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Abstract. Recently, some exact penalty results for nonlinear programs
and mathematical programs with equilibrium constraints were proved
by Luo, Pang, and Ralph (Ref. 1). In this paper, we show that those
results remain valid under some other mild conditions. One of these
conditions, called strong convexity with order σ , is discussed in detail.
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1. Introduction

A mathematical program with equilibrium constraints (MPEC) is a
constrained optimization problem in which the essential constraints are
defined by a parametric variational inequality or complementarity system.
This problem plays an important role in many fields such as engineering
design, economic equilibrium, and multilevel game; see Ref. 1.

Because of the presence of variational inequality or complementarity
constraints, MPEC has such an intrinsic feature that its feasible region is
nonconvex or nonsmooth in general; hence, it is very difficult to handle. At
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present, a popular approach is to reformulate an MPEC as a standard non-
linear program. In this respect, penalty functions have provided a powerful
approach, both as theoretical tool and as computational vehicle. Recently,
based on the study of subanalytic optimization problems and with the help
of the theory of error bounds, some exact penalty results for nonlinear pro-
grams and MPECs were proved by Luo, Pang, and Ralph (Ref. 1). In this
paper, we show that those results remain valid under some other mild con-
ditions. Instead of the subanalytic property and error bounds, which are
somewhat abstract and difficult to verify in practice, some of our results use
a property called strong convexity with order σ , which is a generalization
of the ordinary strong convexity (Ref. 2).

The following notations and definitions will be used throughout this
paper. For x∈Rn, �� · �� and �� · ��1 denote the norms defined by

��x��G� ∑
iG1

n

x2
i �

1�2

, ��x��1G ∑
iG1

n

�xi �.

For a nonempty closed set W⊆Rn, we denote

dist(x, W )Gmin
z∈W

��xAz��,

ΠW (x)G{z∈W: ��xAz��Gdist(x, W )}.

In addition, B (0, c) stands for the closed ball {x∈Rn: ��x��⁄c} and Rn
C

denotes the nonnegative orthant in Rn. For a real scalar u, we denote

(u)CGmax{0, u}.

Definition 1.1. See Ref. 1. A set X⊆Rn is said to be subanalytic if, for
any u∈Rn, there exist a neighborhood U of u and a bounded set Z⊆RnCp

with some nonnegative integer p such that:

(a) for any û∈RnCp, there exist a neighborhood V of û and a finite
family {Zij : 1⁄ i⁄ l, 1⁄ j⁄q} of sets

ZijG{z∈V: fij (z)G0} or {z∈V: fij (z)F0},

defined for some real analytic functions fij on V, such that

Z ∩VG*
l

iG1
)
q

jG1
Zij ;

(b) X ∩UG{x∈Rn: (x, y)∈Z, for some y∈Rp}.

A function f: Rn→R is said to be subanalytic if its graph is subanalytic.
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The class of subanalytic functions is broader than the class of analytic
functions and is employed by many papers, although it is somewhat
abstract. For more details, we refer the reader to Refs. 1 and 3–5.

Definition 1.2. See Ref. 6. Let 0Fp⁄1 be a constant, and let
G: Rn→Rm be a mapping. We say that G is Hölder continuous with order
p on X⊆Rn if there exists a constant L such that

��G(x)AG(y) ��⁄L��xAy��p, ∀x, y∈X. (1)

This concept is a generalization of the Lipschitz continuity, which is,
by definition, Hölder continuity with order pG1. Note that Hölder conti-
nuity makes sense only when 0Fp⁄1. In fact, when pH1, condition (1)
implies that all directional derivatives of G at any interior point are zero
and so G is quite trivial. In addition, for 0Fp ≠ p′⁄1, Hölder continuous
functions with order p and those with order p′ constitute different classes of
functions. For example, the function

G(x)G1��x��, ∀x∈Rn,

is Hölder continuous with order pG1�2 on Rn and is not Lipschitz continu-
ous on Rn.

Definition 1.3. A function f: Rn→R is said to be strongly convex with
order σH0 on a convex set X⊆Rn if there exists a constant cH0 such that

f (txC(1At)y)⁄ tf (x)C(1At) f (y)Act(1At) ��xAy��σ, (2)

for any x, y∈X and any t∈[0, 1].

When σG2, this property reduces to the strong convexity in the ordi-
nary sense (Ref. 2). But if σ ≠ 2, they are different. For example, we can see
from the results given in Section 4 that the function f (x)Gx4 is strongly
convex with order 4 and is not strongly convex with order 2 on R.

2. Penalty Results for Nonlinear Programs

Consider the following nonlinear program:

min θ (x), (3a)

s.t. x∈X, (3b)

g(x)⁄0, h(x)G0, (3c)
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where θ : Rn→R, g: Rn→Rm, and h: Rn→Rl are all continuous functions
and X⊆Rn is a nonempty closed set. Let W denote the feasible region of
(3) and let

r(x)G ∑
iG1

m

(gi (x))CC ∑
jG1

l

�hj (x) �

be the residual for the constraints in (3) at x∈X. Then, the function r may
be used as a penalty function for problem (3). The following theorem is
shown in Ref. 1.

Theorem 2.1. Let X⊆Rn be a compact subanalytic set, let θ be Lip-
schitz continuous on X, and let gi , hj be continuous subanalytic. Suppose
that problem (3) is feasible. Then, there exist positive constants α* and γ *
such that, for α¤α* and γ ¤γ *, problem (3) is equivalent to

min θ (x)Cαr(x)1�γ , (4a)

s.t. x∈X, (4b)

in the sense that x* solves (3) if and only if it solves (4).

In particular, the following result is useful in both Ref. 1 and our paper.

Theorem 2.2. Lojasiewicz Inequality (Ref. 3). Let φ , ψ : S→R be con-
tinuous subanalytic, and let S⊆Rn be compact subanalytic. If φ−1(0)⊆
ψ−1(0), then there exist constants ρH0 and N*H0 such that

ρ�ψ (x) �N*⁄ �φ (x) �, ∀x∈S. (5)

Now, we give our penalty results for problem (3). First of all, we define
a new function. Suppose that problem (3) is feasible, i.e., W ≠∅. Then, we
can take a vector d∈W and define a function θd on X by

θd (x)Gθ (xd), ∀x∈X,

where

xdG(1Atd)xCtdd,

with td the smallest number t∈[0, 1] such that

(1At)xCtd∈W.

Theorem 2.3. Suppose that X, g, h are the same as in Theorem 2.1,
that problem (3) is feasible, and that the function θAθd is continuous sub-
analytic for some d∈W. Then, the conclusion of Theorem 2.1 remains valid.
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Proof. Let r�X denote the restriction of r on X. Noticing that both r
and θAθd are continuous subanalytic and that

(r�X)−1(0)GW⊆ (θAθd)
−1(0),

we have from Theorem 2.2 that there exist constants ρH0 and N*H0 such
that

ρ�θ (x)Aθ (xd) �N*⁄r(x), ∀x∈X. (6)

Let

µGmax�1, max
x∈X

r(x)� ,

α*H(µ�ρ)1�N*, γ *GN*,

α¤α*, γ ¤γ *.

(a) Assume that x̄ solves problem (3). Then, for any x∈X, we have

θ (x)Cαr(x)1�γ

Gθ (xd)C(θ (x)Aθ (xd))Cαr(x)1�N*r(x)1�γA1�N*

¤θ (x̄)A�θ (x)Aθ (xd) �Cαρ1�N*�θ (x)Aθ (xd) �µ1�γA1�N*

¤θ (x̄)C(αρ1�N*µ−1�N*A1) �θ (x)Aθ (xd) �

¤θ (x̄)

Gθ (x̄)Cαr(x̄)1�γ .

Therefore, x̄ is a global optimal solution of problem (4).
(b) If x̄ solves (4), we can claim that x̄ is an optimal solution of prob-

lem (3). In fact, since W is compact and since problem (3) is feasible, it has
an optimal solution, denoted by x̃. In a way similar to (a), we have

θ (x̃)Gθ (x̃)Cαr(x̃)1�γ

¤θ (x̄)Cαr(x̄)1 �γ

¤θ (x̃)C(αρ1�N*µ−1�N*A1) �θ (x̄)Aθ (x̄d) �

¤θ (x̃).

This implies θ (x̄)Gθ (x̄d) and then

θ (x̄)Gθ (x̄d)¤θ (x̃)¤θ (x̄)Cαr(x̄)1�γ ,

where the first inequality holds because x̃ solves (3) and x̄d is feasible to (3).
Hence, we have

r(x̄)G0 and θ (x̄)Gθ (x̃).
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The former implies x̄∈W, and so x̄ is an optimal solution to problem (3).
This completes the proof. �

The new condition given in Theorem 2.3 may be satisfied by choosing
d appropriately even if W is not convex and θ is not Lipschitz continuous,
as the next example shows.

Example 2.1. Consider the following problem:

min θ (x)Gsin2(3 x1�3),

s.t. x∈[0, π3],

cos(3x1�3)⁄0.

Then, the feasible region is given by

WG[π3�216, π3�8]∪ [125π3�216, π3],

which is nonconvex. We note that θ is not Lipschitz continuous on [0, π3],
which means that the conditions of Theorem 2.1 are not satisfied for this
problem. However, we can show that the assumptions of Theorem 2.3 hold.
In fact, for dGπ3�10, the function

θd (x)G�
1, x∈[0, π3�216),

sin2(3x1�3), x∈[π3�216, π3�8],

1, x∈(π3�8, 125π3�216),

sin2(3x1�3) x∈[125π3�216, π3],

is continuous and piecewise smooth and so it is continuous subanalytic on
[0, π3].

We consider next another kind of error bounds for problem (3), which
is different from (6). We say that a function u:X→ [0,S) provides an error
bound of order νH0 on W if there exists a positive constant β such that

u(x)¤β (dist(x, W ))ν, ∀x∈X.

For more details of error bounds, we refer the reader to Refs. 6–7 and the
references therein.

Theorem 2.4. Let X be a closed subset of Rn, let g and h be continuous
on X, and let θ be Hölder continuous with order pH0 and Hölder constant
L on X. Assume that r(x) provides an error bound of order νH0 on W with
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corresponding constant β and suppose that problem (3) is feasible. Then,
problem (3) has the same solution set as the problem

min θ (x)Cαr(x)N*, (7a)

s.t. x∈X, (7b)

where

N*Gp�ν, αHLβ−N*.

Proof. By the assumption of the theorem, we have

r(x)¤β [dist(x, W )]ν, ∀x∈X. (8)

(a) If x̄ solves problem (3), then for any x∈X, we have from (8) and
the Hölder continuity of θ that

θ (x)Cαr(x)N*Gθ (z)C(θ (x)Aθ (z))Cαr(x)p�ν

¤θ (x̄)C(αβp �νAL)[dist(x, W )]p

¤θ (x̄)

Gθ (x̄)Cαr(x̄)N*,

where z∈ΠW (x). Therefore, x̄ is a global optimal solution of problem (7).
(b) Let x̄∈X be a solution of problem (7). Then, for any x∈W,

θ (x̄)Cαr(x̄)N*⁄θ (x)Cαr(x)N*Gθ (x). (9)

Let

tG inf
x∈W

θ (x).

Then, for any (H0, we can find an x(∈W such that

θ (x()⁄ tC(.

By (8), (9), and the Hölder continuity of θ , we have

tC(¤θ (x()

¤θ (x̄)Cαr(x̄)N*

Gθ (z̄)C(θ (x̄)Aθ (z̄))Cαr(x̄)N*

¤ tC(αβp�νAL) ��x̄Az̄��p,

where z̄∈ΠW (x̄). Therefore,

��x̄Az̄��p⁄ (αβp �νAL)−1(,
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for any (H0 and so x̄Gz̄∈W. Therefore, (9) becomes

θ (x̄)⁄θ (x), ∀x∈W;

i.e., x̄ solves problem (3). This completes the proof. �

The set X need not be compact and the functions g and h need not be
subanalytic in the last theorem, in contrast with Theorems 2.1 and 2.3. If X
is compact and g, h are subanalytic, as in Theorems 2.1 and 2.3, the
exponent of the penalty term can be chosen elastically. This result is stated
in the following theorem, whose proof is omitted.

Theorem 2.5. Assume that X, g, h are the same as in Theorem 2.1,
that θ is Hölder continuous on X, and that problem (3) is feasible. Then,
the conclusion of Theorem 2.1 remains true.

Now, we consider a special case of problem (3):

min θ (x), (10a)

s.t. x∈X, (10b)

g(x)⁄0. (10c)

We will show some new penalty results for problem (10) which will be
applied in Section 3 to a mathematical program with a nonlinear comple-
mentarity system. In the rest of this section, we let ϕ denote the function
defined by

ϕ(x)G max
1⁄ i⁄m

gi (x).

In general, condition (8) is difficult to verify in practice. The proof of
the following theorem indicates that it holds when X is convex and ϕ is
strongly convex with order σ on X.

Theorem 2.6. Assume that X⊆Rn is a closed convex set, that θ is
Hölder continuous with order pH0 and Hölder constant L on X, and that
ϕ is strongly convex with order σH0 and corresponding constant c on X.
Suppose that problem (10) is feasible. Then, problem (10) has the same
solution set as problem (7) with

r(x)G ∑
iG1

m

(gi (x))C , N*Gp�σ , αHL(c�2)−N*.

Proof. By Theorem 2.4 and its proof, it is enough to prove that (8)
holds with

βGc�2, νGσ ,
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for any x∈X. In fact, assume that ϕ(x)H0 and ϕ(z)G0, where z∈ΠS (x)
with

SG{x∈X: ϕ(x)⁄0}.

Since ϕ is strongly convex with order σ and constant c on X, it follows from
(2) that

ϕ((xCz)�2)⁄ (1�2)ϕ(x)A(c�4) ��xAz��σ.

Note that

ϕ((xCz)�2)H0.

Otherwise, since (xCz)�2∈X, this will contradict z∈ΠS (x). In consequence,

(c�2) ��xAz��σ⁄ϕ(x)G(ϕ(x))C⁄r(x);

i.e., (8) holds with βGc�2 and νGσ . This completes the proof. �

It is easy to verify that, if each gi is strongly convex with order σ , then
the function ϕ is also strongly convex with order σ .

We have also the following result.

Theorem 2.7. Assume that X⊆Rn is compact and convex and that the
other conditions are the same as in Theorem 2.6. Let

γ ¤σ�p, αHL(c�2)−p�σ.

Then, problem (10) has the same solution set as the problem

min θ (x)Cαr(x)1�γ ,

s.t. x∈X.

3. Penalty Results for MPECs

Consider the following mathematical program with equilibrium con-
straints (MPEC):

min f (x, y), (11a)

s.t. (x, y)∈Z, (11b)

y solves VI (F (x, · ), C (x)), (11c)

where f: RnCm→R, F: RnCm→Rm, Z⊆RnCm, C: Rn→2Rm
is defined by a

continuously differentiable function g: RnCm→Rl as

C (x)G{y∈Rm: g(x, y)⁄0},
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and VI(F (x, · ), C (x)) denotes the variational inequality problem defined by
the pair (F (x, · ), C (x)); i.e., y solves VI (F (x, · ), C (x)) if and only if
y∈C (x) and

(ûAy)TF (x, y)¤0, ∀û∈C (x).

Let F denote the feasible region of problem (11), which is assumed to
be nonempty. If F is continuous, gi (x, · ) is convex for all x∈X, where

XG{x∈Rn: (x, y)∈Z, for some y∈Rm},

∇ygi (x, y) exists and is continuous at every (x, y) in an open set containing
F for each iG1, . . . , l, Z is compact, and the constraint qualification SBCQ
(Ref. 1) holds on F , then problem (11) is equivalent to the following math-
ematical program for some δH0 (Ref. 1, Theorem 1.3.5):

min f (x, y), (12a)

s.t. (x, y, λ )∈ZB(B (0, δ )∩Rl
C), (12b)

F (x, y)C ∑
iG1

l

λ i∇ygi (x, y)G0, (12c)

g(x, y)⁄0, λTg(x, y)G0. (12d)

Roughly speaking, SBCQ means that, for any (x, y)∈F , problem (12)
is feasible and that, for a bounded subset of F , the corresponding set of
Lagrange multipliers is also bounded. Let

WG{(x, y)∈RnCm: (x, y, λ ) satisfies the constraints of (12) for some λ}.

This set is nonempty if, under SBCQ, F is nonempty. We choose some
d∈W and define the function fd in a way similar to the definition of θd in
Section 2. Then, comparing (12) with (3) and applying Theorems 2.3 and
2.5, we obtain the following result directly.

Theorem 3.1. Let F, gi , ∇ygi be continuous subanalytic, and let Z be
compact subanalytic. Let f be Hölder continuous with order p on Z or let
fAfd be continuous subanalytic for some d∈W. Furthermore, assume that
each gi (x, · ) is convex for all x∈X and that SBCQ holds on F . Then, there
exist constants δH0,α*H0, and γ *H0 such that, for any α¤α* and
γ ¤γ *, problem (11) is equivalent to the problem

min f (x, y)Cαr(x, y, λ )1�γ , (13a)

s.t. (x, y, λ )∈ZB(B (0, δ )∩Rl
C), (13b)
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where

r(x, y, λ )G�F (x, y)C ∑
iG1

l

λ i∇ygi (x, y)�
1

C ∑
iG1

l

((gi (x, y))CCλ i �gi (x, y) �),

in the sense that (x*, y*) solves (11) if and only if (x*, y*, λ*) solves (13) for
some λ*∈Rl

C .

Now, we consider a special class of MPECs:

min f (x, y), (14a)

s.t. (x, y)∈Z, (14b)

y¤0, F (x, y)¤0, (14c)

yTF (x, y)G0, (14d)

i.e., mathematical programs with complementarity constraints. Let S denote
the feasible region of problem (14); let

Z1GZ∩ (RnBRm
C), (15a)

r(x, y)G ∑
iG1

m

(−Fi (x, y))CC�yTF (x, y) �, (15b)

ψ (x, y)Gmin� min
1⁄ i⁄m

Fi (x, y), −yTF (x, y)� . (15c)

In a way similar to Theorems 2.4 and 2.6, we can show the following results.

Theorem 3.2. Assume that Z is a closed subset of RnCm, that f is
Hölder continuous with order p and Hölder constant L on Z1 , and that F
is continuous on Z1. Assume that r(x, y) defined by (15b) provides an error
bound of order νH0 with corresponding constant β on S and that problem
(14) is feasible. Then, problem (14) has the same solution set as the problem

min f (x, y)Cαr(x, y)N*, (16a)

s.t. (x, y)∈Z1 , (16b)

where

N*Gp�ν, αHLβ−N*.

Theorem 3.3. Assume that F, f are the same as in Theorem 3.2 and
that Z is closed and convex. Suppose that problem (14) is feasible. If the
function Aψ is strongly convex with order σ and corresponding constant
c on Z, then problem (14) is equivalent to problem (16) with

N*Gp�σ , αHL(c�2)−N*,

in the sense that (x*, y*) solves (14) if and only if it solves (16).
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4. Some Properties Related to Strong Convexity

For the strong convexity employed in Theorems 2.6–2.7 and 3.3, we
have the following results.

Theorem 4.1. If each fi , iG1, . . . , m, is strongly convex with order σ
on a convex set X, then ∑m

iG1 ti fi and max1⁄ i⁄m fi are also strongly convex
with order σ on X, where tiH0, iG1, . . . , m.

Proof. It is immediate from Definition 1.3. �

Theorem 4.2. Suppose that X⊆Rn is convex and that f: Rn→R is con-
tinuously differentiable on an open set containing X. Then, f is strongly
convex with order σ on X if and only if there exists a constant cH0 such
that

f (y)¤ f (x)C(yAx)T∇f (x)Cc��xAy��σ, ∀x, y∈X. (17)

Proof. Assume that f is strongly convex with order σ on X and that
c is a constant which appears in (2). Then, for any x, y∈X and t∈(0, 1), we
have

f (y)Af (x)¤ (1�t)[ f (tyC(1At)x)Af (x)]Cc(1At) ��xAy��σ

G(yAx)T∇f (xCξ (yAx))Cc(1At) ��xAy��σ,

for some ξ∈(0, t). Letting t→0, we have (17) from the continuity of ∇f.
Conversely, suppose that (17) holds for some cH0. For any x, y∈X

and t∈(0, 1), we have

f (x)Af (txC(1At)y)

¤ (1At)(xAy)T∇f (txC(1At)y)Cc(1At)σ ��xAy��σ,

f (y)Af (txC(1At)y)

¤ t(yAx)T∇f (txC(1At)y)Cctσ ��xAy��σ.

In consequence, we have

f (txC(1At) y)

⁄ tf (x)C(1At) f (x)Act(1At)((1At)σA1CtσA1) ��xAy��σ. (18)

If 0Fσ⁄2, then

(1At)σA1CtσA1¤ (1At)CtG1.
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If σH2, since the real function φ (t)GtσA1 is convex on (0, 1), then

(1At)σA1CtσA1¤ (1�2)σA2.

It follows from (18) that there exists some constant c′H0 independent of
x, y, t such that

f (txC(1At)y)⁄ tf (x)C(1At) f (y)Ac′t(1At) ��xAy��σ ;

i.e., f is strongly convex with order σ on X. �

For a given concept of convexity, there exists usually some kind of
monotonicity relevant to it; see Ref. 2 and the references therein. Now, we
define the strong monotonicity with order σ and discuss its relation to the
strong convexity with order σ .

Definition 4.1. A mapping G: Rn→Rn is said to be strongly monotone
with order σ on a convex set X if there exists a constant βH0 such that

(yAx)T(G(y)AG(x))¤β ��yAx��σ, ∀x, y∈X. (19)

Theorem 4.3. Let X⊆Rn be convex, and let f: Rn→R be continuously
differentiable on an open set containing X. Then, f is strongly convex with
order σ on X if and only if ∇f is strongly monotone with order σ on X.

Proof. Suppose that f is strongly convex with order σ on X. By
Theorem 4.2, there exists a constant cH0 such that (17) holds. Then, for
any x,y∈X, one has

f (y)Af (x)¤ (yAx)T∇f (x)Cc��xAy��σ,

f (x)Af (y)¤ (xAy)T∇f (y)Cc��xAy��σ.

Therefore,

(yAx)T[∇f (y)A∇f (x)]¤2c��xAy��σ ;

i.e., ∇f is strongly monotone with order σ on X with βG2c.
Conversely, assume that (19) holds for some βH0 and FG∇f. Set

tiGi�(mC1), iG0, 1, . . . , mC1,

where m is a positive integer. By the mean-value theorem, there exist
ξ i∈(ti , tiC1), 0⁄ i⁄m, such that

f (xCtiC1(yAx))Af (xCti (yAx))

G(tiC1Ati)(yAx)T∇f (xCξ i (yAx)).
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Hence, it follows from (19) that

f (y)Af (x)G ∑
iG0

m

[ f (xCtiC1(yAx))Af (xCti (yAx))]

G ∑
iG0

m

(tiC1Ati)(yAx)T[∇f (xCξ i (yAx))A∇f (x)]

C(yAx)T∇f (x)

¤β ��yAx��σ ∑
iG0

m

ξσA1
i (tiC1Ati)C(yAx)T∇f (x).

Letting m→+S and noticing that

lim
m→+S

∑
iG0

m

ξσA1
i (tiC1Ati)G�

1

0

tσA1 dtG1�σ ,

we have

f (y)Af (x)¤ (β�σ ) ��yAx��σC(yAx)T∇f (x).

By Theorem 4.2, f is strongly convex with order σ on X. �
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