specializations under which (D) holds. 
For instance, (9) is certainly satisfied whenever f(CAC') is continuous in C 
because 0(n) is compact. Moreover, when f( ) is a symmetric function of its 
matrix argument (i.e. when f( ) is a function of the n elementary symmetric 
functions a,1 = tr (S),... , an = det (S)) we have f(CAC') = f(A) and then (9) and 
(10) are automatically satisfied. The case where f(-) is a symmetric function of 
matrix argument does arise in an interesting specialization of the model (1) and 
that case will be examined further below. 

(iii) The leading factor in the density function (7) involves a multiple of the 
determinantal expression II+ BBI-K(r+m)/2, which is proportional to a matrix 
Cauchy density (see (15) below and Lemma 5.2) for the r x m matrix B. This 
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78 PETER C. B. PHILLIPS 

factor determines the tail shape of the density (7) as the following corollary 
shows. 

2.3 COROLLARY: Suppose ff() satisfies condition (D) and let B approach the 
limits of its domain of definition along the ray B = bBo for some fixed matrix 
Bo * 0 and scalar b which tends to infinity. Then 

(11) pdf (B 
= 

bBo) = koI + b2BoB (r+m/2(1 + o(1)), as b -oo, 

where 

( 12) k0 = [ Z-n2/2+rm/2r(/2)J -1 

Xff f ~~~~~~~~~~~~~~~~~~H(X - 1)f (Co A^Cf)(dL) (dK)dA. 
O<A <IELrO(r) KEO(m) i <j 

In (12) CO = [C01, C02] E 0(n) is partitioned conformably with (8), 

F(FjFf)0 
(13) [ LFF) 

col 'BoB F2) -l/2GF] 

[BOG2(G'2 BBOG2) - j1/2KG 

CO2-#L (G1G1)0 K 

F = [F1, F2] E 0(r) with F1 E IV(B ), F2 E s(Bo) and G = [G1, G2] E O(m) 
with G1 E .V(BO) and G2 E ?W(B). The notation ( )O in (13) signifies that the 
matrix in parentheses is replaced by a zero matrix when the corresponding null 
space (i.e. .A(B ) and X(BO)) has zero dimension. 

The tail behavior of the density (11) on the ray B = bBo is equivalent (up to a 
constant multiple) to that of a matrix Cauchy distribution. It follows that the 
density of the reduced rank regression estimator B has no finite sample integer 
moments. This may go some way to explain the occurrence of the extreme 
outliers that have been observed in simulation studies of this estimator. 

(iv) A special case that is of some independent interest is that of spurious 
regression. Here the system that is estimated is the vector autoregression (1) 
with r > 0 when the generating mechanism of y, is a set of n random walks 
initialized at the origin at t = 0, i.e. 

(14) Ay, t,, Yo = 0, 
where Et is spherically symmetric, i.e. st - Het for all H e 0(n). The case of 
independent Gaussian random walks is of primary interest and here (14) is a 
specialization of (1) with F = 0, J(L) = I, X = I, yo = 0, and E- iid N(O, I). 
Under the generating mechanism (14) the density of B given in Theorem 2.1 
has a very simple form as the next result shows. 

2.4 COROLLARY: Suppose yt is generated as a vector of random walks as in 
(14) with spherically symmetric errors Et and the reduced rank vector autoregres- 
sion (1) is estimated with r> 1. Then the exact distribution of the resulting 
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MLE S OF COINTEGRATING COEFFICIENTS 79 

estimator B is matrix Cauchy with probability density 

(15) pdf(B) = [ .r(n -r)/2 r(r/2)] _1fr(n/2)IIr+BB l . 

When r = 1 and m = n - 1 the distribution (15) has the familiar multivariate 
Cauchy form, i.e. 

(16) pdf(b) - [rm/2r(m/2)] 1F((m + 1)/2)(1 +b'b)(m?l)/2, 

where B = b' is here a 1 x m vector. Both (15) and (16) are preserved under 
marginalization in the sense that all submatrices of B have Cauchy distribu- 
tions. The fact that elements of B have no finite integer moments is the 
consequence of the fact that B is a matrix quotient of submatrices of A or 

A A 

A A') 1/2 -iZ A =A(A'A) 7,viz. 

A 
A_ 

^ A A A 

B= _AA2 -A 1A22= -adj (A4Atdet(Ar) 

Take the (i, j) element of this quotient. We can always find an A in Vr n for 
which [adi (A1)A2]1i is nonzero and det (A1) = 0. Select an A in Vr n for which 
the ith row of A1 is zero while [adj (A1)A2]11 is nonzero. This will always be 
possible because, as shown in the proof of Corollary 2.4, A is uniformly 
distributed on Vr, n. Thus, we have pdf (A) = constant > 0 at this value of A, 
whereas det (A1) = 0 and [adj (A1)A2]11 i 0 by construction. This is sufficient to 
ensure that the random variable [B]ij has no finite integer moments-see 
Sargan (1988; Theorem 1) and Phillips (1983, Theorem 3.9.1). 

3. TAIL BEHAVIOR OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE 
TRIANGULAR SYSTEM REPRESENTATION 

In place of (1) let us now suppose that maximum likelihood is applied to the 
triangular system representation, viz. 

( 17) Y lt = By2t + Ult, 

(18) Ay2t = U2t S 

where ut = (u u'2t)' iid N(O, Xu). This system can also be written in the 
ECM format by setting 

(19) J(L) =In, r= -0 A'= [I,X-B] 

1it = u1t + Bu2t , and -2t =u2t. 

Under this parameterization, observe that (1) is linear in both the variables and 
the coefficients because the factor loading matrix F is now known. (The 
dependence of the error elt on the matrix B can be ignored, since we assume 
XU is unrestricted.) Because of this difference the maximum likelihood estimator 
B of B in (17) is different from the reduced rank regression estimator B. Note 
that the system (17)-(18) is restrictive because we do not have any time 
dependence in the error process ut. 
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80 PETER C. B. PHILLIPS 

As shown in Phillips (1991), B is equivalent to the OLS estimator of B in the 
augmented regression equation 

(20) yI=t = By2t+ DAY2D + U1-2t 

where D = 2122-21, U I 2t = uIt - 12X2 U 2t, and 

I[I 112 
XU 

121 122 

is a partition of I conformable with that of ut. Observe that the error ul. 2t in 
(20) is independent of the regressors Y2t and Ay2t by virtue of its construction 
and u1.2 -iid N(0, 11.2) where 11.2 = 11 2 12X2-21X21I In conventional 

partitioned regression notation the estimator B has the form 

(21) B= YIQdY2(Y2QAY2)'. 

The error in the estimator B is written as E = B - B = U1 2 QaY2(Y2QaY2) I 
again in conventional regression notation. 

Let 2 be the a-field generated by {U2t: t = 1,... , T}. Then conditional on 
F2, the estimation error E is linear in Ul.2 and hence Gaussian. The condi- 

tional distribution of E is N(0, 111l 2 ? F) with density 

(22) pdf( Y) (2T) -rm/2 IFI -r/2 etr (-(1/2) E'kIl12EF ) 

where F = (Y2 QY2) 1. The marginal density of E is now obtained by integrat- 
ing out the conditioning variates in (22) with respect to their associated 
probability measures. The analysis is assisted by transforming to a set of 
canonical variates which make the integrations easier. The derivations are a 
little involved and are given in the Appendix. They lead to the following result. 

3.1 THEOREM: (a) The exact finite sample distribution of E = B - B where B is 
the maximum likelihood estimator of B in the triangular cointegrated system (17) 
and (18) is given by 

(23) pdf(E) - 7.-mr/2[p(T/2)] 'Fm((T+ r)/2)I11i.21m/2 122I1r2 

x IK( 2) Ir/2 

m,T 

Xt I ( )-1 ,X1/2~,-1 ~X1/2I-(T+r)12 xf Im + H,K(A ) 'H ?EXi2X? 
0(m) 

x (dH3)(dZ2) 
where 

(2) 2 L'-2 ) 2 

and 

-1 0 ... 0 

1 1 ... O 
L=[. ( . ]Tx T). 

In the above expressions the matrices 2eVmT and H3 E 0(m), and (d2), 
(dH3) signify the normalized invariant measures on Vm T and 0(m), respectively. 
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MLE 'S OF COINTEGRATING COEFFICIENTS 81 

(b) The finite sample distribution of the scaled estimation error 

EN = E(Y2QAY2)1/2 - (B B)(Y2QaY2)1/2 

is matrix normal with variance matrix 11 2 0 Im 

3.2 REMARKS: (i) Let E = 112 2212. This is the estimation error of the 
maximum likelihood estimator in a "standardized model"-see (36) and (37) in 
the Appendix. Consideration of E helps to simplify the analysis of the proper- 
ties of the density (23). The density of E is 

(24) pdf (E) -mr/2[mT/2) ] m((T + r) /2) 

xf IK( 2) Ir| f Im + H3K( 2) 2 H3'EjE| 

x (dH_)4 2 

It is apparent from the form of (24) that the matrix variate E is spherically 
symmetric in the sense that E - J1EJ2 with J1 E 0(r) and J2 E 0(m). This is 
seen by making the replacement E J1JEJ2 in (24) and noting that H3= 

H3Jf E 0(m) so that upon integrating over H3 the density (24) is unchanged by 
the replacement. 

(ii) Since E is spherically symmetric all marginal distributions of E have the 
same form. Note that when r = m = 1 the density (24) is 

(25) pdf(e) -1/2r(T/2)-'F((T+ 1)/2) 

.-V k ) -[1/2 k( 2)-1-2 (T+1)/2( 

V1T 

which is a mixture of scalar t-variates with T degrees of freedom. More 
generally when r = 1 and m > 1 we have the following density for E =e 
(1 x m) 

(26) pdf( e) = -m/2j-(T/2) 1m((T+ 1)/2) 

xl K( 2)1-/ 
m,T 

Xf Im+H3K('v2) H37e-e' -( + 
0(m) 

= 7T-m/2[p( T-m + 1)/2] 1(( T + 1)/2) 

x | |K( -) 
m,T 

r ~ 
~~~3-(T+ 

1)72( 
x (1 + j'H3K(*H2)- ) e 

which is a covariance matrix mixture of multivariate t-variates with T - m + 1 
degrees of freedom. 
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82 PETER C. B. PHILLIPS 

(iii) The tail behavior of the marginal density of an individual component e', 
of e' can be deduced from (26). First we note that the marginal density of e', has 
the form 

(27) pdf e-1) = rr- /2[F((T-m + 1)/2) ] I((T-m + 2)/2) 

xf f k11.2( 2,H3)1/2 
Vm,T 0(m) 

[1 +k(11.2( 2, 3)+2)/2(dH )(d ) 

where k 1 2(2, H3) is defined by k1.2 =k-k K-1k and the partitioned 
2 -~~~~ 2 12 22 21' dtepattoe 

matrix elements come from 

rk11 kl2] 
H3K( 2) H3 [k2, K22] 

The density (27) is a mixture of scalar t-variates with T - m + 1 degrees of 
freedom. Next we expand the binomial factor in (27) for large Ie1 I and integrate 
the expansion term by term with respect to 52 and H3. This term by term 
integration of the asymptotic expansion is possible because VmT and 0(m) are 
compact sets and k1.2 >O uniformly for 2 e Vm T and H3e O(m). The 
asymptotic expansion then holds uniformly in 2 and H3, and can therefore be 
integrated term by term-see Erdelyi (1956, p. 16). Since 

[1 + k11.2( 2, H3)e -T+ 

-k11.2(*2, H3)(T-m+2)/2j,1,Vj(Tm?2){l + O(e,2)} 

we obtain the expansion 

(28) pdf ( e1) = -(T-m+2){l + O(e 

for large I ev,, where 

C = 1/T- 12r((T - m + 1)/2) lF((T - m + 2)/2) 

Xf f| k(S, H3)(T-m+2)/2(d )(dH). 
VmT 0(m) 

From (28) it is apparent that the maximal moment exponent of 'e is T - m + 1 
and integer moments of 'e' exist to order T - m. The same result holds for an 
arbitrary element of the matrix variate E. (As remarked in (i) above, all 
marginal distributions of E have the same general form. In particular, when 
r > 1 each row of E has a density of the form (26) leading to tail behavior for an 
individual element of E that is of the form given by (28).) The same conclusion 
on the existence of moments applies to the unstandardized estimator E. 

(iv) Part (b) of Theorem 3.1 shows that the scaled estimation error EN 

N(O, L11.2 Im). This result can be used to mount exact finite sample tests with 
the maximum likelihood estimator in the triangular system (17) and (18). 
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Suppose, for example, that we wish to test the null hypothesis 

(29) Ho: D1Bd2= d 

about the coefficient matrix B in (17) for some given matrix D1(q x r) of rank q 
and given q-vectors d2 and d. The matrix B is estimated by B using OLS on 
(20), we construct D1Bd2 - d = Dj(B - B)d2 = D1Ed2, and then form the Wald 
statistic 

(30) W= (D1d2 -d) (Djjj Dj) (D1Bd2 - d)/d'2(Y2QAY2) 1d2, 

where X11.2= T- 'YQQ*Y1 is the maximum likelihood estimator of the error 
variance matrix X112 in equation (20) and the affix "*" on Q * signifies that 
both Y2t and AY2, are included in the regressor set. Our next result shows that 
the test statistic W is a multiple of a Hotelling's T2 variate. 

3.3. THEOREM: The exact finite sample distribution of the Wald statistic Wfor 
testing the null hypothesis Ho in (29) is given by 

Tq 
(31) W= F 

N-q + 1 q,N-q+l 

where N= T- 2m. 

3.4. REMARKS: (i) Theorem 3.3 shows that exact F tests of linear hypothe- 
ses of the form (29) can be constructed from the conventional Wald test in 
specialized triangular systems of the form (17)-(18). The result is entirely 
analogous to that which applies in linear multivariate regression models with 
fixed regressors-see Phillips (1986b, 1987). 

(ii) More general exact results than (31) can be obtained in a similar way. For 
instance the Wald statistic for testing Ho: D1BD2= D is proportional to a 
Hotelling's T02 statistic and has the same exact finite sample distribution-see 
Phillips (1987) for the exact density in this case. Moreover, a general exact 
theory for Wald tests of hypotheses such as Ho: D vec (B) = d can be developed 
using operator algebra along the lines of Phillips (1986b). For the null hypothe- 
sis case, the exact theory of that paper holds here conditionally on 2. The 
unconditional distributions may then be obtained as in Theorem 3.1 by appro- 
priate subsequent integrations. A complete development of the theory would 
obviously take us beyond the material concern of the present paper. 

(iii) Theorems 3.1 and 3.3 can be extended to apply in a somewhat more 
general model than (17) and (18). Suppose (18) is replaced by the stationary 
VAR model 

p 

(18)' P(L) AY2 =U21, 'P(L)= E PiL, 'P 0=Im, 
i=0 

where u2, has the same properties as in (18). Then, in place of (20) we have the 
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augmented regression 
p 

(20)' Ylt = By2t + E Di Ay2t?i + UI.2t 
i=o 

where D = DPi, D = 12 22' and u1.2 = - as before. In this 
extended case u1.2t is still orthogonal to the regressors in (20)'. Under Gaussian 
assumptions, the analysis that leads to Theorems 3.1 and 3.3 then goes through 
in the same way as before when one allows for the expanded regressor set in 
(20)'. All that changes is the form of the matrix K(2) that appears in 
expression (23) for the density of the estimation error E = B - B where B is 
now the OLS estimator of B in (20)'. In consequence, the earlier results on the 
tail behavior of the distribution of B and exact tests of linear hypotheses about 
B continue to apply in the context of (20)'. As discussed in Phillips and Loretan 
(1991), the augmented regression (20)' is a case where there is valid condition- 
ing on the regressors in the sense that they are weakly exogenous with respect to 
the cointegrating matrix B. In more general cases where the errors u1l are 
temporally dependent and when there is feedback from u1t_j to u2t for i > 1 
the appropriate augmented regression equation has coefficient nonlinearities 
and leads as well as lags of Ay2t. In such cases an exact theory is much more 
complex and this paper does not deal with these cases. 

4. DISCUSSION 

This paper demonstrates that some exact finite sample distribution theory is 
possible for estimators in cointegrating regression models. Our results show that 
reduced rank regression estimators have Cauchy-like tails and no finite integer 
moments. Outliers can be expected to occur more frequently for this estimator 
than maximum likelihood and other efficient estimators that are based on the 
triangular system representation. The latter estimators are shown, at least in the 
particular system (17)-(18) considered here, to have finite sample distributions 
for which integer moments exist to order T - m = T - n + r, where T is the 
sample size, n is the total number of variables in the system, and r is the 
number of structural cointegrating equations. 

It may be worth remarking that the outlier behavior of the reduced rank 
regression estimator is unrelated to the fact that the information content of the 
data is random in the limit as T -> oo for nonstationary data. Both the regression 
estimator and the reduced rank regression estimator have limiting mixed normal 
distributions that reflect this random limiting information feature of nonstation- 
ary data. Indeed, efficient cointegrating regression estimators and reduced rank 
regression estimators have equivalent limiting distributions. Yet the finite sam- 
ple tail behavior of these estimators is very different. 

Outlier behavior is only one characteristic of the finite sample distributions of 
A 

B and B. We should therefore be careful to avoid concluding that the finite 
sample performance of B is inferior to that of estimators like B solely because 
of tail behavior. Simultaneous equations theory is instructive in this regard. It is 
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known, for example, that the LIML estimator in a structural equation model has 
a distribution that is close to being symmetric in finite samples (producing near 
median unbiasedness in the estimator) and seems to approach its asymptotic 
normal distribution quite rapidly while still having no finite first moment. 
Moreover, the LIML estimator seems generally to have better finite sample 
characteristics than regression estimators such as 2SLS. Anderson (1982) and 
Phillips (1983) provide a detailed comparison of the distributions of LIML and 
2SLS estimators in this context; and Hillier (1990) and Phillips (1990) explore 
reasons for the apparent superiority of LIML. The fact that the LIML estimator 
is invariant to the equation normalization is certainly one factor in determining 
its near median unbiasedness. In effect, no preference is given to a particular 
direction (or axis) in the optimization criterion by which the estimator is 
obtained. A similar factor comes into play in the reduced rank regression 
estimator B, which as we have seen is invariant to the empirical normalization 
criteria (3) and (4) that are employed in obtaining A. On the other hand, the 
maximum likelihood regression estimator B relies on the explicit normalization 
(5) which gives a preference to the coordinates of yl, in determining the value 
of B. Note, however, that in the case considered in Section 3 the distribution of 
B is actually symmetric about B and hence B is median unbiased. Since B has 
finite integer moments to order T - m, B is also an unbiased estimator of B in 
this case. 

In triangular system cointegrating regression an exact theory of inference is 
also possible in simple models like (17) and (18). For testing linear hypotheses 
about the columns (or linear combinations of the columns) of the cointegrating 
matrix B, the Wald statistic constructed from the augmented regression estima- 
tor B is proportional to an F variate, just as in the case of the multivariate 
linear regression model with fixed regressors and Gaussian errors. This test is 
analogous to the Hotelling's T2 test in multivariate regression. 

Cowles Foundation for Research in Economics, Yale University, Box 2125 Yale 
Station, New Haven, CT 06520-2125, U.S.A. 

and 
University of Auckland, Private Bag, Auckland, New Zealand 

Manuscript received October, 1991; final revision received April, 1993. 

APPENDIX 

The following two results will be used in the proof of Theorem 2.1. 

5.1. LEMMA: If A is an n x n positive definite random matrix with density function f(A) then the 
joint density function of the eigenvalues 11, . l ., of A is 

n 
n2 /2[ F(n/2)] _H(l-li)f ( f(HLH')(dH) 

i<i (n 

where L = diag (l.la n), I11 > ... > 1n > 0, and (dH) is the invariant measure on O(n) normalized 
so that fO(n)(dH) = 1. 
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PROOF: See Muirhead (1982, Theorem 3.2.17). 

5.2 LEMMA: Let Xe VJ,n and let (dX) denote the invariant measure on Vr,, and (dX) the 
corresponding normalized measure (so that f rn(dX) = 1). If we parameterize X as 

X= [ r,](I +RR') -1/2L, 
-R 

where R is an r x (n - r) matrix and L E 0(r), then the following equation defines the transformation 
of measures 

(dX) = [7 r(n -r)/2Fr(r/2)] Fr(n/2)1Ir + RR', n/2 dR(dL), 

where (dL) denotes the invariant measure on 0(r) and dR = H,i j drij is Lebesgue measure on Hr(nr). 

PROOF: We need to find the jacobian of the transformation X -* (R, L) and this is most easily 
accomplished by using exterior algebra. We start by taking matrix differentials of the relation 
defining X in terms of R and L: 

dX= j[ dR, RR(I+RR') L- _I, (I + RR) -1/2d{ (I + RR,)1/2} 

X (I + RR,) 1/2 L + 
I 
I,] (I + RR,) -112dL. 

Next we construct an orthonormal complement to the matrix X, e.g. 

X1= [ ]R (Im+RIR 1/2, m=n-r, 

and then [X, Xl] e 0(n). 
Now we have 

X'I dX = I + R'R) 1/2 dR'(I + RR,) 1/2L, 

and if we take exterior products of the elements on the left-hand side we obtain (writing [X, Xl] as 
[XI, X2,., *vXn]) 

rr m 

(XI dX): = A A Xjdi=lI +RtRg r/21i+RR?I m/2 A A drr 1 
i=1 j>r i=l j=l 

= IIr +RR' -n/2 dR. 

Next we consider 

X'dX=-L'(I+RR') l/2RdR'(I+ RR,) 1/2L- Ed{ (I + RR,) 1/2) 

x(I +RR') -/2L +L'dL 

- L' dL + terms involving the differentials drij. 

We now take the exterior products of the elements in the subdiagonal positions of the matrix 
X' dX, giving us 

r r 

(X'dX):= A A x dxi 
i=1 j=i+l 

r r 

= A A lj dli + terms involving the differentials drij 
i=1 j=i+l 

= (dL) + terms involving the differentials drij, 
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where L = [11,..., 1,1. Combining (X' dX) and (Xl dX) we obtain 

r n 

(dX):= A A x i&= (X'dX) A (X1 dX) =lIr+RR'IVn/2dR(dL). 
i=1 j=i+l 

Note that terms involving the differentials drij in (X' dX) contribute nothing to this last expression 
because dR = Ai j drij is already a differential form of maximum degree. 

The final expression above can be translated into an expression for the corresponding normalized 
measures by writing 

(d)=Vol[O(r)] _1I+ RR,I-nl2 dR (dL), 
Vol [Vr,n] 

where Vol[O(r)]= fo(r)(dL) and VO[IVr] n= f r,n(dX). Now, these volume integrals have values 
Vol [0(r)] - 2rwr2/2/Fr(r/2), and Vol[JVr,n] - 2r7rn/2/fr(n/2) (e.g., see Muirhead (1982, 
pp. 70-71)). In consequence, we obtain the lemma as stated. This generalizes a result given 
originally in the case where r = 1 in an earlier paper by the author (1984, p. 254). 

5.3. PROOF OF THEOREM 2.1: Define S = Sj0jl/2S10S ls011sjl/2 Let A = diag(A,...,An) be the 
diagonal matrix of the ordered eigenvalues A1> *-- >A,>0 of S. Let C be the matrix of 
corresponding eigenvectors normalized as C'C = In, so that S = CAC'. The transformation S 
(A, C) can be made 1: 1 by requiring that the first element in each column of C be nonnegative 
(e.g., see Muirhead (1982, p. 104)). Observe that Ar in (8) is the leading r x r submatrix of A 
corresponding to the r largest roots. Let C1 be the corresponding submatrix of the eigenvector 
matrix C. 

By Lemma 5.1 the joint density f(S) of S = CAC' can be decomposed into the joint density of 
(A, C), whose probability element is 

(32) .n2/2[F (n/2)]1 H (Ai - A"j)f(CAC') dA(d), 
1 <1 

where (dC) represents the normalized invariant measure on 0(n) and dA = Hnn1 dAi is Lebesgue 
measure on the space of the eigenvalues. Next we partition the matrix C into the eigenvectors C1 
corresponding to Ar and the complementary set C2, i.e. C= [C1, C2]. Note that if G (n x n - r) is 
any matrix chosen so that [C1, G] is orthogonal then we can write C2 = GK for some K E 0(n - r). 
In this event we can decompose the invariant measure (dC) on 0(n) into two factors as 

(33) (dC) = (dC,)(dK) 

where (dC,) is the normalized invariant measure on the Stiefel manifold Vr ,n and (dK) is the 
normalized invariant measure on the orthogonal group 0(n - r). (The decomposition (33) was 
shown by Constantine and Muirhead (1976, Lemma 2.2, p. 374).) 

Since C1 is the matrix of eigenvectors corresponding to the largest r roots, Ar, of A, it is this 
matrix that, upon suitable normalization to accord with (3) and (4), produces the reduced rank 
regression estimator A. Indeed, A = S112C1 satisfies both (3) and (4) and the optimization 
problem (2). Suppose, instead, we reparameterize C1 so that it accords with the normalization 
A' = [I, -B] given in (5). This can be achieved by writing C1 in the form 

(34) C, = 
r 

Ir + B-Bt] _.12L, 

where B is the reduced rank regression estimator of B and L E 0(r). Using Lemma 5.2 we find 
that the normalized measure (W1) decomposes as follows: 

)= [7Trm/2r(r/2)] l ((r + m)/2)1Ir + BB (rm)/2dB(dL), 

where dB= Hi, jdb,1 is Lebesgue measure on rm, the support of B, and (dL) is the normalized 
invariant measure on O(r). 
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We may now write the matrix C in (32) as C = [C1, C2] with 

C [ I r](Ir+BB ) L, C2=L [IB(In_r+JiI) K. 

Using (32), (33), and (35) we deduce that the probability element of (A, B, L, K) is 

rr((r + m)/2)[ nj/2+rm/2Fr(r/2)F,(n/2)] H (Ai-AX) 
<I 

xf(C(B, L, K)AC(B, L, K))lIr + BB Kr?m)/2 dA dB(dL)(dK). 

Noting that m = n - r and integrating over A, L, and K we obtain the density of B: 

pdf(B)= [T n /2+rm/2r(r/2)] IIr + BB^t- 

0A JL e O(r) fK e O(m) 

x H (Ai - kj)f(C(A, L, K)AC(B, L, K) )(dL)(dK) dA 
, <J 

as stated. 

5.4. PROOF OF COROLLARY 2.3: Under Condition (D), dominated convergence applies and along 
the ray B = bBo we have 

lim I t t 
b -roo'<A <IfLE0(r) K-O(m) 

x H (Ai-Aj)f (C(bBo, L, K)AC(bBo, L, K)')(dL)(dK) dA 
i <J 

fO <A <I fL e O(r)fKE O(m) 

x H (AX - Aj)f( CoACo) (dL)(dK) dA 
i <j 

=ko, say 

where CO = limb C(B = bBo, L, K). Note that C lies in the compact space 0(n) and is continu- 
ous in the elements of B, so that the limit CO exists. To find CO we work from the partition 
C = [C1, C2] given in (8) and set B = bBo. We define F = [Fe, F2] E 0(r) where F1 spans X(B') 
and F2 spans M(BO). Then F'[I + b2BOB']F = diag(I, I + b F2BOB'F2) and we can write C1 as 

C B F1 F[[ I + b2BJBO ]F) }1/2FL 

= [-bB']Fdiag {I,(I +b2F0BoBoF2y/}F'L 

[-bB] (FIF + F2( I + b 2F2 Bo BoF2) F2} L 

[ -B'F2(F2BOB'F2)-1/2Ft JL = CO,, as b oo. 

If dim {.xV(B)}= 0 then we replace F1F' by the r X r zero matrix in the above formula for Co1. 
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Next define G = [G1, G2] E O(m) with G E .xV(BO) and G2 E -(Bo). 
Then in a similar way, we get 

C2= [IB l](Im + b2B'BO) /K 

= [ GBGj + G2(I+b2Gt2B'BoG2) 1/Gt2}K 

BoG2(GI2BBoG2/2 G2]K C02, as b oo. 

Again, we replace GIG'1 by the m x m zero matrix in the above formula for C02 if dim {.1V(BO)) = 0. 
Using these results in the density (7) where B = bBo for some constant matrix Bo s 0 we have the 
following expansion as b Xo 

pdf(B=bBo) = [ n2/2+rm/2(/2)] [ko + o(l)]lI + 
b2BoB' 1(r+m)/2 

= kolI + b2BOB'F-(r+m)/2{1 + o(1)} 

giving the stated result (11). 

5.5. PROOF OF COROLLARY 2.4: Let H, E 0(n) be an orthogonal matrix of order n. Under (14) 
and the spherical symmetry of E, we have the distributional equivalence Ay, = H1 Ay, for all t > 1 
and a similar distributional equivalence between the levels of y, and that of a vector random walk 
with rotated innovations, i.e. y, = EtEj - Ej = HIy,. The moment matrices S11 (i, j = 0, 1) that 
appear in the criterion (2) are, in consequence, also distributionally equivalent under rotations. Thus 
for any Hi E 0(n), we have Soo = H'SooHI, Sol = H'So0H1, SI, = H'S11H1, and finally 

S = S-l1/2SOJlS 
- 

SOS-1Sj/2 - HSH. 

Thus, if f(S) is the joint density function of S then f(S) =f(H'SH,) and f(-) is therefore a 
symmetric function of its matrix argument. It follows that in the general expression (7) for the 
density of B we can replace f(CAC') by f(A). Using Lemma 5.1 and noting that the integrals of the 
normalized measures (dL) and (dK) over 0(r) and 0(m) in (7) are both unity, we deduce that 

pdf(B)= [7r-n2/2+rm/2Fr(r/2)] lIr+BBAf-(r+m)/27-n /2Fn(nl/2) 

= [7rrm/2r(Fr/2)] Fn(n/2)lIr +BBIV(r+m)/2 

Using the fact that m = n - r, we obtain the stated result (15). 
It is also useful to derive the distributions of A and A =A(A'A)-1/2 in this case. As in the proof 

of Theorem 2.1 we can write the estimator A in the form A = S1j1/2C1 where Cl is the matrix of 
eigenvectors of S corresponding to Ar. When f( ) is a symmetric function the joint density (32) 
splits into the product of the density of the roots A and the density of the eigenvector matrix C 
which is uniform on the group 0(n). In consequence, Cl is uniform on Vr, n and we have 
Cl = H'C1H2 for any H1 E 0(n) and any H2 E 0(r). Thus, 

^ -1/2 H -1/2Ht H--/2C- H'AH2 = H'S 
- C H2 = (H'S11H1) H lClH2 =S-1 1 =A 

and A is therefore spherically symmetric. Next 

-1/2 -1/2 -1/2 
A -=A(A'A) _H1AH2(2A H'A(A'A) H H'AH2 2 ( H' 4AH2H2=HH 

and A7A = Ir. It follows that A is uniform on Vr,,n since the invariance of the distribution under 
H1 E 0(n) and H2 E 0(r) is a defining characteristic of the uniform distribution on Vr,n. 

This content downloaded from 5.200.211.230 on Mon, 21 Oct 2013 15:45:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


90 PETER C. B. PHILLIPS 

5.6. PROOF OF THEOREM 3.1: To simplify the derivations we first transform the augmented 
regression model (20) and (18) as follows: 

=12Y (X 2B ?22)(X /2Y21) + (X-112DX 1?2)($ 1/2aY ) +X-1/2 

2-l2y,= X - 1/2u2 2 221 
2 : 

2 2 

With this standardized system as 

(36) 1t =-By2, + D aY2, + U1.2t, 

(37) aM2 = UD2, 

and note that (i' .21, -'2,) =iid N(O, In). If B is the OLS estimator of B in (36) then 

(38) E = B-B =X11 2/(B -B)X2? = 1 _- 1S2 

so that the density of E is easily deduced from that of E by reversing the standardizing 
transformation (38). In what follows we will omit the upper bars in our notation and simply assume 
that these transformations have been performed. 

The conditional density of E = Ul2QAY2(Y2QAY2)- given 9 0=(u2,: t=l1. T) is the 
Gaussian distribution 

(39) pdf ( EI12) = (2w7y)-rm/2IFK-r/2 etr {(1/2)E'F- 1} 

where F = (Y2QAY2)-1. To simplify (39) we write Y2 = LU2 where U2 = u21 . U2T] and L is the 
T x T- matrix 

-1 0 .. - 

L=[. . 

U2 iU2 U- 
Next, let-2 = U2(U2U2)-1/2 and 

Y2QAY2 = U2L' ( I- 1U( UU2 )U 2 L U2 2UU2)1/2K(U2U2)1 2, 

where K= 2L'(I - '2E2)LE2 = K(,'2). Let R = U2U2 and note that R is central Wishart with T 
degrees of freedom and covariance matrix I,,,. We write R _ Wm(T, In) and note that the density of 
R is 

(40) pdf(R) = [2 nT/2F(T/2)] etr{-(1/2)R}IRI(T -1)/2 

The distribution of S2 is independent of R and is uniform on the Stiefel manifold Vm,T- We write 
the normalized invariant measure of this manifold as (d`2). 

From (39) and (40) the conditional density of E given -2 is 

(41) pdf(El2) = 2~-m(T+r'12,,-rml2[ (T2]- (-V -f)-r12 

x f JRlr/2+(T-m-1)/2 etr {- (1/2)R} 
R>O 

etr {-(1/2)E'ER /2K(Z2)-lR1/2} dR. 

Next observe that the distribution of E in the standardized model (36Q is spherical and, in 
particular, E=-1EH3 for any H3 E 0(m). It follows that we may replace E in (41) by EH3 and 
integrate over the normalized group 0(m). Now using (dH3) to signify the normalized measure on 
the group we have 

(42) f etr{-(1/2)H3E'EH3R /2K(2) lR_/2}(dH3) 
0f(r) 
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(e.g., Muirhead (1982, Theorem 7.3.3, p. 260)), where OFom) is a hypergeometric function of two 
matrix arguments. Since this function depends only on the latent roots of the argument matrices we 
may replace the right side of (42) by the simpler expression 

oFo( )( RK( -2) ',-E E) 

Hence (41) has the alternate form 

pdf ( EI 2) = 2-m(T+r)/2,,-rm/2[rm(T/2)] I K( 2) 2 

x f IRIr/2+(T-m- 1)/2 etr {(1/2)R} 
R>0 

oFom)(RK( A2) -E 'E) dR, 

and using the matrix Laplace transform of the oFom) function (e.g., Muirhead (1982, Theorem 7.3.4, 
p. 260)) we obtain 

pdf (E|2 ) 7 -mr/2 [F m(T/2)] -1 F m (( T + r))2)1 FI(m) 

xf((T + r)/2); K( -1 _ H)E'E) 

- 7 r/2[F r(T/2)] r-1Fm((T + r)/2)1 K( 2 ) 

xJ ) 1F0((T + r)/2; -H3K( *2) I H3E'E)(dH3) 

=7 /[Frm(TI2)] Fm((T + r )/2) 1 K(, 2 ) 2 

X JO(m) IIm + H3K( 2) H3'E E (dH3)- 

The density of E is obtained by integrating over the manifold VmT, leading to 

pdf (E) = -mr/2[F (T/2)] 'Fm((T + r)/2) K ( I - 

1-T+r)/2 xf f Im+ H3K(C2)YlH3E'EE ( H3)(d 2) 

The probability density of the estimation error in the unstandardized model is obtained from the 
above expression by reversing the standardizing transformations. Using E to denote the estimation 
error in the unstandardized model we have E = X1'.22E? -1/2 and then 

pdf (E) =,7r- m 2 -'112 
22 

pdf (E) - -mr/2[F (T/2)] 'Fm((T + r)/2)1Xil2lm /21I22Ir/2 

X~~~~~A- 
- | V 2 -(T )2 ) | 

Xft | + H3K( 21)I3- 1/2g 2E' 2 E 12l 
0o(m) 

2 12X- ~F 

giving the stated result (23). 
To prove part (b) of Theorem 3.1 we simply note that EN = Ul.2QY2(Y QY2Y'12, whose 

conditional distribution given 92 is N(O, X11.2 C) Im) Since this is independent of 92 it is also the 
unconditional distribution, giving the required result. 

5.7. PROOF OF THEOREM 3.3: Define the variate 

X=D1(l2Q)dY2(Y2/{(Y2QYd'2(Y2} 

= Dl(Bf - B)d2lfdt2(Y2QaY2) 
- 'd12} 
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Conditional on -2 we have the distribution 

(43) XJ|5>2=N(O, D I.11. 2D ) 

Now TA11.2 = Y1Q*Y = U1.2Q*U1.2, so that T 12Iy2-H'(T-2m, S112), i.e., central Wishart 
with covariance matrix 'XI 2 and degrees of freedom T - 2m. It follows that 

(44) TD1X1l .2D'jsIy = Wq(T-2m, D1 XI 2D ). 

Combining (43) and (44) and setting Sx= D1Xll .2Df we have the Hotelling's T2 variate 

Tq 
X'Sx'XlIs'2 N q +1 F qn-q+, 

where N = T - 2m. Since the distribution is independent of -92, it is also the unconditional 
distribution. 

Now the Wald statistic is 

W= ( D1Ad2 - d)'( DjiX112Dj) 1( D1B - d)/{d'2(Y2QAY2) 'd2) 

and under Ho we can write this as W = X'Sxj 'X. Hence, under Ho we have 

Tq 
SXX N -q + Fq,N-q+?I 

Thus, W is proportional to an Fq N-q+1 variate, as required. 
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