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Abstract

Given a family F of r-graphs, let ex(n,F) be the maximum number of edges in an

n vertex r-graph containing no member of F . Let C
(r)
4 denote the family of r-graphs

with distinct edges A,B, C, D, such that A ∩ B = C ∩ D = ∅, A ∪ B = C ∪ D. For

s1 ≤ · · · ≤ sr, let K(r)(s1, . . . , sr) be the complete r-partite r-graph with parts of sizes

s1, . . . , sr.

Füredi conjectured over 15 years ago that ex(n, C
(3)
4 ) ≤

(
n
2

)
for n sufficiently large.

We prove the weaker result ex(n, {C(3)
4 ,K(3)(1, 2, 4)}) ≤

(
n
2

)
.

Generalizing a well-known conjecture for the Turán number of bipartite graphs, we

conjecture that

ex(n, K(r)(s1, . . . , sr)) = Θ(nr−1/s),

where s =
∏r−1

i=1 si. We prove this conjecture when s1 = · · · = sr−2 = 1 and (i)

sr−1 = 2, (ii) sr−1 = sr = 3, (iii) sr > (sr−1 − 1)!. In cases (i) and (ii), we determine

the asymptotic value of ex(n, K(r)(s1, . . . , sr)).

We also provide an explicit construction giving

ex(n, K(3)(2, 2, 3)) > (1/6− o(1))n8/3.

This improves upon the previous best lower bound of Ω(n29/11) obtained by probabilis-

tic methods. Several related open problems are also presented.
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1 Introduction

Given a family of r-uniform hypergraphs (or r-graphs) F , we say that an r-graph G is F -

free if G contains no subhypergraph isomorphic to any element in F . Let ex(n,F) be the

maximum number of edges in an n vertex F -free r-graph. If F = {K(r)
k }, the complete

r-graph on k vertices, then ex(n,F) is the Turán number tr(n, k). The determination of

limn→∞ tr(n, k)/
(

n
r

)
is perhaps the most fundamental open problem in extremal hypergraph

theory. We consider the related question of determining ex(n,F) when F 6= {K(r)
k }.

Definition 1.1. Let C
(r)
4 be the family of r-graphs consisting of distinct edges A, B, C,D

with A ∩B = C ∩D = ∅ and A ∪B = C ∪D. For 1 ≤ s1 ≤ · · · ≤ sr, let K(r)(s1, . . . , sr) be

the r-partite r-graph with vertex set consisting of disjoint sets X1, . . . , Xr of sizes s1, . . . , sr,

respectively, and all edges of the form {x1, . . . , xr}, where xi ∈ Xi.

When r = 3, C
(r)
4 consists of only one isomorphism class of 3-graphs, and so we sometimes

abuse notation by referring to this 3-graph as C
(3)
4 . Let fr(n) = ex(n, C

(r)
4 ). Determining

f2(n) is a well-known graph problem that goes back to 1938 [8]. For general r, this function

was introduced by Erdős in 1977 [4]. Füredi [12] proved the following result.

Theorem 1.2. (Füredi [12]) If r ≥ 3, then

(
n− 1

r − 1

)
+

⌊
n− 1

r

⌋
≤ fr(n) < 3.5

(
n

r − 1

)
.

Also

f3(n) ≥
(

n

2

)
for n ≡ 1, 5 (mod 20). (1)

Conjecture 1.3. (Füredi [12]) If r ≥ 3, and n > n0(r), then fr(n) ≤
(

n

r − 1

)
. Moreover,

for r ≥ 4, we have fr(n) =

(
n− 1

r − 1

)
+

⌊
n− 1

r

⌋
.

Although we are unable to prove Conjecture 1.3, we provide some additional evidence

for its truth when r = 3 by proving

Theorem 1.4. ex(n, {C(3)
4 , K(3)(1, 2, 4)}) ≤

(
n

2

)
.

Füredi’s example that yields (1) is obtained by first taking a Steiner system of 5-sets

(i.e., an n vertex 5-graph in which every pair of vertices is contained in precisely one edge),

and then replacing each 5-set by the ten triples contained in it. This yields a 3-graph with(
n
2

)
edges. It is well-known [20] that such Steiner systems exist when n ≡ 1, 5 (mod 20).
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Moreover, it is easy to see that this construction is both C
(3)
4 -free and K(3)(1, 2, 4)-free, and

hence Theorem 1.4 is sharp.

While the above result is admittedly modest, we hope that it fosters some new ideas

towards the proof of Conjecture 1.3, at least for r = 3, and also leads to new problems.

It is a well-known open graph problem to determine the growth rate of ex(n, Ka,b) for

fixed a ≤ b. The classical upper bound due to Kővári, Sós and Turán [18] gives for 1 ≤ a ≤ b,

2 ex(n, Ka,b) ≤ (b− 1)1/an2−(1/a) + (a− 1)n.

These are conjectured to be asymptotically optimal as n → ∞ for every fixed a ≤ b. This

has been proved for b ≥ a = 2 (Brown [6], Erdős, Rényi, Sós [10], and Füredi [13]), a = b = 3

[6, 14], and for every a > 3 and b > (a−1)! by Alon, Rónyai, and Szabó [2]. The best known

general bound, obtained by the probabilistic method (see, e.g., [5], p. 310, or [11], p. 61,

proof of inequality (12.19)), is

ex(n, Ka,b) ≥ Ω(n2−a+b−2
ab−1 ).

In light of Theorem 1.4, it seems appropriate to promote the study of Turán numbers for

3-partite 3-graphs, i.e., the numbers ex(n, K(3)(i, j, k)). An old result of Erdős [9] implies

that ex(n, K(3)(i, j, k)) ≤ O(n3−1/ij), and when i = j = k, Erdős indicates in [9] how to

prove a lower bound of Ω(n3−C/ij) for an absolute constant C. Erdős also remarks in [9] that

ex(n,K(3)(l, l, l)) = Θ(n3−1/l2) could hold, but this has not been proven for any l > 1. In

fact, it appears that even ex(n,K(3)(i, j, k)) = Θ(n3−1/ij) was not known for any j > 1. We

prove this for i = 1 and

(a) k ≥ j = 2,

(b) j = k = 3,

(c) j > 3, k ≥ (j − 1)! + 1.

For (a) and (b) we also determine the asymptotics. We also extend these results to r-graphs.

Our constructions are very slight variations of Füredi’s algebraic construction from [13] and

the constructions of Alon et. al. in [2] and yield, for example,

ex(n, K(3)(1, 2, 4)) ∼
(

1

2
√

3

)
n5/2. (2)

Note that (2) also implies that Theorem 1.4 is not vacuous by showing that far more than(
n
2

)
edges are required to force a copy of just K(3)(1, 2, 4).
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Based on these extensions of graph constructions to hypergraphs, we make the following

conjecture which is probably widely believed but appears never to have been stated in such

generality.

Conjecture 1.5. Let r > 1, s1 ≤ · · · ≤ sr be fixed. Then

ex(n, K(r)(s1, . . . , sr)) = Θ(nr−1/s),

where s =
∏r−1

i=1 si.

In addition to the results mentioned above, we improve the previous best known lower

bounds for another isolated case.

Theorem 1.6.

ex(n, K(3)(2, 2, 3)) > (1/6− o(1))n8/3.

It is mentioned in [17] that it would be useful to obtain explicit constructions of large

graphs without Kt,t even if the density is far worse than that guaranteed by probabilistic

constructions. Such constructions would be useful in computing theory [1]. The best known

lower bound ex(n, K(3)(2, 2, 3)) > Ω(n29/11) is obtained by probabilistic methods. Theorem

1.6 improves this by an explicit construction.

In section 2, we present the proof of Theorem 1.4, and a related probabilistic result. In

sections 3 and 4 we prove the results on Turán numbers for r-partite r-graphs. In section 5

we prove Theorem 1.6. Related problems and conjectures are discussed in section 6.

Throughout we denote the vertex set and edge set of a hypergraph H by V (H) and

E(H), respectively. The degree of a vertex v in H is the number of edges containing v; the

neighborhood of v is the set of vertices v′ for which there is an edge S ∈ E(H) such that

{v, v′} ⊆ S. Given functions f and g, f = O(g) means that there is an absolute constant c

such that for n sufficiently large, |f(n)/g(n)| < c; f = Ω(g) if g = O(f), and f = o(g) means

that limn→∞ f(n)/g(n) = 0. We say that f is asymptotic to g if limn→∞ f(n)/g(n) = 1,

and we write f ∼ g. Equivalently, f ∼ g if and only if f = (1 + o(1))g. If f = O(g) and

g = O(f), then we write f = Θ(g).

2 Generalized four-cycles

By an r-star we mean a star with r edges. Our main tool is to count the number of r-stars

in bipartite graphs. The following Lemma is a special case of results in [7, 19], we present it
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so that our proof is self-contained.

Lemma 2.1. Let r ≥ 2 be an integer. Let G be a bipartite graph with parts X, Y , of sizes(
n

r−1

)
and n, respectively. If |E(G)| > r

(
n

r−1

)
, then G contains a copy of Kr+1,r−1 with r + 1

vertices in X and r − 1 vertices in Y .

Proof. Let p be the number of (r − 1)-stars in G with leaves in Y . By the convexity of

binomial coefficients, we get

p =
∑
x∈X

(
d(x)

r − 1

)
>

(
n

r − 1

)(
r

r − 1

)
= r

(
n

r − 1

)
. (3)

Hence at least r + 1 distinct (r − 1)-stars share the same (r − 1)-set of leaves in Y .

Definition 2.2. Fix r ≥ 3. Let H(r) be the family of r-graphs with vertex set consisting of

disjoint sets X ∪Y , where X = X1∪X2, |X1| = |X2| = r−1, |X1∩X2| ≤ r−3, |Y | = r−1,

and edge set {A ∪ y : A ∈ {X1, X2}, y ∈ Y }.

We prove Theorem 1.4 in a slightly more general form. Given a set S and a positive

integer k, we let
(

S
k

)
denote the family of k-subsets of S.

Theorem 2.3. Let r ≥ 3. Then ex(n, {H(r), K(r)(1, . . . , 1, r − 1, r + 1)}) ≤
(

n

r − 1

)
.

Proof. Let G be an n vertex r-graph with vertex set V and e >
(

n
r−1

)
edges. Form the

bipartite graph B with parts X =
(

V
r−1

)
and Y = V , and edges (S, y), where S ∪y is an edge

of G.

Since each edge of G is counted r times in B, we have |E(B)| > r
(

n
r−1

)
. Applying Lemma

2.1 yields a copy H of Kr+1,r−1 in B. It remains only to show that H corresponds to either

H(r) or K(r)(1, . . . , 1, r − 1, r + 1) in G.

Let VX = V (H) ∩X and VY = V (H) ∩ Y . If there exist S, T ∈ VX with |S ∩ T | ≤ r− 3,

then the edge set {A ∪ y : A ∈ {S, T}, y ∈ VY } forms a copy of H(r) in G.

Hence we may assume that for every pair of distinct elements S, T in VX , we have |S∩T | =
r − 2. This implies that the r + 1 sets in VX form a sunflower with kernel of size r − 2.

These (r − 1)-sets form a copy of K(r−1)(1, . . . , 1, r + 1), where the r − 2 parts of size one

correspond to the elements of the kernel. It is now easy to see that the r-sets defined by H

form a copy of K(r)(1, . . . , 1, r − 1, r + 1) in G.
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Since H(3) is the family C
(3)
4 , the special case r = 3 of Theorem 2.3 is precisely Theorem

1.4. We next prove a straightforward generalization of a well-known result for graphs.

Lemma 2.4. Suppose that H is an r-graph with v vertices and e edges. Then ex(n,H) ≥
Ω(nr−v/e). Moreover, almost every n vertex r-graph with o(nr−v/e) edges is H-free.

Proof. The proof mirrors [3], pages 41-42, and is an easy application of the first moment

method. Consider the probability space of all n vertex r-graphs on m edges, where each

r-graph with m edges is equally likely. Let G be an element of this probability space. For

each S ⊆ V (G) with |S| = v, let AS be the event that the subhypergraph induced by S

contains a copy of H. Then

Pr(G is not H-free) = Pr(
⋃

SAS) ≤ O

(n

v

)((n
r)−e

m−e

)((n
r)
m

)
 = O(menv−re).

If m = o(nr−v/e), then Pr(
⋃

S AS) = o(1). If c is a sufficiently small constant, and m =

cnr−v/e, then Pr(
⋃

S AS) < 1.

Conjecture 1.3 for r = 3 holds for almost all 3-graphs on
(

n
2

)
edges, but a direct proof

requires using the second moment. Theorem 1.4 provides a simple first moment proof of

this fact, since it suffices to forbid K(3)(1, 2, 4). Indeed, together with Lemma 2.4, it easily

implies

Corollary 2.5. Almost all n vertex 3-graphs with
(

n
2

)
+ 1 edges are not C

(3)
4 -free.

3 Asymptotics for ex(n, K(r)(1, . . . , 1, 2, t + 1))

In this section we determine the asymptotics for an infinite class of Turán numbers for r-

partite r-graphs using the construction developed in [13]. Since the construction and many

of the ideas are identical with those in [13], we emphasize only the new points.

Theorem 3.1. Let r, t be fixed positive integers, r ≥ 2. Let H be the complete r-partite

r-graph K(r)(1, . . . , 1, 2, t+1) consisting of r− 2 sets of size 1, one set of size 2, and one set

of size t + 1. Then

ex(n,H) ∼
√

t

r!
nr−1/2.
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Proof. We first give a construction that proves the lower bound. Let q be a prime power

such that (q−1)/t is an integer, and let n = (q−1)2/t. We define an n vertex H-free r-graph

G with at least
q2r−1

tr−1r!
−O(q2r−2) (4)

edges. Then the lower bound for the Turán number for all n follows from the fact that for

every sufficiently large n there exists a prime q satisfying q ≡ 1(mod t) and
√

nt − n1/3 <

q <
√

nt (see [16]).

Let F be the q-element finite field, and let H be a t-element subgroup of F \ {0}. The

elements of the vertex set V consist of equivalence classes in (F \ {0}) × (F \ {0}), where

(a, b) ∼ (x, y) if there is an α ∈ H such that a = αx and b = αy. The class represented by

(a, b) is denoted by 〈a, b〉. A set of r distinct classes 〈ai, bi〉 (1 ≤ i ≤ r) form an edge in G if

r∏
i=1

ai +
r∏

i=1

bi ∈ H. (5)

It is easily observed that this relation is well-defined, and that the number of edges in G is

at least (
n

r − 1

)
q − r

r
=

(
(q − 1)2/t

r − 1

)
q − r

r
=

q2r−1

tr−1r!
−O(q2r−2),

as required in (4).

Next we show that G is H-free. For (a, b), (a′, b′) ∈ (F \ {0})× (F \ {0}), (a, b) 6∼ (a′, b′)

the equation system

ax + by = α (6)

a′x + b′y = β

has at most one solution (x, y) for every α, β ∈ H. From this it follows that the system

ax + by ∈ H (7)

a′x + b′y ∈ H

has at most t nonequivalent solutions (x, y). See [13] for the details.

Now suppose that 〈ai, bi〉, 1 ≤ i ≤ r− 2, 〈uj, vj〉, 1 ≤ j ≤ 2, 〈xk, yk〉, 1 ≤ k ≤ t + 1, form

the vertex set of a copy of H in G, where the 〈ai, bi〉 form the parts of size 1, {〈uj, vj〉} forms
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the part of size 2, and {〈xk, yk〉} forms the part of size t. For j = 1, 2, set

pj =

(
r−2∏
i=1

ai

)
uj and qj =

(
r−2∏
i=1

bi

)
vj.

Note that (p1, q1) 6∼ (p2, q2), since otherwise 〈u1, v1〉 = 〈u2, v2〉. The edges forming the copy

of H yield, for 1 ≤ k ≤ t + 1,

p1xk + q1yk ∈ H

p2xk + q2yk ∈ H

where 〈xl, yl〉 6= 〈x′l, y′l〉 when l 6= l′. But we have argued in (7) that such a system can have

at most t nonequivalent solutions. This completes the proof of the lower bound.

For the upper bound, we proceed by induction on r. The case r = 2 is proved in [18].

The inductive step follows immediately by considering the (r − 1)-graph induced by the

neighborhood of a vertex of maximum degree.

4 Asymptotics for ex(n, K(r)(1, . . . , 1, 3, 3))

In [17] an algebraic construction is given which proves that ex(n,Ks,t) = Θ(n2−1/s) for

t ≥ s!+1. This construction is extended to t ≥ (s− 1)!+1 (s ≥ 3) in [2]. In this section, we

show that a very slight variation of this construction yields the correct order of magnitude

for ex(n,K(r)(1, . . . , 1, s, t)) (for s ≥ 3, t = (s−1)!+1); it also yields the asymptotic value of

ex(n, K(r)(1, . . . , 1, 3, 3)). The extension to hypergraphs is much the same as the extension

of Füredi’s construction in the previous section.

We now define the “Norm-hypergraphs” G = G(r)(q, s) for any s > 2. Let V (G) =

GF (qs−1)×GF (q)∗, where GF (p) is the finite field of p elements, and GF (p)∗ = GF (p)\{0}.
The vertices (Ai, ai), i = 1, . . . , r form an edge if

N

(
r∑

i=1

Ai

)
=

r∏
i=1

ai, (8)

where N(X) = X1+q+...+qs−2
is the norm of X ∈ GF (qs−1) over GF (q). Note that for

X ∈ GF (qs−1), we have (N(X))q = N(X), so N(X) ∈ GF (q) (indeed, GF (q) consists of

precisely the solutions to xq−x = 0). For every choice of r−1 vertices (Ai, ai), 1 ≤ i ≤ r−1,
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there are qs−1 − r pairs (A, a), A 6∈ {A1, . . . , Ar−1,−
∑

i Ai}, which satisfy (8). Since each

edge is counted at most r times in this way the number of edges in G is at least(
n

r − 1

)
qs−1 − r

r
=

(
qs − qs−1

r − 1

)
qs−1 − r

r
=

qrs−1

r!
−O(qrs−2). (9)

We need the following result that is proved in [2] but follows easily from a result in [17]

Lemma 4.1. If (D1, d1), . . . , (Ds, ds) are distinct elements of V (G(r)(q, s)), then the system

of s equations

N(Dj + X) = djx, 1 ≤ j ≤ s

has at most (s− 1)! solutions (X, x) ∈ GF (qs−1)×GF (q)∗.

Theorem 4.2. Let r ≥ 2, s ≥ 3 be fixed positive integers. Let H be the complete r-partite

r-graph K(r)(1, . . . , 1, s, t)) consisting of r− 2 sets of size 1, one set of size s, and one set of

size t = (s− 1)! + 1. Then G(r)(q, s) is H-free. Moreover,

ex(n,H) = Θ(nr−1/s) (10)

and

ex(n, K(r)(1, . . . , 1, 3, 3)) ∼ nr−1/3

r!
. (11)

Proof. We first show that G(r)(q, s) is H-free. Then (9) and the fact that for sufficiently

large n, there is a prime between n and n+o(n) (see [16]) together yield the lower bounds in

(10) and (11). Suppose that (Ai, ai), 1 ≤ i ≤ r − 2, (Bj, bj), 1 ≤ j ≤ s, (Ck, ck), 1 ≤ k ≤ t,

form the vertex set of a copy of H in G(r)(q, s), where the (Ai, ai) form the parts of size 1,

{(Bj, bj)} forms the part of size s, and {(Ck, ck)} forms the part of size t. For 1 ≤ j ≤ s, set

Pj =

(
r−2∑
i=1

Ai

)
+ Bj and pj =

(
r−2∏
i=1

ai

)
bj.

Note that (Pj, pj) 6= (Pj′ , pj′) for j 6= j′, since otherwise (Bj, bj) = (Bj′ , bj′). The edges

forming the copy of H yield, for 1 ≤ j ≤ s, 1 ≤ k ≤ t,

N(Pj + Ck) = pjck

where Pj + Ck 6= 0 for all j, k. But Lemma 4.1 implies that such a system can have at most

t− 1 solutions (Ck, ck).
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For the upper bounds in (10), (11), we proceed by induction on r. The case r = 2 is

proved in [18] for s > 3 and in [14] for s = 3. The inductive step follows immediately

by considering the (r − 1)-graph induced by the neighborhood of a vertex of maximum

degree.

5 Proof of Theorem 1.6

Let F be an r-graph with v vertices and e > 0 edges. An easy application of the probabilistic

deletion method yields ex(n,F) > cnα, where α = r− (v−r)/(e−1) and c is independent of

n. This yields ex(n,K(3)(2, 2, 2)) > cn18/7. The exponent 18/7 has recently been improved

to 13/5 by Gunderson, Rödl, and Sidorenko [15] but their construction is not explicit.

The previous best known lower bound ex(n,K(3)(2, 2, 3)) > cn29/11 is also obtained by

the probabilistic method. We improve the exponent 29/11 to 8/3 by proving Theorem 1.6

using the Norm hypergraphs described in the previous section. Thus our construction is

explicit, and is the first construction giving better bounds than the probabilistic method for

the Turán number of K(3)(i, j, k) when 2 ≤ i ≤ j ≤ k.

In the following proof we write [m] for {1, . . . ,m}.

Proof of Theorem 1.6: Let q be an odd prime power. Recall that G(3)(q, 3) has n =

(1 + o(1))q3 vertices and by (9) it has (1/6 + o(1))q8 = (1/6 + o(1))n8/3 edges. We will show

that G(3)(q, 3) contains no copy of K(3)(2, 2, 3). Then the fact that for sufficiently large n,

there is an odd prime between n and n + o(n) (see [16]) yields the lower bound claimed.

Suppose that {(Ai, ai)}, {(Bj, bj)}, {(Xk, xk)}, i, j ∈ [2], k ∈ [3] forms a copy F of

K(3)(2, 2, 3), with {(Ai, ai)} and {(Bj, bj)} forming the two parts of size two, and {(Xk, xk)}
forming the part of size three. Let Dij = Ai + Bj and dij = aibj. Then the edges of F yield

N(Dij + Xk) = dijxk (12)

for i, j ∈ [2] and k ∈ [3].

If the set S = {(Dij, dij) : i, j ∈ [2]} has at least three distinct elements, then Lemma 4.1

with r = s = 3 implies that (12) cannot hold for each k ∈ [3]. Hence we may assume that

|S| ≤ 2.

If (Di1, di1) = (Di2, di2), then Ai + B1 = Ai + B2 and aib1 = aib2. This implies that

(B1, b1) = (B2, b2), a contradiction. Hence we may assume that (Di1, di1) 6= (Di2, di2) and by

10



symmetry, that (D1j, d1j) 6= (D2j, d2j). Since |S| ≤ 2, we obtain (D11, d11) = (D22, d22) and

(D12, d12) = (D21, d21). Consequently,

A1 + B1 = A2 + B2

A1 + B2 = A2 + B1

Together these equations yield 2(B1−B2) = 0, and since q is an odd prime power, this implies

that B1 = B2. The two edges {(A1, a1), (B1, b1), (Xk, xk)} and {(A1, a1), (B2, b2), (Xk, xk)}
yield

a1b1xk = N(A1 + B1 + Xk) = N(A1 + B2 + Xk) = a1b2xk.

Consequently b1 = b2 which provides the contradiction (B1, b1) = (B2, b2). This completes

the proof.

6 Concluding remarks and open problems

• Let H = H(3, 2) be the 3-graph with V (H) = {x1, x2, x3, y1, y2} and the six edges

{xi, xj, yk}, 1 ≤ i, j ≤ 3, k = 1, 2. Using the proof technique of Theorem 1.4, it follows

easily that

ex(n, {C(3)
4 , K(3)(1, 2, 3),H}) ≤ 5

6

(
n

2

)
.

We know good bounds for ex(n,C
(3)
4 ) (Theorem 1.2) and ex(n,K(3)(1, 2, 3)) (Theorem 3.1),

so it seems natural to ask for the asymptotics of ex(n,H).

• It may be useful to impose some local structure to the hypothesis of Conjecture 1.3.

The codegree of a pair of vertices u, v is the number of edges containing them both. For a

hypergraph G, let c(G) be the minimum codegree, taken over all pairs of vertices. An easy

count shows that if G is a 3-graph, then c(G) ≥ 3 implies that |E(G)| ≥
(

n
2

)
. One can ask

what minimum value of c(G) forces a copy of C
(3)
4 . Theorem 1.2 implies that c(G) = 11

suffices, and if Conjecture 1.3 holds for r = 3, then c(G) = 4 should suffice. Note that the

examples in (1) show that c(G) = 3 does not suffice.

• The r-partite r-graphs considered in Sections 3 and 4 bear great resemblance to bipartite

graphs, since all but two of their parts have size 1 (indeed, this was the feature we exploited

to reduce our proofs to known results for graphs). We believe that our lower bound for

11



ex(n,K(3)(2, 2, 3)) (Theorem 1.6), however, provides real evidence that these constructions

are nontrivial hypergraph constructions. We feel that they will be further exploited to attack

Conjecture 1.5.
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an earlier draft of this paper, Vojta Rödl for helpful discussions about Theorem 1.6, and a

Referee for suggesting the generalization presented in Theorem 2.3.

References

[1] A. Andreev, On a family of Boolean matrices, Vestnik Mosk. Univ. Ser. 1 (mat.-mech) 41

(1986), 97–100 (in Russian), English translation: Moscow Univ. Math. Bull. 41 (1986),

79–82.
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[8] P. Erdős, On sequences of integers no one of which divides the product of two others

and some related problems, Izv. Naustno-Issl. Inst. Mat. i Meh. Tomsk 2 (1938), 74–82,

(Zbl 20, 5.)
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[17] J. Kollár, L. Rónyai and T. Szabó, Norm-Graphs and Bipartite Turán Numbers, Com-

binatorica, 16, (3), (1996), 399–406.
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