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Abstract

This is a contribution to the theory of Hecke algebras. A class of algebras called generic pro-p Hecke

algebras is introduced, enlarging the class of generic Hecke algebras by considering certain extensions of
(extended) Coxeter groups. Examples of generic pro-p Hecke algebras are given by pro-p-Iwahori Hecke
algebras and Yokonuma-Hecke algebras. The notion of an orientation of a Coxeter group is introduced and
used to define ‘Bernstein maps’ intimately related to Bernstein’s presentation and to Cherednik’s cocycle.
It is shown that certain relations in the Hecke algebra hold true, equivalent to Bernstein’s relations in the
case of Iwahori-Hecke algebras.

For a certain subclass called affine pro-p Hecke algebras, containing Iwahori-Hecke and pro-p-Iwahori
Hecke algebras, an explicit canonical and integral basis of the center is constructed and finiteness results
are proved about the center and the module-structure of the algebra over its center, recovering results of
Bernstein-Zelevinsky-Lusztig and Vignéras.

Zusammenfassung

Es wird ein Beitrag zur Theorie der Hecke-Algebren geleistet. Speziell wird eine Klasse von Algebren
eingeführt, die generischen pro-p Hecke-Algebren, welche die Klasse der generischen Hecke-Algebren erwei-
tert durch Übergang von Coxetergruppen zu Erweiterungen solcher durch abelsche Gruppen. Beispiele sind
gegeben durch pro-p-Iwahori Hecke-Algebren und Yokonuma-Hecke Algebren. Es wird der Begriff der Orien-

tierung einer Coxetergruppe eingeführt und benutzt um sogenannte Bernsteinabbildungen definieren, welche
eng verwandt sind mit der Bernsteinpräsentierung und dem Cherednik-Kozykel. Sodann wird gezeigt, dass
zwischen den Bildern der Bernsteinabbildungen gewisse Relationen herrschen, welche sich im Spezialfall der
Iwahori-Hecke Algebra auf die bekannten Bernsteinrelationen reduzieren.

Ferner wird für die Unterklasse der affinen pro-p Hecke-Algebren, welche sowohl die Iwahori-Hecke als
auch die pro-p-Iwahori Hecke-Algebren umfassen, eine kanonische und ganzzahlige Basis des Zentrums kon-
struiert und es werden Endlichkeitssätze über das Zentrum, aufgefasst als Algebra, und über die Hecke-
Algebra selbst, aufgefasst als Modul über dem Zentrum, bewiesen. Dabei werden bereits bekannte Ergebnisse
von Bernstein-Zelevinsky-Lusztig und Vignéras verallgemeinert.
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0 Introduction

The present article is a contribution to the theory of Hecke algebras, continuing previous work [Sch09] of the
author. It is concerned with a recent addition to the diverse family of algebras that go under the name ‘Hecke
algebra’, the ‘pro-p Hecke algebras’. The story of these algebras begins with the two articles [Vig06], [Vig05] of
Vignéras, both of which generalize the theory of the center of affine Hecke algebras (‘Bernstein’s presentation’)
of Bernstein-Zelevinsky and Lusztig [Lus89], but in different directions.

The first article [Vig06] develops an integral version of this theory, removing the restrictions on the ring of
coefficients. Recall that affine Hecke algebras Hq(W,S) are defined with respect to a base ring R by generators
¶Tw♢w∈W and relations

TwTw′ = Tww′ if ℓ(w) + ℓ(w′) = ℓ(ww′)(0.0.1)

T 2
s = qs + (qs − 1)Ts (s ∈ S)(0.0.2)

depending on the choice of an extended affine Weyl group W (associated to some root datum (X,Φ, X∨,Φ∨)), a
set S ⊆W of simple reflections (defining a length function ℓ : W → N), and a family ¶qs♢s∈S ⊆ R of parameters
subject to the constraint

qs = qt if s, t ∈ S are conjugate in W

This general definition imposes no restrictions on the nature of the ring R whatsoever. However in [Lus89], it
was assumed that the ring of coefficients be R = C and that the parameters qs are invertible1. Traditionally,
this wasn’t seen as a restriction because the results of [Lus89] were usually applied in the context of complex
representations of reductive groups and the classical Langlands program.

Let us briefly recall how affine Hecke algebras are related to reductive groups. Given a split2 connected reduc-
tive group G over a nonarchimedean local field F and an Iwahori subgroup I ≤ G(F ), a standard construction
from representation theory yields the associated Iwahori-Hecke algebra H(G(F ), I) over R. This algebra has
an R-basis indexed by the set I\G(F )/I of double cosets with product structure given by convolution. More
conceptually, the algebra H(G(F ), I) identifies with the endomorphism ring of the R-linear G(F )-representation
ind

G(F )
I 1 induced from the trivial representation of I. By Frobenius reciprocity, this induced representation

also represents the functor of I-invariants of G(F )-representations, and the latter therefore lifts to a functor

(0.0.3) ¶R-linear G(F )-representations♢ −→ ¶Right-H(G(F ), I)-modules♢

relating representations of reductive groups to modules of Iwahori-Hecke algebras. Finally, affine Hecke algebras
and Iwahori-Hecke algebras are related via the Iwahori-Matsumoto presentation of H(G(F ), I), which defines
an isomorphism

Hq(W,S)
∼−→ H(G(F ), I)

where W is the extended Weyl group of the root datum of G and the parameters qs all equal the cardinality
q = pr of the residue field of F .

1The results of [Lus89] are actually applicable to any ring R as long as the qs are invertible and admit square roots.
2The splitness assumption is necessary in order to dispose of the Iwahori-Matsumoto presentation; although it was a folklore

result that Iwahori-Hecke algebras of non-split groups admit an Iwahori-Matsumoto presentation with unequal parameters, there
was no proof or even a precise result available until the appearance of [Vig16].
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Note that when R = C, the parameters qs are invertible and the results of [Lus89] are applicable. On the
other hand if R is a field of characteristic p, the qs are all equal to zero. In this case there is no hope of applying
the Bernstein-Zelevinsky theory as presented in [Lus89], since the relevant constructions depend explicitly on
the invertibility of the parameters qs.

In particular, Bernstein-Zelevinsky’s description of the center of affine Hecke algebras had not been available
to the mod p Langlands program—which aims to study representations of reductive groups in precisely this equal-
characteristic situation—when it emerged in the early 2000s. The purpose of [Vig06] was to remedy this fact
by developing an integral version of the theory in [Lus89]. The surprising result of [Vig06] was that one could
completely avoid any invertibility assumptions and make the results carry over to arbitrary coefficient rings by
simply replacing the Bernstein-Zelevinsky basis ¶θ̃xTw♢ with an integral variant ¶Ew♢ differing from it only by
explicit scalar factors.

Still, it was not clear how useful Hecke algebras would be in the study of mod p representations because, in
contrast to the case of characteristic zero, the functor of I-invariants is not exact in characteristic p. However, it
was soon observed that a certain variant of the Iwahori subgroup enjoys a remarkable property in characteristic
p that almost makes up for the lack of exactness. This property goes back to the following elementary fact:
a p-group that acts on a nonzero Fp-vector space must have a nonzero fix point. It follows at once that the
same holds true more generally for pro-p groups acting smoothly, i.e. with open stabilizers, and for arbitrary
coefficient rings of characteristic p. Thus, if one replaces an Iwahori subgroup I by its maximal open normal
pro-p subgroup I(1) ≤ I, the analogue

¶R-linear G(F )-representations♢ −→ ¶Right-H(G(F ), I(1))-modules♢

of the functor (0.0.3) above sends nonzero smooth representations to nonzero modules (while still being not
exact of course). This remarkable property has some important consequences. For example, it implies the
following practical irreducibility criterion: a G(F )-representation V generated by its I(1)-invariants V I(1) is
irreducible if the H(G, I(1))-module V I(1) is simple.

The subgroup I(1) ≤ I and the algebra H(G(F ), I(1)) were introduced by Vignéras in the second article
[Vig05], where they were named ‘pro-p-Iwahori group’ and ‘pro-p-Iwahori Hecke algebra’ respectively. Since the
appearance of [Vig05], these ‘higher congruence analogues’ of the Iwahori-Hecke algebras have proven to be of
ever-growing importance in the mod p Langlands program (see also [Fli11] for an application in the classical
context).

Having removed the restrictions on the ring of coefficients in [Vig06], in [Vig05] Vignéras re-developed this
new integral Bernstein-Zelevinsky theory in the context of pro-p-Iwahori Hecke algebras (of split groups). Sur-
prisingly, the results carried over almost verbatim. However, the methods of proof were different as [Vig05] dealt
with the concrete convolution Hecke algebras H(G(F ), I(1)) and not with abstract Hecke algebras Hq(W,S)
defined by generators and relations. As a result, the proofs in [Vig05] were less elementary as they assumed
some familiarity with reductive groups. A more serious consequence was that one could not take advantage of
a reduction argument (the ‘specialization argument’, see remark 1.10.3) available in the abstract setting that
often allows one to reduce statements to the case of invertible parameters.

For these reasons, it seemed desirable if there was a ‘pro-p analogue’ of the affine Hecke algebras. Our first
contribution to this subject was to verify that such an analogue exists: the generic pro-p Hecke algebras that
formed the subject of [Sch09].

More precisely, generic pro-p Hecke algebras are the pro-p analogues of generic Hecke algebras. The latter
generalize affine Hecke algebras by allowing (W,S) to be abstract ‘extended Coxeter groups’ instead of just
extended affine Weyl groups. The generic pro-p Hecke algebras which are analogous to affine Hecke algebras
and to which the Bernstein-Zelevinsky method applies are the affine pro-p Hecke algebras (see definition 2.1.4).

Like generic Hecke algebras, generic pro-p Hecke algebras are associated to a ‘Coxeter-like’ group W (1)

equipped with a length function ℓ : W (1) → N and a set of parameters, and are equipped with a linear basis
¶Tw♢ indexed by W (1) such that relations similar to (0.0.1), (0.0.2) above (see definition 1.3.4 for details) hold
true.

However, there are two essential differences. First of all, the W (1) aren’t extended Coxeter groups but
extensions

1 →→ T →→ W (1) →→ W →→ 1

of extended Coxeter groups by abelian groups (where the group T is not to be confused with the basis ¶Tw♢).
In particular even for affine pro-p Hecke algebras, the representation as a group of isometries of a real affine
space the groups W (1) come equipped with is in general3 not faithful. In other words, the groups W (1) are

3The general case being T ̸= 1; in the degenerate case T = 1, the notion of generic pro-p Hecke algebras reduces to that of
generic Hecke algebras, making the latter a special case of the former.
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only ‘geometric up to T ’, which adds an extra layer of difficulty to many statements whose analogues for affine
Hecke algebras have purely geometric proofs. But, this difficulty also forces one to recognize structures that
remain hidden in the classical case. Namely, of great importance is the existence of a family (ns)s∈S of lifts of
the simple reflections s ∈ S to the group W (1) which satisfy the braid relations

(0.0.4) nsntns . . .  
m factors

= ntnsnt . . .  
m factors

if st is of order m <∞

For generic Hecke algebras, the canonical choice ns = s renders this point trivial. But, even in this case it
is ultimately the existence of this family (cf. the proof of theorem 1.6.1) that allows the construction of the
‘Bernstein functions’ θ on which the Bernstein-Zelevinsky theory rests. Showing the existence of such lifts
ns ∈ W (1) in examples associated to reductive groups is nontrivial (cf. lemma 2.2.3) and related to describing
normalizers of maximal tori in split reductive groups, a problem that has been studied in depth by Tits [Tit66].
In fact, his ‘groupes de Coxeter étendu’ are almost the same as our ‘pro-p Coxeter groups’ (see section 1.8).

The second difference is that the analogues of the quadratic relations (0.0.2) are more delicate and that
generic pro-p Hecke algebras must therefore be viewed as objects H(1) = H(1)(a, b) that depend4 on two families
¶as♢s, ¶bs♢s of parameters, instead of one family ¶qs♢s, and are thus actually pro-p analogues of the two-
parameter generic Hecke algebras Ha,b(W,S) which are defined like Hq(W,S) but with the quadratic relation
T 2
s = qs + (qs− 1)Ts replaced by T 2

s = as + bsTs. But whereas working with two parameters is a convenience in
the classical case, in the pro-p case it becomes a necessity because the parameters bs appearing in the quadratic
relations

T 2
ns

= asTn2
s

+ bsTns

are no longer elements of the ground ring R but elements of the group ring R[T ] of T (viewed as a subalgebra
of H(1) by identifying an element t ∈ T with the basis element Tt ∈ H(1)). Thus, there is no sensible one-
parameter version of the generic pro-p Hecke algebras as the parameters as, bs never satisfy a simple relation
like bs = as − 1 in interesting examples. Yet, even for generic Hecke algebras it is fruitful to let as and bs vary
independently because then (and only then!) it is possible to reduce statements to the case as = 1 using the
‘specialization argument’ mentioned before, where formulas take on a particularly simple form.

With these abstract versions of the pro-p-Iwahori Hecke algebras at hand, the next goal then becomes to
redevelop the integral Bernstein-Zelevinsky theory of [Vig05] using generic algebra methods as in [Lus89] and
[Vig06]. Recall that the method of Bernstein-Zelevinsky5 rests on the decomposition

W = X ⋊W0

of W into a semi-direct product of a finite group W0 (‘Weyl group’) and a ‘large’ abelian subgroup X (‘lattice
of translations’) provided by the root datum (X,Φ, X∨,Φ∨) giving rise to W , with the group W0 acting on X;
because the group law on the abelian subgroup X is traditionally written additively, one uses the exponential
notation τx when viewing an x ∈ X as an element of W , in order to avoid confusion. With this convention, the
action of W0 can be written as

w(x) = wτxw−1

To the commutative subgroup X now corresponds a commutative subalgebra A ⊆ Hq(W,S) via a group
homomorphism6

θ̃ : X → Hq(W,S)×

such that the θ̃(x), x ∈ X form a basis of A and W0 acts on it via algebra automorphisms permuting the basis
elements. The main result of the Bernstein-Zelevinsky method is the equality

Z(Hq(W,S)) = AW0

between the center of the Hecke algebra and the invariants of this commutative subalgebra under the action of
the Weyl group. Proving this equality usually proceeds in two steps (cf. [Lus89]). First, one establishes that
AW0 lies in the center using the Bernstein relations, and then one shows—using this inclusion—that equality
must hold. In [Lus83] the last step is justified by referring to a ‘Nakayama argument’ (without providing
details). Here and in [Sch09], we follow the mentioned outline but replace the ‘Nakayama argument’ with a
combination of an induction (theorem 2.6.3) and an explicit computation (proposition 2.5.4) that shows that

4The dependence on the group W (1) is suppressed in the notation.
5The description of the center of affine Hecke algebras for ‘constant parameters’ was obtained by Bernstein and Zelevinsky in

an unpublished work. Their results were generalized by Lusztig in [Lus89], which is the canonical reference for the theory.
6θ̃ corresponds to the map denoted by θ in [Lus89]. We use the notation θ̃ in order to be consistent with the notation for the

normalized Bernstein maps θ̃o to be introduced later that generalize θ̃ and have ‘unnormalized’ counterparts denoted by θo.
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the subalgebra A equals its own centralizer (in the ‘split case’; in the ‘non-split case’ it is a proper subalgebra
of A in general). This step isn’t difficult although somewhat convoluted (especially in the ‘non-split case’).

The essential difficulty of the Bernstein-Zelevinsky method lies in establishing the Bernstein relations. In
[Lus89], they are stated in the following form (restated here for two parameters). Given a reflection s = sα ∈
W0 ∩ S attached to a simple root α : X → Z and an element x ∈ X, we have

(0.0.5) θ̃(x)Ts − Tsθ̃(s(x)) =

⎧
⎪⎪⎪⎪⨄
⎪⎪⎪⎪⎩

bs
θ̃(x)− θ̃(s(x))

1− θ̃(−α∨)
if α(X) = Z

a1/2
s

(
a−1/2
s bs + a

−1/2
s′ bs′ θ̃(−α∨)

⎡ θ̃(x)− θ̃(s(x))

1− θ̃(−2α∨)
if α(X) = 2Z

where α∨ ∈ X denotes the dual coroot of α and s′ ∈ S is any simple reflection conjugate to the affine reflection
sα,1 = τ−α∨

sατ
α∨

in W . The homomorphism θ̃ is defined as

θ̃(x) = T̃yT̃
−1
z

where y, z ∈ X are any two elements lying in the dominant cone that satisfy x = y−z, and the T̃w are normalized
versions of the Tw determined by T̃s = a

−1/2
s Ts and the analogues of the braid relations (0.0.1).

In [Vig05], Vignéras established analogues of the Bernstein relations for pro-p-Iwahori Hecke algebras; her
proof closely followed Lusztig’s intricate computational proof [Lus89]. Shortly after her article appeared, Görtz
published a simple geometric proof [Gör07] of the Bernstein relations for affine Hecke algebras. When we learnt
of his article, we hoped that his geometric approach might work for pro-p-Iwahori Hecke algebras too. His proof
was based on Ram’s theory of alcove walk algebras [Ram06]. The main input of that theory to Görtz’ proof is a
geometric interpretation of the elements θ̃(x) based on identifying formal expressions in the Hecke algebra like7

T̃ ε1
s1
T̃ ε2
s2
. . . T̃ εr

sr
(εi ∈ ¶±1♢)

with ‘coloured’ or ‘signed’ galleries (i.e. ‘unfolded alcove walks’ in the terminology of [Ram06]) in the Coxeter
complex starting at the base alcove C, the above expression corresponding to the gallery

Γ = (C0 = C, C1 = s1C, C2 = s1s2C, . . . , Cr = s1 . . . srC)

from C to wC, where w = s1 . . . sr and the colour of the arrow from Ci−1 to Ci is determined by the sign εi, as
in figure 1. Expanding T̃y and T̃z in the definition of θ̃(x) = T̃yT̃

−1
z into a product of generators T̃s, it is easy

to see that θ̃(x) is given by some coloured gallery in this way.
The key point however is this: fixing an ‘orientation’ (see definition 1.5.1), there is a canonical way to colour

every ordinary (uncoloured) gallery starting at C in such a way that any two such coloured galleries having
the same endpoint define the same element in the Hecke algebra. For the ‘spherical orientation’ attached to
the dominant Weyl chamber (see definition 2.4.1), this is the content of the following theorem, quoted verbatim
from [Gör07] (W corresponding to ‘Wa’, and C to ‘a’ in his notation):

0.0.1 Theorem. Let w ∈Wa. For an expression

(1.1.1) w = si1 . . . sin

of w as a product in the generators (which does not have to be reduced), consider the element

Ψ(w) := T ε1
si1
. . . T εn

sin

in the affine Hecke algebra, where the εν ∈ ¶±1♢ are determined as follows. Let b be an alcove far
out in the anti-dominant chamber (“far out” depends on w, and the result will then be independent
of b, see section [. . .] for a precise definition). For each ν, consider the alcove cν := si1 . . . siν−1a,
and denote by Hν the affine root hyperplane containing its face of type iν . We set

εν :=

∮
1 if cν is on the same side of Hν as b

−1 otherwise

Then the element Ψ(w) is independent of the choice of the expression (1.1.1).

([Gör07, Theorem 1.1.1])
7In order to avoid some minor subtleties arising from the group Ω of elements of length zero, we assume that Ω = 1, i.e. that

the extended affine Weyl group W coincides with the affine Weyl group.
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C0

C5

Ts1

Ts2

Ts1

T −1

s2

T −1

s1

Figure 1: The coloured gallery Γ = (C0, . . . , C5) corresponding to the expression Ts1
Ts2

Ts1
T−1
s2
T−1
s1

in the affine
Coxeter complex of type Ã2.

The theorem also holds true with the Ts replaced by the T̃s, and the galleries corresponding to the expressions

T̃s1 . . . T̃sn
T̃−1
tm . . . T̃−1

t1

arising from expanding T̃y and T̃z in θ̃(x) = T̃yT̃
−1
z into reduced products (i.e. ℓ(y) = n, ℓ(z) = m)

T̃y = T̃s1
. . . T̃sn

and T̃z = T̃t1 . . . T̃tm

of the generators T̃s are easily seen to be coloured according to the method given in the theorem. Therefore,
θ̃(x) is given by any canonically coloured gallery from C to x + C, giving the Bernstein homomorphism θ̃ a
very natural and intuitive interpretation in terms of alcove walks. This geometric interpretation fueled Görtz
geometric proof of the Bernstein relations, reducing it essentially to a telescopic sum expansion of the left hand
side, with each summand possessing a geometric interpretation as an alcove walk. Before we explain this in
more detail, let us note some further consequences of the above theorem. These consequences played no explicit
role in Görtz’ original proof, but they allow us to recast it in a way that makes it adaptable to the pro-p case.
In order to simplify the exposition, we will discuss everything in the affine case first, making only some brief
indications on how the pro-p case differs, and then later discuss the pro-p case more fully.

The first thing to note is that the above theorem suggests to extend the Bernstein homomorphism to a map
defined on all of W . Further, we will see in a moment that it is useful to explicitly denote the dependence
on the orientation. Let us therefore write θ̃o(w) for the element defined by a gallery from C to w(C) that is
coloured according to the orientation o, and let o denote the spherical orientation attached to the dominant
Weyl chamber (hence θ̃ = θ̃o) in the following. The group W naturally acts on orientations from the right such
that the signs assigned to a gallery Γ by o • w are the ones assigned to w(Γ) by o. Granting the theorem, the
definitions then immediately imply the following cocycle rule (called product formula in [Sch09]):

(0.0.6) θ̃o(ww′) = θ̃o(w)θ̃o•w(w′)

The cocycle rule recovers the homomorphism property of the ‘Bernstein homomorphism’ because the subgroup
X acts trivial on o (indeed on all spherical orientations). Moreover, the cocycle rule implies the formula

θ̃o(w)−1 = θ̃o•w(w−1)

Because the spherical orientation o of the dominant Weyl chamber has the property that θ̃o(s) = T̃−1
s for all

simple reflections s ∈W0, it follows from the cocycle rule that one can rewrite the second summand on the left
hand side of (0.0.5) as

Tsθ̃(s(x)) = a1/2
s θ̃o•s(s)θ̃o(s(x)) = a1/2

s θ̃o•s(sτ
s(x)) = a1/2

s θ̃o•s(τ
xs)
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The first summand can’t be rewritten in this way, but since

θ̃o•s(x)Ts = a1/2
s θ̃o•s(x)θ̃o•s(s) = a1/2

s θ̃o•s(τ
xs)

it follows that
θ̃(x)Ts − Tsθ̃(s(x)) = a1/2

s

(
θ̃o(x)− θ̃o•s(x)

⎡
θ̃o•s(s)

The proof of the Bernstein relations therefore comes down to computing the difference θ̃o(x)− θ̃o•s(x). To carry
out this computation, one chooses an explicit expression τx = s1 . . . sr (not necessarily reduced) and writes this
difference as a telescopic sum

θ̃o(x)− θ̃o•s(x) = T̃ ε1
s1
. . . T̃ εr

sr
− T̃ ε

′
1
s1 . . . T̃

ε′
r
sr =

∑

i

T̃ ε1
s1
. . . T̃ εi

si−1

(
T̃ εi
si
− T̃ ε

′
i
si

⎡
T̃
ε′

i+1
si+1 . . . T̃

ε′
r
sr

Since the sum needs only to be taken over the indices i where εi ̸= ε′
i, one can use the quadratic relations in

the Hecke algebra written in the symmetric form T̃s − T̃−1
s = a

−1/2
s bs to simplify each summand:

T̃ ε1
s1
. . . T̃ εi

si−1

(
T̃ εi
si
− T̃ ε

′
i
si

⎡
T̃
ε′

i+1
si+1 . . . T̃

ε′
r
sr = εia

−1/2
si

bsi
T̃ ε1
s1
. . . T̃ εi

si−1
T̃
ε′

i+1
si+1 . . . T̃

ε′
r
sr

The crucial point of the proof now is to recognize each summand as something defined a priori, without reference
to the particular chosen expression τx = s1 . . . sr. This step is very delicate in the pro-p case, which makes
transposing Görtz’ to this context nontrivial. In fact, it quickly became apparent to us that a purely geometric
proof of the Bernstein relations for pro-p Hecke algebras couldn’t exist, unless a miracle happened. This miracle
is:

0.0.2 Theorem. For any hyperplane H ∈ H and any orientation o ∈ O, there exists a unique
element Ξo(H) ∈ H(1), such that if s ∈ S, w ∈W (1) with

π(wnsw
−1) = H

then
Ξo(H) =

√
as

−1
w(bs) · θ̃o(wn−1

s w−1) =
√
as

−1
θ̃o(wn−1

s w−1) · w(bs)

(Proposition/definition 1.11.1)

For affine Hecke algebras no miracle beyond Görtz’ theorem is needed to see that

T̃ ε1
s1
. . . T̃ εi−1

si−1
T̃
ε′

i+1
si+1 . . . T̃

ε′
r
sr = θ̃o(s1 . . . ŝi . . . sr)(0.0.7)

= θ̃o(sHi
τx) = θ̃o(sHi

)θ̃o•s(x)

writing sHi
= (s1 . . . si−1)si(s1 . . . si−1)−1 for the reflection at the i-th (affine) hyperplane Hi crossed by the

gallery Γ = (C, s1C, s1s2C, . . . , x+ C), and denoting with ŝi the omission of the element si from the sequence.
One therefore arrives at the formula

(0.0.8) θ̃o(x)− θ̃o•s(x) =

(∑

i

εia
−1/2
si

bsi
θ̃o(sHi

)

)
θ̃o•s(x)

If the expression τx = s1 . . . sr is taken to be reduced, the Hi appearing in the above sum are precisely the
hyperplanes separating C and x + C at which the orientations o and o • s disagree (i.e. those parallel to the
hyperplane Hα defined by the root α). Since asi

, bsi
, and the sign εi only depend on the hyperplane Hi, the

whole sum is therefore purely geometric and independent of the chosen expression. The classical Bernstein
relations (0.0.5) are now easily derived from (0.0.8) using the identity

θ̃o(sH)θ̃o•s(x)θ̃o•s(s) = θ̃o(sHs)θ̃o(s(x))

and by recognizing
√
i θ̃o(sHi

s) as a geometric sum.
The proof sketched above is a reformulation of the proof of Görtz: his proof was direct and didn’t involve

formula (0.0.8). Although a general notion of orientation was defined there, the discussion in [Gör07] was
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restricted to the spherical orientation o attached to the dominant Weyl chamber and its associated Bernstein
map θ̃o; in particular, neither the cocycle rule nor (0.0.8) appeared.

As we’ve already seen, the cocycle rule is important because it simplifies many computations. It also brings
the connection to the work of Cherednik (see below), and forms the proper basis for the definition of the Bernstein
maps in the case of extended or pro-p Coxeter groups. Its discovery—a lucky byproduct of pedantic notation—
was the origin of [Sch09]. Its impetus led us to consider ¶θ̃o(w)♢w∈W and its integral version ¶θ̂o(w)♢w∈W
instead of the traditional Bernstein-Zelevinsky basis ¶θ̃o(x)Tw♢x∈X, w∈W0

and its integral analogue ¶Ew♢w∈W
defined in [Vig06]. This resulted in the following integral analogue of the cocycle rule (see corollary 1.10.5),
generalizing the formula for the product Ew0xEx′ given in [Vig06]:

(0.0.9) θ̂o(w)θ̂o•w(w′) = X(w,w′)θ̂o(ww′)

The factor X(w,w′) that appears in this formula played an important role in establishing the integral theory,
both in [Vig06] and in [Sch09]. In [Vig06], it appeared8 in the crucial ‘lemme fondamental’ ([Vig06, 1.2]), which
was not explicitly mentioned in [Sch09] but which we recover here in lemma 1.7.10. In [Sch09], the factor
X(w,w′) entered through its relation to another map γ ([Sch09, Lemma 3.3.26]) that was used to relate the
integral Bernstein map θ̂o to its non-integral counterpart θo but was given no further interpretation. Here, we
show that the ‘lemme fondamentale’ and [Sch09, Lemma 3.3.26] can be seen as exhibiting X as a 2-coboundary
in two different ways (see remark 1.7.7 for details), the latter exhibiting X as the coboundary of γ.

Another interesting consequence of the cocycle rule—further emphasizing the importance to consider all
spherical orientations—was the realization that the basis of the center of the Hecke algebra provided by the
orbit sums

zoγ =
∑

x∈γ
θ̃o(x), γ ∈W0\X

under the equality
Z(Hq(W,S)) = AW0

o

is in fact canonical, i.e. independent of the choice of o. In fact, the independence of the element zoγ from o turns
out to be equivalent to the fact that it lies in the center (see the proof of proposition 2.6.1).

Unfortunately, in [Sch09] we couldn’t realize this geometric approach to pro-p Hecke algebras to its full
potential as we didn’t dipose of the ‘miracle’ needed transpose Görtz’ proof into the context of pro-p Hecke
algebras. In addition, the proof of the Bernstein relations we gave was flawed9. Moreover, the axiomatics of
‘affine pro-p Hecke algebras’ were too restrictive, as they only included the pro-p-Iwahori Hecke algebras of
split reductive groups. And so, although we achieved our goal of developing an abstract theory of pro-p Hecke
algebras and of re-deriving the integral Bernstein-Zelevinsky theory of [Vig05] in this context, [Sch09] remained
incomplete in a technical and a moral sense.

Forunately, these issues are all resolved in this article. We give a new and purely geometric proof of the
Bernstein relations for pro-p Hecke algebras, based on formula (0.0.8) derived above. First of all, there is no
need to restrict to elements x ∈ X in this formula: it remains true for any element of W . Second, its proof
never explicitly used that W is an affine Weyl group. This fact only entered indirectly through the properties
of the orientations o and o • s used in deducing (0.0.7). By abstracting these properties (and using the ‘miracle
proposition’ to extend to the pro-p case), we can thus prove the following generalization of (0.0.8), holding
for any generic pro-p Hecke algebra whose parameters as are invertible and squares, generalizing the Bernstein
relations for affine pro-p Hecke algebras obtained earlier by Vignéras [Vig16, Theorem 5.46]:

0.0.3 Theorem (Theorem 1.11.3).

(0.0.10) θ̃o(w)− θ̃o′(w) =

(∑

H

o(1, H)Ξo′(H)

)
θ̃o(w)

Here, o, o′ denotes a pair of adjacent orientations (see definition 1.11.2). Apart from spherical orientations
oD, oD′ of affine Coxeter groups associated to adjacent Weyl chambers D,D′, the hyperbolic Coxeter group
PGL2(Z) provides examples of such pairs (see remark 1.5.13) and therefore new examples of Bernstein relations.
But even in the affine case, (0.0.10) is more general than the Bernstein relations in [Vig16] as w is allowed to
be an arbitrary element of W (1). Moreover, phrasing the Bernstein relations in this abstract generality makes
the proof cleaner and more transparent, especially in the pro-p case.

We will now discuss the contents of this article in detail. After recalling the notion of Coxeter groups and
some common (and maybe not so common) related geometric terminology, we introduce in section 1.1 two

8In a slightly disguised form; see remark 1.7.11(ii) for details.
9We thank M.F. Vignéras for pointing this out to us.
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(successive) generalizations of the notion of Coxeter groups, extended and pro-p Coxeter groups, designed to
capture the essential properties of the groups appearing in the Bruhat decomposition for Iwahori and pro-p-
Iwahori groups.

In section 1.2 we give a classification of 1-cocycles of pro-p Coxeter groups that is later used to construct the
Bernstein maps. Section 1.3 that follows is fundamental: we define generic pro-p Hecke algebras and show that
they behave like generic Hecke algebras (existence of a canonical linear basis, Iwahori-Matsumoto relations); we
also give a first proper example of generic pro-p Hecke algebras, the Yokonuma-Hecke algebras. The Iwahori-
Matsumoto presentation of generic pro-p Hecke algebras is proved in the following section 1.4, phrased in the
language of braid groups.

Section 1.5 introduces another fundamental concept, the notion of orientations of Coxeter groups, which
abstracts and generalizes similar notions considered earlier by [Gör07] and [Ram06], and besides the classification
of 1-cocycles is the second ingredient in the construction of the Bernstein maps. The set O of all orientations of
a Coxeter group W is shown to be endowed with the structure of a compact Hausdorff topological space acted
upon by W , and the group W is embedded as a subset in O in two different ways, associating to an element
w ∈ W the orientation ow towards w and the orientation oop

w away from w, both embeddings being exchanged
under a canonical involution o ↦→ oop on O. It is shown that the images of these embeddings give all orientations
when W is finite, but that there must exist other orientations when W = (W,S) is infinite and #S < ∞, the
boundary orientations. The notion of orientation is then transferred in a natural way onto extended and pro-p
Coxeter groups, such that the set of orientations of an extended or pro-p Coxeter group is in canonical bijection
with the set of orientations of its underlying Coxeter group.

The third principal protagonist, the Bernstein maps, is introduced in the following section 1.6. The existence
theorem, theorem 1.6.1, proven there should be seen as the equivalent of Görtz’ theorem in our context. Sec-
tion 1.7 discusses a certain 2-cocycle that is canonically associated to every Coxeter group and plays a prominent
in the theory of Hecke algebras. We show that it can be written as 2-coboundary in two different ways, which
is used to define integral and normalized Bernstein maps in section 1.10. The intermediate sections section 1.8
and section 1.9 are logically independent from the rest of the text, and should be regarded as optional: in
section 1.8 we show that the 2-cocycle X can be used to classify pro-p Coxeter groups, recovering a result of
Tits [Tit66, 3.4], and in section 1.9 we discuss the relation of the Bernstein map θ to a cocycle considered by
Cherednik.

Finally, in section 1.11, we prove one of the main results of this article, the generalized Bernstein relations
(0.0.10).

Whereas the first part dealt with general generic pro-p Hecke algebras, the second part of this article
specializes to those generic pro-p Hecke algebras for which a meaningful analogue of the Bernstein-Zelevinsky
theory can be developed. These are the affine pro-p Hecke algebras, the generic pro-p Hecke algebras whose
underlying extended Coxeter group is equipped with the structure of an affine extended Coxeter group, a notion
that is introduced in section 2.1 and which generalizes the class of extended affine Weyl groups to allow all
groups that appear in the Bruhat decomposition of Iwahori groups of (possibly non-split) connected reductive
groups over local fields. This makes it necessary to prove some well-known facts from the theory of root data
in our more general context.

In section 2.2 we show that our theory is non-empty by introducing three examples of affine pro-p Hecke
algebras: the affine Hecke algebras considered in the classical Bernstein-Zelevinsky theory [Lus89], the pro-p
Iwahori Hecke algebras considered in the p-adic and mod-p Langlands program, and the affine Yokonuma-Hecke
algebras from the theory of knot invariants. These examples have already appeared in the literature before (see
[CS15], [Vig16]), and for the heavy-duty computations needed for the verification of the axioms in the case of
pro-p-Iwahori Hecke algebra we refer to [Vig16]; however, this section provides some details not found in either
source, including an effective version of the existence of the lifts (ns)s∈S , which the reader may find helpful.

Section 2.3 is devoted to the proof of some finiteness properties of affine extended Coxeter groups, which are
the key to prove corresponding finiteness results for affine pro-p Hecke algebras. These results were basically
already proven in [Sch09, 4.2.5], but the proofs were a bit ad hoc. Here, we give a more unified treatment by
relating these finiteness properties to the (known) fact that the weak Bruhat order is a well partial order.

In section 2.4 we introduce spherical orientations of affine extended Coxeter groups W and prove that they
are limits of nets of chamber orientations ow, which makes them concrete examples of boundary orientations
and gives a precise sense to the notion in Görtz’ theorem, of the orientation ‘attached to an alcove infinitely
deep in the anti-dominant chamber’. The most important property of the spherical orientations is that the
subgroup X ≤W of ‘translations’ acts trivially on them, as the cocycle rule implies that the Bernstein map θ̃o
induced an embedding of the group algebra of the stabilizer of o (in W (1)) embeds into the Hecke algebra. Thus
we introduce in the following section 2.5 subalgebras A(1)

o ⊆ H(1) for every spherical orientation, which are not
far from being commutative (and are commutative for affine Yokonuma-Hecke algebras or pro-p-Iwahori Hecke
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algebras of split groups remark 2.5.2). The main result of this section is the computation of the centralizer of
these subalgebras in the Hecke algebra; in particular, we prove that the centralizer of A(1)

o is a subalgebra of
A(1)

o , which is an important step towards the computation of the center of H(1).
In section 2.6, we use the Bernstein relations to show that the invariants of A(1)

o under the natural action of
W (1) are contained in the center of H(1). Afterwards, we verify using explicit computations that this exhausts
the center. In the final section 2.7, the results of the previous sections culminate in the structure theorem
theorem 2.7.1, which elucidates the structure of H(1) in terms of its center under very mild assumptions on the
coefficient ring and the group W (1), satisfied in all the examples we consider. This generalizes similar results
obtained by Vignéras in [Vig14] for pro-p Iwahori-Hecke algebras. In particular, the structure theorem covers
the affine Yokonuma-Hecke algebras H(1)

d,n of Juyumaya and Lambropoulou (section 2.2.4) in all cases (when d is

a prime-power, H(1)
d,n is isomorphic to the pro-p Iwahori-Hecke algebra of GLn and the results of [Vig14] apply).

In the third part, section 3, we investigate the hyperbolic Coxeter group PGL2(Z) and its Hecke algebra
H, and we describe some boundary orientations, attached to points of the ‘actual’ boundary P1(R). Moreover,
for the point at infinity ∞ ∈ P1(R), we define a subalgebra A∞ and show that H is free as a right module
over A∞, with an explicit basis. Finally, we compute the intertwiners of the induced module Mχ = χ ⊗A∞ H
for χ : A∞ −→ R a character, proving that these intertwiners reduce to R and the module Mχ is therefore
Schur-simple.

In the fourth and final part, we use the characterization of pro-p Coxeter groups in terms of the 2-cocycle
X proven earlier, to investigate the question when the canonical exact sequence

1 →→ T →→ N →→ W0
→→ 1

, given by the rational points T and N of a maximal split torus and its normalizer inside a split reductive
group, splits. This question (which had been already resolved for almost-simple semisimple split groups) is
answered up to rank eight using computer calculations, which compute the cohomology groups Hk(W0, X

∨) and
Hk(W0, X

∨⊗ZF2). Using the theory of FI-modules and a theorem of Nagpal and Snowden, these computations
in a finite number of cases are extended to prove the following theorem:

0.0.4 Theorem. The dimension

dk(ℓ) := dimF2 H
k(Sℓ+1, Q

∨
ℓ ⊗Z F2)

of the first cohomology group of the mod 2 reduction of the coroot lattice Q∨
ℓ of the root system Aℓ

is given in degrees k = 1 by

d1(ℓ) =

⎧
⎪⨄
⎪⎩

1 if ℓ = 1

0 if ℓ ≥ 2, and ℓ even
2 if ℓ ≥ 2, and ℓ odd

in degree k = 2 by

d2(ℓ) =

⎧
⎪⎪⎪⎪⎪⎪⨄
⎪⎪⎪⎪⎪⎪⎩

1 if ℓ = 1

0 if ℓ = 2

2 if ℓ = 3

0 if ℓ ≥ 4, and ℓ even
3 if ℓ ≥ 4, and ℓ odd

and in degree k = 3 by

d3(ℓ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⨄
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ℓ = 1

0 if ℓ = 2

3 if ℓ = 3

0 if ℓ = 4

5 if ℓ = 5

0 if ℓ ≥ 6, and ℓ even
6 if ℓ ≥ 6, and ℓ odd

(Theorem 4.8.5)
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1 Generic pro-p Hecke algebras and Bernstein maps

1.1 Basic definitions and some geometric terminology

We recall some standard facts and terminology from the theory of Coxeter groups (cf. [Bou07, Ch. IV] or
[Bro89, II]).

1.1.1 Definition. A Coxeter group W = (W,S) consists of a group W and a set S ⊆ W of generators of
order 2 satisfying the action condition. That is, there exists an action

ρ : W −→ AutSet(H× ¶±♢)

on the set H× ¶±1♢, where
H := ¶wsw−1 : w ∈W, s ∈ S♢ ⊆W

such that a generator s ∈ S acts as

ρ(s)(H, ε) =

∮
(sHs−1,−ε) : H = s

(sHs−1, ε) : H ̸= s

1.1.2 Remark. There are several other equivalent definitions of the notion of a Coxeter group (see [Bro89,
II.4]). In particular, given a group W and a set S of generators of order 2, the action condition is equivalent
to both the exchange condition (E) and the deletion condition (D). The former states that given a reduced
expression w = s1 . . . sr and an element s ∈ S, either ℓ(sw) = ℓ(w) + 1 or

(E) w = ss1 . . . ŝi . . . sr

for some 1 ≤ i ≤ r (where ŝi denotes omission of si), the latter that if the expression w = s1 . . . sr is not
reduced, then

(D) w = s1 . . . ŝi . . . ŝj . . . sr

for some 1 ≤ i < j ≤ r.

1.1.3 Terminology. If an action as in definition 1.1.1 exists, it is uniquely determined and called the canonical
action. The set H is called the set of walls or hyperplanes. When we want to view a hyperplane H ∈ H as
the reflection in W it corresponds to, we sometimes write sH instead of H. Elements of W are also called
chambers. A distinguished chamber is given by the neutral element 1 ∈ W and is called the fundamental
chamber. Two chambers w,w′ are called adjacent if w−1w′ ∈ S. A gallery from w to w′ is a finite sequence
Γ = (w = w0, . . . , wr = w′) such that wi, wi+1 are adjacent. Galleries from the fundamental chamber to a
chamber w ∈W correspond to expressions

w = s1 . . . sr

of w as a product of generators si ∈ S, the associated gallery being

Γ = (1, s1, s1s2, . . . , s1 . . . sr)

A wall H is said to separate w1, w2 ∈W if

ρ(w−1
2 w1)(w−1

1 Hw1, 1) = (w−1
2 Hw2,−1)

Otherwise w1, w2 are said to lie on the same side with respect to H. The number of walls separating 1 and w
is finite and equal to

ℓ(w) := min¶r ∈ N : ∃s1, . . . , sr ∈ S w = s1 . . . sr♢
which is called the length of w. An arbitrary expression

w = s1 . . . sr
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is called reduced if r = ℓ(w). Given such a reduced expression, the set

¶s1, s1s2s
−1
1 , . . . , (s1 . . . sr−1)sr(s1 . . . sr−1)−1♢

is the set of hyperplanes separating 1 and w. More generally, we can define for any two chambers w,w′

the distance d(w,w′) between w and w′ as the length of the shortest gallery from w to w′. A gallery Γ
is called a geodesic if its length equals the distance between its start- and endpoint. One can show that a
gallery is a geodesic if and only if it does not cross a hyperplane twice. In particular the distance d(w,w′)
equals the number of walls separating w and w′. Moreover, the distance is W -invariant and so in particular
d(w,w′) = d(1, w−1w′) = ℓ(w−1w′). A wall H = w0sw

−1
0 divides W into two equivalence classes under the

relation of lying on the same side with respect to H, namely the positive half-space

U+
H = ¶w ∈W : ℓ(sw−1

0 w)− ℓ(w−1
0 w) = ℓ(sw−1

0 )− ℓ(w−1
0 )♢

and the negative half-space

U−
H = ¶w ∈W : ℓ(sw−1

0 w)− ℓ(w−1
0 w) = −(ℓ(sw−1

0 )− ℓ(w−1
0 ))♢

By definition the positive half-space is the one containing the fundamental chamber. The map (H, ε) ↦→ UεH
gives a bijection between H× ¶±1♢ and the set of all half-spaces. This bijection is W -equivariant with respect
to the natural actions and allows to identify these two W -sets.

The (strong) Bruhat order < on W is the strict partial order in which w < w′ if and only if for some (every)
reduced expression

w = s1 . . . sr

there exist 1 ≤ i1 < . . . < im ≤ r, m < r such that

w′ = si1 . . . sim

The order of the product st ∈ W of two generators s, t ∈ S will be denoted by m(s, t) and is an element of
¶1, 2, . . . ,∞♢.
1.1.4 Remark. The inclusion S ⊆ H induces a bijection

S/∼
∼−→W\H

where ∼ is the equivalence relation given by

s ∼ t ⇔ ∃w ∈W wsw−1 = t

In the context of root systems and Iwahori-Hecke algebras one is naturally led to consider groups slightly
more general than Coxeter groups. We will therefore introduce a nonstandard definition which axiomatizes
extended Weyl groups.

1.1.5 Definition. An extended Coxeter group W consists of a group W , subgroups Waff ,Ω ≤W , a subset
S ⊆Waff and a retraction W → Ω of inclusion Ω ⊆W such that

(i) The sequence
1 →→ Waff

→→ W →→ Ω →→ 1

is exact.

(ii) (Waff , S) is a Coxeter group.

(iii) The action of Ω on Waff by conjugation restricts to an action on S.

In other words an extended Coxeter group W is a semidirect product W = Waff ⋊ Ω of a Coxeter group
(Waff , S) and a group Ω acting on Waff by automorphisms of Coxeter groups.

1.1.6 Notation. The action of u ∈ Ω on w ∈Waff will be denoted by u(w), uwu−1 or even u • w.

1.1.7 Remark. The conjugation action of Ω on Waff induces a right action on HomSet(Waff ,N) by acting on
arguments. The invariance of S ⊆Waff is then equivalent to the length function ℓ : Waff → N being fixed under
the action of Ω. We may therefore uniquely extend ℓ to a function W → N denoted by the same letter and
satisfying

ℓ(wu) = ℓ(uw) = ℓ(w), w ∈Waff , u ∈ Ω
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1.1.8 Remark. The group W acts on the set H of walls of (Waff , S) by conjugation and we again have a
bijection

S/∼
∼−→W\H

where ∼ now refers to the equivalence relation given by

s ∼ t ⇔ ∃w ∈W wsw−1 = t

Two elements s, t ∈ S can be conjugate in W without being conjugate in Waff . In the context of extended
Coxeter groups, ∼ will by convention always refer the relation induced by conjugation in W .

1.1.9 Remark. By assumption we have an action ρ : Ω→ AutGrp(Waff) of Ω on Waff by group automorphisms.
On the other hand Waff acts on itself via left translation λ : Waff → AutSet(Waff). One has

ρu(λw(w′)) = ρu(ww′) = ρu(w)ρu(w′) = λρu(w)(ρu(w′)) = λu•w(ρu(w′))

for every w′ ∈ Waff . By the universal property of the semidirect product ρ and λ therefore combine in a
unique way to an action of W on the set Waff , which we would like to view as the set of chambers. It follows
immediately that the stabilizer of the fundamental chamber 1 ∈ Waff is Ω. We will occasionally view elements
w ∈W as chambers via the orbit map W →Waff , w ↦→ w •1, that is w = w′u, w′ ∈Waff , u ∈ Ω will be replaced
by w′. Accordingly we will talk about walls separating two elements w,w′ ∈W or the distance between w and
w′. This is consistent with the definitions given so far in the sense that the distance between w,w′ viewed as
chambers is equal to ℓ(w−1w′).

1.1.10 Remark. One can extend the Bruhat order on Waff to a strict partial order < on W by letting

wu < w′u′ : ⇔ u = u′ ∧ w < w′

for all w,w′ ∈Waff and u, u′ ∈ Ω. This relation is invariant under conjugation by Ω, but beware that in general

uw < u′w′ ̸⇔ w < w′

Note that in [Sch09] (and a previous version of this article) we gave a definition of the Bruhat order that was
non-standard. We thank C. Heiermann and U. Görtz who (independently) pointed this out to us.

1.1.11 Remark. Some caution has to be applied when dealing with length function on extended Coxeter
groups. It is not true that for any w,w′ ∈W and u ∈ Ω

ℓ(wuw′) = ℓ(ww′)

If for example u permutes two distinguished generators s ̸= t then

ℓ(sut) = ℓ(s(utu−1)u) = ℓ(ssu) = 1

whereas ℓ(st) = 2. However, it remains true that for s ∈ S and w ∈W either ℓ(sw) = ℓ(w)+1 or ℓ(sw) = ℓ(w)−1
and similarly either ℓ(ws) = ℓ(w) + 1 or ℓ(ws) = ℓ(w)− 1.

1.1.12 Remark. The examples motivating definition 1.1.5 are the extended affine Weyl groups associated to
root data. This will be discussed later (see example 2.1.3), when we will introduce the stronger notion of affine
extended Coxeter groups.

We will define generic pro-p Hecke algebras via a presentation à la Iwahori-Matsumoto. In this presentation
the “Weyl group” will not be an extended Coxeter group, but a group of a more general type which naturally
occurs when considering algebras of the form EndG(indGI(1) 1). The following axioms are modelled on this
particular case (cf. [Vig05, 1.2]).

1.1.13 Definition. A pro-p Coxeter group W (1) consists of an abelian group T , an extended Coxeter group
W and a group extension

1 →→ T →→ W (1) π →→ W →→ 1

together with a family (ns)s∈S of lifts ns ∈ π−1(s) of the generators s ∈ S subject to the following “braid”
condition. If s, t ∈ S with m(s, t) <∞ then

(1.1.1) nsntns . . . = ntnsnt . . .

where the number of factors on both sides is m(s, t).
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1.1.14 Convention. To ease the notation we will in the following always assume that the map T ↪→ W (1) is
an inclusion.

1.1.15 Notation. In the above situation we have a canonical action of W (1) on T by conjugation. This action
W (1) × T → T is denoted by (w, t) ↦→ w(t). Since T is commutative this action factors over the projection
π : W (1) →W . The induced action of W on T will also be denoted by (w, t) ↦→ w(t).

1.1.16 Notation. Given a pro-p Coxeter group W (1) as above with associated extended Coxeter group W and
length function ℓ : W → N, we will by abuse of notation denote the composite function ℓ ◦ π : W (1) → N again
by ℓ and refer to it also as “the length function”.

1.1.17 Definition. There is a natural strict partial order on W (1) such that π : W (1) −→W is monotone with
respect to the order on W defined in remark 1.1.10. Namely, for w,w′ ∈W (1) the relation w′ < w holds if and
only if there exists10 a reduced expression

w = ns1
. . . nsr

u, si ∈ S, u ∈ Ω(1)

and integers 1 ≤ i1 < . . . im ≤ r such that

w′ = nsi1
. . . nsim

u and m < r

This relation will also be called the (strong) Bruhat order. One checks easily using the definition of the Bruhat
order on Waff (1.1.3) and its extension to W (remark 1.1.10) that π is monotone, i.e. that

w′ < w =⇒ π(w) < π(w′)

Note however that the reverse implication does not hold, i.e. the order < on W (1) is not the pullback of the
Bruhat order on W along π, and so is different from the definition of the Bruhat order on W (1) given in [Vig05]
(also used in [Vig16]) which we adopted in our previous work [Sch09]. The reason for our choice is that we want
< to be as weak as possible such that proposition 1.6.3 still holds.

1.1.18 Notation. Given any subset X ⊆W we will denote by X(1) the preimage of X under π. In particular
we have

Ω(1) = ¶w ∈W (1) : ℓ(w) = 0♢

1.1.19 Notation. Via the quotient map Ω(1) ↠ Ω, the Ω-action on S can be inflated to an action of Ω(1).
Following notation 1.1.6, this action will be denoted by

u(s) = u • s, u ∈ Ω(1), s ∈ S

1.2 1-Cocycles of pro-p Coxeter groups

We recall that a 1-cocycle of a group G with values in a (possibly non-commutative) G-module M (i.e. a group
endowed with a G-action by group automorphisms) is a map ϕ : G→M satisfying the cocycle rule

∀g, g′ ∈ G ϕ(gg′) = ϕ(g)g(ϕ(g′))

Generalizing a result of Cherednik, we will now obtain an explicit description of the set Z1(G,M) of 1-cocycles
when G = W (1) is a pro-p Coxeter group11.

1.2.1 Lemma. Let M be a W (1)-module. Restriction defines an injective map

Z1(W (1),M) −→ HomSet(S,M)× Z1(Ω(1),M)

ϕ ↦→ ((s ↦→ ϕ(ns)), (u ↦→ ϕ(u)))

whose image consists of all pairs (σ, ρ) satisfying the following properties.

(i) σ(s)ns(σ(s)) = ρ(n2
s) for all s ∈ S

10Equivalently, for every (even though we won’t need this fact). This follows the fact that any two reduced expressions are

connected by a finite chain of ‘braid transformations’ III(1) (see proof of lemma 1.2.1).
11In a previous version of this lemma, we had assumed that T acts trivial on M . We thank M.F. Vignéras for suggesting to

remove this hypothesis.
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(ii) For all u ∈ Ω(1), s ∈ S
ρ(u) · u(σ(s)) = σ(u(s)) · nu(s)(ρ(uts,u))

where ts,u ∈ T denotes the element defined by the equation uns = nu(s)uts,u

(iii) For all s, t ∈ S with m(s, t) <∞, the following two products with m(s, t) factors are equal

σ(s) · ns(σ(t)) · (nsnt)(σ(s)) · (nsntns)(σ(t)) . . . = σ(t) · nt(σ(s)) · (ntns)(σ(t)) · (ntnsnt)(σ(s)) . . .

Proof. The map is obviously well-defined and also injective. In fact, let ϕ ∈ Z1(W (1),M) be mapped to (σ, ρ).
For any w ∈W (1), we can find an expression

w = ns1 . . . nsr
u(1.2.1)

with si ∈ S and u ∈ Ω(1). The cocycle rule for ϕ now implies

ϕ(w) = σ(s1) · ns1
(σ(s2)) · (ns1

ns2
)(σ(s3)) · . . . · (ns1

. . . nsr−1
)(σ(sr)) · (ns1

. . . nsr
)(ρ(u))(1.2.2)

Moreover, straightforward computations show that the cocycle rule for ϕ implies the conditions (i)-(iii) for the
pair (σ, ρ).

We will now show that, starting with any pair (σ, ρ) satisfying (i)-(iii), equation (1.2.2) gives rise to a
well-defined cocycle ϕ : W (1) →M . In fact, to show that (1.2.2) gives a well-defined map ϕ : W (1) →M of sets
independent of the choice of the expression (1.2.1), it suffices to assume (i), (iii) and the following condition
(iv). It is implied by (ii) by taking u = t ∈ T , observing that in this case uts,u = s−1(t)

(iv) ρ(t) · t(σ(s)) = σ(s)ns(ρ(s−1(t))) ∀s ∈ S, t ∈ T

Now let
w = ns1

. . . nsm
u

be another expression for w. We verify that

σ(s1) · ns1
(σ(s2)) · . . . · (ns1

. . . nsr
)(ρ(u)) = σ(s1) · ns1

(σ(s2)) · . . . · (ns1
. . . nsm

)(ρ(u))(1.2.3)

It suffices to show this when u, u ∈ T . Indeed, assume the statement is true in this case. Then, since W =
Waff ⋊ Ω, reducing the equation

ns1
. . . nsr

u = ns1
. . . nsm

u(1.2.4)

via π : W (1) → W shows that s1 . . . sr = s1 . . . sm and π(u) = π(u), and therefore uu−1 ∈ T . Multiplying
(1.2.4) by u−1 and using (1.2.3) for the case u, u ∈ T gives

σ(s1) · . . . · (ns1 . . . nsr−1)(σ(sr)) · (ns1 . . . nsr
)(ρ(uu−1)) = σ(s1) · . . . · (ns1

. . . nsm−1
)(σ(sm))(1.2.5)

The cocycle property for ρ implies

ρ(uu−1) = ρ(u) · u(ρ(u−1)) = ρ(u) · u(u−1(ρ(u)−1))

Therefore
(ns1

. . . nsr
)(ρ(uu−1)) = (ns1

. . . nsr
)(ρ(u)) · (ns1

. . . nsm
)(ρ(u)−1)

Multiplying (1.2.5) from the right by (ns1
. . . nsm

)(ρ(u)) therefore gives the desired equation (1.2.3).
We proceed now with the proof of (1.2.3) in the case u, u ∈ T . Since the two words s1 . . . sr and s1 . . . sm

in the generators define the same element in Waff , by Tits’ solution [Tit69] of the word problem for Coxeter
groups we can transform s1 . . . sr into s1 . . . sr by applying a finite number of transformations of words in the
generators s ∈ S of the following form.

t1 . . . titi+1 . . . tm ↦−→ t1 . . . tissti+1 . . . tm(I)

t1 . . . tissti+1 . . . tm ↦−→ t1 . . . titi+1 . . . tm(II)

t1 . . . ti sts . . .  
m(s,t)<∞

ti+1 . . . tm ↦−→ t1 . . . ti tst . . .  
m(s,t)<∞

ti+1 . . . tm(III)
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Consider the following ‘companion’ transformations for expressions of the form nt1 . . . ntmu (with ti ∈ S, u ∈ T )

nt1 . . . ntinti+1
. . . ntmu ↦−→ nt1 . . . ntinsnsnti+1

. . . ntm(ti+1 . . . tm)−1(n−2
s )u(I(1))

nt1 . . . ntinsnsnti+1
. . . ntmu ↦−→ nt1 . . . ntinti+1

. . . ntm(ti+1 . . . tm)−1(n2
s)u(II(1))

nt1 . . . nti nsntns . . .  
m(s,t)

nti+1
. . . ntmu ↦−→ nt1 . . . nti ntnsnt . . .  

m(s,t)

nti+1
. . . ntmu(III(1))

Taking the sequence of transformations of type (I)-(III) which transforms s1 . . . sr into s1 . . . sm and applying
the corresponding sequence of transformations of type (I(1))-(III(1)) to ns1

. . . nsr
u will give an expression of

the form ns1
. . . nsm

t with t ∈ T . A simple computation shows that the transformations (I(1))-(III(1)) do not
change the element in W (1) which the expression defines. Therefore

ns1
. . . nsm

t = ns1
. . . nsr

u = ns1
. . . nsm

u

and therefore t = u. To prove (1.2.3), it is therefore enough to show that the element in M defined by the right
hand side of (1.2.3) corresponding to an expression ns1

. . . nsr
u does not change if we apply any transformation of

type (I(1))-(III(1)). For (III(1)) this follows from property (iii). We now prove the invariance for transformations
of type (I(1)), leaving the dual case (II(1)) to the reader. It obviously suffices to consider the case i = 0, i.e. the
transformation

ns1
. . . nsr

u ↦→ nsnsns1
. . . nsr

(s1 . . . sr)
−1(n−2

s )u

and to prove that

σ(s1) · . . . · (ns1
. . . nsr−1

)(σ(sr)) · (ns1
. . . nsr

)(ρ(u))

is equal to

σ(s) · ns(σ(s)) · (nsns)(σ(s1)) · . . . · (nsnsns1
. . . nsr−1

)(σ(sr)) · (nsnsns1
. . . nsr

)(ρ((s1 . . . sr)
−1(n−2

s )u)

But, using property (i) and the following identity (implied by the cocycle property of ρ)

(nsnsns1
. . . nsr

)(ρ((s1 . . . sr)
−1(n−2

s )u)) = (nsnsns1
. . . nsr

)(ρ((s1 . . . sr)
−1(n−2

s ))) · (ns1
. . . nsr

)(ρ(u))

it follows that the last expression is equivalent to

ρ(n2
s) · n2

s

(
σ(s1) · . . . · (ns1

. . . nsr−1
)(σ(sr)) · (ns1

. . . nsr
)(ρ((s1 . . . sr)

−1(n−2
s )))

[
· (ns1

. . . nsr
)(ρ(u))

Thus it suffices to show that

σ(s1) · . . . · (ns1
. . . nsr−1

)(σ(sr))

is equal to

ρ(n2
s) · n2

s

(
σ(s1) · . . . · (ns1

. . . nsr−1
)(σ(sr)) · (ns1

. . . nsr
)(ρ((s1 . . . sr)

−1(n−2
s )))

[

But, this follows by repeated application of (iv), using that ρ(n2
s) · n2

s(ρ(n−2
s )) = 1.

Thus, we have shown the existence of a map ϕ : W (1) →M satisfying (1.2.2). It remains to show that ϕ is
a 1-cocycle if condition (ii) is satisfied, i.e. that

ϕ(ww′) = ϕ(w) · w(ϕ(w′))(1.2.6)

holds for all w,w′ ∈W (1). First, we consider the case when w is as a product w = ns1
. . . nsr

in the distinguished
generators. In this case, (1.2.6) follows from (1.2.2). Next, we treat the case w = u ∈ Ω(1). From the identity

u(ns) = nu(s)u(ts,u)

it follows by induction that

(1.2.7) u(ns1
) . . . u(nsi

) = nu(s1) . . . nu(si)u(tsi,us
−1
i (tsi−1,u) . . . (s2 . . . si)

−1(ts1,u))
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Using (1.2.7), we can now repeatedly apply property (ii) to compute ϕ(w) · w(ϕ(w′)) for w = u ∈ Ω(1) and
w′ = ns1

. . . nsr
u′:

ϕ(u) · u(ϕ(w′)) = ρ(u) · u(σ(s1) · ns1(σ(s2)) · . . . · (ns1 . . . nsr−1)(σ(sr)) · (ns1 . . . nsr
)(ρ(u′)))

= ρ(u) · u(σ(s1)) · u(ns1)(u(σ(s2))) · . . . · u(ns1 . . . nsr
)(u(ρ(u′)))

= σ(u(s1)) · nu(s1)(ρ(uts1,u)) · u(ns1)(u(σ(s2))) · . . . · u(ns1 . . . nsr
)(u(ρ(u′)))

= σ(u(s1)) · nu(s1)(σ(u(s2))) · (nu(s1)nu(s2))(ρ(uts2,us
−1
2 (ts1,u))) ·

· u(ns1
ns2

)(u(σ(s3))) · . . . · u(ns1
. . . nsr

)(u(ρ(u′)))

...

= σ(u(s1)) · nu(s1)(σ(u(s2))) · . . . · (nu(s1) . . . nu(sr−1))(σ(u(sr))) ·
· (nu(s1) . . . nu(sr))(ρ(utsr,us

−1
r (tsr−1,u) . . . (s2 . . . sr)

−1(ts1,u)))

· (u(ns1
. . . nsr

))(u(ρ(u′)))

Using (1.2.7) again, we see that

u(ns1
. . . nsr

)(u(ρ(u′))) = (nu(s1) . . . nu(sr)utsr,us
−1
r (tsr−1,u) . . . (s2 . . . sr)

−1(ts1,u))(ρ(u′))

We can therefore apply the cocycle property of ρ to finally obtain that

(1.2.8)
ϕ(u) · u(ϕ(w′)) = σ(u(s1)) · nu(s1)(σ(u(s2))) · . . . · (nu(s1) . . . nu(sr−1))(σ(u(sr))) ·

· (nu(s1) . . . nu(sr))(ρ(utsr,us
−1
r (tsr−1,u) . . . (s2 . . . sr)

−1(ts1,u)u′))

Now

uw′ = uns1
. . . nsr

u′

= nu(s1)uts1,uns2 . . . nsr
u′ = nu(s1)uns2 . . . nsr

(s2 . . . sr)
−1(ts1,u)u′

...

= nu(s1)nu(s2) . . . nu(sr)utsr,us
−1
r (tsr−1,u) . . . (s2 . . . sr)

−1(ts1,u)u′

and hence

(1.2.9)
ϕ(uw′) = σ(u(s1)) · nu(s1)(σ(u(s2)) · . . . · (nu(s1) . . . nu(sr−1))(σ(u(sr))) ·

· (nu(s1) . . . nu(sr))(ρ(utsr,us
−1
r (tsr−1,u) . . . (s2 . . . sr)

−1(ts1,u)u′))

Comparing (1.2.8) with (1.2.9) gives (1.2.6) for w = u ∈ Ω(1) and w′ ∈ W (1) arbitrary. The general case now
follows by induction on ℓ(w). We have just proved the start of the induction ℓ(w) = 0. Now let ℓ(w) = r > 0
and write w = ns1

. . . nsr
u. Then

ϕ(ww′) = ϕ(ns1
ns2

. . . nsr
uw′)

= ϕ(ns1
)ns1

(ϕ(ns2
. . . nsr

uw′))

= ϕ(ns1
)ns1

(ϕ(ns2
. . . nsr

u) · (ns2
. . . nsr

u)(ϕ(w′)))

= ϕ(ns1
ns2

. . . nsr
u)(ns1

ns2
. . . nsr

u)(ϕ(w′))

= ϕ(w)w(ϕ(w′))

where we used that ℓ(ns2 . . . nsr
u) = r − 1 < r in line 2 in order to apply the induction hypothesis.

1.3 Construction of generic pro-p Hecke algebras

In this section we will construct the main object of this article. Throughout, W (1) will denote a fixed pro-p
Coxeter group. The notation W,Waff , S,Ω, ℓ etc. will be conserved. We will also fix a commutative associative
unital ring R. The monoid algebra of T over R will be denoted by R[T ]. The action of W on T extends naturally
to an action on R[T ] by R-algebra automorphisms.

1.3.1 Theorem. Let (as)s∈S and (bs)s∈S be families of elements as ∈ R and bs ∈ R[T ] subject to the following
condition. Given s, t ∈ S and w ∈ W (1) such that sπ(w) = π(w)t, the following two equalities in R resp. R[T ]
hold12

as = at (nswn
−1
t w−1)w(bt) = bs(1.3.1)

12Note that nswn−1
t w−1 ∈ T
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Under this assumption, there exists a unique structure of an R-algebra on the free R-Module M with basis
¶Tw♢w∈W (1) which is compatible with the given R-module structure and such that the following two conditions
hold

(1.3.2) ∀w,w′ ∈W (1) ℓ(ww′) = ℓ(w) + ℓ(w′) ⇒ Tww′ = TwT
′
w

(1.3.3) ∀s ∈ S T 2
ns

= asTn2
s

+ Tns
bs

Before we begin with the proof of theorem 1.3.1, we make a couple of remarks.

1.3.2 Remark. (i) As a consequence of the first condition, the natural embedding R[T ] ↪→M of R-modules
will be a morphism of R-algebras because the length function vanishes on T . The R-algebra M will
therefore carry a canonical structure of an (R[T ], R[T ])-bimodule so that the second condition makes
sense.

(ii) The first condition implies the following basic commutation rule for t ∈ T and w ∈W (1)

(1.3.4) TwTt = Twt = Twtw−1w = Tw(t)w = Tw(t)Tw

This implies more generally that for any b ∈ R[T ] we have

(1.3.5) Twb = w(b)Tw

(iii) Applying relation (1.3.1) for w = n−1
s and s = t shows that

(1.3.6) n−1
s (bs) = bs

(iv) In view of (1.3.5) and (1.3.6), the second relation could also have been written as

T 2
ns

= asTn2
s

+ bsTns

Proof of theorem 1.3.1. We will closely follow the proof in the classical case (cf. [Bou07, Ch. IV, Exercices §2,
Ex. 23]). First, we show uniqueness. It suffices to prove that for all w,w′ ∈W (1) the expansion of the product
TwTw′ in terms of the given basis can be effectively computed in terms of the coefficient families (as)s and (bs)s.
If ℓ(w) > 0, we can write w = nsw̃ with ℓ(w) = 1 + ℓ(w̃). By (1.3.2)

TwTw′ = Tns
T
w̃
Tw′

By induction it therefore suffices to compute products of the form TuTw for u ∈ Ω(1) and Tns
Tw. From (1.3.2) it

follows immediately that TuTw = Tuw. We now show how to compute products of the form Tns
Tw by induction

on ℓ(w). If ℓ(nsw) = ℓ(w) + 1, again by (1.3.2) we find that Tns
Tw = Tnsw. If ℓ(nsw) = ℓ(w)− 1, we can write

w = nsw̃ with ℓ(w) = ℓ(w̃) + 1, and so

Tns
Tw = Tns

Tns
T
w̃

= (asTn2
s

+ Tns
bs)Tw̃ = asTn2

sw̃
+ Tns

T
w̃
w̃−1(bs)

We now show the existence of the algebra structure in question. The construction proceeds by defining an
R-subalgebra Λ ⊆ EndR(M) and then showing that evT1 : EndR(M) → M induces an isomorphism Λ

∼−→ M
of R-modules. By transport of structure, we obtain an R-algebra structure on M which is then easily verified
to have the required properties.

First, we will construct the structure of an (R[Ω(1)], R[Ω(1)])-bimodule on M . Such a structure is equivalent
to giving morphisms λ : R[Ω(1)] → EndR(M) and ρ : R[Ω(1)]op → EndR(M) whose images commute. For
u ∈ Ω(1) we define λ(u) and ρ(u) on basis elements by

λ(u)(Tw) := Tuw ρ(u)(Tw) := Twu

One verifies immediately that λ(uu′) = λ(u)λ(u′) and ρ(uu′) = ρ(u′)ρ(u) and hence we get well defined
morphisms λ and ρ. From the definition it is immediate that the images of λ and ρ commute. With respect to
this bimodule structure the following identity

Twb = w(b)Tw
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holds for all b ∈ R[T ] ⊆ R[Ω(1)] and w ∈W (1).
We will now introduce for every s ∈ S elements λns

, ρns
∈ EndR(M), which will a posteriori turn out the

be left respectively right multiplication by Tns
. Put

λns
(Tw) :=

∮
Tnsw : ℓ(nsw) = ℓ(w) + 1

asTnsw + bsTw : ℓ(nsw) = ℓ(w)− 1

ρns
(Tw) :=

∮
Twns

: ℓ(wns) = ℓ(w) + 1

Twns
as + Twbs : ℓ(wns) = ℓ(w)− 1

The products bsTw, asTnsw etc. therefore refer to the (R[Ω(1)], R[Ω(1)])-bimodule structure already constructed.
Also note that λns

and ρns
are linear with respect to the right respectively left R[Ω(1)]-module structure.

The main part of the proof consists of showing that the elements λns
, ρnt

commute for all s, t ∈ S. Fix w ∈
W (1) and s, t ∈ S. We make a case distinction according to the 6 possible constellations of ℓ(w), ℓ(nsw), ℓ(wnt)
and ℓ(nswnt)

(i) ℓ(nswnt) > ℓ(nsw) = ℓ(wnt) > ℓ(w):

(λns
ρnt

)(Tw) = λns
(Twnt

) = Tnswnt
= ρnt

(Tnsw) = (ρnt
λns

)(Tw)

(ii) ℓ(nswnt) < ℓ(nsw) = ℓ(wnt) < ℓ(w):

(λns
ρnt

)(Tw) = λns
(Twnt

at + Twbt) = λns
(Twnt

)at + λns
(Tw)bt

= asTnswnt
at + bsTwnt

at + asTnswbt + bsTwbt

= asρnt
(Tnsw) + bsρnt

(Tw) = ρnt
(asTnsw + bsTw)

= (ρnt
λns

)(Tw)

(iii) ℓ(nswnt) = ℓ(w) < ℓ(nsw) = ℓ(wnt): By lemma 1.3.3, we have sπ(w) = π(w)t and hence that
nswn

−1
t w−1 ∈ T . We can therefore invoke relation (1.3.1) to conclude that

(λns
ρnt

)(Tw) = λns
(Twnt

) = asTnswnt
+ bsTwnt

= atTnswnt
+ (nswn

−1
t w−1)w(bt)ρnt

(Tw)

= atTnswnt
+ ρnt

((nswn
−1
t w−1)w(bt)Tw)

= atTnswnt
+ ρnt

((nswn
−1
t w−1)Twbt)

= atTnswnt
+ ρnt

(Tnswn
−1
t
bt)

= atTnswnt
+ ρnt

((nswn
−1
t )(bt)Tnswn

−1
t

)

= atTnswnt
+ (nswn

−1
t )(bt)ρnt

(Tnswn
−1
t

)

= atTnswnt
+ (nswn

−1
t )(bt)Tnsw

= atTnswnt
+ Tnswn

−1
t (bt)

1.3.6
= Tnswnt

at + Tnswbt

= ρnt
(Tnsw) = (ρnt

λns
)(Tw)

(iv) ℓ(nswnt) = ℓ(w) > ℓ(nsw) = ℓ(wnt): Similar to (iii).

(v) ℓ(nsw) < ℓ(w) = ℓ(nswnt) < ℓ(wnt):

(λns
ρnt

)(Tw) = λns
(Twnt

) = asTnswnt
+ bsTwnt

= ρnt
(asTnsw + bsTw)

= (ρnt
λns

)(Tw)

(vi) ℓ(nsw) > ℓ(w) = ℓ(nswnt) > ℓ(wnt): Similar to (v).

Let now Λ ⊆ EndR(M) be the R-subalgebra generated by ¶λns
♢s∈S and ¶λu♢u∈Ω(1) and consider the

evaluation homomorphism evT1
: EndR(M) → M , evT1

(ϕ) = ϕ(T1). We claim that restriction to Λ
induces an isomorphism

evT1
♣ : Λ

∼→M
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of R-modules. If s ∈ S and w ∈W (1) are such that ℓ(nsw) = 1+ℓ(w), then λns
(Tw) = Tnsw by definition.

From this it follows immediately that

evT1
(λns1

◦ . . . ◦ λnsr
◦ λu) = Tns1 ...nsru

if w = ns1
. . . nsr

u, u ∈ Ω(1) is a reduced expression. This proves surjectivity. To show injectivity let
ϕ ∈ Λ be such that ϕ(T1) = 0. It suffices to show by induction on ℓ(w) that ϕ(Tw) = 0 for all w ∈ W (1).
For ℓ(w) = 0 we have w = u ∈ Ω(1) and hence

ϕ(Tu) = ϕ(ρu(T1)) = ρu(ϕ(T1)) = 0

Here we have used the fact that ρu commutes with all elements of Λ. If ℓ(w) > 0, write w = w̃ns with
ℓ(w) = 1 + ℓ(w̃). Then

ϕ(Tw) = ϕ(ρns
T
w̃

) = ρns
(ϕ(T

w̃
)) = 0

where we have made use of the fact that ρns
commutes with the elements of Λ.

By transport of structure, we now get on M the structure of an R-algebra compatible with the given R-
module structure. It remains to verify the conditions (1.3.2) and (1.3.3). Assume ℓ(ww′) = ℓ(w)+ℓ(w′) and
let w = uns1 . . . nsr

, w′ = nsr+1 . . . nsr+t
u′ be two reduced expressions. Then evT1(λuλns1

. . . λnsr
) = Tw

and evT1(λnsr+1
. . . λnsr+t

λu) = Tw′ and hence

TwTw′ = evT1
(λuλns1

. . . λnsr
λnsr+1

. . . λnsr+t
λu′) = Tuns1 ...nsrnsr+1 ...nsr+t

u′ = Tww′

The validity of (1.3.3) is equivalent to

(λns
◦ λns

)(T1) = asλn2
s
(T1) + (λns

◦ λbs
)(T1)

But
λ2
ns

(T1) = λns
(Tns

) = asTn2
s

+ bsTns

by definition and

asλn2
s
(T1) + (λns

◦ λbs
)(T1) = asTn2

s
+ λns

(bs) = asTn2
s

+ Tns
bs

= asTn2
s

+ ns(bs)Tns
= asTn2

s
+ bsTns

1.3.3 Lemma. Let W be an extended Coxeter group and w ∈W , s, t ∈ S. If either

ℓ(sw) = ℓ(wt) < ℓ(w) = ℓ(swt)

or
ℓ(sw) = ℓ(wt) > ℓ(w) = ℓ(swt)

then
swt = w

Proof. For the case of ordinary Coxeter groups we refer to [Hum00, Lemma 7.2]. We show why the statement
carries over to the case of extended Coxeter groups. Assume for concreteness that we are in the first case. Write
w = w′u with w′ ∈Waff and u ∈ Ω. Then

ℓ(sw′) = ℓ(sw) = ℓ(wt) = ℓ(w′u(t)u) = ℓ(w′u(t))

and
ℓ(w′) = ℓ(w) = ℓ(swt) = ℓ(sw′u(t)u) = ℓ(sw′u(t))

According to the version of this lemma for Coxeter groups we conclude that

w′ = sw′u(t)

and hence w = swt.

1.3.4 Definition. The R-algebra constructed in theorem 1.3.1 is called the generic pro-p Hecke algebra

for the parameters a = (as)s, b = (bs)s and is denoted by H(1)
R (a, b).
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1.3.5 Remark. Because of remark 1.1.8 and the condition (1.3.1), we can extend the family (as)s∈S to a family
(aH)H∈H by putting

aH := as

if s ∈ S is an element conjugate to H ∈ H under W .

1.3.6 Remark. The condition (1.3.1) of theorem 1.3.1 is easily seen to be equivalent to the following two
conditions.

(i) For any s, t ∈ S which are conjugate under W we have

as = at

and for some w ∈W (1) with sπ(w) = π(w)t we have

(nswn
−1
t w−1)w(bt) = bs

(ii) For every s ∈ S and every t ∈ T we have
s(t)t−1bs = bs

and for every w ∈W with sw = ws we have

(nsw̃n
−1
s w̃−1)w(bs) = bs

for some lift w̃ ∈W (1) of w under π : W (1) →W .

1.3.7 Remark. If the coefficient as is a unit in R, then the quadratic equation

T 2
ns

= asTn2
s

+ Tns
bs

implies that Tns
is a unit in H(1), and in this case

(1.3.7) T−1
ns

= a−1
s (Tn−1

s
− bsTn−2

s
)

Moreover, Tn−1
s

is then also invertible and we can rewrite the quadratic equation in the following symmetric
form

(1.3.8) Tns
− a−1

s T−1

n−1
s

= bs

Proof. Since n2
s ∈ T ⊆ Ω(1), the element Tn2

s
is invertible with inverse Tn−2

s
. Moreover, it follows that

1 = asTn2
s
T−1
n2

s
a−1
s = Tns

(Tns
− bs)Tn−2

s
a−1
s = Tns

(Tn−1
s
− bsTn−2

s
)a−1
s

where we have used that n2
s is of length zero in the last step. Thus a−1

s (Tn−1
s
−bsTn−2

s
) = (Tn−1

s
−bsTn−2

s
)a−1
s is a

right inverse to Tns
. Since Tns

bs = bsTns
, a similar computation shows that it is also a left inverse to Tns

, and the
formula eq. (1.3.7). The invertibility of Tn−1

s
and eq. (1.3.8) both follow from the formula Tn−1

s
= Tns

Tn−2
s

.

1.3.8 Example. The main examples of generic pro-p Hecke algebras that motivated their introduction and
the terminology are the double coset convolution algebras H(G, I(1)) associated to pro-p-Iwahori subgroups
I(1) ≤ G of reductive groups. These will be considered in detail in the next section (section 2.2.3). Let us
therefore consider here other important examples.

(i) Every Coxeter group W can be viewed as a pro-p Coxeter group with T = Ω = 1 and ns = s. The generic
pro-p Hecke algebra H(1)

R ((as)s, (bs)s) then coincides with the classical generic Hecke algebra associated
to the Coxeter group W and the families (as)s, (bs)s ∈ R of parameters. In the notation of [Bou07, Ch.
IV, Exercices §2, Ex. 23] we have

H(1)
R ((as)s, (bs)s) = ER((bs), (as))

(ii) Given a Coxeter group W and an action

W −→ GLZ(T )
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on an abelian group T by group automorphisms, we get a pro-p Coxeter group W (1) with Ω = 1 by forming
the semi-direct product W (1) = T ⋊W and letting ns = s.

Generic pro-p Hecke algebras of this type include Yokonuma-Hecke algebras Yd,n (d, n ∈ N). These are
algebras over R = C[u±1, v] generated by elements (cf. [Jd15])

g1, . . . , gn−1, t1, . . . , tn

subject to the relations

gigj = gjgi for all i, j = 1, . . . , n− 1 such that ♣i− j♣ > 1

gigi+1gi = gi+1gigi+1 for all i = 1, . . . , n− 2

titj = tjti for all i, j = 1, . . . , n

gitj = tsi(j)gi for all i = 1, . . . , n− 1 and j = 1, . . . , n

tdj = 1 for all j = 1, . . . , n

g2
i = u2 + veigi for all i = 1, . . . , n− 1

where si ∈ Sn denotes the transposition (i i+ 1) and ei is given by

ei =
1

d

∑

0≤s<d
(ti/ti+1)s

In order to relate these to generic pro-p Hecke algebras, let W be the Coxeter group Sn with the standard
generators S = ¶s1, . . . , sn−1♢ and let T be the finite abelian group T = (Z/dZ)n. Then we get an
isomorphism

Yd,n
∼−→ H(1)

R ((as)s, (bs)s)

of R-algebras by sending gi to Tnsi
= Tsi

and tj to the element of T denoted by the same letter and given
component-wise by (tj)i = δij ∈ Z/dZ, if we let

asi
= u2 ∈ R i = 1, . . . , n− 1

and
bsi

=
v

d

∑

s∈Z/dZ

(ti/ti+1)s ∈ R[T ] i = 1, . . . , n− 1

1.3.9 Remark. (i) Given a ring R and families a = (as)s∈S ∈ R, b = (bs)s∈S ∈ R[T ] satisfying condition
(1.3.1), it is clear that for any ring homomorphism φ : R→ R′ the image families φ(a) = (φ(as))s∈S ∈ R′

and φ(b) = (φ(bs))s∈S ∈ R′[T ] again satisfy condition (1.3.1). Moreover, the natural homomorphism of
R′-algebras

H(1)
R (a, b)⊗R R′ −→ H(1)

R′ (φ(a), φ(b))

Tw ⊗ x ↦−→ φ(x)Tw

is an isomorphism, as it is a bijection on the canonical R′-bases on both sides.

(ii) Given a pro-p Coxeter group W (1), let R(W (1)) denote the following category. Objects of R(W (1)) consist
of triples (R, a, b) where R is a ring and a = (as)s∈S ∈ R and b = (bs)s∈S ∈ R[T ] are parameters satisfying
condition (1.3.1). A morphism f : (R, a, b) → (R′, a′, b′) is a ring homomorphism f : R → R′ preserving
the parameters

f(as) = a′
s, f [T ](bs) = b′

s ∀s ∈ S
Here f [T ] : R[T ]→ R′[T ] denotes the induced ring homomorphism.

If the group T is finite, the category R(W (1)) has an initial object Runiv given as follows. Consider the
polynomial ring

R = Z[¶as,bs,t : s ∈ S, t ∈ T♢]
in the formal variables as and bs,t. Let

bs :=
∑

t∈T
bs,t · t ∈ R[T ]
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The families (as)s∈S ∈ R and (bs)s∈S ∈ R[T ] do not satisfy condition (1.3.1) in general. However,
condition (1.3.1) is equivalent to a set of relations of the form

as = as′ and bs,t = bs′,t′

where (s, s′) ranges over all pairs of W -conjugate elements of S and (t, t′) ranges, for each pair (s, s′), over
certain pairs of elements of T . Letting p : R ↠ Runiv denote the quotient of R by the ideal generated by
these relations, we obtain a well-defined object

Runiv = (Runiv, auniv, buniv) := (Runiv, (p(as))s∈S , (p[T ](bs))s∈S)

of the category R(W (1)). It is clear from the construction that this object is initial. Moreover, by
construction Runiv is the polynomial ring over Z on a set of formal variables, that is a quotient of the set
S ⨿ (S × T ). In particular Runiv is noetherian if #S <∞.

(iii) By the above remarks, when T is finite, every generic pro-p Hecke algebra H(1)
R (a, b) over a ring R is

naturally obtained by base change

H(1)
Runiv(auniv, buniv)⊗Runiv R

∼−→ H(1)
R (a, b)

from the universal generic pro-p Hecke algebra H(1)
Runiv(auniv, buniv) over Runiv. This allows to reduce many

statements about generic pro-p Hecke algebras to the ‘universal case’. In particular when we will study
the structure of affine pro-p Hecke algebras (in which case S and T are finite) in section 2, this will allow
us to reduce to the case of a noetherian coefficient ring R.

1.4 Presentations of generic pro-p Hecke algebras via braid groups

Generic Iwahori-Hecke algebras can be described as quotients of monoid algebras of braid monoids (see [GP00,
4.4.1]). The same holds true for generic pro-p Hecke algebras if one introduces the appropriate analogue of braid
monoids in the context of pro-p Coxeter groups.

1.4.1 Definition. Let W (1) be a pro-p Coxeter group.

(i) The (generalized) braid monoid B(W (1)) associated to W (1) is the monoid with presentation

B(W (1)) = ⟨¶Tw♢w∈W (1) : Tww′ = TwTw′ if ℓ(ww′) = ℓ(w) + ℓ(w′)⟩

(ii) The (generalized) braid group A(W (1)) associated to W (1) is the group with presentation

A(W (1)) = ⟨¶Tw♢w∈W (1) : Tww′ = TwTw′ if ℓ(ww′) = ℓ(w) + ℓ(w′)⟩

By (1.3.2), the canonical map ¶Tw♢w∈W (1) → H(1)
R (a, b) of sets extends to a morphism

B(W (1)) −→ H(1)
R (a, b)

of monoids which in turn induces a morphism

R[B(W (1))] −→ H(1)
R (a, b)

of R-algebras. Let b denote the two-sided ideal in R[B(W (1))] generated by all elements of the form T 2
ns
−

asTn2
s
− Tns

bs , where s runs over all elements of S. By (1.3.3), we have an induced morphism

ϕ : R[B(W (1))]/b −→ H(1)
R (a, b)

1.4.2 Proposition. The above map ϕ is an isomorphism of R-algebras.

Proof. The proof is standard (cf. [GP00]). Obviously ϕ is surjective. It therefore suffices to show that ϕ has
a left inverse ψ. Because H(1)

R (a, b) is a free R-module over ¶Tw♢w∈W (1) , we have a map ψ which associates to
any element Tw of the basis the image of the generator Tw of the braid monoid in the quotient R[B(W (1))]/b.
Obviously the equation (ψ ◦ ϕ)(x) = x is satisfied for said images of the generators of B(W (1)). But because
of the quadratic relations, these images already generate the quotient R[B(W (1))]/b as an R-module. Hence,
ψ ◦ ϕ = id.
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When the parameters as are units in R, the generic pro-p Hecke algebra has a second presentation in terms
of A(W (1)). In fact, in this case Tns

∈ H(1)
R (a, b)× with inverse (see remark 1.3.7)

T−1
ns

= a−1
s (Tn−1

s
− bsTn−2

s
)

This implies that for every w ∈W (1) we have Tw ∈ H(1)
R (a, b)×, since

Tw = Tns1
. . . Tnsr

Tu

if w = ns1
. . . nsr

u, u ∈ Ω(1) is any expression with r = ℓ(w). Just as before, we get an induced morphism

φ : R[A(W (1))]/a −→ H(1)
R (a, b)

of R-algebras, where a denotes the two-sided ideal generated by T 2
ns
−asTn2

s
−Tns

bs, s ∈ S. The same arguments
as in the previous proposition show that

1.4.3 Proposition. The above morphism φ is an isomorphism of R-algebras.

1.4.4 Example. (i) Continuing the examples given in example 1.3.8, if we take W (1) = W = Sn to be
the symmetric group on n letters in the first example, the associated generalized braid group A(W (1))
identifies canonically with the classical Artin braid group Bn on n strands. The above presentation
then relates the representation theory of finite Hecke algebras associated to Sn to invariants of braids and
hence of links, via the construction which associates to a braid its link closure.

(ii) In the second example of example 1.3.8 the generalized braid group A(W (1)) of W (1) = (Z/dZ)n ⋊ Sn
identifies canonically with the d-modular framed braid group (Z/dZ)n ⋊Bn on n strands, where Bn
acts on (Z/dZ)n by permutation. The above presentation then relates the representation theory of the
Yokonuma Hecke algebra Yd,n to invariants of framed braids and links (see [Jd15]). The special interest in
framed braids and links arises from the fact [Kir78] that 3-manifolds are classified up to homeomorphism
(or equivalently, up to diffeomorphism) by framed links up to a certain equivalence.

1.5 Orientations of Coxeter groups

The following definition is motivated by theorem 0.0.1.

1.5.1 Definition. An orientation o of a Coxeter group (W,S) is a map

o : W × S −→ ¶±1♢

satisfying the following two properties:

(OR1) o(ws, s) = −o(w, s) for all w ∈W , s ∈ S.

(OR2) If s, t ∈ S with m(s, t) <∞ and w ∈W is arbitrary, then pair of sequences

(o(w, s), o(ws, t), o(wst, s), o(wsts, t), . . .), (o(w, t), o(wt, s), o(wts, t), o(wtst, s), . . .)

is either of the form
(+, . . . ,+  

k

,−, . . . ,−  
m(s,t)−k

), (−, . . . ,−  
m(s,t)−k

,+, . . . ,+  
k

)

or
(−, . . . ,−  

k

,+, . . . ,+  
m(s,t)−k

), (+, . . . ,+  
m(s,t)−k

,−, . . . ,−  
k

)

for some 0 ≤ k ≤ m(s, t).
The set of all orientations of a Coxeter group (W,S) is denoted byO(W,S), or simply byO if the underlying

Coxeter group is understood.

1.5.2 Terminology. Viewing elements w ∈ W of Coxeter groups as chambers according to the terminology
introduced in 1.1.3, the sign o(w, s) should be interpreted geometrically as follows. The sequence w,ws of
adjacent chambers forms a gallery that crosses the hyperplane H = wsw−1. We will say that o(w, s) is the sign
given to this crossing by the orientation o, or that it is the sign attached to crossing H at w by the orientation
o. The axiom (OR1) therefore ensures that the sign attached to the opposite crossing ws,w is opposite.
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C

(a) The undirected Cayley graph Γ.

C

x

(b) The directed Cayley graph Γo given by the orientation o

towards C. On the ‘cycle’ γ (in grey and light yellow), the
orientation coincides with the orientation towards x ∈ γ.

Figure 2: The Coxeter complex of the affine Coxeter group (W,S) of type Ã2 and its Cayley graph Γ. The
orientation o of (W,S) towards the chamber C (definition 1.5.7) determines an orientation of the Cayley graph,
giving rise to the directed Cayley graph Γo. The condition (OR2) ensures that restricted to any ‘cycle’ γ ⊆ o,
the orientation coincides with the orientation towards a chamber x ∈ γ.

1.5.3 Remark. Definition 1.5.1 is inherently symmetric: to any orientation o : W ×S → ¶±♢ one can associate
its opposite orientation oop : W × S → ¶±♢ given by oop(w, s) = −o(w, s).

1.5.4 Remark. Definition 1.5.1 can be interpreted in terms of the (undirected) Cayley graph Γ of (W,S).
Recall (cf. [AB08, Def. 1.73]) that Γ is the undirected graph with Vert(Γ) = W and ¶w1, w2♢ ∈ Edge(Γ) iff
w−1

1 w2 ∈ S. By (OR1), an orientation o of W now determines an orientation of Γ in the sense of graph theory,
i.e. it determines a directed graph Γo whose underlying undirected graph equals Γ, if one lets

(w1, w2) ∈ Edge(Γo) ⇔ w−1
1 w2 ∈ S ∧ o(w1, w

−1
1 w2) = +1

In terms of Γo, (OR2) means that every cycle γ ⊆ Γ of the form

γ = ¶w,ws,wst, wsts, . . . , w(st)m(s,t)−1♢, s, t ∈ S, m(s, t) <∞

is ‘oriented towards’ some vertex w0 ∈ γ, as indicated in figure 2.

1.5.5 Remark. There exists a natural right action of W on the set of all orientations of (W,S). Given an
orientation o and w ∈W , it follows easily that the function o • w defined by

(o • w)(w′, s) := o(ww′, s)

is again an orientation of W . Moreover, it is clear that this action commutes with the involution o ↦→ oop.

1.5.6 Remark. The set O(W,S) of orientations of a Coxeter group (W,S) naturally carries the structure of
a topological space, in fact that of a compact Hausdorff space. Namely, we can view it as a subspace of the
mapping space ¶±♢W×S endowed with the compact-open topology13, where ¶±♢ and W × S are considered
discrete. By definition, a basis of the topology on ¶±♢W×S is given by

U¶xi♢,¶yi♢ = ¶f ∈ ¶±♢W×S : f(xi) = yi ∀i = 1, . . . , n♢

where ¶x1, . . . , xn♢ ⊆W × S and ¶y1, . . . , yn♢ ⊆ ¶±♢ are finite subsets.

13Which can also be viewed as the product space
√

(w,s)∈W ×S
¶±♢.
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It is then easy to see that the set of orientations of (W,S) forms a closed (and hence compact) subspace of
¶±♢W×S , as the conditions (OR1) and (OR2) involve only finitely many elements of W ×S at a time. This is
of course trivial when W is finite, but this fact will be useful later when we will construct spherical orientations
of affine Coxeter groups, which are obtained as limits of orientations associated to chambers, in the sense of the
definition below.

1.5.7 Definition. Given a chamber w0 ∈Waff let ow0 : W × S → ¶±♢ be the map defined by

ow0(w, s) :=

∮
+1 : ℓ(w−1

0 ws) < ℓ(w−1
0 w)

−1 : ℓ(w−1
0 ws) > ℓ(w−1

0 w)

Then ow0
is called the orientation associated to the chamber w0 or the orientation towards the cham-

ber w0 (cf. figure 2).

1.5.8 Remark. The ow0 are indeed orientations in the sense of definition 1.5.1. In particular, the set of
orientations of a Coxeter group is always non-empty. Indeed, by construction we have oww′ = ow′ • w−1, so
it suffices to verify that o1 is an orientation. Obviously condition (OR1) holds true. An exercise in Coxeter
groups [Bou07, Ch. IV, Exercices §1, Ex. 2] now shows that for any given w ∈ W and s, t ∈ S we can always
find an element w0 ∈ w ⟨s, t⟩ such that

ℓ(w0) = ℓ(w′) + ℓ(w−1
0 w′)

for every w′ ∈ w ⟨s, t⟩. So approaching 1 is the same as moving further away from w0. By remark 1.5.4, it
follows that o1 is an orientation.

1.5.9 Remark. The orientation ow defined in definition 1.5.7 is not the only orientation naturally attached to
an element w ∈W . One can just as well define an orientation ‘away from the chamber w’, which in fact is none
other than the opposite orientation oop

w , and so there is no need for a separate definition.
Moreover when W is a finite group, every orientation away from a chamber is in fact also an orientation

towards another chamber, namely
oop
w = ow0w

if w0 is the longest element of W . In contrast, for infinite groups orientations towards and away from chambers
are disjoint in general (cf. proof of remark 1.5.10).

1.5.10 Remark. For a Coxeter group (W,S), the map

j : W −→ O(W,S)

w ↦−→ ow

is injective. Moreover if S is finite, then W is discrete as a subset of O(W,S). In fact, in this case

Ochamber := j(W ) ∪ j(W )op = ¶ow, oop
w : w ∈W♢ ⊆ O

is discrete. In particular for an infinite Coxeter group (W,S) with #S <∞, the set

Oboundary := Ochamber −Ochamber ⊆ O
of boundary orientations of W is non-empty.

Proof. The element w ∈W can be recovered from the orientation ow as the unique element w′ satisfying

ow(w′, s) = −1

for all s ∈ S, which shows the injectivity of the map. Moreover if S = ¶s1, . . . , sn♢ is finite, this also shows that

U¶xi♢,¶yi♢ ∩W = ¶ow♢, xi = (w, si), yi = −1

and therefore that W is discrete as a subset of O(W,S). Furthermore, if the above neighbourhood U¶xi♢,¶yi♢
contains oop

w0
for some w0 ∈W , then

ow0(w, s) = ℓ(w−1
0 w)− ℓ(w−1

0 ws) = 1

for all s ∈ S. This implies (cf. [Bou07, Ch. IV, §1, exerc. 22b]) that w−1
0 w is a longest element of W ; in

particular, the length on W is bounded. Since S is finite, it follows that W must be finite and so the space O
is finite and discrete itself, and there is nothing to show.

Finally if W is infinite and #S <∞, the set W ∪W op is discrete and infinite, and therefore its (compact)
closure must be a proper superset.
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1.5.11 Remark. (i) The above remark gives an abstract proof (relying on Tychonoff’s theorem) that for an
infinite Coxeter groups W = (W,S) with #S <∞ the (compact, W -invariant, and op-invariant) set

Oboundary = Ochamber −Oboundary ⊆ O

is non-empty. In section 2.4, we will construct some concrete examples of elements o ∈ Oboundary for
affine Coxeter groups, the spherical orientations that lie at the heart of the Bernstein-Zelevinsky method.
What makes these orientations useful for the study of Hecke algebras is the fact that they have a very
large stabilizer (the commutative subgroup X ≤ W of translations) under the action of W , and via the
unnormalized and normalized Bernstein maps θ, θ̃ (definition 1.6.2, definition 1.10.9) therefore give rise
to embeddings (cf. proposition 1.6.3)

k[StabW (o)] ↪→ H(1)

of the corresponding group algebra, given by w ↦→ θo(w) and w ↦→ θ̃o(w) respectively. Although these are
the only boundary orientations that we will be concerned with, there exist many more (infinitely many)
such orientations for affine Coxeter groups14.

(ii) The set Oboundary seems to be particularly interesting in the case of hyperbolic15 Coxeter groups. In
particular, there seems to be a rich supply of orientations having non-trivial stabilizer, although it is
not clear at the moment whether the corresponding subalgebras k[StabW (o)] ⊆ H(1) yield any useful
information about the structure of the Hecke algebras H(1) attached to W . The set Oboundary also
appears to be somewhat related to the Gromov boundary ∂(W,S) of W (see [Dav08, 12.4]).

The richness ofOboundary in the hyperbolic case is illustrated by the example of the group W = PGL2(Z) =
GL2(Z)/¶±♢ of invertible 2x2 integer matrices modulo center, which is discussed in section 3.

1.5.12 Remark. We will show later in lemma 1.7.4 that orientations o ∈ O can also be viewed as choosing
for every hyperplane H ∈ H a ‘positive’ half-space U+

o,H ∈ ¶U+
H , U

−
H♢ such that o(w, s) = 1 iff ws ∈ U+

o,H where
H = wsw−1. In view of this, it follows easily from unwinding definitions that the union

OG := j(W ) ∪ j(W )op = j(W ) ∪ j(W )op = Ochamber ⊆ O

identifies exactly with the root hyperplane orientations defined in [Gör07, Def. 2.3.1], i.e. those orientations o

having the property that all finite intersections

U+
o,H1
∩ · · · ∩ U+

o,Hn
̸= ∅

of positive half-spaces with respect to o are non-empty, or that all finite intersections

U−
o,H1
∩ · · · ∩ U−

o,Hn
̸= ∅

of the corresponding negative half-space are non-empty. The example of the infinite dihedral group (the free
group on generators s, t; m(s, t) =∞) shows that the inclusion

OG ⊆ O

is proper in general.

1.5.13 Remark. The two orientations attached to a rational point x ∈ P1(Q) are adjacent in the sense of
definition 1.11.2.

Proof. If o is an orientation attached to a point x ∈ P1(R) as above, then for all hyperplanes H ∈ H that don’t
end in x (i.e. x ̸∈ H), the half-space bounded by H that is positive with respect to o is the one containing
x (in the ‘obvious’ sense). In particular, the orientation o is determined on all those H by the point x alone.
Therefore, if o+

x , o−
x now denote the two distinct orientations attached to x ∈ P1(Q), then o+

x , o
−
x disagree

precisely at those H with x ∈ H, and it’s clear that for every such H, the reflection sH permutes the two
subsets in

H = ¶H ∈ H : x ̸∈ H♢ ⨿ ¶H ∈ H : x ∈ H♢
amongst themselves, and moreover preserves the half-spaces bounded by the hyperplanes in the left set that
are positive with respect to o+

x (equivalently o−
x ), and maps the half-spaces bounded by the hyperplanes in the

right set that are positive with respect to o+
x to negative ones (i.e. positive with respect to o−

x ).

14The set of boundary orientations can easily be worked out for the group of type Ã2; apart from the six spherical orientations,
it contains countably many orientations all of whose stabilizers are subgroups of X of rank 1.

15There are several inequivalent definitions of the term hyperbolic Coxeter groups, see [AB08, 10.4].
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As a complement to remark 1.5.10, the following lemma shows that for finite Coxeter groups (W,S) chamber
orientations do exhaust all possibilities. This lemma is not used in our results concerning affine pro-p Hecke
algebras and may therefore be safely skipped.

1.5.14 Lemma. Let o be an orientation of (W,S), and suppose that #W <∞. Then

o = ow

for some w ∈W .

Proof. Let us begin with a general observation. Given any (not necessarily finite) Coxeter group (W,S) and an
orientation o, we can construct a function

ϕo : W −→ Z

as follows. Given a w ∈W , let w = s1 . . . sr be any expression as a product of generators, and put

ϕo(w) =

r∑

i=1

o(s1 . . . si−1, si)

In other words, ϕo(w) is the sum of the signs that o associates to the gallery Γ = (1, s1, s1s2, . . . , w) from 1 to
w. We need to see that this sum is well-defined independent of the choice of Γ.

By Tits’ solution of the word problem for Coxeter groups [Bro89, II.3C], any two expressions of w as a
product of generators are related by a sequence of transformations of the following type.

(I) s1 . . . sisssi+1 . . . sr ↦→ s1 . . . sisi+1 . . . sr

(II) s1 . . . sisi+1 . . . sr ↦→ s1 . . . sisssi+1 . . . sr

(III) s1 . . . si sts . . .  
m(s,t)

si+1 . . . sr ↦→ s1 . . . si tst . . .  
m(s,t)

si+1 . . . sr if m(s, t) <∞.

Because (OR1) guarantees the invariance under the first two transformations and (OR2) guarantees the in-
variance under the third, it therefore follows that ϕo(w) is well-defined. Moreover, it is immediate from the
definitions that

ϕo(ww′) = ϕo(w) + ϕo•w(w′)

which we can also write as

(1.5.1) ϕo•w = ϕo • w − ϕo(w)

For orientations o of the form o = ow, the function ϕo is easily seen to be given by

ϕo(w′) = ℓ(w)− ℓ(w−1w′)

Conversely, if ϕo is of the above form, it follows that o = ow, and in this case w is determined as the unique
element w′ ∈W at which ϕo attains its global maximum.

Let us now assume that W is finite, and let w be such that ϕo(w) is maximal. Using (1.5.1) and replacing
o by o • w, we may assume that w = 1. In order to show that o = o1, it suffices by the above remark to prove
that

ϕo(w) = −ℓ(w)

or equivalently, to prove that ϕo is monotonously decreasing along geodesics, i.e. to prove that for every reduced
expression s1 . . . sr the sequence

(1.5.2) ϕo(w0), ϕo(w1), . . . , ϕo(wr) with wi = s1 . . . si

is (strictly) decreasing (note that two consecutive elements of the above sequence differ by ±1).
We prove this using induction over r. For r = 1, this follows from the fact that ϕ has its (a priori not unique)

global maximum at w = 1. Let now r ≥ 2, and assume that the claim holds for sequences of length < r. In
particular

ϕo(wi) = −i for i < r

Suppose that we had ϕo(wr) > ϕo(wr−1), i.e. ϕo(wr) = −(r − 2), and put s = sr−1, t = sr. We then have the
following situation

s t

ϕo(wr−2) = −(r − 2) ♣ ϕo(wr−1) = −(r − 1) ♣ ϕo(wr) = −(r − 2)
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By remark 1.5.4, the restriction of o to the ‘loop’ wr−2 · ⟨s, t⟩ is given by the distance to a chamber, and therefore
ϕo attains precisely one local minimum there. Thus, this minimum is attained at wr−1 = wr−2s and for all
k ≤ m(s, t)− 1 we have that

(1.5.3) ϕo(wr−2 tst . . .  
k

) = −(r − 2) + k

Note that m(s, t) <∞ because W is finite, and m(s, t) ≥ 2 because s = t would contradict the reducedness of
s1 . . . sr. In particular, ϕo(wr−2t) = −(r−3); because of our induction hypothesis, it follows that the expression
s1 . . . sr−2t must be reducible, yielding an immediate contradiction if r = 2. If r ≥ 3, we can apply the deletion
condition (see remark 1.1.2) and the reducedness of the expression s1 . . . sr−2 to conclude that

wr−2t = s1 . . . sr−2t = s1 . . . ŝj . . . sr−2

for some 1 ≤ j ≤ r − 2. This subsequence s1 . . . ŝj . . . sr−2 of length r − 3 is again reduced, and its associated
sequence of values of ϕo is again strictly decreasing (we don’t need to use the induction hypothesis for this; this
already follows from the fact that ϕo(1) = 0 and ϕo(s1 . . . ŝj . . . sr−2) = −(r − 3)).

We can therefore repeat the above argument with the expression s1 . . . sr−2 replaced with s1 . . . ŝj . . . sr−2,
using equation (1.5.3) for k = 2 and the induction hypothesis to conclude that s1 . . . ŝj . . . sr−2s is reducible.
We can keep iterating this argument as long as we are able to apply (1.5.3), that is, applying this argument k
times we end up with an equation

wr−2 tst . . .  
k

= sj1
. . . sjr−2−k

for some sequence 1 ≤ j1 < . . . < jr−2−k ≤ r − 2, such that either k = r − 2 < m(s, t)− 1 and the product on
the right hand side is empty, or k = m(s, t)− 1. In the first case, we would have

wr−2 = . . . tst  
r−2

Again, using that the restriction of o to the loop ⟨s, t⟩ of length m(s, t) is given by the distance to a chamber,
and that the restriction of ϕo to this loop therefore has a unique local minimum and a unique local maximum,
both of which are lying opposite to each other, it follows that the maximum must be attained at w = 1 (!) and
that the minimum must be attained at w = wr−1. In particular, r − 1 = m(s, t) which is a contradiction.

In the second case, we would have a reduced (!) expression

wr−2 = sj1 . . . sjr−2−k
. . . tst  
m(s,t)−1

Since wr = wr−2st and ℓ(wr) = wr−2 + 2 by assumption, the expression

sj1
. . . sjr−2−k

. . . tst  
m(s,t)−1

st

would be reduced. But already the subexpression

. . . tst  
m(s,t)−1

st

is reducible, yielding a contradiction.

We will now extend the notion of an orientation to extended and pro-p Coxeter groups. The extension from
extended to pro-p Coxeter groups is trivial, but the extension from Coxeter to extended Coxeter groups is a bit
subtle because of the action of Ω.

1.5.15 Definition. Let W be an extended Coxeter group and o be an orientation of Waff . Then the map

õ : W × S −→ ¶±1♢

given by õ(wu, s) := o(w, u(s)), w ∈Waff , u ∈ Ω is called the orientation of W associated to o.
A map o : W ×S −→ ¶±1♢ is called an orientation if it is associated to an orientation of Waff in the above

sense, and the set of all such orientations is denoted by O(W ), or simply by O if W is understood.
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1.5.16 Remark. There exists a natural right action of Ω on the set O(Waff , S) of all orientations of Waff .
Given an orientation o ∈ O(Waff , S) and u ∈ Ω

(o • u)(w, s) := o(uwu−1, u(s))

again defines an orientation of Waff . On the other hand by remark 1.5.5, we also have a natural right action of
Waff on O(Waff , S). From the definitions it follows immediately that

(o • u) • w = (o • (uwu−1)) • u

and hence by the universal property of the semidirect product Ω ⋉Waff the two actions give rise to an action
of W on O(Waff , S).

1.5.17 Remark. There exists a natural intrinsic right action of an extended Coxeter group W on the set O(W )
of its orientations. If õ is an orientation of W associated to an orientation o of Waff , then for any w ∈ W the
map õ • w defined by

(õ • w)(w′, s) := õ(ww′, s)

is again an orientation. In fact, if we write w = w0u and w′ = w′
0u

′ with w0, w
′
0 ∈Waff and u, u′ ∈ Ω then

õ(ww′, s) = õ(w0uw
′
0u

−1uu′, s) = o(w0uw
′
0u

−1, (uu′)(s))

= (o • w0)(uw′
0u

−1, u(u′(s))) = ((o • w0) • u)(w′
0, u

′(s))

= (o • w)(w′
0, u

′(s))

Hence, õ • w is associated to o • w. This computation also shows that the natural bijective map

O(Waff , S)
∼−→ O(W )

is W -equivariant with respect to the two actions described.

1.5.18 Remark. The set O(W ) of orientations of an extended Coxeter group W also carries a natural topology,
namely the subspace topology induced by the space ¶±♢W×S and its compact-open topology. The above
bijection then is actually a homeomorphism. This follows immediately from the fact that the extension map

¶±♢Waff×S ↪→ ¶±♢W×S

f ↦−→ ((wu, s) ↦→ f(w, u(s)))

is a homeomorphism onto the subspace

¶f ∈ ¶±♢W×S : f(wu, s) = f(w, u(s)) ∀w ∈W, u ∈ Ω, s ∈ S♢

Since this subspace is closed, it follows that also the set of orientations of (W,S) is a closed subspace of ¶±♢W×S .

1.5.19 Definition. Let W (1) be a pro-p Coxeter group and o be an orientation of the underlying extended
Coxeter group W . The map õ : W (1) × S −→ ¶±1♢ defined by

õ(w, s) := o(π(w), s)

is called the orientation of W (1) associated to o.
An orientation of W (1) is a map W (1) × S −→ ¶±1♢ associated to an orientation of W in the above sense,

and the set of all such orientations is denoted by O(W (1)), or simply by O if W (1) is understood.

1.5.20 Remark. There exists a natural right action of W (1) on the set of all orientations of W (1) again by the
formula (o • w)(w′, s) := o(ww′, s). There also exists an action of W (1) on the set of all orientations of W and
Waff respectively via pulling back the W -actions along π : W (1) →W . The natural bijection

O(W )
∼−→ O(W (1))

is then equivariant with respect to these W (1)-actions.
By remark 1.5.17, we may therefore identify O(W (1)) and O(Waff , S) as W (1)-sets, and may consider the

former as a topological space through identification with the latter.
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1.6 Bernstein maps

In this section, we will introduce the first of three related families of functions θo, θ̂o, θ̃o which we loosely refer to
as “Bernstein maps”, as they are related to Bernstein’s presentation of Iwahori-Hecke algebras. We fix a pro-p
Coxeter group W (1) throughout and denote by O = O(W (1)) the set of orientations of W (1).

The following theorem is essentially the transposition of ([Gör07, Thm 1.1.1]) into our context. We first
phrase it in terms of the braid group A(W (1)) (see definition 1.4.1).

1.6.1 Theorem. There exists a unique map

θ : W (1) −→ HomSet(O,A(W (1))), w ↦→ (o ↦→ θo(w))

satisfying the cocycle rule

(1.6.1) θo(ww′) = θo(w)θo•w(w′) ∀w,w′ ∈W (1)

such that for s ∈ S, o ∈ O
θo(ns) = T εnε

s
where ε = o(1, s) ∈ ¶±1♢

and for u ∈ Ω(1), o ∈ O
θo(u) = Tu

Proof. We apply lemma 1.2.1 to the W (1)-module M = HomSet(O,A(W (1))) and the pair (σ, ρ), where

σ(s) =
(
o ↦→ T εnε

s

⎡
, ε = o(1, s)

and ρ is the ‘trivial’ cocycle
ρ(u) = (o ↦→ Tu)

Here, the monoid structure on M is given by pointwise multiplication and the left W (1)-action is induced by the
right action on O of remark 1.5.20. It then only remains to verify conditions (i)-(iii) of lemma 1.2.1. Bearing
in mind the defining property (OR1) of an orientation, condition (i) amounts to showing that for all s ∈ S and
o ∈ O

T εnε
s
T−ε
n−ε

s

= Tn2
s

where ε = o(1, s). First of all, note that Tn2
s

commutes with Tns
since

Tns
= Tn2

snsn
−2
s

(!)
= Tn2

s
Tns

T−1
n2

s

where we used that n2
s ∈ T ⊆ Ω(1). Therefore Tns

commutes also with

Tn−1
s

= Tn−2
s ns

= T−1
n2

s
Tns

Given ε ∈ ¶±1♢, we have
Tnε

s
= Tn2ε

s n−ε
s

= T εn2
s
Tn−ε

s

and hence
Tnε

s
T−1

n−ε
s

= T εn2
s

Since Tns
and Tn−1

s
commute, we can raise the last equation to the power ε to get

T εnε
s
T−ε
n−ε

s

= Tn2
s

We now turn to the verification of condition (ii). Unwinding the definitions and observing that the values of ρ
lie in the invariants MW (1)

, we see that condition (ii) amounts to showing that for o ∈ O, s ∈ S and u ∈ Ω(1)

we have
TuT

ε
nε

s
= T εnε

u(s)
Tuts,u

where we abbreviated ε = o(1, u(s)). When ε = 1, this reduces immediately to the defining equation uns =
nu(s)uts,u of ts,u. When ε = −1, we first compute

Tn−1
u(s)

Tu = Tn−1
u(s)

u = Tuts,un
−1
s

= Tuts,u
Tn−1

s
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Rearranging then gives the desired equation. Finally, let us verify condition (iii). Given s, t ∈ S with m(s, t) <
∞, we have to show that for every orientation o we have

(1.6.2) T
ε(1)

n
ε(1)
s

T
ε(2)

n
ε(2)
t

T
ε(3)

n
ε(3)
s

. . . = T
ε′(1)

n
ε′(1)
t

T
ε′(2)

n
ε′(2)
s

T
ε′(3)

n
ε′(3)
t

. . .

where
ε(1) = o(1, s), ε(2) = o(s, t), ε(3) = o(st, s), ε(4) = o(sts, t), . . .

and
ε′(1) = o(1, t), ε′(2) = o(t, s), ε′(3) = o(ts, t), ε′(4) = o(tst, s), . . .

are precisely the sign sequences appearing in condition (OR2) for w = 1 in definition 1.5.1. By condition
(OR2), these sequences are in one of two forms. Without loss of generality we may assume that they are in the
first form, i.e.

(ε(1), ε(2), . . .) = (+, . . . ,+  
k

,−, . . . ,−  
m(s,t)−k

)

and
(ε′(1), ε′(2), . . .) = (−, . . . ,−  

m(s,t)−k

,+, . . . ,+  
k

)

Writing
s1 = ns, s2 = nt, s3 = ns, . . . s′

1 = nt, s
′
2 = ns, s

′
3 = nt, . . .

eq. (1.6.2) is thus of the form

Ts1
. . . Tsk

T−1

s−1
k+1

. . . T−1

s−1
m(s,t)

= T−1

s′−1
1

. . . T−1

s′−1
m(s,t)−k

Ts′
m(s,t)−k+1

. . . Ts′
m(s,t)

Rearranging the last equation slightly, we see that it is equivalent to

Ts′−1
m(s,t)−k

. . . Ts′−1
1
Ts1 . . . Tsk

= Ts′
m(s,t)−k+1

. . . Ts′
m(s,t)

Ts−1
m(s,t)

. . . Ts−1
k+1

Both sides of this equation are words Tw1
. . . Twm(s,t)

of length m(s, t) in the distinguished generators Tw of
A(W (1)). Moreover, the words w1 . . . wm(s,t) in the elements of W (1) corresponding to them define reduced
expressions, since under W (1) ↠ W they project to alternating words of length m(s, t) in s and t. Therefore,
we can simplify both sides of the above equation to get

Ts′−1
m(s,t)−k

...s′−1
1 s1...sk

= Ts′
m(s,t)−k+1...s′

m(s,t)s
−1
m(s,t)

...s−1
k+1

The validity of this equation now follows from the equation

s′−1
m(s,t)−k . . . s

′−1
1 s1 . . . sk = s′

m(s,t)−k+1 . . . s
′
m(s,t)s

−1
m(s,t) . . . s

−1
k+1

in W (1), which by backtransforming is seen to be equivalent to the braid relation (1.1.1)

s1 . . . sm(s,t) = s′
1 . . . s

′
m(s,t)

which holds by assumption.

1.6.2 Definition. The map θ defined in the previous theorem is called the (unnormalized) Bernstein map.
Given a generic pro-p Hecke algebra H(1) = H(1)(a, b) associated to parameters a = (as)s∈S and b = (bs)s∈S
with as invertible, we have (by proposition 1.4.3) a morphism of monoids

A(W (1)) −→ R[A(W (1))] −→ H(1)

Using this map we can push θ forward to obtain a map

W (1) −→ HomSet(O,H(1))

still satisfying the 1-cocycle rule. This map will also be denoted by θ and referred to as the (unnormalized)
Bernstein map.
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Let now H(1) be a generic pro-p Hecke-algebra with invertible parameters as as above. Fixing an orientation
o ∈ O, we thus have a family ¶θo(w)♢w∈W (1) of elements in H(1).

The crucial point is that this family forms an R-basis of H(1). This is the content of the next proposition,
which shows that in fact the change of basis matrix between ¶θo(w)♢w∈W (1) and ¶Tw♢w∈W (1) is ‘upper triangular’.
We will see later (equation (2.2.1)) that for a certain orientation o the restriction of θo to the subgroup X ≤W
of translations recovers the map θ of Lusztig [Lus89]. This motivates the terminology ‘Bernstein map’.

1.6.3 Proposition. In H(1) one has an expansion of the form

θo(w) = cw,wTw +
∑

w′<w

cw,w′Tw′

where cw,w ∈ R× and cw,w′ ∈ R zero for almost all w′, for every w ∈ W . Here < denotes the strong Bruhat
order on W (1) (see definition 1.1.17). In particular ¶θo(w)♢w∈W (1) is an R-basis of H(1).

Proof. The first claim follows by taking an expression w = ns1
. . . nsr

u with ℓ(w) = r and expanding

θo(w) = T ε1

n
ε1
s1

. . . T εr

nεr
sr

Tu

using (cf. eq. (1.3.8))

(1.6.3) T−1

n−1
s

= a−1
s (Tns

− bs)

and the commutation rule (1.3.5). Here one also uses that Tns1
. . . Tnsr

= Tns1 ...nsr
and that for every w ∈W (1)

one either has
Tns

Tw = Tnsw

or
Tns

Tw = asTnsw + bsTw

according to whether ℓ(nsw) = 1 + ℓ(w) or ℓ(nsw) = ℓ(w)− 1. The second claim is a formal consequence of the
first and the irreflexivity and transitivity of the relation <.

1.7 A 2-coboundary X appearing in Coxeter geometry

The purpose of this section is to pave the way for introducing an integral θ̂ and a normalized version θ̃ of the
Bernstein map θ defined in the previous section.

The map θ has the ‘defect’ that it is only defined when the parameters as are invertible. In view of the
study of mod p representations of pro-p-Iwahori Hecke algebras (where as = 0), it is important to have an
integral version which is defined for all parameters. Such variants of the classical Bernstein-Lusztig basis have
been first introduced by Vignéras [Vig05], [Vig06]. The construction of θ̂ is based on the following relation (see
eq. (1.3.8))

asT
−1

n−1
s

= Tns
− bs

which is an immediate consequence of the quadratic relations. It suggests to formally multiply

θo(w) = T ε1

n
ε1
s1

. . . T εr

nεr
sr

Tu

by the product
γo(w) =

∏

i:εi=−1

asi

to get an integral expression in the generators Tw, and to define θ̂o(w) as the resulting element. However,
a priori the factor γo(w) and therefore θ̂o(w) depends on the chosen expression w = ns1 . . . nsr

u for w as a
product in the distinguished generators. The first goal of this section is therefore to establish the independence
of γo(w) from the chosen expression for w. As this is a purely combinatorial question, it will be useful to work
with formal products of hyperplanes instead of products of the parameters as, and to replace γ by a purely
combinatorially defined map γ.

The second goal of this section is to determine the multiplicative properties of γ, as these determine the
multiplicative properties of θ̂ and the usefulness of θ wholly depends on the fact that it satisfies the cocycle rule.
We will achieve this by identifying the coboundary of γ (viewed as a map w ↦→ (o ↦→ γo(w)) in one parameter)
with another explicitly and combinatorially defined map X.
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We will then give a second characterization of X as a coboundary of a ‘generalized length function’
√
L,

which is needed in order to introduce and prove the multiplicative properties of a normalized variant θ̃ of θ.
This normalized version is closely related to the classical Bernstein-Lusztig basis of the Iwahori-Hecke algebra
(see section 2.2.1).

Since everything in this section only involves the combinatorics of extended Coxeter groups, we need only
to fix an extended Coxeter group W = (W,Waff ,Ω, S).

Let us start by defining the ‘coboundary’ mentioned in the title of this section.

1.7.1 Definition. Given w,w′ ∈W let

X(w,w′) :=
∏

H

aH ∈ N[H]

where N[H] denotes the free abelian monoid on the set H of hyperplanes and the product is taken over all
hyperplanes H ∈ H which both separate 1 from w and w from ww′.

In other words, X(w,w′) is the product over all hyperplanes which are crossed twice by any gallery that is
the concatenation of a minimal gallery from 1 to w and a minimal gallery from w to ww′. In particular we have
the following observation, which we record separately.

1.7.2 Remark. For all w,w′ ∈W

ℓ(ww′) = ℓ(w) + ℓ(w′) ⇒ X(w,w′) = 1

1.7.3 Remark. From the definition of X, it also follows directly that

X(w,w′) = 1

whenever w ∈ Ω or w′ ∈ Ω.

Next, we will show that the sign attached by an orientation to crossing a hyperplane H at a chamber
w ∈ Waff does not depend upon the chamber itself but only upon which half-space with respect to H this
chamber lies in.

1.7.4 Lemma. Let o ∈ O(Waff , S) be any orientation of Waff . If w, w̃ ∈Waff and s, s̃ ∈ S are such that

wsw−1 = w̃s̃w̃−1 and ℓ(sw−1w̃) = 1 + ℓ(w−1w̃)

that is, if w,ws and w̃, w̃s̃ are separated by the same wall H = wsw−1 = w̃s̃w̃−1 and w, w̃ lie on the same side
with respect to H, then

o(w, s) = o(w̃, s̃)

Proof. After replacing o by o • w, we may assume that w = 1. Then sw̃ = w̃s̃ and ℓ(sw̃) = ℓ(w̃s̃) = ℓ(w̃) + 1.
Therefore, if we take any reduced expression w̃ = s1 . . . sr, then

ss1 . . . sr = s1 . . . sr s̃

will be two reduced expressions of the same element in Waff and o(1, s), o(w̃, s̃) are the signs which appear in
these galleries when crossing the wall H. It therefore suffices to show that for any two reduced expressions
of the same element in Waff and any hyperplane H the signs which appear when crossing H are the same for
both expressions. By Tits’ solution of the word problem [Bro89, II.3C], two such reduced expressions can be
transformed into each other by a finite sequence of transformations of type (III) (cf. proof of theorem 1.6.1)

t1 . . . ti sts . . .  
m(s,t)<∞

ti+1 . . . tm ↦−→ t1 . . . ti tst . . .  
m(s,t)<∞

ti+1 . . . tm

If H is crossed before or after the part where these two galleries differ, the signs are equal for trivial reasons. It
therefore suffices to show that for s, t ∈ S with m(s, t) <∞ the signs of all the walls crossed by the two galleries
corresponding to the reduced expressions

sts . . .  
m(s,t)

= tst . . .  
m(s,t)

are equal. But by remark 1.5.4, the signs are determined by the distance to some reference chamber in ⟨s, t⟩.
In particular the sign o(w, s) only depends on which half-space with respect to H = wsw−1 the fundamental
chamber lies in.
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1.7.5 Notation. Thanks to the previous lemma, we may extend any orientation o canonically to a map

o : W × H→ ¶±♢

by letting
o(w,H) := o(ww0, s), w ∈W, H ∈ H

where w0 ∈W and s ∈ S are such that
w0sw

−1
0 = H

and 1, w0 lie in the same half-space with respect to H. It follows quite easily that this does indeed give rise to a
well-defined map W ×H→ ¶±♢ that extends o. In the terminology of 1.1.3 and 1.5.2, the sign o(w,H) has the
geometric interpretation as being the sign that is attached to crossing the hyperplane wHw−1 at any chamber
that lies in the same half-space with respect to wHw−1 as w. In particular o(1, H) is the sign attached by o to
crossing H at any chamber that lies in the same half-space with respect to H as the fundamental chamber.

1.7.6 Corollary. Given an orientation o of W , there exists a unique map γo from W into the free commutative
monoid N[H] with generators aH corresponding to the hyperplanes H ∈ H such that if w = s1 . . . sru, si ∈ S,
u ∈ Ω is a reduced expression for w, then γo(w) equals the product of the hyperplanes crossed in the negative
direction by the gallery corresponding to this reduced expression. In other words

(1.7.1) γo(w) =
∏

i : εi=−1

aHi

where εi = o(s1 . . . si−1, si) and Hi = (s1 . . . si−1)si(s1 . . . si−1)−1.

Proof. We need to verify the independence of the right-hand side of equation (1.7.1) from the choice of the
reduced expression. Since s1 . . . sr is a reduced expression of wu−1 ∈Waff , the walls Hi appearing are pairwise
distinct and are equal to the walls separating 1 and w. On the other hand, by the previous lemma the sign εi
only depends on which half-space with respect to Hi the fundamental chamber lies in. Therefore, the Hi with
εi = −1 only depend on w and o.

1.7.7 Remark. As promised, we will now explicitly determine the ‘coboundary’ of the map γ defined above.
More precisely, let us view the collection of all elements γo(w) as the map

γ : W −→M, w ↦→ (o ↦→ γo(w))

taking values in the W -module M = HomSet(O,Z[H]). The structure of an abelian group on M is ‘pointwise’,
and Z[H] ⊇ N[H] denotes the free commutative group on H. The W -action on M is induced by the canonical
right action on O and the canonical left action on H, i.e.

(w • ϕ)(o) = w • ϕ(o • w) ∀w ∈W, ϕ ∈M, o ∈ O

Finally, let us view X as a map

X : W ×W −→M, (w,w′) ↦→ (o ↦→ X(w,w′))

The statement of the next lemma is then equivalent to the coboundary equation

dγ = X

of the inhomogeneous standard cochain complex on M .

1.7.8 Lemma. For all w,w′ ∈W , one has

γo(w)w (γo•w(w′)) = X(w,w′)γo(ww′)

Proof. Write w = w0u and w′ = w′
0u

′ with w0, w
′
0 ∈Waff and u, u′ ∈ Ω. Then by definition

γo(w) = γo(w0) γo•w(w′) = γo•w(w′
0) γo(ww′) = γo(w0u(w′

0))

and
X(w,w′) = X(w0, w0u(w′

0))
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Moreover, it follows from the definitions that

γ(o•w0)•u(w′
0) = u−1 (γo•w0

(u(w′
0)))

It therefore suffices to prove the formula for w,w′ ∈ Waff . Taking reduced expressions w = s1 . . . sr and
w′ = sr+1 . . . sr+m, one has

γo(w)w (γo•w(w′)) =
∏

H

aH

where the product extends over all walls H which are crossed with a negative sign by the gallery corresponding
to the possibly nonreduced expression s1 . . . sr+m. A wall H will be crossed by this gallery if and only if it
separates 1 from w or w from ww′. A wall H is crossed twice iff it separates both 1 from w and w from ww′,
otherwise it is crossed only once. The walls that are crossed once are exactly the walls that separate 1 from
ww′ and they are crossed with the same sign as in a minimal gallery from 1 to ww′. The walls that are crossed
twice are crossed once with a positive and once with a negative sign. It therefore follows immediately that

γo(w)w (γo•w(w′)) = X(w,w′)γo(ww′)

The length ℓ(w) of an element w ∈ W is given by the number of walls separating 1 and w. Replacing
numbers by formal products of walls we get the notion of the generalized length L(w) of an element, which leads
to another characterization of X as a coboundary.

1.7.9 Definition. The generalized length L(w) of w ∈W is the element of N[H] given by

L(w) :=
∏

H

aH

where the product is taken over all H ∈ H separating 1 and w.

1.7.10 Lemma. For all w,w′ ∈W we have

L(w)w (L(w′)) = X(w,w′)2L(ww′)

Proof. This follows from the same arguments given in the proof of lemma 1.7.8. The only difference is that here
every wall that is crossed twice also appears twice.

1.7.11 Remark. (i) The length ℓ(w) of an element w ∈ W and its generalized length L(w) are related via
the ‘cardinality morphism’

# : (N[H], ·) −→ (N,+), aH ↦→ 1

by the equation
ℓ(w) = #L(w)

The lemma above therefore gives the formula

#X(w,w′) = ℓ(w) + ℓ(w′)− ℓ(ww′)

which reproves and generalizes remark 1.7.2. The lemma also shows that

ℓ(ww′) = ℓ(w) + ℓ(w′) ⇒ L(ww′) = L(w)w(L(w′))

(ii) The above lemma says that X is the coboundary of the formal square root
√
L of L. More precisely, letting

Z[
√
H] denote the free abelian group on the symbols

√
aH , H ∈ H we can view Z[H] as a subset of Z[

√
H]

via the embedding given by aH ↦→
(√

aH
[2

. Pushing L : W → Z[
√
H] forward via this embedding, it has

a unique square root
√
L : W → Z[

√
H]. Viewing X as a map W ×W → Z[

√
H], the formula of the above

lemma is equivalent to the coboundary equation

d
√
L = X

of the inhomogeneous cochain complex on Z[
√
H].
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(iii) The construction of the integral Bernstein-Lusztig basis in [Vig06] heavily depends on the ‘lemme fonda-
mental’ [Vig06, 1.2]. There it is proven that a certain expression qwvq−1

w qv (w, v ∈W ) which is a product
of formal parameters is a square of an element cw,v. This relates to the previous lemma as follows. Con-
sider the orbit map H → W\H of the canonical action of W on H. Pushing L and X forward along the
induced map Z[H]→ Z[W\H], we get maps L and X with values in Z[W\H]. The formula proven in the
above lemma then simplifies to

(1.7.2) L(w)L(w′)L(ww′)−1 = X(w,w′)2

Identifying the formal parameter (‘poid générique’) qs (s ∈ S) of [Vig06] with the generator a[s] ∈ Z[W\H]

corresponding to the class [s] ∈ W\H, the element qw (w ∈ W ) defined in loc. cit. identifies with L(w).
In this notation the above formula reads

qwqw′q−1
ww′ = X(w,w′)2

In particular we find that

qww′q−1
w qw′ = qww′q−1

w q−1
w′ q

2
w′ = X(w,w′)−2q2

w′

and therefore that the element cw,w′ defined in [Vig06, 1.2] is given by

cw,w′ = X(w,w′)−1qw′

This element is more explicitly given as the product

cw,w′ =
∏

H

a[H]

where the product runs over all hyperplanes H which separate 1 from w′ but don’t separate 1 from w.

1.8 A characterization of pro-p Coxeter groups in terms of X

Throughout this section, we will fix an extended Coxeter group W = (W,Waff ,Ω, S). Our goal here is to
characterize some (all, if W = Waff) pro-p Coxeter groups W (1) whose underlying extended Coxeter group
equals W , using the ‘2-coboundary’ X of the previous section. Even though this result will not be used in the
rest of the text, we choose to present it because we think it is of independent interest.

By definition, a pro-p Coxeter group W (1) is given by a group extension

1 →→ T →→ W (1) →→ W →→ 1

of W by an abelian group T , together with a choice of lifts (ns)s∈S of the distinguished generators which satisfy
the braid relations. In the case W = Waff , such groups have been studied by Tits [Tit66] under the name16 of
‘extended Coxeter groups’. Among the many interesting results obtained in [Tit66] is a characterization ([Tit66,
3.4 Proposition]) of such extensions in terms of data related to W and T , and the construction and explicit
description of a ‘universal’ extension V . Implicit in this (see especially [Tit66, 3.4 Proposition]) is that the
2-cocycle

ϕ : W ×W → T, ϕ(w,w′) = n(w)n(w′)n(ww′)−1

associated to the extension and the canonical set-theoretic section

n : W →W (1)

determined by n(s) = ns and

ℓ(ww′) = ℓ(w) + ℓ(w′) ⇒ n(ww′) = n(w)n(w′)

can be explicitly computed. However in [Tit66] an explicit expression for this 2-cocycle was not given. We shall
therefore explicitly compute these cocycles in terms of X, and deduce the existence of a universal extension
(without reference to [Tit66]) whose corresponding 2-cocycle identifies with X.

Let us begin with a definition.

16We apologize for not following the terminology of [Tit66], because in our contexts we have to consider extensions of groups
which are themselves (split) extensions of Coxeter groups.



1.8 A characterization of pro-p Coxeter groups in terms of X 43

1.8.1 Definition. The category W(1)
/W is the category whose objects consist of extensions

1 →→ T →→ G →→ W →→ 1

of W by an abelian group, together with a set-theoretic section n : W → G of the map G→W satisfying

ℓ(ww′) = ℓ(w) + ℓ(w′) ⇒ n(ww′) = n(w)n(w′) ∀w,w′ ∈W

A morphism f : (G,T, n)→ (G′, T ′, n′) is given by a morphism f : G→ G′ which makes the diagram

T

f

↓↓

→→ G

f

↓↓

→→ W

id

↓↓
T ′ →→ G′ →→ W

commute and which satisfies f ◦ n = n′.

1.8.2 Remark. Essentially, the objects of the category W(1)
/W are pro-p Coxeter groups whose underlying

extended Coxeter group equals W . However, not all pro-p Coxeter groups give rise to objects of this category.
More precisely, an object (W (1), T, n) of W(1)

/W corresponds to a pro-p Coxeter group W (1) together with a
section of groups

ñ : Ω→ π−1(Ω)

of the restriction of π : W (1) →W to Ω, such that we have the relation

ñ(u)nsñ(u)−1 = nu(s) ∀u ∈ Ω, s ∈ S

The map n : W →W (1) is then uniquely determined by ñ and (ns)s∈S by requiring

n(u) = ñ(u), n(s) = ns ∀u ∈ Ω, s ∈ S

Note that given a pro-p Coxeter group W (1), such a section ñ might not exist. And even if it does, the relation
ñ(u)nsñ(u)−1 = nu(s) might not be fulfilled. However, when W = Waff , the set of pro-p Coxeter groups with

underlying extended Coxeter group W and the set of objects W(1)
/W are canonically identified.

1.8.3 Lemma. Given an object (G,T, n) of W(1)
/W , the 2-cocycle ϕ : W ×W → T determined by the section n

via
ϕ(w,w′) = n(w)n(w′)n(ww′)−1

satisfies
ϕ(w,w′) = h(X(w,w′))

Here
h : Z[H] −→ T

denotes the unique W -equivariant homomorphism of abelian groups satisfying

h(s) = n(s)2 ∀s ∈ S

Proof. First, note that h is obviously unique if it exists since we have

h(wsw−1) = wn(s)2w−1 ∀w ∈W, s ∈ S

by assumption. Therefore, such a map exists if and only if for w ∈W and s, t ∈ S we have

wsw−1 = t ⇒ wn(s)2w−1 = n(t)2

But replacing w by ws if necessary, we may assume ℓ(ws) = ℓ(w) + 1. Hence, we also have ℓ(tw) = ℓ(w) + 1
and therefore

n(w)n(s) = n(ws) = n(tw) = n(t)n(w)

implying
wn(s)2w−1 = (n(w)n(s)n(w)−1)2 = n(t)2
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Now, both ϕ and h ◦X fulfill the 2-cocycle relation

ϕ(w1, w2)ϕ(w1w2, w3) = w1(ϕ(w2, w3))ϕ(w1, w2w3)

Moreover, both of these maps vanish whenever one of their arguments lies in Ω. For ϕ, this follows from the
relation

ℓ(ww′) = ℓ(w) + ℓ(w′) ⇒ n(ww′) = n(w)n(w′)

For h ◦X, this follows from remark 1.7.3. Therefore, in order to show that ϕ = h ◦X, it suffices to prove that

ϕ(s, w) = h(X(s, w)) ∀s ∈ S, w ∈W

Since both maps vanish on pairs (w,w′) satisfying ℓ(ww′) = ℓ(w) + ℓ(w′) (cf. remark 1.7.2), it suffices to treat
the case ℓ(sw) = ℓ(w)− 1. Take a reduced expression

sw = s1 . . . sru, si ∈ S, u ∈ Ω, r = ℓ(sw)

of sw, then
w = ss1 . . . sru

is a reduced expression of w. Hence

n(w) = n(s)n(s1) . . . n(sr)n(u)

and
n(sw) = n(s1) . . . n(sr)n(u)

and therefore
ϕ(s, w) = n(s)2 = h(X(s, w))

because X(s, w) = s is the unique hyperplane crossed twice by the gallery (s, s, s1, . . . , sr).

1.8.4 Definition. TW is the category whose objects are given by pairs (T, h) consisting of an abelian group W
endowed with a Z-linear W -action and a W -equivariant map

h : H −→ T

(identified with its linear extension h : Z[H] → T ) and whose morphisms f : (T, h) → (T ′, h′) are given by
W -equivariant group homomorphisms f : T → T ′ satisfying f ◦ h = h′.

With the above definition, we have the following immediate corollary of the above lemma.

1.8.5 Corollary. The functor
W(1)
/W −→ TW

given on morphisms in the obvious way and on objects by

(G,T, n) ↦−→ (T, h), h(s) = n(s)2

is an equivalence of categories, with quasi-inverse associating to an object (T, h) the object (T ×W,T, ι), where
the set T ×W is endowed with the group law

(t, w) · (t′, w′) = (tw(t′)h(X(w,w′)), ww′)

and ι : W → T ×W is given by ι(w) = (1, w).

The following corollary essentially recovers Tits’ description of the group V (cf. [Tit66, 2.5 Théorème]; see
also [DW05, 3.3]).

1.8.6 Corollary. The category W(1)
/W has an initial object V given by

V = (V, T, n) = (Z[H]×W,Z[H], ι)

where V = Z[H]×W is endowed with a group law via

(t, w) · (t′, w′) = (tw(t′)X(w,w′), ww′)

and ι : W → V is given by ι(w) = (1, w).

Proof. Immediate from the above corollary, since the pair (T, h) with T = Z[H] and h = id obviously forms an
initial object of the category TW .
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1.9 Relation of Bernstein maps to Cherednik’s cocycle

In this optional section, independent from the rest of the text, we discuss the work of Ivan Cherednik on Hecke
algebras and its connection to Bernstein maps. This connection arises through the cocycle rule eq. (1.6.1).

Motivated by problems in quantum physics, Cherednik has constructed various 1-cocycles of Coxeter groups
with values in (localizations of) affine Hecke algebras and their degenerate (i.e. graded) versions, viewing these
cocycles as generalized ‘R-matrices’.

By definition, R-matrices are solutions of the Yang-Baxter equation. This remarkable equation—connecting
low-dimensional topology, representation theory, category theory and physics—was discovered independently
by C. N. Yang [Yan67] and R. J. Baxter [Bax72], who worked on finding exact solutions of certain physical
models from quantum and statistical mechanics respectively. Its simplest and most recognizable form is

(1.9.1) R12R13R23 = R23R13R12

with the Rij being elements of some monoid (usually an algebra, although the case where the Rij are endo-
morphisms of a set is of considerable interest too; see ‘set-theoretical solutions of the Yang-Baxter-equation’).
Assuming the existence of an action of the symmetric group S3 on the monoid in which the Rij take values,
and assuming ‘W -invariance’ of the R-matrix, i.e.

σRij = Rσ(i)σ(j)

for all σ and i, j for which both sides are defined, the Yang-Baxter equation (1.9.1) can be rewritten equivalently
as

(1.9.2) Rs
sRt

stRs = Rt
tRs

tsRt

where s = (12), t = (23) and indices ij are identified with transpositions (ij). This equation in turn is nothing
but the self-consistency condition necessary for the existence of a 1-cocycle σ ↦→ Rσ that results from the braid
relation sts = tst in the symmetric group. This relation is almost sufficient for the existence of such a cocycle;
necessary and sufficient is the above relation together with the ‘unitarity condition’

Rs
sRs = Rt

tRt = 1

resulting from s2 = t2 = 1 (cf. [Che84, Prop. 4]). Thus, unitary invariant R-matrices are identified with
1-cocycles of the group S3.

Cherednik used this observation to define a general notion of ‘R-matrices’ attached to root systems as
cocycles of Weyl groups [Che92b, Sect. 2], and has constructed examples given by the Demazure-Lusztig
operators [Che92b, Prop. 3.5] and the standard intertwining operators [Che92b, Prop. 3.8] (cf. [Che91, Prop.
1.2]) familiar from the representation theory of reductive groups. The latter are directly connected to Bernstein
maps, realizing them as a limit. In order to make this precise, let us recall the definition of the standard
intertwiners. In the following, all algebras will be over C.

Given a root datum (X,Φ, X∨,Φ∨) with basis ∆ ⊆ Φ and extended affine Weyl group W = X ⋊W0, the
standard intertwiners are elements Fw (w ∈W0) of the localization

Hgen := Hq(W,S)⊗Z Frac(Z)

of the affine Hecke algebra at its center Z, determined by (cf. [Che91, Prop. 1.2]; also [HKP10, Lem. 1.13.1])

Fww′ = FwFw′ if ℓ(ww′) = ℓ(w) + ℓ(w′)(1.9.3)

Fsα
= Tsα

+ (qsα
− 1)(Yα − 1)−1, α ∈ ∆(1.9.4)

where we write
Yα := θ̃(α)

for easier comparison with [Che91]. The Fw now constitute an R-matrix in the following sense. The basis
property of the Bernstein-Lusztig basis ¶θ̃(x)Tw♢x∈X, w∈W0

implies that we have linear isomorphisms

C[X]⊗H0
∼−→ Hq(W,S) and C(X)⊗H0

∼−→ Hgen

Here C(X) = Frac(C[X]) and H0 denotes the finite Hecke subalgebra spanned by Tw, w ∈ W0. Note that the
group W0 acts on C(X)⊗H0 via its canonical action on X. Now, if we consider C(X)⊗H0 with its canonical
(tensor) algebra structure, then the map

ϕ : W0 −→ C(X)⊗H0
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defined by w ↦→ Fw satisfies the partial cocycle relation

ϕ(ww′) = ϕ(w)w(ϕ(w′)) if ℓ(ww′) = ℓ(w) + ℓ(w′)

i.e. defines a (non-unitary) R-matrix in the sense of Cherednik (cf. [Che92b, Thm. 2.3 a)]). This follows by
easy calculations from relation (1.9.3) and the intertwining property

Fwa = w(a)Fw, a ∈ A

The intertwiners Fw can be normalized so that one gets a proper cocycle (unitary R-matrix) instead: let (cf.
[HKP10, 2.2], [Lus89, Prop. 5.2]; also [Opd09, p. 146])

Ksα
:= q−1

sα

1− Yα
1− q−1

sα Yα
Fsα

for a simple root α and extend to elements Kw for all w ∈W0 using (1.9.3) as before. It can be shown that these
normalized intertwiners satisfy KwKw′ = Kww′ for all w,w′ and therefore define a cocycle ψ : W0 −→ C(X)⊗H0

in the usual sense.
This cocycle ψ partially recovers the Bernstein map θ : W −→ HomSet(O, Hq(W,S)×) as follows (cf.

[Opd09]). Elements of C(X)⊗H0 can be viewed as meromorphic function on the complex torus T = X∨ ⊗ C×

with values in H0. For every Weyl chamber D in V ∨ = X∨ ⊗ R, given as an intersection

D =
⋂

i

¶x ∈ V : αi(x) > 0♢

of half-spaces, one can add a point ξD at infinity to T, such that

lim
n→∞

tn = ξD ⇔ lim
n→∞

αi(t) = 0 ∀i

for every sequence (tn)n in T. Then θ is partially recovered as the pointwise limit

(1.9.5) θoD
(w) = lim

t→ξD

ψ(w)(t), ∀w ∈W0

with respect to the natural topology on H0 =
⌉

w CTw. Note that θoD
(w) lies in H0 ⊆ Hq(W,S) for all w ∈W0

a priori; indeed, the restriction of oD to W0 ⊆ W is nothing but the chamber orientation (definition 1.5.7)
towards the element wD ∈ W0 corresponding to D via wD(C) = D, where C denotes the fundamental Weyl
chamber, and θoD

(w) identifies with the image under the Bernstein map θowD
: W0 → H×

0 of the finite Hecke
algebra. Thus, eq. (1.9.5) can also be seen as recovering the cocycle θ : W0 → HomSet(O(W0), H×

0 ) of the finite
Hecke algebra.

Because of the cocycle rule, eq. (1.9.5) needs only to be checked in the case w = sα, where it follows from
easy computations. Indeed

lim
t→ξD

Yα = 0 or lim
t→ξD

Y −1
α = 0

depending on whether D lies in the positive ¶x : α(x) > 0♢ or negative half-space ¶x : α(x) < 0♢ defined by α,
respectively. Moreover, from the expression defining Fsα

it is immediate that

Fsα
(Yα = 0) = Tsα

and
Fsα

(Y −1
α = 0) = Tsα

− (qsα
− 1) = qsα

T−1
sα

where the second equality follows from the quadratic relation T 2
sα

= qsα
Tsα

+ (qsα
− 1). Hence

Ksα
(Yα = 0) = Tsα

and Ksα
(Y −1
α = 0) = T−1

sα

which proves (1.9.5) for w = sα, taking into account the definition of θ and oD (see definitions 1.6.2 and 2.4.1
resp.)17.

Thus one notices a curious fact: to construct R-matrices (cocycles) in the finite Hecke algebra H0, one
should study intertwiners of the affine Hecke algebra Hq(W,S), which contains the former as a subalgebra.

17Note: the expression for Fsα can be interpreted as defining a ‘Yang-Baxterization’ of the element Tsα ∈ H0, i.e. a parametric
deformation Fsα = Fsα (Yα) that satisfies the Yang-Baxter equation with spectral parameter Yα. This deformation interpolates
between Tsα = Fsα (Yα = 0) and qsα T −1

sα
= Fsα (Yα = ∞).



1.10 Integral and normalized Bernstein maps 47

Does this pattern continue? Cherednik has shown that it does (at least for affine Hecke algebras). His double
affine Hecke algebras Ḧq(W,S) contain the affine Hecke algebras Hq(W,S) as subalgebras, and one can define
elements F̂w ∈ Ḧq(W,S) for all elements w ∈W of the affine Weyl group (cf. [Che92a, Theorem 3.3]), satisfying

F̂wF̂w′ = F̂ww′ if ℓ(w) + ℓ(w′) = ℓ(ww′)

and defining R-matrices (with spectral parameters) with values in Hq(W,S) that recover the whole Bernstein
map θ : W → HomSet(O, Hq(W,S)×) as a limit.

1.10 Integral and normalized Bernstein maps

We now apply the results of section 1.7 to the construction of an integral and a normalized version of the
Bernstein map. Throughout this section we fix a pro-p Coxeter group W (1), a coefficient ring R, and a generic
pro-p Hecke algebra H(1) = H(1)(a, b) with arbitrary parameters.

Let us begin by constructing the integral Bernstein map.

1.10.1 Theorem. For every orientation o of W (1), there exists a unique map

θ̂o : W (1) −→ H(1)

such that if w = ns1 . . . nsr
u with u ∈ Ω(1) and ℓ(w) = r, then

θ̂o(w) = T1 . . . TrTu

where

Ti :=

∮
Tnsi

: εi = +1

Tnsi
− bsi

: εi = −1

and εi = o(s1 . . . si−1, si). Moreover, whenever the as are units in R we have the equality

(1.10.1) θ̂o(w) = γo(π(w))θo(w)

where γo : W → R is the composition of γo with the specialization map N[H] → R sending aH to aH (see
remark 1.3.5 for the definition of the elements aH ∈ R).

Proof. Because of the relation (1.6.3), we have

asT
−1

n−1
s

= Tns
− bs

whenever as ∈ R×. The second claim therefore follows immediately from the definitions provided the existence
of θ̂o. We are therefore left to show that the expression T1 . . . TrTu does not depend on the choice of the
expression w = ns1

. . . nsr
u. If this independence result is true for the generic pro-p Hecke algebra H(1) over

R, then it is also true for the generic pro-p Hecke algebra H(1)((ϕ(as))s, (ϕ(bs))s) ≃ H(1) ⊗R R′ over R′ for
every ϕ : R → R′. We may therefore replace the parameters as ∈ R by indeterminates as which satisfy
as = at whenever s, t are conjugate via W and replace R by the polynomial ring R[as] and prove the claim for
H(1)((as)s, (bs)s∈S). Because H(1) is a free R[as]-module, the localization map

H(1) −→ H(1) ⊗R[as] R[as,a
−1
s ]

is injective. It therefore suffices to prove the independence in the localization, that is it suffices to prove it in
the case the as are invertible. In this case we may use (1.10.1) as a definition of θ̂o. From the definition of θo
it follows immediately that the map defined this way satisfies θ̂o(w) = T1 . . . TrTu for every reduced expression
w = ns1

. . . nsr
u.

1.10.2 Definition. The map

θ̂ : W (1) −→ HomSet(O,H(1)), w ↦−→ (o ↦→ θ̂o(w))

defined in the above theorem is called the integral Bernstein map.

1.10.3 Remark. The above technique of establishing a certain identity for generic pro-p Hecke algebras with
arbitrary parameters by reducing it to the case where the as are invertible is the main advantage of considering
Hecke algebras with two formal parameters over considering only one-parameter Hecke algebras or Hecke algebras
with fixed parameters.

We will use this argument over and over again, and will therefore often refer to it simply as the ‘specialization
argument’.



48 1 GENERIC PRO-P HECKE ALGEBRAS AND BERNSTEIN MAPS

1.10.4 Notation. In remark 1.7.11 we considered the composition X of the ‘2-coboundary’ X : W ×W → N[H]
with the quotient map N[H]→ N[W\H]. Let us, by abuse of notation, write X to also denote the composition of
X with the evaluation map N[W\H]→ R sending a[s] (s ∈ S) to as. Let us further denote by X the composition
of X : W ×W → R with π×π : W (1)×W (1) →W ×W . With these conventions, we have the following corollary
of the previous theorem and of lemma 1.7.8.

1.10.5 Corollary. For every w,w′ ∈W (1)

θ̂o(w)θ̂o•w(w′) = X(w,w′)θ̂o(ww′)

Proof. By the specialization argument, it suffices to prove this when the as are invertible. In this case, the
claim follows by combining the identity θ̂o(w) = γo(π(w))θo(w) with the cocycle property of θ and the equation

γo(π(w))γo•w(π(w′)) = X(w,w′)γo(π(ww′))

following immediately from lemma 1.7.8.

1.10.6 Remark. Let us record a few relations that will be useful later. First of all, we have that for any
u ∈ Ω(1) and any orientation o ∈ O

θ̂o(u) = Tu

by construction. This together with remark 1.7.3 and the formula proven in the previous corollary shows that

θ̂o(w)Tu = θ̂o(wu)

and that
Tuθ̂o•u(w) = θ̂o(uw)

for any w ∈W (1). In particular, we get that

Tuθ̂o(w)T−1
u = θ̂o•u−1(uwu−1)

Moreover, since the group T acts trivially on orientations by definition, for u = t ∈ T these relations simplify to

θ̂o(w)Tt = θ̂o(wt)

and
Ttθ̂o(w) = θ̂o(tw)

respectively. Using the conjugation action w(t) = wtw−1 of W (1) on T , these relations combine to give

θ̂o(w)Tt = Tw(t)θ̂o(w)

and more generally

(1.10.2) θ̂o(w)b = w(b)θ̂o(w)

for any b ∈ R[T ] ⊆ H(1).

1.10.7 Corollary.

θ̂o(w) = Tw +
∑

w′<w

cw,w′Tw′

for some cw,w′ ∈ R, almost all of them being zero. In particular, (θ̂o(w))w∈W (1) is an R-basis of H(1).

Proof. The proof is the same as for proposition 1.6.3.

1.10.8 Remark. Consider an orientation o and a submonoid U ≤ StabW (1)(o). By corollary 1.10.7, the
R-submodule A(1)

o (U) of H(1) spanned by θ̂o(x), x ∈ U is in fact a free R-module on ¶θ̂o(x)♢x∈U . By corol-
lary 1.10.5, this submodule A(1)

o (U) ⊆ H(1)
o is also an R-subalgebra. When the as are units in R, the θo(x),

x ∈ U provide a different basis of A(1)
o (U) inducing an isomorphism of the monoid algebra R[U ] with A(1)

o (U).
In particular, A(1)

o (U) is commutative if U is commutative. From the specialization argument it follows that
this last statement is true even if the as are not invertible. In fact, this also follows directly from the product
formula (corollary 1.10.5) and the fact that

X(w,w′) = X(w′, w)

whenever ww′ = w′w, which itself follows immediately from formula (1.7.2).
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The statement of corollary 1.10.5 says informally that dθ̂ = X. The fact that d
√
L = X suggests that we

can restore the cocycle property of θ̂ by formally twisting it with
√
L

−1
. This is made precise in the following

definition.

1.10.9 Definition. Assume that the parameters as ∈ R are units and squares in R. Recall from remark 1.3.5
that as only depends on the class [s] it defines in S/∼ ≃W\H (see remark 1.1.8 for notation), and that aH for
H ∈ H is by definition equal to as, for any s ∈ S which is W -conjugate to H. We may therefore also write

ac := aH , H ∈ c arbitrary

for a class c ∈W\H. For every class c ∈W\H, choose now a square root
√
ac of ac, and write

√
aH :=

√
ac ∀H ∈ c

Then let

θ̃o(w) :=
√
L(w)−1θ̂o(w) ∀o ∈ O, w ∈W (1)

where
√
L denotes the composition of maps

W (1) π−→W
√
L−→ Z[

√
H] −→ R×

with
√
L : W → Z[

√
H] the formal square root of the generalized length function L defined in remark 1.7.11 and

Z[
√
H] −→ R×

the group homomorphism sending a formal square
√

aH to
√
aH .

The map

θ̃ : W (1) −→ HomSet(O,H(1)), w ↦−→ (o ↦→ θ̃o(w))

is called the normalized Bernstein map (with respect to the chosen square roots
√
ac).

In the situation of the above definition, we have the following immediate corollary of corollary 1.10.5 and
remark 1.7.11.

1.10.10 Corollary. For all w,w′ ∈W (1) and o ∈ O

θ̃o(ww′) = θ̃o(w)θ̃o•w(w′)

1.10.11 Remark. For our purposes the main reason for introducing the normalized Bernstein map lies in the
fact that it gets transformed into the integral Bernstein map under a certain isomorphism of Hecke algebras.
More precisely, in the situation of the above definition we have an isomorphism

φ : H(1)(as, bs)
∼−→ H(1)(1,

√
as

−1
bs)

of R-modules determined by Tw ↦→
√
L(w)Tw. Note that H(1)(1,

√
as

−1bs) is well-defined as the parameters
again satisfy the conditions of theorem 1.3.1. This isomorphism is also an isomorphism of R-algebras, which
follows easily by combining the presentation of H(1)(as, bs) given in section 1.4 with remarks 1.7.2 and 1.7.11
and verifying the following quadratic relation

(
√
asTns

)2 = asTn2
s

+ (
√
asTns

)bs

in the Hecke algebra H(1)(1,
√
as

−1bs).

The normalized Bernstein map θ̃ of H(1)(as, bs) and the integral Bernstein map θ̂ of H(1)(1,
√
as

−1bs) are
now related as follows

(1.10.3) θ̂o(w) = φ(θ̃o(w)) ∀o ∈ O, w ∈W (1)
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1.11 Bernstein relations

In this section we again fix a generic pro-p Hecke algebra H(1) = H(1)(as, bs) and assume that the parameters
as ∈ R are units and squares in R, and that a choice of square roots

√
as and consequently of a normalized

Bernstein map θ̃ has been made according to the previous section.
The goal of this section is to compute the difference

(1.11.1) θ̃o(w)− θ̃o′(w)

as a sum over certain hyperplanes, for two orientations o, o′ ∈ O that are ‘adjacent’. This computation will be
crucial in section 2, where we will use it to show that certain elements zo(γ) of an affine pro-p Hecke algebra
lie in the center. In the classical case (W (1) = W ) this computation is essentially equivalent to Bernstein’s
relations for the Iwahori-Hecke algebra.

We remind the reader that (see 1.1.3)

H = ¶wsw−1 : s ∈ S, w ∈Waff♢ = ¶wsw−1 : s ∈ S, w ∈W♢ ⊆Waff

denotes the set of hyperplanes of the underlying Coxeter group Waff of W (1).
The next proposition introduces some canonical elements in the generic pro-p Hecke algebra, which will

appear in the sum expansion of expression (1.11.1).

1.11.1 Proposition/Definition. For any hyperplane H ∈ H and any orientation o ∈ O, there exists a unique
element Ξo(H) ∈ H(1), such that if s ∈ S, w ∈W (1) with

π(wnsw
−1) = H

then
Ξo(H) =

√
as

−1
w(bs) · θ̃o(wn−1

s w−1) =
√
as

−1
θ̃o(wn−1

s w−1) · w(bs)

Proof. Applying the isomorphism φ of remark 1.10.11, we may assume that as = 1 for all s ∈ S and that
θ̃ = θ̂. Moreover, we observe that w(bs) and θ̂o(wn−1

s w−1) commute with each other. Indeed, by applying the
commutation relation (1.10.2) this is easily reduced to show the basic identity

n−1
s (bs) = bs

which was already seen to be true in (1.3.6). Therefore, it only remains to show that the expression

w(bs) · θ̂o(wn−1
s w−1) = θ̂o(wn−1

s w−1) · w(bs)

only depends on the element
π(wnsw

−1) = H ∈ H

and not on the choice of w ∈W (1) and s ∈ S. So let w1, w2 ∈W (1) and s, t ∈ S with

π(w1nsw
−1
1 ) = π(w2ntw

−1
2 )

By the above equation, we may apply condition (1.3.1) of theorem 1.3.1 on the existence of generic pro-p Hecke
algebras to w = w−1

1 w2 (in the notation of said theorem). Condition (1.3.1) then states that

(nswn
−1
t w−1) · w(bt) = bs

as an equality in R[T ]. Acting on both sides with w1, we get the formula

w1(bs) = (w1nsw
−1
1 w2n

−1
t w−1

2 ) · w2(bt)

Bearing in mind that w1nsw
−1
1 w2n

−1
t w−1

2 ∈ T , we can use the relations proved in remark 1.10.6 to compute

θ̂o(w1n
−1
s w−1

1 ) · w1(bs) = θ̂o(w1n
−1
s w−1

1 ) · (w1nsw
−1
1 w2n

−1
t w−1

2 ) · w2(bt)

= θ̂o(w1n
−1
s w−1

1 w1nsw
−1
1 w2n

−1
t w−1

2 ) · w2(bt)

= θ̂o(w2n
−1
t w−1

2 ) · w2(bt)
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The classical Bernstein relations compute the difference (1.11.1) when o′ = o • sα for a ‘simple root’ α of a
root system and the orientation o is ‘spherical’ (cf. definition 2.4.1). The following definition allows us to state
the Bernstein relations in a more general context.

Recall that by lemma 1.7.4, an orientation o of a Coxeter group is given by defining for every hyperplane
H ∈ H a notion of positive/negative crossing for passing from one half-space (with respect to H) into the other.
It therefore makes sense to say that two orientations agree (or disagree) at a hyperplane H if the signs attached
by the orientations to passing from one half-space with respect to H into the other are equal (or unequal).

1.11.2 Definition. Two orientations o, o′ ∈ O of W are said to be adjacent if for every wall H ∈ H at which
o and o′ disagree, we have

o • sH = o′

Note that the notion of adjacency is symmetric in o and o′. We are now ready to give the ‘Bernstein relation’.

1.11.3 Theorem. Let w ∈W (1) and o, o′ ∈ O be adjacent. Then

(1.11.2) θ̃o(w)− θ̃o′(w) =

(∑

H

o(1, H)Ξo′(H)

)
θ̃o(w)

where the sum is taken over all hyperplanes H ∈ H which separate 1 and w, and at which o and o′ disagree.

Proof. We may again invoke remark 1.10.11 to reduce to the case as = 1 and θ̃ = θ̂ = θ. Now take any (not
necessarily reduced) expression

w = ns1
. . . nsr

u, si ∈ S, u ∈ Ω(1)

Using this expression, the cocycle rule and the definition of the Bernstein map together give the following
explicit expressions

θ̂o(w) = T ε1

n
ε1
s1

. . . T εr

nεr
sr

Tu, θ̂o′(w) = T
ε′

1

n
ε′

1
s1

. . . T
ε′

r

n
ε′

r
sr

Tu

where
εi = o(s1 . . . si−1, si), ε′

i = o′(s1 . . . si−1, si)

We expand the difference θ̂o(w)− θ̂o′(w) now as a telescopic sum

θ̂o(w)− θ̂o′(w) =
r∑

i=1

T
ε′

1

n
ε′

1
s1

. . . T
ε′

i−1

n
ε′

i−1
si−1

(
T εi

n
εi
si

− T ε
′
i

n
ε′

i
si

)
T
εi+1

n
εi+1
si+1

. . . T εr

nεr
sr

Tu

In this sum the i-th summand vanishes unless εi ̸= ε′
i, so let us fix an index i where εi ̸= ε′

i. Observing that
(cf. eq. (1.3.8))

T εnε
s
− T−ε

n−ε
s

= εbs ∀s ∈ S, ε ∈ ¶±♢
and using the commutation rule (cf. (1.10.2))

θ̂o(w)b = w(b)θ̂o(w) ∀w ∈W (1), b ∈ R[T ]

we see that the i-th summand can be rewritten as

εiw̃(bsi
)T

ε′
1

n
ε′

1
s1

. . . T
ε′

i−1

n
ε′

i−1
si−1

T
εi+1

n
εi+1
si+1

. . . T εr

nεr
sr

Tu

where we have put
w̃ := ns1

. . . nsi−1

Since o and o′ disagree at

sH = H := π(w̃nsi
w̃−1) = (s1 . . . si−1)si(s1 . . . si−1)−1

and o and o′ are adjacent, we have
o′ = o • sH

In particular, for j > i we have

εj = o(s1 . . . sj−1, sj)

= o(sHs1 . . . ŝi . . . sj−1, sj)

= (o • sH)(s1 . . . ŝi . . . sj−1, sj)

= o′(s1 . . . ŝi . . . sj−1, sj)
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This implies that

T
ε′

1

n
ε′

1
s1

. . . T
ε′

i−1

n
ε′

i−1
si−1

T
εi+1

n
εi+1
si+1

. . . T εr

nεr
sr

Tu
(!)
= θ̂o′(ns1 . . . n̂si

. . . nsr
u)

= θ̂o′(w̃n−1
si
w̃−1w)

= θ̂o′(w̃n−1
si
w̃−1)θ̂o′•sH

(w)

= θ̂o′(w̃n−1
si
w̃−1)θ̂o(w)

Recalling proposition/definition 1.11.1, we see that

w̃(bsi
)θ̂o′(w̃n−1

si
w̃−1) = Ξo′(H)

and therefore
θ̂o(w)− θ̂o′(w) =

∑

i∈¶1,...,r♢
εi ̸=ε′

i

εiΞo′(Hi)θ̂o(w)

where
Hi := (s1 . . . si−1)si(s1 . . . si−1)−1

is the hyperplane crossed by the gallery (s1, . . . , sr) in the i-th step. Until now we have not assumed this gallery,
i.e. the expression

w = ns1
. . . nsr

u

to be reduced. Assume now that this is the case. Then the hyperplanes crossed by the gallery (s1, . . . , sr) are
exactly the hyperplanes separating 1 and w. Moreover, in this case we have

εi = o(1, Hi)

and hence the theorem follows.

As already mentioned, the ‘Bernstein relation’ proven above will be used to show that certain elements of
affine pro-p Hecke algebras lie in the center. This application of the Bernstein relation will involve showing that

θ̂o(x)− θ̂o•sα
(x) = −

(
θ̂o(sα(x))− θ̂o•sα

(sα(x))
⎡

for x an element of a certain subgroup X(1) ⊆W (1) and sα ∈W a reflection associated to a simple root α. This
will follow from the above theorem and the following elementary property of the elements Ξo(H).

1.11.4 Lemma. Let H ∈ H, o an orientation and x ∈ CW (1)(T ) an element of the centralizer of T in W (1).
Then we have that

Ξo(H) · θ̃o•sH
(sH(x)x−1) = Ξo(π(x)Hπ(x)−1)

where sH(x) denotes the induced action of W on CW (1)(T ) by conjugation.

Proof. Letting w ∈W (1) and s ∈ S be such that

H = π(wnsw
−1)

we have by definition that

Ξo(H) =
√
as

−1
w(bs)θ̃o(wn−1

s w−1)

Since wn−1
s w−1 acts both on o and on sH(x) via sH , we have that

θ̃o(wn−1
s w−1)θ̃o•sH

(sH(x)x−1) = θ̃o(wn−1
s w−1sH(x)x−1)

(!)
= θ̃o(xwn−1

s w−1x−1)

Therefore

Ξo(H) · θ̃o•sH
(sH(x)x−1) =

√
as

−1
w(bs)θ̃o(xwn−1

s w−1x−1)

=
√
as

−1
(xw)(bs)θ̃o(xwn−1

s w−1x−1)

= Ξo(π(x)Hπ(x)−1)

where we have used the fact that x acts trivially on T on the second line, and the definition of Ξ on the third
line.
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2 Affine pro-p Hecke algebras

In this section, we want to apply the general theory developed so far to the study of a special class of generic
pro-p Hecke algebras, the ‘affine pro-p Hecke algebras’. We will give a description of the center of these algebras
and prove that there they are module-finite over their center in section 2.7, recovering classical results of
Bernstein-Zelevinsky in the case of W = W (1).

In order to obtain these results, we need to assume that the group W is of a special form. Basically we need
W to be a semi-direct product W = X⋊W0 of a finitely generated commutative group X and a finite reflection
group W0. Moreover, we need to assume that there exists a representation of W as a group of isometries
preserving a locally finite affine hyperplane arrangement which is compatible with the abstract decompositions
W = Waff ⋊ Ω and W = X ⋊W0. Finally we need to assume that X is ‘large enough’ with respect to this
representation. This will be made precise in the next section.

2.1 Affine extended Coxeter groups and affine pro-p Hecke algebras

Before we give the definition of an affine extended Coxeter group, let us introduce some notations and recall
some basic facts from the theory of affine reflection groups (see for instance [Bou07, Ch. V, §1]).

Given a finite dimensional euclidean vector space V and a hyperplane18 H ≤ V , there exists a unique element
sH ∈ AutEuclid(V ) of the group of euclidean motions such that sH ̸= id and sH operates on H as the identity.
This element sH is called the orthogonal reflection with respect to H. More generally, an affine endomorphism
s ∈ Endaff(V ) is a called a reflection if s2 = id and if the linear part s0 of s is a linear reflection in the sense
that (cf. [Bou07, Ch. V, §2.2])

s2
0 = id and id−s0 is of rank 1

Note here that s2
0 = id follows already from s2 = id. The set H := ¶x : s(x) = x♢ of fix points of a reflection

s is an affine hyperplane, and it is therefore the unique hyperplane fixed by s. Of course, a reflection s is not
determined by the affine hyperplane H that it fixes, but if s also happens to be an element of AutEuclid(V ),
then it must coincides with the orthogonal reflection sH with respect to H.

For a given affine hyperplane Given a set H of hyperplanes in V , we let

W (H) = ⟨sH : H ∈ H⟩ ≤ AutEuclid(V )

denote the group generated by the reflections with respect to the hyperplanes in H. If α ∈ V ∨ is a non-zero
functional and k ∈ R, we write

Hα,k := ¶x ∈ V : α(x) + k = 0♢

and sα,k := sHα,k
, sα := sα,0.

A point x ∈ V is called special with respect to H if for every H ∈ H there exists a hyperplane H ′ ∈ H

parallel to H with x ∈ H ′. A set H of hyperplanes in V is called locally finite if for every x ∈ X there exists a
neighbourhood U of x such that ¶H ∈ H : H ∩ U ̸= ∅♢ is finite.

Assume that a locally finite set H of hyperplanes on V is given. The elements of the set

C := π0(V −
⋃

H∈H

H)

of connected components of the complement of all hyperplanes are called chambers19. A hyperplane H ∈ H is
called a wall of a chamber C if H ∩ C has non-empty interior as a subset of H, or equivalently, if the affine
span of H ∩ C equals H. We let

S(C) := ¶H ∈ H : H wall of C♢

denote the set of all walls of C. If the group W (H) leaves the set H invariant, then it follows20 that for every
chamber C the pair (W (H), ¶sH : H ∈ S(C)♢) is a Coxeter group (cf. [Bou07, Ch. V, §3.2, Théorème 1]) and
that S(C) is finite (cf. [Bou07, Ch. V, §3.6, Théorème 3]).

We will now give the definition of ‘affine’ extended Coxeter groups.

18Unless specified otherwise, hyperplane means affine hyperplane.
19It is common to use the term alcove instead of chamber if the hyperplanes H ∈ H aren’t all linear, but we will not make this

distinction.
20In [Bou07] it is assumed that the group W (H) acts properly discontinuously, and the local finiteness is deduced as a consequence.

However, it is enough to only assume that H is locally finite and W (H) preserves H, as these assumptions already imply that W (H)
acts properly discontinuously.



54 2 AFFINE PRO-P HECKE ALGEBRAS

2.1.1 Definition. An affine extended Coxeter group W consists of a group W together with a homomor-
phism

ρ : W −→ Autaff(V )

of W into the group of affine automorphisms of a finite-dimensional real vector space V , a locally finite set H

of (affine) hyperplanes in V , a chamber C0 ∈ π0(V −√H∈H
H) and for every H ∈ H an element s̃H ∈ W such

that the following hold.

(ACI) W leaves H invariant, i.e. ρ(w)(H) ∈ H for all w ∈W and H ∈ H.

(ACII) For every H ∈ H, ρ(s̃H) is a reflection fixing H.

(ACIII) Letting ρ0 denote the composition of ρ with the projection

Autaff(V ) = V ⋊ GL(V ) −→ GL(V )

onto the linear part, the group
W0 := ρ0(W )

is finite.

(ACIV) 0 ∈ V is a special point of H.

(ACV) The subgroup ρ(W ) ∩ V of translations in ρ(W ) generates the quotient V/L as an
R-vector space, where

L =
⋂

H∈H, 0∈H
H

(ACVI) For every H ∈ H and w ∈W we have

ws̃Hw
−1 = s̃w(H)

where we abbreviate w(H) = ρ(w)(H).

(ACVII) For every pair H1, H2 ∈ S(C0) of walls of C0 such that ρ(s̃H1
s̃H2

) is of finite order
m1,2, we have the relation

(s̃H1 s̃H2)m1,2 = 1

in W .

(ACVIII) The group W0 is generated by the images of the s̃H , H ∈ H under the natural map
W →W0.

(ACIX) 0 ∈ C0

(ACX) Let
X = ρ−1(V ) ≤W

denote the subgroup of all elements of W which are mapped to a translation under
ρ. Then X is finitely generated and commutative.

Note that given the remaining axioms, (ACIV) and (ACIX) are always satisfied up to a translation and
only serve to fix notation. The rationale behind the above definition of an affine extended Coxeter group is to
have a set of axioms which are easy to verify in examples. However, as it stands the definition does not even
mention extended Coxeter groups. Our first task will therefore be to ‘unpack’ this definition.

2.1.2 Lemma. Let W = (W,V, ρ,H, C0, (s̃H)H) be an affine extended Coxeter group. Let

Waff := ⟨s̃H : H ∈ H⟩ , S := ¶s̃H : H ∈ S(C0)♢
and

Ω := StabW (C0)
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Then the following holds.

(i) There exists a positive definite scalar product on V invariant with respect to W0, i.e. such that W acts by
euclidean motions.

(ii) (Waff , S) is a Coxeter group and for any choice of an invariant scalar product, ρ induces an isomorphism

(Waff , S)
∼−→ (W (H), ¶sH : H ∈ S(C0)♢)

of Coxeter groups, where sH denotes the orthogonal reflection with respect to H and W (H) denotes the
group generated by sH for H ∈ H. In particular, W (H) and the sH do not depend on the choice of the
scalar product.

(iii) (W,Waff , S,Ω) is an extended Coxeter group.

(iv) The group W0 is equal to the special subgroup of (W (H), ¶sH : H ∈ S(C0)♢) generated by the sH with
0 ∈ H. In particular, (W0, ¶sH : H ∈ S(C0), 0 ∈ H♢) is a Coxeter group. Moreover, the subspace L ≤ V
of (ACV) is given by

L =
⋂

H∈H, 0∈H
H = VW0

(v) Let
Φ := ¶α ∈ V ∨ : ∀k ∈ R Hα,k ∈ H⇔ k ∈ Z♢

Then (RΦ,Φ) is a reduced root system and

H = ¶Hα,k : α ∈ Φ, k ∈ Z♢

Moreover, V ∼−→ V ∨∨ induces an isomorphism

V/L
∼−→ (RΦ)∨

(vi) The map
W0 −→ GL(V/L) ≃ GL((RΦ)∨)

induced by ρ0 : W0 → GL(V ) is injective and identifies W0 with the Weyl group W (Φ∨) of the dual root
system ((RΦ)∨,Φ∨). Moreover, this is an identification of Coxeter groups if we endow W (Φ∨) with the
generating set ¶s∨

α : α ∈ ∆♢ corresponding to the basis

∆ = ¶α ∈ Φ : Hα ∈ S(C0), α♣C0
> 0♢

The basis ∆ corresponds to the positive root system Φ+ ⊆ Φ given by

Φ+ = ¶α ∈ Φ : α(x) > 0♢

where x ∈ C0 is arbitrary.

(vii) The exact sequence

0 →→ X →→ W
ρ0 →→ W0

→→ 1

splits via the map W0 →W given by the composition

W0 ⊆W (H)
ρ−1

−→Waff ⊆W

Viewing W0 as a subgroup of Waff via this splitting, W0 equals the special subgroup of (Waff , S) generated
by

S0 := ¶sα : α ∈ ∆♢ = ¶s̃H : H ∈ S(C0), 0 ∈ H♢ ⊆ S

where sα := s̃Hα,0
.
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Proof. Point (i) follows immediately from the finiteness of W0, since given any positive definite scalar product
B : V × V → R, the expression

(x, y) :=
∑

w∈W0

B(w(x), w(y)), x, y ∈ V

defines a W0-invariant positive definite scalar product. To prove (ii) we may assume a W0-invariant scalar
product has been fixed. In this case we may invoke [Bou07, Ch. V, §3.2, Théorème 1] to conclude that
(W (H), ¶sH : H ∈ S(C0)♢) is a Coxeter group. Since ρ(s̃H) is a reflection fixing H by (ACII) and W acts by
euclidean motions with respect to the chosen scalar product, we must have ρ(s̃H) = sH for every H ∈ H. Since
Waff is generated by the s̃H , this shows that we have a well-defined group homomorphism

ρ : Waff −→W (H)

that moreover maps S into S(C0). Since W (H, S(C0)) is a Coxeter group, by one of the various characterizations
([Bou07, Ch. IV, §1.3, Définition 3]) of Coxeter groups, W (H) has a presentation

W (H) = ⟨sH , H ∈ S(C0) ♣ (sHsH′)m = 1 if m = ord(sHsH′) <∞⟩

and hence by property (ACVII) there exists a unique homomorphism

φ : W (H) −→Waff

of groups with φ(sH) = s̃H for every H ∈ S(C0). Since ρ ◦ φ = id, it follows that φ is injective. We claim
that φ is also surjective, or equivalently that S generates Waff . From the theory of affine reflection groups it
follows (cf. [Bou07, Ch. V, §3.2, Corollaire]) that for every H ∈ H there exists an element w ∈ W (H) and a
wall H ′ ∈ S(C0) such that wsH′w−1 = sH or equivalently w(H ′) = H. Writing

w = sH1
. . . sHr

, Hi ∈ S(C0)

and putting
w̃ := s̃H1

. . . s̃Hr
∈ ⟨S⟩ ⊆Waff

we have ρ(w̃) = w and hence by (ACVI)

w̃s̃H′w̃−1 = s̃
ρ(w̃)(H′)

= s̃H

lies in the subgroup of Waff generated by S. Since Waff is generated by the s̃H , it follows that ⟨S⟩ = Waff and
hence that φ is an isomorphism of groups. Since ρ◦φ = id, also ρ must be an isomorphism of groups. Moreover,
as ρ preserves the distinguished sets of generators, it is also an isomorphism of Coxeter groups.

Now to prove (iii), we only need to verify that Ω preserves the subset S ⊆Waff under conjugation and that
every element w ∈ W can be written as a product w = w′u with w′ ∈ Waff and u ∈ Ω. But the invariance of
S follows immediately from (ACVI) and the fact Ω permutes the walls of C0 (as it preserves C0 and therefore
also C0 setwise). Because W (H) acts transitively on the set π0(V − √H∈H

H) of chambers (see [Bou07, Ch.
V, §3.2, Théorème 1]), we can find w′′ ∈ W (H) with ρ(w)(C0) = w′′(C0). Since ρ(Waff) = W (H), we can find
w′ ∈Waff with ρ(w′) = w′′. It follows that u := w′−1w ∈ Ω.

Next, we show that (iv) holds. Observe that by (ACVIII), the group W0 is generated by the set of linear
parts of the sH with H ∈ H. By (ACIV), the point 0 ∈ V is special and hence the aforementioned set coincides
with ¶sH : H ∈ H, 0 ∈ H♢. In particular, W0 ⊆ W (H) and the formula L = VW0 holds. Let F ⊆ V be the
unique facet of (V,H) containing 0. By (ACIX), F is a face of C0. From [Bou07, Ch. V, §3.3, Proposition 1]
it therefore follows that W0 must be contained in the subgroup of W (H) generated by the sH with H ∈ S(C0)
and F ⊆ H. So we have the inclusion

W0 = ⟨sH : H ∈ H, 0 ∈ H⟩ ⊆ ⟨sH : H ∈ S(C0), 0 ∈ H⟩

and hence equality holds.
Claim (v) follows from (ACIV), (ACV) and a slight modification of the arguments in [Bou07, Ch. VI,

§2.5, Proposition 8]. Fix an invariant positive definite scalar product (−,−) on V . Given H ∈ H with 0 ∈ H,
let α ∈ V ∨ be any element with ker(α) = H. Consider

Λα := ¶k ∈ R : Hα,k ∈ H♢

Then k ↦→ Hα,k gives a bijection between Λα and the H ′ ∈ H parallel to H. Then Λ must contain a positive
element, for we have 0 ∈ Λα and by (ACV) there exists an element w ∈W such that ρ(w) equals the translation
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by a vector v ∈ V with α(v) ̸= 0. Replacing w by w−1 if necessary, we may assume that α(v) < 0. Since W
preserves H, it follows that

ρ(w)(Hα,0) = v +Hα,0 = Hα,−α(v) ∈ H

and hence −α(v) ∈ Λ. Let now δ > 0 be the smallest positive element of Λα. This element exists because H is
locally finite. We claim that Λα = Zδ. To see this, first note that given any two parallel hyperplanes H ′ and H ′′

the product sH′′sH′ of the associated orthogonal reflections equals the translation by 2t, where t is the unique
vector orthogonal to H ′ with H ′′ = t + H ′. Let now H ′ = Hα,k, H ′′ = Hα,ℓ with k, ℓ ∈ Λα and let n ∈ V be
the unique vector orthogonal to H satisfying α(n) = 1. Then Hα,k = −kn+Hα and Hα,ℓ = −ℓn+Hα. Since
W (H) leaves H invariant, it follows that

(sH′′sH′)(H ′) = 2(k − ℓ)n+H ′ = Hα,2ℓ−k

must again be a member of H, i.e. 2ℓ − k ∈ Λα. Taking ℓ = 0 it follows that Λα is stable under inversion.
Taking ℓ = δ it follows that Λα is stable under translation by ±2δ. Every element k ∈ Λα can therefore be
written in the form k = x+ nδ with n ∈ Z and 0 ≤ x < 2δ. If x ≤ δ, it follows that x = δ by minimality of δ.
If δ < x ≤ 2δ, it follows by the above that 0 ≤ 2δ − x < δ lies in ∆α and hence 2δ − x = δ by minimality. In
both cases it follows that k ∈ Zδ.

From the above discussion it is now clear that given H ∈ H with 0 ∈ H there exists α ∈ V ∨ uniquely
determined up to ± such that

¶H ′ ∈ H : H ′ parallel to H♢ = ¶Hα,k : k ∈ Z♢

Then
Φ = ¶α ∈ V ∨ : ∀k ∈ R Hα,k ∈ H⇔ k ∈ Z♢

is just the set of these α. Obviously (RΦ,Φ) is reduced if it is a root system, so it suffices to verify the root
system axioms (RSI)-(RSIII) (see [Bou07, Ch. VI, §1.1]). There is only a finite number of H ∈ H with 0 ∈ H
by the local finiteness of H and hence it follows readily that Φ is finite. Moreover, 0 ̸∈ Φ by construction, and
hence (RSI) is verified.

Now we prove (RSII). First, we remark that RΦ equals the image of the dual of the projection V ↠ V/L.
This is equivalent to the claim that V ∼−→ V ∨∨ induces an isomorphism (V/L)

∼→ (RΦ)∨ and follows from

L =
⋂

H∈H, 0∈H
H =

⋂

α∈Φ

ker(α)

Given α ∈ Φ, the associated reflection sα ∈ O(RΦ) is given by the restriction

sα = s∨
H ♣RΦ

of the transpose of the orthogonal reflection sH ∈ O(V ) with respect to H = ker(α). This holds since both are
elements of O(RΦ) having as fix-point set the hyperplane

α⊥ = RΦ ∩ ¶ω ∈ V ∨ : ω(v) = 0♢

where v ∈ V is any vector ̸= 0 orthogonal to H. Since sH leaves H invariant, it follows that sα leaves Φ invariant;
thus sα,α∨ = sα for α∨ := 2 (α,·)

(α,α) ∈ (RΦ)∨∨ leaves Φ invariant, and (RSII) is verified. Lastly to prove (RSIII),

let α, β ∈ Φ be given. Identifying (RΦ)∨ with the subspace L⊥ ≤ V , the dual root α∨ is the unique element of
V orthogonal to Hα satisfying α(α∨) = 2. In particular letting H ′ = Hα,0 and H ′′ = Hα,1 = − 1

2α
∨ + H ′ we

have that
(sH′′sH′)(Hβ,0) = −α∨ +Hβ,0 = Hβ,β(α∨) ∈ H

and hence β(α∨) ∈ Z since β ∈ Φ.
Next, we prove (vi) keeping the choice of an invariant scalar product on V . The injectivity of the map

W0 → GL(V/L) follows from the fact W0 is finite and hence acts by semi-simple transformations on V . Indeed
since L = VW0 , any w ∈W0 lying in the kernel of W0 → GL(V/L) acts trivially on L and V/L and hence must
act trivially on V by semi-simplicity. In the proof of (iv) we have already seen that W0 is generated by the sH
with H ∈ H and 0 ∈ H. By (v) we know that H is of the form H = ker(α) with α ∈ Φ. Moreover, we have
already seen that the image of sH under W0 → GL(V/L) ≃ GL((RΦ)∨) equals the transpose s∨

α of the reflection
associated to α. This shows that the image of W0 ↪→ GL((RΦ)∨) is given by W (Φ)∨ = W (Φ∨). Moreover it’s
clear by the previous remarks that under W0

∼−→ W (Φ∨) the generating set ¶sH : H ∈ S(C0)♢ corresponds to
¶s∨
α : α ∈ ∆♢. Now to see that ∆ is a basis of the root system Φ, let D0 ∈ π0(V −√α∈Φ ker(α)) be the unique
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chamber of the spherical arrangement containing C0. The image π(D0) of D0 under π : V ↠ V/L ≃ (RΦ)∨

then is a chamber of the linear arrangement on (RΦ)∨ induced by Φ. Moreover, for α ∈ Φ the hyperplane ker(α)
is a wall of C0 if and only if the hyperplane in (RΦ)∨ associated to α is a wall of π(D0), and α is positive on
C0 if and only if α is positive on π(D0). By the theory of root systems, it then follows that ∆ is a basis of Φ,
in fact ∆ is the basis of Φ associated to the dual chamber π(D0)∨ ⊆ RΦ (see [Bou07, Ch. VI, §1.5, Rémarque
5]). Moreover, it is obvious that Φ+ consists of the roots which take positive values on π(D0). It hence follows
(see [Bou07, Ch. VI, §1.6]) that Φ coincides with the set of positive roots associated to π(D0)∨. Since we have
∆ ⊆ Φ+, it follows that ∆ is the root basis associated to Φ+.

Finally (vii) follows immediately from (iv)-(vi) and the fact that for α ∈ Φ we have ρ−1(sα) = s̃Hα,0
.

2.1.3 Example. (i) Let (X,Φ, X∨,Φ∨) be a root datum (in the sense of [DG70, Exposé XXI]) and ∆ ⊆ Φ∨

a root basis. In particular, Φ ⊆ X and Φ∨ ⊆ X∨ are finite subsets that are in bijection via a given pair
of inverse bijections

Φ
∼↔ Φ∨

both denoted by α ↦→ α∨, and X,X∨ are free abelian groups of finite rank in duality via a given pairing

⟨·, ·⟩ : X∨ ×X −→ Z

Let W0 := W (Φ) be the finite Weyl group, i.e. the subgroup of GLZ(X) generated by the reflections sα,
α ∈ Φ given by

sα(x) = x− ⟨α∨, x⟩α
Let W := X⋊W0 be the extended affine Weyl group. Let us now see that W carries a canonical structure
of an affine extended Coxeter group in the sense of definition 2.1.1, and therefore also a canonical structure
of an extended Coxeter group via lemma 2.1.2.

We let V := X ⊗Z R and let ρ : W −→ GLaff(V ) be the inclusion

W = X ⋊W0 ⊆ V ⋊ GL(V ) ≃ GLaff(V )

This action leaves invariant the collection H of hyperplanes given by Hα,k, α ∈ Φ∨, k ∈ Z where

Hα,k = ¶x ∈ V : ⟨α, x⟩+ k = 0♢

Since ρ is injective, the choice of the s̃H is unique in this case. Moreover, it is clear that for any choice of
a chamber C0 with 0 ∈ C0, the axioms (ACI)-(ACX) are satisfied, in particular if we let C0 be chamber
corresponding to ∆ determined by the conditions

0 ∈ C0 and C0 ⊆ ¶x ∈ V : ⟨α, x⟩ > 0 ∀α ∈ ∆♢

Moreover, the groups W0 and X of definition 2.1.1 coincide with the groups denoted by the same letters
here. The root system Φ and the basis ∆ constructed in the lemma above coincide with Φ∨ and ∆
respectively. The structure W = (W,Waff , S,Ω) of an extended Coxeter group induced on W by the above
lemma can be made more explicit as follows. Let Q := ZΦ ≤ X be the root lattice. Then elementary
arguments (see [Bou07, Ch. VI, §1.2, Proposition 1]) show that the affine Weyl group Waff ≤ W is the
semi-direct product Waff = Q⋊W0. Hence, there is an isomorphism

Ω ≃ X/Q

By definition, the generating set S of Waff consists of the reflections sH for all walls H of C0. Using the
theory of root systems it can be seen that the walls of C0 are either of the form H = Hα,0 with α ∈ ∆ or
H = H−α,1 with α a highest coroot, i.e. a maximal element of Φ∨ with respect to the partial order

α ≤ β ⇔ ⟨α, x⟩ ≤ ⟨β, x⟩ ∀x ∈ C0

Hence
S = ¶sα : α ∈ ∆♢ ∪ ¶s−α,1 : α ∈ Φ∨ maximal♢

where (by slight abuse of notation) sα and sα,k for α ∈ Φ∨, k ∈ Z denote the elements of Waff given by

sα(x) = x− ⟨α, x⟩α∨ and sα,k(x) = x− (⟨α, x⟩+ k)α∨
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(ii) We specialize the above example now to the root datum of the group GLn. In this case we have

X = X∨ = Zn

with the pairing between X and X∨ being the canonical one. Moreover

Φ = Φ∨ = ¶ei − ej : 1 ≤ i, j ≤ n, i ̸= j♢

and the correspondence α ↔ α∨ between roots and coroots is the identity. The finite Weyl group W0

identifies with the symmetric group Sn on n letters. The choice of the (co-)root basis

∆ = ¶e2 − e1, . . . , en − en−1♢

makes W0 = Sn into a Coxeter group with generators s1, . . . , sn−1, where

si = sei+1−ei
= (i i+ 1)

is the transposition permuting the i-th and i + 1-th coordinate. The chamber determined by ∆ is given
by

C0 = ¶x ∈ Rn : x1 < . . . < xn < x1 + 1♢
The root sublattice Q = ZΦ ≤ Zn is the kernel of the ‘augmentation map’

Zn −→ Z, ei ↦→ 1

hence the group Ω ≃ X/Q (which as a subgroup of W depends on the choice of C0!) is canonically
isomorphic to Z, with canonical generator u given by

u = τen(n n− 1 . . . 1)

Here, in order to avoid confusion arising from mixing the additive group notation on X and the multi-
plicative group notation on W = X ⋊W0, we use the exponential expression τx instead of x when we
want to view an element x ∈ X as an element of the group W . Thus, τxτy = τx+y for all x, y ∈ X in this
notation.

The highest (co-)root is unique and given by α = en − e1. Hence, the generating set S of Waff is given by

S = ¶s1, . . . , sn−1, s−α,1♢

with
s−α,1 = τen−e1(1 n)

Writing s0 = s−α,1 and viewing ¶0, 1, . . . , n− 1♢ as the group Z/nZ, the action of Ω on S is determined
by

(2.1.1) usiu
−1 = si−1

We are now in the position to define the principal object of study of this article, the class of affine generic pro-
p Hecke algebras (or simply affine pro-p Hecke algebras) as those algebras whose underlying extended Coxeter
group W arises as in the above lemma from an affine extended Coxeter group. Since the description of the
structure of these algebras will depend on the decomposition W = X ⋊W0, it makes sense to make the affine
extended Coxeter group part of the datum.

2.1.4 Definition. An affine pro-p Hecke algebra H(1) over a ring R consists of a generic pro-p Hecke algebra
H(1) over R and an affine extended Coxeter group W such that the extended Coxeter group underlying the
pro-p Coxeter group W (1) associated with H(1) coincides with the extended Coxeter group associated to W by
lemma 2.1.2.

2.1.5 Terminology. Following tradition and to prevent confusion with the chambers C ∈ π0(V −√H∈H
H),

the connected components of the complement of the finite linear hyperplane arrangement ¶H ∈ H : 0 ∈ H♢
will be called Weyl chambers. They will usually denoted by the letter ’D’, while ’C’ will be used to denote the
chambers of the affine hyperplane arrangement H.

The main goal of this article will be to describe the center of affine pro-p Hecke algebras using the Bernstein
maps introduced in the previous section. As in the classical work of Bernstein and Lusztig, this involves con-
structing big (almost) commutative subalgebras of H(1). In view of remark 1.10.8, this amounts to constructing
orientations with big stabilizers, which we will do later in section 2.4.
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2.2 Main examples of affine pro-p Hecke algebras

In this section we want to consider the main examples of affine pro-p Hecke algebras, the classical affine Hecke
algebras and two ‘new’ examples, the pro-p-Iwahori Hecke algebras and the affine Yokonuma-Hecke algebras.
We point out that the last two examples slightly overlap.

2.2.1 Affine Hecke algebras and Iwahori-Hecke algebras

The affine Hecke algebras are (cf. [Mac03, 4.1]) the generic pro-p Hecke algebras for the extended affine Weyl
groups, i.e. for pro-p Coxeter groups W (1) of the form W (1) = W , T = 1, W = X ⋊W0 for a root datum
(X,Φ, X∨,Φ∨) with chosen basis ∆ ⊆ Φ∨ as in example 2.1.3. As was explained there, the group W carries a
canonical structure of an affine extended Coxeter group in the sense of definition 2.1.1, hence these algebras are
affine pro-p Hecke algebras in the sense of definition 2.1.4.

Affine Hecke algebras play an important role in various different but related subjects, including the represen-
tation theory of reductive groups over local fields, the theory of orthogonal polynomials [Mac03], the theory of
knot invariants, and in physics in the study of certain exactly solvable systems (see [Mar91]). Historically, affine
Hecke algebras made their debut in the first of the subjects mentioned, namely in the 1965 paper of Iwahori and
Matsumoto [IM65] that elucidated the structure of double coset algebras HR(G, I) (cf. section 2.2.3) attached
to pairs (G, I), where G = G(F ) is the group of rational points of a split, connected, semisimple reductive
group (Chevalley group) G over a nonarchimedean local field F , and I ≤ G is a certain open compact subgroup
nowadays referred to as ‘Iwahori subgroup’.

One of the main results (Propositions 3.5, 3.7 and 3.8) of [IM65] was the description of a presentation of
HR(G, I) in terms of the extended affine Weyl group W = X ⋊W0 of the root datum corresponding to G,
i.e. an isomorphism of HR(G, I) with an affine Hecke algebra. More precisely, they showed that HR(G, I) is
isomorphic to the R-algebra generated by symbols Tw, w ∈W subject to the relations

TwTw′ = Tww′ if ℓ(w) + ℓ(w′) = ℓ(ww′)(1)

T 2
s = q + (q − 1)Ts s ∈ S(2)

where q denotes the cardinality of the residue field of F . Hence, HR(G, I) identifies with the generic pro-p Hecke
algebra H(1)(as, bs) for W (1) = W and constant parameters as = q, bs = q− 1 by proposition 1.4.2, which is an
affine Hecke algebra.

The algebras of the form HR(G, I) are commonly referred to as Iwahori-Hecke algebras. Sometimes the
terms ‘affine Hecke algebra’ and ‘Iwahori-Hecke algebra’ are used synonymously, but here we will distinguish
between the two. The notion of Iwahori subgroup is defined in great generality for any connected reductive
group G over a local field [Tit79, 3.7], and one can consider the corresponding algebras HR(G, I). These more
general Iwahori-Hecke algebras have a similar presentation in terms of a certain group W = X ⋊W0 which
admits the structure of an affine extended Coxeter group but where the constant coefficients q and q − 1 are
replaced by coefficients qs and qs − 1 that can depend on s (cf. lemma 2.2.4).

This was first proved by Vignéras [Vig16, Proposition 4.1, 4.4], although it has long been a part of mathe-
matical folklore that ‘Iwahori-Hecke algebras for non-split groups are affine Hecke algebras for unequal param-
eters’. The latter is in fact not true. The algebra HR(G, I) is isomorphic to the generic pro-p Hecke algebra
H(1)(qs, qs − 1) associated to the affine extended Coxeter group W and hence is an affine pro-p Hecke algebra,
but it is not always an affine Hecke algebra (in our sense) as the group W = X ⋊W0 does not necessarily arise
from a root datum. In fact, X is a finitely generated abelian group with nontrivial torsion part in general.
However, when the group G is split, this subtlety disappears and the corresponding Iwahori-Hecke algebras
are affine Hecke algebras with constant coefficients as = q, bs = q − 1 for the extended affine Weyl group
corresponding to the root datum of G.

The most important structural results concerning affine Hecke algebras in general are the ‘Bernstein rela-
tions’, the ‘Bernstein presentation’ and the computation of the center in terms of invariants of certain commu-
tative subalgebras. These results were obtained by Bernstein and Zelevinsky in an unpublished work for the
special case of constant parameters as = q, bs = q − 1. Lusztig later published a generalized version of these
results in [Lus89], where he took the parameters to be of the form as = qs, bs = qs − 1 with qs = v2ns for
some integers ns and an invertible formal variable v ∈ R = C[v, v−1]. Lusztig obtained these results using a
group homomorphism θ from the group X of translations into the group of units of the affine Hecke algebra.
We will see below (in (2.2.1)) that this map coincides with the restriction of our map θ̃o (see definition 1.10.9)
to X ≤W , where o = oD denotes the spherical orientation (see definition 2.4.1) corresponding to the dominant
Weyl chamber D. These results of Bernstein, Zelevinsky and Lusztig were further generalized by Vignéras in
[Vig06] to allow for parameters of the form as = qs, bs = qs − 1 with qs not necessarily invertible or admitting
a square root.
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The Bernstein relations and the description of the center in all of the above cases are recovered here in
theorems 1.11.3 and 2.7.1. Note that the results of theorem 2.7.1 hold unconditionally in these cases since
T = 1 (cf. remark 2.7.3). For the readers convenience we will quote the construction of the Bernstein-
Zelevinsky subalgebra and the description of the center from theorem 2.7.1 for our special case. For every
spherical orientation o = oD of W , associated to a Weyl chamber D (see definition 2.4.1), the integral Bernstein
map θ̂o : W → H(1) (see definition 1.10.2) gives rise to a commutative subalgebra

Ao :=
{

x∈X
Rθ̂o(x) ⊆ H(1)

whose multiplicative structure is determined by the product rule (corollary 1.10.5)

θ̂o(x)θ̂o(y) = X(x, y)θ̂o(x+ y)

If the parameters as ∈ R are units and squares, then we can also consider the normalized Bernstein map
θ̃o : W → H(1) whose restriction to X is determined by the fact that it is multiplicative and satisfies the
following relation (see definition 1.10.9 for details)

(2.2.1) θ̃o(x) =
√
L(x)−1Tx ∀x ∈ X ∩D

These properties together imply that θ̃o
\\\
X

coincides with the map denoted by θ by Lusztig [Lus89], which ap-

pears in the classical Bernstein-Lusztig basis ¶θxTw♢x∈X,w∈W0 . Moreover, θ̃o is related to the integral Bernstein

map via θ̃o(w) =
√
L(L)−1(w)θ̂o(w) (see theorem 1.10.1). It follows from this that Ao can also be expressed as

Ao =
{

x∈X
Rθ̃o(x)

and that θ̃o induces an isomorphism of the group algebra R[X] with Ao. In any case, the group W0 acts on Ao

by permuting the basis elements w(θ̂o(x)) = θ̂o(w(x)) and the center of H(1) is given by the W0-invariants

Z(H(1)) = AW0
o =

{

γ∈W0\X
Rzγ

with
zγ =

∑

x∈γ
θ̂o(x)

independent of the orientation (Weyl chamber) chosen.

2.2.2 The affine Hecke algebra of GLn

We now specialize our discussion to the case where the root datum defining W is the root datum of GLn.
The affine Hecke algebra of W with parameters as, bs will be denoted by Haff

n (as, bs) or simply by Haff
n . The

generalized braid groups A(W ), A(W0) (see definition 1.4.1) associated to W = X⋊W0 and W0 will be denoted
by Aaff

n and An respectively. From example 2.1.3(ii) we recall that

W = Zn ⋊ Sn = Waff ⋊ Ω, Waff = ⟨S⟩ , S = ¶s0, . . . , sn♢, Ω = ⟨u⟩

where
s0 = τen−e1(1 n), si = (i i+ 1) for i > 0 and u = τen(n n− 1 . . . 1)

with u acting on S as
usiu

−1 = si−1

In particular, all the generators s ∈ S are conjugate under W and condition (1.3.1) on the parameters as, bs is
equivalent to

as = at, bs = bt ∀s, t ∈ S
Hence, we can write Haff

n (a, b) = Haff
n (as, bs) with parameters a, b ∈ R subject to no further constraint. The

‘affine braid group’ Aaff
n can be interpreted ([Dũn83],[Lek83]) topologically as a group of braids as follows.

Consider the real affine hyperplane arrangement

H = ¶Hα : α ∈ Φaf♢, Hα = ¶x ∈ A : α(x) = 0♢, Φaf = ¶α+ k : α ∈ Φ, k ∈ Z♢ ⊂ Hom(A,R)
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in A = Rn induced by the root datum

(X,Φ, X∨,Φ∨) = (Zn, ¶ei − ej : i ̸= j♢,Zn, ¶ei − ej : i ̸= j♢)

of GLn (cf. example 2.1.3). The complement X := A − √H∈H
H is disconnected, the connected components

being in bijection with the infinite group Waff , but the complement Y := AC−
√
H∈H

HC of the complexified ar-
rangement is connected. The fundamental groupoid π1(Y ) of Y can be described as follows (see [Dũn83],[Lek83]).
For any two points x, y ∈ X ⊆ Y let Py,x be the subspace of the space of all paths γ : [0, 1] → Y consisting of
those γ which satisfy

(i) γ(0) = x, γ(1) = y

(ii) ∀t ∈ [0, 1], α ∈ Φaf ℜ(αC(γ(t))) = 0 ⇒ α(x)α(y) < 0

(iii) ∀t ∈ [0, 1], α ∈ Φaf α(x)α(y) < 0 ⇒ ℑ(αC(γ(t))) · (α(x)− α(y)) ≥ 0

In words the second condition says that the real part of γ should only cross these hyperplanes H ∈ H which
separate x and y, while the third condition means that for every hyperplane Hα ∈ H, α ∈ Φaf separating x and
y, the path αC ◦ γ : [0, 1] → C should wind around the origin counter-clockwise and should stay completely in
either the upper or lower half-plane. It is easy to see that Py,x is contractible, hence giving rise to a well-defined
homotopy-class

γy,x ∈ Homπ1(Y )(x, y)

It is even easier to see that
w(Py,x) = Pw(y),w(x)

and hence
w(γy,x) = γw(y),w(x)

for w ∈W . Moreover, for any three points x, y, z ∈ X it holds true that

Pz,y ◦ Py,x ⊆ Pz,x
and therefore that

γz,y ◦ γy,x = γz,x

if the set of hyperplanes separating x and y is disjoint from the set of hyperplanes separating y and z, i.e. if

d(Cx, Cy) + d(Cy, CZ) = d(Cx, Cz)

where Cp denotes the connected component of X (chamber) containing p and d(C,C ′) denotes the distance
between two chambers. One can now show ([Dũn83],[Lek83]) that the full subgroupoid of π1(Y ) corresponding
to X ⊆ Y is described algebraically as the free groupoid on symbols γy,x subject to the relation

d(Cx, Cy) + d(Cy, Cz) = d(Cx, Cz) ⇒ γz,y ◦ γy,x = γz,x

From this one deduces a description of the fundamental group of the quotient space W\Y , where the action of
W is naturally extended to AC. Indeed, W acts properly discontinuously and without fix points on Y , therefore
Y →W\Y is a covering map with Galois group W . Fixing a base point x0 ∈ X and letting

Tw := p∗(γ−1
x0,w(x0)) ∈ π1(W\Y, p(x0)), w ∈W

it follows easily from the above that

TwTw′ = Tww′ if ℓ(w) + ℓ(w′) = ℓ(ww′)

and that the elements Tw together with the above relation define a presentation of π1(W\Y, p(x0)) and hence
an isomorphism of this group with Aaff

n . The interpretation of π1(W\Y, p(x0)) as a group of ‘affine braids’ arises
by viewing W\Y as the iterated quotient

W\Y ≃ Sn\(Zn\Y ) ≃ Sn\((C×)n −∆)

where ∆ =
√
i ̸=j¶zi = zj♢ is the diagonal and Zn\Y is identified with (C×)n −∆ via z ↦→ exp(2πiz). A loop γ

in Sn\((C×)n −∆) around p(x0) can be identified with the braid

n⋃

i=1

¶(t, γ̂(t)i) : t ∈ [0, 1]♢ ⊆ [0, 1]× C×
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(a) The braid T given by the path γ̂(t) =
(e2πit, ζe2πit, ζ2e2πit).
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(b) The inverse T −1 of the braid T .
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(c) The ‘composite’ T T −1.

Figure 3: Loops in Sn\((C×)n −∆) based at
]
(1, ζ, ζ2, . . . , ζn−1)

]
(ζ := exp 2πi

n ) can be identified with braids
in [0, 1]× C× with endpoints ¶(0, ζi) : i = 0, . . . , n− 1♢ and ¶(1, ζi) : i = 0, . . . , n− 1♢, by lifting a loop γ to a
path γ̂ in (C×)n −∆ and associating to it the braid

√n
i=1¶(t, γ̂(t)i) : t ∈ [0, 1]♢.

where γ̂ denotes any lift of γ to a path in (C×)n−∆. Under this bijection, composition of paths corresponds to
‘stacking’ of braids (rescaling the t-coordinate by 1

2 ), and the inverse of a braid is given by its reflection along
the t = 1

2 -plane. This is illustrated in figure 3 (for the base point x0 =
(
0, 1

n , . . . ,
n−1
n

[
and n = 3), where

the ‘missing’ central line [0, 1] × ¶0♢ ⊆ [0, 1] × C has been enlarged to a flagpole for better visibility. Figure 4
depicts the braids corresponding to some representatives of the generators Ti = Tsi

, X1 = T−1
−e1

of the group
Aaff

3 appearing in lemma 2.2.1 below.
The classical Artin braid group An can be interpreted similarly either as the fundamental group of Sn\(Cn−

∆) or as a group braids (without a flagpole). From the topological picture it is therefore clear that there should
be a canonical map

Aaff
n −→ An

induced by the inclusion Sn\((C×)n−∆) ⊆ Sn\(Cn−∆), corresponding to ‘removing the flagpole’ on the level
of braids. However, this map is not simply given by Tw ↦→ Tp(w), where p denotes the canonical projection
W = X ⋊W0 →W0. To describe it we need another presentation of the group A(W ).

2.2.1 Lemma. Let Ãaff
n be the group generated by elements

T1, . . . Tn−1, X1

subject to the relations

TiTj = TjTi for all i, j = 1, . . . , n− 1 such that ♣i− j♣ > 1(1)

TiTi+1Ti = Ti+1TiTi+1 for all i = 1, . . . , n− 2(2)

X1T1X1T1 = T1X1T1X1(3)

X1Ti = TiX1 for all i = 2, . . . , n− 1(4)

Then there are inverse isomorphisms Φ : Ãaff
n → Aaff

n , Ψ : Aaff
n → Ãaff

n of groups determined by

Φ(Ti) = Tsi
i = 1, . . . , n− 1

Φ(X1) = T−1
−e1

and

Ψ(Tsi
) = Ti i = 1, . . . , n− 1

Ψ(Ts0
) = Ψ(Tu)T1Ψ(Tu)−1

Ψ(Tu) = Tn−1 . . . T1X1
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(a) T1 = Ts1

ζ0

ζ0
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(b) T2 = Ts2

ζ0

ζ0

ζ1

ζ1

ζ2

ζ2

(c) X1 = T −1
−e1

Figure 4: The generators of Ãaff
3 viewed as braids in [0, 1]× C×.

Proof. We only give some brief indications as the proof consists mostly of straightforward computations. First
of all, for every extended Coxeter group W the decomposition W = Waff ⋉ Ω induces an isomorphism

A(Waff ⋉ Ω) ≃ A(Waff) ⋉ Ω

where the action of Ω on A(Waff) is determined by u(Tw) = Tu(w). Moreover, one sees easily that there is an
isomorphism

A(Waff) ≃
⨀
¶Ts♢s∈S : TsTtTs . . .  

m factors

= TtTsTt . . .  
m factors

, s, t ∈ S, ord(st) = m <∞
⟩

To see that Ψ is well-defined it is therefore enough to check that

Ψ(Tsi
)Ψ(Tsj

) = Ψ(Tsj
)Ψ(Tsi

), i, j = 1, . . . , n− 1, ♣i− j♣ > 1

Ψ(Tsi
)Ψ(Tsi+1)Φ(Tsi

) = Ψ(Tsi+1)Ψ(Tsi
)Ψ(Tsi+1), i = 1, . . . , n− 2

Ψ(Tu−1)Ψ(Tsi
)Ψ(Tu−1)−1 = Ψ(Tsi−1

), i ∈ ¶0, . . . , n− 1♢ = Z/nZ

The first two relations are immediate and the last one follows from a lengthy computation. By definition, the
well-definedness of Φ amounts to checking relations (1)-(4). Again relations (1) and (2) are immediate, while
(3) and (4) follow from (1), (2) and

Tu−1Tsi
T−1
u−1 = Tsi−1

Finally, more straightforward and lengthy computations show that Φ and Ψ are inverse to each other.

In terms of this description, the map Aaff
n −→ An is then given by

Ãaff
n −→ An, Ti ↦−→ Tsi

, X1 ↦→ 1

Writing Hn = Hn(a, b) for the generic pro-p Hecke algebra of W0 with constant parameters a, b, the above
morphism of groups induces a morphism of algebras

π : Haff
n −→ Hn

by proposition 1.4.3 (one easily checks that the quadratic relations are preserved). Explicitly, this map is the
identity on Hn (viewing it as a subalgebra of Haff

n ) and sends the generator Ts0
to the elements

Tsn−1
. . . Ts1

Ts1
T−1
sn−1

. . . T−1
s1

The map π is very important because it gives a description of the center of Hn in terms of the center of Haff
n .

Namely, it turns out that π maps the center of Haff
n surjectively onto the center of Hn. This should be contrasted

with the fact that
Z(Haff

n ) ∩H0 = R
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More explicitly, the center of Hn is the algebra of symmetric polynomials in the pairwise commutative Jucys-
Murphy elements J1, . . . , Jn given recursively by

J1 := 1, Ji+1 = Tsi
JiTsi

The following lifts of the Ji under π are also called Jucys-Murphy elements

Jaff
1 := X1, Jaff

i+1 = Tsi
Jaff
i Tsi

The elements Jaff
1 , . . . , Jaff

n also commute pairwise. In fact, they are nothing else but the images of the standard
basis vectors ei ∈ Zn under the unnormalized Bernstein map.

2.2.2 Lemma. Let o = oD be the spherical orientation (see definition 2.4.1) of W associated to the dominant
Weyl chamber

D = ¶x ∈ Rn : x1 < . . . < xn♢
Then

Jaff
i = θo(ei), i = 1, . . . , n

as an equality in Haff
n (in fact already in Aaff

n ).

Proof. By induction. For i = 1 the statement follows immediately from the definitions. Indeed, −e1 ∈ D and
therefore

θo(e1) = θo(−e1)−1 = T−1
−e1

= X1 = Jaff
1

For the induction step we need to prove that

Tsi
θo(ei)Tsi

= θo(ei+1)

But this is shown in [Mac03, 3.2.4], where the notation Y x is used instead of θo(x).

2.2.3 Pro-p-Iwahori Hecke algebras

Let F be a nonarchimedean local field, i.e. a field endowed with a nontrivial discrete valuation νF : F →
Z ∪ ¶+∞♢ whose residue field k is a finite field with cardinality q a power of some prime p. Let G be a
connected reductive group over F , G = G(F ) the group of rational points, I ≤ G an Iwahori subgroup in the
sense of [Tit79, 3.7] and I(1) ≤ I its pro-p radical. Recall that the pro-p radical of a profinite group containing
an open pro-p subgroup is by definition (see [HV15, 3.6]) its largest open normal pro-p subgroup. Finally, let
R be a commutative ring.

To this data one associates an R-algebra, the pro-p-Iwahori Hecke algebra, as follows. Let

H(1) := HR(G, I(1)) = EndG(indGI(1) 1R)

be the ring of endomorphisms of the G-representation induced from the trivial representation of I(1). This
R-algebra is canonically identified with the convolution algebra R[I(1)\G/I(1)] of I(1)-double cosets, where the
product of the basis elements Tt, Tt′ corresponding to double cosets t, t′ ∈ I(1)\G/I(1) is given by

TtTt′ =
∑

t′′

m(t, t′; t′′)Tt′′

Here the sum runs over all double cosets and m(t, t′; t′′) denotes the number of I(1)-left cosets of t ∩ gt′−1 for
g ∈ t′′ arbitrary.

Vignéras [Vig16] has shown that the set I(1)\G/I(1) is in bijection with a certain group W (1) (which can
be given the structure of a pro-p Coxeter group) and that the basis elements Tw of H(1) satisfy relations of
Iwahori-Matsumoto type

TwTw′ = Tww′ , if ℓ(w) + ℓ(w′) = ℓ(ww′)

T 2
s = asTs2 + bsTs, if ℓ(s) = 1

Given a suitable structure of a pro-p Coxeter group on W (1) and an affine extended Coxeter group on W , the
above presentation implies that H(1) is an affine pro-p Hecke algebra in the sense of definition 2.1.4. Our goal
now is to explicitly construct these structures.

Let C be the chamber of the building of G which corresponds to the Iwahori subgroup I = IC and let S ≤ G
denote the maximal split torus corresponding to an apartment containing C. Let Z ≤ N ≤ G respectively denote
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the centralizer and normalizer of S in G, and let Z = Z(F ) and N = N(F ) denote their groups of rational
points. Let

Z0 := Z ∩ I, Z0(1) := Z ∩ I(1), Zk := Z0/Z0(1)

The groups Z0 and Z0(1) are normal in N (cf. [Vig16, 3.7]) and thus we may form the quotient groups

W := N/Z0, W (1) := N/Z0(1)

The inclusion N ⊆ G induces a bijection ([Vig16, Proposition 3.35])

W (1) ∼−→ I(1)\G/I(1), [n] ↦−→ I(1)nI(1)

and thereforeH(1) has a canonical basis Tw indexed by elements w ∈W (1). Moreover, we have an exact sequence

(2.2.2) 1 →→ Zk →→ W (1) →→ W →→ 1

with Zk finite abelian (in fact Zk identifies with the rational points of a torus over k, cf. [Vig16, 3.7]).
Let us now see how W can be given the structure of an affine extended Coxeter group. The theory of

buildings associates to the triple (G,S, F ) an apartment A = A(G,S, F ) (see [Tit79, 1.2]), which is an affine
space over the vector space V = X∗(S)⊗ R endowed with a homomorphism

ν : N −→ Autaff(A)

into the group of affine automorphisms of A, such that we have a commutative diagram

(2.2.3) 1 →→ Z

ν

↓↓

→→ N

ν

↓↓

→→ W0

↓↓

→→ 1

1 →→ V →→ Autaff(A) →→ GL(V ) →→ 1

Here the rightmost vertical map is the canonical (faithful) representation of the finite Weyl group W0 as a
reflection group in V , and the leftmost vertical map is uniquely determined by the condition

χ(ν(z)) = −νF (χ(z)) ∀z ∈ Z, χ ∈ X∗(Z)

This condition implies that ν(Z) ≤ V is a discrete subgroup of rank dim(V ), i.e. a lattice in V . As I is compact
so is Z0 = I ∩ Z, and hence Z0 ≤ ker(ν) since ν is continuous. Therefore, ν factors to a map

ν : W −→ Autaff(A)

which after an appropriate choice of an origin in A and hence an identification A ≃ V will define a map
ρ : W → Autaff(V ). Regardless of this choice the above diagram shows that the subgroup ρ0(W ) defined in
(ACIII) is equal to the image of W0 in GL(V ), and hence (ACIII) is verified. Moreover, the injectivity of
W0 → GL(V ) and the commutativity of the above diagram imply that

ρ(W ) ∩ V = ν(Z)

regardless of the choice of an origin. In particular (ACV) holds, since ν(Z) is a lattice in V . Now in order to
choose an origin, we first need to define the locally finite set H of hyperplanes.

For this we need to recall a few more facts from the theory of buildings. Let

Φ := Φ(G,S) ⊆ X∗(S) ⊆ V ∨

denote the root system21 of the pair (G,S).
Let us for a root a ∈ Φ denote by Ua ≤ G the root subgroup corresponding to a, let Ua := Ua(F ) and

U∗
a := Ua − ¶1♢. For every u ∈ U∗

a , the set U−auU−a ∩N consists of a single element, denoted m(u) in [Tit79,
1.4]. The linear part of the image ν(m(u)) ∈ Autaff(A) is the reflection sa ∈ GL(V ) associated to a, which
implies that ν(m(u)) is an affine reflection. Let α(a, u) denote the affine function whose linear part is a and

21Note that in general, Φ is not reduced and so in particular it will not be the reduced root system Φ attached to the affine
extended Coxeter group W by lemma 2.1.2.
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whose vanishing set is the hyperplane fixed by ν(m(u)). For any affine function α : A → R with linear part a,
let

Xα := ¶u ∈ U∗
a : α(a, u) ≥ α♢ ∪ ¶1♢

It is a major result of the theory of buildings that Xα is in fact a subgroup of Ua. However, from the definition it
is immediately clear that the Xα with α running over all affine functions with linear part a form an exhaustive
and separated filtration of Ua. Moreover, any two elements m(u),m(u′) with u, u′ ∈ U∗

a differ only by an element
of Z. Since ν(Z) ≤ V is a discrete subgroup, it follows that the filtration ¶Xα♢α is locally constant and that

H := ¶¶α(a, u) = 0♢ : a ∈ Φ, u ∈ U∗
a♢

is a locally finite set of hyperplanes. The set H is left invariant under the action of W , thus verifying (ACI),
which follows from

nU∗
an

−1 = U∗
n(a), n ∈ N, a ∈ Φ

and

(2.2.4) nm(u)n−1 = m(nun−1), n ∈ N, a ∈ Φ, u ∈ U∗
a

The last equation also shows that
n−1Xαn = Xα◦ν(n)

Let W (H) denote the subgroup of Autaff(A) generated by all ν(m(u)) with a ∈ Φ′, u ∈ U∗
a . Then W (H) leaves

H invariant as H is already invariant under W . Fixing a W0-invariant positive definite scalar product on V ,
the group W (H) becomes the affine reflection group generated by the orthogonal reflections sH with H ∈ H.
By [Bou07, Ch. V, §3.10, Proposition 10], there exists a special point p ∈ A. As W (H) maps special points
to special points and acts transitively on the set of chambers, we may assume that p lies in the closure of the
chamber C which corresponds to I.

Identifying A and V via p, we will assume from now on that A = V and p = 0 and we will put ρ := ν. Letting
C0 := C, we fulfill (ACIV) and (ACIX). This gives W (H) the structure of a Coxeter group (cf. section 2.1)
by letting the set of distinguished generators be the set S(C0) of reflections with respect to the walls of C0.

We now want to construct lifts s̃H ∈ W of the reflections sH ∈ W (H), H ∈ H satisfying (ACVI) and
(ACVII). Note that (ACII) and (ACVIII) are then satisfied automatically. Consider the subgroup Naff ≤ N
generated by Z0 and all m(u), u ∈ U∗

a , a ∈ Φ. From relation (2.2.4) it follows that it is a normal subgroup of
N . Moreover, by construction the map ν restricts to a surjection

Naff ↠W (H)

which we claim has kernel Z0 (cf. [Vig16, 3.9]). Admitting this claim, it follows that the subgroup

Waff = Naff/Z0 ⊆ N/Z0 = W

maps isomorphically onto W (H) under ν and hence that (ACVI) and (ACVII) are fulfilled by letting s̃H be
the unique preimage in Waff of sH under ν.

Let us now show that ker(ν) ∩Naff = Z0. We already saw that Z0 is contained in the kernel. The reverse
inclusion follows from the following characterization of the Iwahori subgroup given by Haines and Rapoport
(Def. 1, Prop. 3 and Lemma 17 in [HR08])

IC = FixG(C) ∩Gaff

Here C denotes the chamber in the reduced building of G corresponding to C and FixG(C) denotes the subgroup
of all elements of G fixing C pointwise. Note that FixG(C) ⊆ FixG(C). Moreover, Gaff denotes the subgroup of
G generated by all parahoric subgroups, or equivalently, the subgroup generated by Z0 and the root subgroups
Ua, a ∈ Φ. It follows that Naff ⊆ Gaff and therefore that

ker(ν) ∩Naff ⊆ FixG(C) ∩Gaff = I

Since ker(ν) ⊆ Z, this implies
ker(ν) ∩Naff ⊆ Z ∩ I = Z0

We have therefore now verified conditions (ACI)–(ACIX). It remains to show that (ACX) holds, i.e. that the
subgroup

X = ρ−1(V )
(!)
= Z/Z0 ≤W
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is finitely generated and commutative. But this is shown in [HR10, Theorem 1.0.1], where are Z,Z0 are denoted
by M(F ), M(F )1. To apply this theorem one has to note that Z0 is the unique parahoric subgroup of Z (see
the discussion before [Vig16, Proposition 3.15]).

We have therefore given W = N/Z0 the structure of an affine extended Coxeter group. By lemma 2.1.2,
this induces on W the structure W = (W,Waff , S,Ω) of an extended Coxeter group. The exact sequence
(2.2.2) therefore makes W (1) = N/Z0(1) into a pro-p Coxeter group, provided we specify lifts of the generators
s̃H ∈Waff , H ∈ S(C0) that satisfy the braid relations. This is the content of the next lemma. In order to state
it, we need to recall a few more things from [Tit79].

Let ¶Xα♢α denote the family of quotients of the descending filtration ¶Xα♢α, i.e.

Xα = Xα/Xα+ε

for ε > 0 sufficiently small. If a ∈ Φ with 2a ∈ Φ, then the inclusion U2a ⊆ Ua induces an inclusion X2α ⊆ Xα

for every α with α0 = a. The set Φaf of affine roots is then defined to be (cf. [Tit79, 1.6])

Φaf = ¶α : α0 ∈ Φ, X2α ̸= Xα♢

where X2α = ¶1♢ by convention if 2α0 ̸∈ Φ. Note that if Xα ̸= 1 but α ̸∈ Φaf , then necessarily 2α ∈ Φaf .
Hence, every H ∈ H is of the form H = ¶α = 0♢ for some α ∈ Φaf .

2.2.3 Lemma. In the situation of the above example, the following holds. Given a wall H ∈ S(C0) let α ∈ Φaf

denote the unique affine root with

H = ¶α = 0♢, C0 ⊆ ¶α > 0♢ and
1

2
α ̸∈ Φaf

and put nH = m(u) for some arbitrary u ∈ Xα with nonzero image under Xα ↠ Xα. Then for all H,H ′ ∈ S(C0)
with ord(sHsH′) <∞ we have the relation

nHnH′nH . . . ≡ nH′nHnH′ . . . mod Z0(1)

in N , where the number of factors on both sides equals ord(sHsH′).

Proof. If H,H ′ are parallel, then either H = H ′ or ord(sHsH′) = ∞, in which case there is nothing to prove.
So we may assume that H,H ′ are not parallel, and hence that the intersection H ∩H ′ contains a non-empty
face of the fundamental chamber C0. To every face F of C0 is associated a subgroup (parahoric) KF ≤ G as
follows (see also [Vig16, 3.7]). Every face F of C0 corresponds to a face in the apartment A♮ corresponding to
S in the reduced building of G. To every nonempty bounded subset Ω ⊆ A♮ is attached ([BT84, 4.6.26] and
[BT84, 5.1.9]) a smooth affine group scheme G0

Ω over the ring of integers of the local field F (O♮ in the notation
of [BT84]) with generic fiber G. In the notation of [BT84] the parahoric KF corresponding to F is then defined
to be (see [BT84, 5.2.6] and the remark before [BT84, 5.2.9])

KF = G0
F (O) ∩G(K♮) = G0

F (O♮)

From [BT84, 5.2.4] it follows that the group KF is also characterized as the subgroup generated by Z0 and the
Xα for all α with α0 ∈ Φ and F ⊆ ¶α > 0♢.

For F = C0 one has KF = I and for any two faces F, F ′ of C0 (see [Vig16, Corollary 3.21])

F ⊆ F ′ ⇒ KF ⊇ KF ′ and KF (1) ⊆ KF ′(1)

Here KF (1) denotes the pro-p radical of KF . In particular

(2.2.5) KF (1) ⊆ I(1)

for all faces F of C0. Let now F ̸= ∅ be a face of C0 contained in H ∩H ′. The subset

ΦF := ¶α0 : α ∈ Φaf , F ⊆ ¶α = 0♢♢ ⊆ Φ

is a sub root system of Φ. Moreover, elementary arguments show that α0, α
′
0 ∈ ΦF are part of a basis of ΦF .

Here it is used that 1
2α,

1
2α

′ ̸∈ Φaf .

Let GF = G0
F ×Spec(OF ) Spec(k) be the reduction of the group scheme G0

F and let G
red

F denote the quotient

of GF by its unipotent radical. Identifying G
red

F with the unique Levi subgroup of GF containing the reduction



2.2 Main examples of affine pro-p Hecke algebras 69

S of the canonical model of S over OF , the group G
red

F coincides with the group denoted by the same symbol
in [Tit79, 3.5]. The canonical map

KF = G0
F (OF ) −→ G

red

F (k)

is surjective and its kernel is equal to the pro-p-radical KF (1) by [HV15, 3.7]. The group G
red

F is a connected
reductive group over k and its root system with respect to the maximal split subtorus S, as a subset of
X∗(S) = X∗(S), is equal to ΦF (see [Tit79, 3.5.1]). Moreover, for any α ∈ Φaf with F ⊆ ¶α = 0♢ we have

(2.2.6) Xα ⊆ KF

and (see [Tit79, 3.5.1])

(2.2.7) Xα = Uα0(k)

as an equality of subgroups of G
red

F (k) = KF /KF (1). Here Uα0
denotes the root subgroup of G

red

F corresponding
to α0 ∈ ΦF .

Let now α, α′ ∈ Φaf and u ∈ Xα, u′ ∈ Xα′ with nH = m(u), nH′ = m(u′) be as in the statement of this

lemma. Denote by u, u′ the images of u, u′ under KF ↠ G
red

F (k). By (2.2.7) and the choice of u, u′, the elements
u, u′ are not reduced to the neutral element. Applying (2.2.7) to the reductions of the elements appearing in
the decomposition of m(u) and m(u′) respectively, it follows that

(2.2.8) m(u) = m(u), m(u′) = m(u′)

by uniqueness, where m(u), m(u′) denote the images of m(u),m(u′) ∈ KF under KF ↠ G
red

F (k) and m(u),
m(u′) are associated to u, u′ in the same way as m(u),m(u′) are associated to u, u′. In fact, m(u),m(u′) are
the elements canonically associated to the elements u, u′ and the root datum (Z(S)(k), (Ua(k))a∈ΦF

) (in the
sense of [BT72, 6.1.1]) by [BT72, 6.1.2 (2)]. Applying Proposition [BT72, 6.1.8] to the root datum given by
restricting (Z(S)(k), (Ua(k))a∈ΦF

) to the rank two sub root system (Zα0 + Zα′
0) ∩ ΦF , it follows that

(2.2.9) m(u)m(u′)m(u) . . . = m(u′)m(u)m(u′) . . .

where the number of factors on both sides equals the order of sα0
sα′

0
∈W0(ΦF ) ⊆W0(Φ). Let x be an arbitrary

point of the face F . As sH and sH′ both lie in the stabilizer Autaff(V )x and the map Autaff(V ) → GL(V )
restricts to an injection Autaff(V )x ↪→ GL(V ), the order of the image sα0sα′

0
of sHs′

H ∈ Autaff(V ) is equal to
the order of sHs′

H . Hence, it follows from (2.2.9) and (2.2.8) that ab−1 ∈ KF (1) where

a = m(u)m(u′)m(u) . . . b = m(u′)m(u)m(u′) . . .

and the number of factors on the right hand side of each equation equals the order of sHs′
H . On the other hand

we have ab−1 ∈ Z since Z equals the kernel of the composition N → W (H)→ W0, and a, b are mapped to the
same element under N →W (H). Hence

ab−1 ∈ Z ∩ I(1) = Z0(1)

and the claim follows.

Now, for a generator s = s̃H , H ∈ S(C0) of Waff let ns ∈ W (1) = N/Z0(1) be the class of an element
nH ∈ N as chosen according to the lemma. Then the lemma states that W (1) together with the choice of these
lifts becomes a pro-p Coxeter group in the sense of definition 1.1.13.

We can now finally state the relation between pro-p-Iwahori Hecke algebras and generic pro-p Hecke algebras.

2.2.4 Lemma. Given a generator s = s̃H ∈ Waff , H ∈ S(C0), let α ∈ Φaf be the unique affine root with
H = ¶α = 0♢ and 1

2α ̸∈ Φaf . Then the following holds.

(i) We have
qs := #InsI/I = #I(1)nsI(1)/I(1) = #Xα = qd(v)

where d(v) ∈ N denotes the integer associated to the vertex v of the local Dynkin diagram ∆(Φaf) (see
[Tit79, 1.8]) corresponding to H.

(ii) Let F be any face of C0 contained in H, let GF,s be the subgroup of G
red

F generated by Xα and X−α (cf.
proof of lemma 2.2.3) and let

Zk,s := GF,s ∩ Zk ≤ Zk
Then Zk,s is independent of the choice of F .
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(iii) Let

cs :=
∑

t∈Zk,s

cs(t)t ∈ R[Zk]

with
cs(t) := #

(
nsXαns ∩XαnstXα

[

where the intersection is taken inside G
red

F (k) (for any F as in (ii)), and ns denotes (by abuse of notation)

the image of the element nH = m(u) ∈ Xα under Xα ↠ Xα ⊆ G
red

F (k).

Then the families (qs)s, (cs)s fulfill condition (1.3.1) with respect to the pro-p Coxeter group W (1) defined
above, and the R-linear isomorphism

H(1)
R (qs, cs)

∼−→ HR(G, I(1)), Tw ↦−→ Tw

is a morphism of R-algebras. Moreover, the integers cs(t) satisfy

∀t ∈ Zk,s cs(t) > 0 and
∑

t∈Zk,s

cs(t) = qs − 1

In particular, the integers cs(t) are all equal to 1 if and only if the order of Zk,s equals qs−1. For example,
this is the case if G is split and simply connected. More generally, if G is only split (but not necessarily
simply connected), it holds that

∀t, t′ ∈ Zk,s cs(t) = cs(t
′)

Proof. ad (i): For the first equality and second equality we refer to [Vig16, Corollary 3.30], recalling that (see
(2.2.7)) Xα is naturally identified with the group Uα0

(k) (denoted Uα,F,k in [Vig16]). The last equality follows
directly from the definition of the integer d(v) as the sum of the dimensions of k-vector spaces (cf. [Tit79, 1.6])
Xα/X2α and X2α.

ad (ii): The independence of Zk,s from the choice of F is implicit in the proof of [Vig16, Proposition 4.4]. It
can also be seen as follows (cf. [Vig16, Proposition 3.26]). Given two (nonempty) faces F, F ′ of C0 with F ′ ⊆ F ,
we have an inclusion KF ⊆ KF ′ . The image of KF in KF ′,k under the natural map KF ′ ↠ KF ′,k = KF ′/KF ′(1)
is equal to the subgroup MF generated by Zk and the groups Ua(k), a ∈ ΦF ⊆ ΦF ′ . Moreover, MF appears as
a Levi subgroup of a parabolic subgroup QF = MF ⋉ UF , such that the inverse image of the unipotent radical
UF under KF → KF ′,k equals KF (1). Hence, we have an induced injective map

KF,k
∼−→MF ⊆ KF ′,k

which is the identity on Zk and the Ua(k), a ∈ ΦF . In particular, the subgroup GF ′,s of G
red

F ′ = KF ′,k generated
by Xα = Uα0

(k) and X−α = U−α0
(k) equals the image of GF,s under the embedding KF,k ↪→ KF ′,k. As this

embedding is the identity on Zk, it follows that

GF,s ∩ Zk = GF ′,s ∩ Zk

ad (iii): As Vignéras has observed [Vig16, Theorem 4.7], the condition (1.3.1) is not only sufficient but
also necessary for the existence of an algebra structure on the free R-module over W (1) satisfying (1.3.2) and
(1.3.3). As the latter two conditions are satisfied for HR(G, I(1)) by [Vig16, Proposition 4.1] and [Vig16,
Proposition 4.4], it follows that (1.3.1) is satisfied. Moreover, the fact that the relations (1.3.2) and (1.3.3) hold
in HR(G, I(1)) implies that H(1)

R (qs, cs)
∼−→ HR(G, I(1)) is a morphism of algebras.

Finally, for the properties of the integers cs(t) we refer to step 3 of the proof of [Vig16, Proposition 4.4];
however note, that the proof contains some errors as it is incorrectly22 claimed there that #Zk,s = qs−1 always
holds when G is split.

We have therefore now recognized HR(G, I(1)) as an affine pro-p Hecke algebra. Since in this case the
abelian group T = Zk underlying W (1) is finite, all the structure results of theorem 2.7.1 hold unconditionally
for HR(G, I(1)) (cf. remark 2.7.3). In particular the center of HR(G, I(1)) is finitely generated as an R-algebra,
and HR(G, I(1)) is module-finite over its center.

22for example, for G = PGL2 one has #Zk,s = qs−1
2
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2.2.4 Affine Yokonuma-Hecke algebras

The Yokonuma-Hecke algebras Yd,n of example 1.3.8 have a natural variant, the affine Yokonuma-Hecke al-
gebras Y aff

d,n. According to [CS15, Introduction] these algebras have first been introduced by Juyumaya and
Lambropoulou [JL] under the name of ‘d-th framization of the Iwahori-Hecke algebra of B-type’. Later they
were studied by Chlouveraki and Poulain d’Andecy [Cd14] under the name ‘affine Yokonuma-Hecke algebra’.
The different terminologies reflect the two different ways in which Y aff

d,n can be seen as modifications of other
algebras. This is visualized in the following commutative diagram (defined down below)

(2.2.10) Y aff
d,n

↓↓

→→ Haff
n

π

↓↓
Yd,n →→ Hn

were the left column is the ‘framization’ of the right column, and the upper row is the ‘affinization’ of the lower
one.

Chlouveraki and Sécherre have recognized [CS15] the algebra Y aff
d,n as (in our terminology) generic pro-p

Hecke algebras for the split pro-p Coxeter group W (1) = T ⋊W , T = (Z/dZ)n, W = Zn ⋊ Sn. In fact, we will
see in a moment that they are affine pro-p Hecke algebras in the sense of definition 2.1.4.

Let us first recall the definition (cf. [Cd14, 3.1]) of the affine Yokonuma-Hecke algebras. For integers d, n ≥ 1,
the algebra Y aff

d,n is the algebra over R = C[u±1, v] generated by elements

g1, . . . , gn−1, t1, . . . , tn, X1, X
−1
1

subject to the relations

gigj = gjgi for all i, j = 1, . . . , n− 1 such that ♣i− j♣ > 1(1)

gigi+1gi = gi+1gigi+1 for all i = 1, . . . , n− 2(2)

titj = tjti for all i, j = 1, . . . , n(3)

gitj = tsi(j)gi for all i = 1, . . . , n− 1 and j = 1, . . . , n(4)

tdj = 1 for all j = 1, . . . , n(5)

X1X
−1
1 = X−1

1 X1 = 1(6)

X1g1X1g1 = g1X1g1X1(7)

X1gi = giX1 for all i = 2, . . . , n− 1(8)

X1tj = tjX1 for all j = 1, . . . , n(9)

g2
i = u2 + veigi for all i = 1, . . . , n− 1(10)

where as in example 1.3.8 we let

ei =
1

d

∑

0≤s<d
(ti/ti+1)s

Note that this definition of the Yokonuma-Hecke algebra slightly differs from the one given in [Cd14], as we are
considering Y aff

d,n as an algebra over the ring C[u±, v] in two formal variables. The algebra of [Cd14] is obtained
by specializing Y aff

d,n along the ring homomorphism C[u±1, v]→ C[q±1] sending u ↦→ 1 and v ↦→ q − q−1.
Let us now recognize Y aff

d,n as an affine pro-p Hecke algebra. More precisely, let us show that Y aff
d,n is isomorphic

to a generic pro-p Hecke algebra H(1) for the pro-p Coxeter group W (1) = (Z/dZ)n⋊W , where W = Zn⋊Sn is
the affine extended Coxeter group of example 2.1.3(ii), (cf. also section 2.2.2) acting on (Z/dZ)n by permuting
the coordinates via the projection W ↠ W0 = Sn. By proposition 1.4.3, we have an isomorphism H(1) ≃
R[A(W (1))]/I, where I is the ideal generated by the elements T 2

ns
− asTn2

s
− bsTns

. It therefore suffices to see
that Y aff

d,n is a quotient of R[A(W (1))] by the same ideal I.
For this we need the following ‘framed version’ of lemma 2.2.1, providing two descriptions of the d-modular

framed affine braid group.

2.2.5 Lemma. Let Ãaff,(1)
d,n denote the group generated by elements

g1, . . . , gn−1, t1, . . . , tn, X1
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subject to the relations (1)-(9) above, and let A
aff,(1)
d,n = A(W (1)) with W (1) as above. Then there are inverse

isomorphisms Φ : Ã
aff,(1)
d,n → A

aff,(1)
d,n and Ψ : A

aff,(1)
d,n → Ã

aff,(1)
d,n determined by

Φ(gi) = Tsi
i = 1, . . . , n− 1

Φ(ti) = Tti i = 1, . . . , n

Φ(X1) = T−1
−e1

and

Ψ(Tsi
) = gi i = 1, . . . , n− 1

Ψ(Ts0
) = Ψ(Tu)g1Ψ(Tu)−1

Ψ(Tu) = gn−1 . . . g1X1

Ψ(Tti) = ti i = 1, . . . , n

where t1, . . . , tn denote the canonical generators of (Z/dZ)n.

Proof. Follows immediately from A(W (1)) = T ⋊A(W ), Ãaff,(1)
d,n = T ⋊ Ãaff

n and lemma 2.2.1 (where the Ti have
to be replaced by gi).

From the above lemma, it follows readily that the affine Yokonuma-Hecke algebra Y aff
d,n is the quotient of

the group algebra R[A
aff,(1)
d,n ] by the ideal generated by the relations in (10). This doesn’t yet prove that Y aff

d,n

is isomorphic to the generic pro-p Hecke algebra H(1) (with the obvious parameters as, bs), since we still need
to show that the latter exists. Moreover, carefully comparing the relations in (10) with the generators of the
ideal I realizing the isomorphism H(1) ≃ R[A(W (1))]/I of proposition 1.4.3, one notes that I is generated by
one extra relation not appearing in (10). However, as we will see now, this extra relation is redundant.

2.2.6 Theorem. Let W (1) = T ⋊W , T = (Z/dZ)n, ns = s, W = Zn ⋊ Sn be the split pro-p Coxeter group
constructed above. For i = 0, . . . , n− 1 put

asi
:= u2 ∈ R, bsi

:=
v

d

∑

s∈Z/dZ

(ti/ti+1)s ∈ R[T ]

where t0 := tn by convention and the group T is written multiplicatively. Then the following holds.

(i) The parameter families (as)s∈S, (bs)s∈S defined above satisfy condition (1.3.1) of theorem 1.3.1, and hence
the generic pro-p Hecke algebra H(1)

d,n := H(1)(as, bs) for these parameters exists.

(ii) There is an isomorphism of R-algebras

Y aff
d,n

∼−→ H(1)
d,n

determined by

gi ↦→ Tsi

ti ↦→ Tti

X1 ↦→ T−1
−e1

where the element T−1
−e1
∈ H(1)

d,n is well-defined since the parameters as are invertible in R (cf. section 1.4).

(iii) Via the structure of an affine extended Coxeter group on W from example 2.1.3, H(1)
d,n (and hence Y aff

d,n)
becomes an affine pro-p Hecke algebra. Moreover, as the group T is finite, all results of theorem 2.7.1
apply without restriction (cf. remark 2.7.3). In particular H(1)

d,n is finite as a module over its center, and
the latter is given by the invariants

Z(H(1)
d,n) =

(
A(1)

o

⎡W

of the subalgebra

A(1)
o =

{

x∈X(1)

Rθ̂o(x) ⊆ H(1)
d,n
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where o is any spherical orientation of W . Since the parameters as are units in R, the unnormalized
Bernstein map θo exists and provides an isomorphism

R[X(1)]
∼−→ A(1)

o , x ↦→ θ̂o(x) (x ∈ X(1))

Since the group X(1) = T × Zn is commutative, the algebra A(1)
o is also commutative and hence by

theorem 2.7.1 is equal to its centralizer in H(1)
d,n.

Proof. We begin by showing (i) using the equivalent reformulation of condition (1.3.1) given in remark 1.3.6.
From example 2.1.3(ii) recall that

usiu
−1 = si−1

for all i ∈ ¶0, . . . , n− 1♢ = Z/nZ. In particular all elements of S are conjugate. The first of the two conditions
of remark 1.3.6 therefore follows from the equation

(2.2.11) u(bsi
) = bsi−1

Recall here that u = τensn−1 . . . s1 and hence u acts on T = (Z/dZ)n via the cycle sn−1 . . . s1 = (n− 1 . . . 1).
Now in order to see that the second condition of remark 1.3.6 holds true, first note that by a general result on
reflection groups (see [Bou07, Ch. V, §3.3, Proposition 2 (I)]), it follows that for every s ∈ S

¶w ∈W : wsw−1 = s♢ = ¶1, s♢ · ¶v ∈ Ω : vsv−1 = s♢ = ¶1, s♢ · ¶unk : k ∈ Z♢

Here
un = τe1+...+en ∈ X

Taking w̃ = w to be the canonical lift for the split pro-p group W (1) = T ⋊W for every w as above, condition
(ii) of remark 1.3.6 follows then from

s(bs) = bs, s ∈ S
and

s(t)t−1bs = bs, s ∈ S, t ∈ T
The latter two equations follow by a simple computation, for instance

si(bsi
) =

v

d

∑

s∈Z/dZ

si(ti/ti+1)s =
v

d

∑

s∈Z/dZ

(ti+1/ti)
s =

v

d

∑

s∈Z/dZ

(ti/ti+1)−s = bsi

and writing t = tk1
1 . . . tkn

n we have

si(t)t
−1bsi

= t
ki+1−ki

i t
ki−ki+1

i+1 bsi
= (ti/ti+1)ki+1−kibsi

= bsi

Now claim (ii) is an almost immediate consequence of (i), lemma 2.2.5 and proposition 1.4.3, since Y aff
d,n and

H(1)
d,n both are quotients of the group algebra R[A

(1)
d,n] by ideals I and I ′ respectively, generated by the elements

T 2
nsi
− asi

Tn2
si
− bsi

Tnsi
= T 2

si
− asi

− bsi
Tsi

However, for I ′ the index i ranges from 0 to n whereas for I it only ranges from 1 to n. But by equation (2.2.11)
we have

Tu
(
T 2
s1
− as1

− bs1
Ts1

[
Tu−1 = T 2

s0
− as0

− bs0
Ts0

and therefore I = I ′. In fact, this argument shows that

I = I ′ = (T 2
s1
− as1

− bs1
Ts1

)

Finally for (iii), there is nothing to prove.

2.2.7 Remark. By definition, the algebras Y aff
d,n and H(1)

d,n are algebras over the ring R = C[u±1, v]. However,
the definition of Y aff

d,n and the verification of condition (1.3.1) did not make use of the invertibility of u, i.e. both

algebras can already be defined over C[u, v]. In contrast, the above isomorphism between Y aff
d,n and H(1)

d,n does
make explicit use of the invertibility of u. This poses the question whether both algebras are isomorphic over
C[u, v].
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2.2.8 Remark. In the beginning of section 2.2 we remarked that the examples of pro-p-Iwahori Hecke algebras
and affine Yokonuma-Hecke algebras overlap. Let us now make this more precise. It is not hard to see that
whenever d is of the form

d = q − 1, q = pr a prime-power

the pro-p Coxeter group W (1) = T ⋊W considered above (together with the structure of an affine extended
Coxeter group on W !) can be identified with the pro-p Coxeter group W (1) = N/Z0(1) associated to the
reductive group GLn, the diagonal subtorus in GLn and the Iwahori subgroup

I =

⎛
⎜⎜⎜⎜⎝

O×
F pF . . . pF

OF
. . .

...
...

. . .
. . . pF

OF . . . OF O×
F

∫
ˆ̂
ˆ̂
⎠
≤ GLn(F )

by section 2.2.3, where F denotes any nonarchimedean local field with residue field k = OF /pF of cardinality
q. Explicitly, the choice of a uniformizing element π ∈ OF provides a splitting of the exact sequence

1 →→ Zk →→ W (1) →→ W →→ 1

by identifying an element w = τxσ ∈ W = Zn ⋊ Sn with the class of the monomial matrix (π−xiδσ(i),j)i,j .
Moreover, the choice of a primitive d-th root of unity in k provides an isomorphism of the group Zk = (k×)n with
(Z/dZ)n. Unwinding the definition of the groups Zk,s in lemma 2.2.4, one sees that for s = si, i ∈ ¶1, . . . , n−1♢

Zk,s = ¶(ti/ti+1)j : j ∈ Z/dZ♢
as subgroups of Zk = T , where we recall that the ti denote the standard generators of T = (Z/dZ)n and that
this group is written multiplicatively. From this and lemma 2.2.4, it then follows immediately that we have an
isomorphism

Y aff
d,n ⊗R C ≃ H(1)

d,n ⊗R C ≃ HC(GLn(F ), I(1))

where the base change − ⊗R C is with respect to the homomorphism R = C[u±1, v] → C sending u to
√
q and

v to q − 1.

We now come back to the commutative diagram (2.2.10)

Y aff
d,n

↓↓

→→ Haff
n

π

↓↓
Yd,n →→ Hn

that was mentioned in the beginning, and will define all the maps involved. The right vertical arrow is the
quotient map π constructed in section 2.2.2. We recall that π was induced by the map

Aaff
n ≃ Ãaff

n −→ An

Ti ↦−→ Tsi
, i = 1, . . . , n− 1

X1 ↦−→ 1

between braid groups. In fact, the whole diagram (2.2.10) is induced by a diagram

(2.2.12) A
aff,(1)
n

↓↓

→→ Aaff
n

π

↓↓
A

(1)
n

→→ An

of braid groups, where A
(1)
n = A(T ⋊W0) denotes the d-modular framed braid group. The horizontal arrows

are given by the projection onto the second factor, with respect to the isomorphisms (cf. example 1.4.4)

Aaff,(1)
n ≃ T ⋊ Aaff

n , A(1)
n ≃ T ⋊ An

Finally the left vertical arrow is given by

Aaff,(1)
n ≃ T ⋊ Aaff

n
id ×π−→ T ⋊ An ≃ A(1)

n

It is easy to see that (2.2.12) respects the quadratic relations and hence induces a diagram between Hecke
algebras.
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2.3 Some finiteness properties of affine extended Coxeter groups

In this section, we will collect some properties of affine extended Coxeter groups and their associated affine
hyperplane arrangements that will be needed in the structure theorem of affine pro-p Hecke algebras. In
particular, we will prove some finiteness properties which will directly imply corresponding finiteness properties
for affine pro-p Hecke algebras.

Throughout this section, we will fix an affine extended Coxeter group W . The notations introduced in
definition 2.1.1 and lemma 2.1.2 will be used freely.

2.3.1 Remark. Let us begin by relating the abstract geometric terminology introduced in 1.1.3 to the concrete
geometry of the hyperplane arrangement (V,H). It is a basic result (see. [Bou07, Ch. V, §3.2, Théorème 1]) of
the theory of affine reflection groups that W (H) acts simply transitively on the set of chambers π0(V −√H∈H

H).
Since ρ induces an isomorphism Waff

∼−→W (H), also Waff acts simply transitively on the set of chambers. Via
the map w ↦→ w • C0 we can therefore identify the set of ‘abstract chambers’ (in the sense of 1.1.3) with the
chambers in V . Moreover, under this identification the ‘abstract orbit map’ W −→Waff of 1.1.3 coincides with
the actual orbit map given by w ↦→ w • C0. The identification of abstract and concrete chambers also extends
to hyperplanes such that the notion of ‘separation’ is preserved. More precisely, the map

H −→ ¶wsw−1 : w ∈Waff , s ∈ S♢
H ↦−→ s̃H

is a bijection, and for H ∈ H and w,w′ ∈Waff it holds true that H separates w(C0) from w′(C0) if and only if
the abstract hyperplane s̃H separates the abstract chambers w,w′ in the sense of 1.1.3. The bijectivity follows
easily from the fact that ρ gives an isomorphism Waff

∼−→ W (H) that satisfies ρ(s̃H) = sH and maps the set
S ⊆ Waff bijectively onto the set of reflections with respect to the walls of the fundamental chamber C0. That
the notion of ‘separation’ is preserved follows from the fact that the set of abstract hyperplanes separating 1, w
and the set of concrete hyperplanes separating C0, w • C0 respectively can both be read off from the choice of
a reduced expression w = s1 . . . sr. We may therefore identify concrete and abstract hyperplanes without harm
and write

H = s̃H

Using the formal notation sH = H of 1.1.3, we therefore have

s̃H = sH ∈Waff

and the compatibility ρ(s̃H) = sH can be written as

ρ(sH) = sH ∈W (H)

Whenever it matters, it will either be stated explicitly or it will be clear from the context whether we view sH
as an element of Waff or of W (H), so that no confusion will arise.

As we just saw, the abstract geometry of an affine extended Coxeter group W is faithfully reflected (no
pun intended) in the geometry of the affine hyperplane arrangement (V,H). Using the extra structure available
on (V,H), this dictionary between abstract and concrete geometry makes some questions concerning W very
transparent.

Consider for instance the following basic problem of Coxeter geometry. Given chambers C,C ′ and C ′′, when
does

d(C,C ′′) = d(C,C ′) + d(C ′, C ′′)

hold true? This problem can be made more transparent with the help of the following ‘vector-valued’ distance.

2.3.2 Definition. Given chambers C,C ′ ∈ π0(V −√H∈H
H) the element

d⃗(C,C ′) ∈ ZΦ+

defined component-wise via
d⃗(C,C ′)α = π0(−α)(C ′)− π0(−α)(C) ∈ Z

is called the vector-valued distance between C and C ′. Here π0(−α) denotes the map induced on connected
components by

−α : V −
⋃

H∈H

H −→ R−Z
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and the difference π0(−α)(C ′) − π0(−α)(C) is to be understood in the sense of affine spaces over Z, with
π0(R−Z) carrying the obvious affine structure. In other words

d⃗(C,C ′)α = k′ − k

if k, k′ ∈ Z are such that
−α(C) ⊆ ]k, k + 1[ and − α(C ′) ⊆ ]k′, k′ + 1[

2.3.3 Remark. From the definition it is quite obvious that ♣d⃗(C,C ′)α♣ equals the number of hyperplanes of
the form Hα,k, k ∈ Z separating C from C ′. In particular the vector-valued and the normal distance are related
by the formula

(2.3.1) d(C,C ′) = ♣d⃗(C,C ′)♣ :=
∑

α∈Φ+

♣d⃗(C,C ′)α♣

which justifies the terminology. In particular, using remark 2.3.1, the length ℓ on W can be expressed in terms
of d⃗ as

ℓ(w) = d(C0, w(C0)) =
∑

α∈Φ+

♣d⃗(C0, w(C0))α♣

where C0 denotes the fundamental chamber and w(C0) = ρ(w)(C0) the action of W via ρ : W → Autaff(V ).
By definition, an element x ∈ X acts by translation by ρ(x) ∈ V on V . It is therefore easy to see that

d⃗(C0, ρ(x)(C0))α = −α(ρ(x))

leading to the more useful formula

(2.3.2) ℓ(x) =
∑

α∈Φ+

♣α(ρ(x))♣, x ∈ X

2.3.4 Remark. Let us now return to the problem posed above, to determine when three chambers C,C ′, C ′′

fulfill the relation
d(C,C ′′) = d(C,C ′) + d(C ′, C ′′)

and let us see how the vector-valued distance helps in making this problem more transparent. Immediately
from the definition it follows that

d⃗(C,C ′′) = d⃗(C,C ′) + d⃗(C ′, C ′′)

By equation (2.3.1), we are therefore reduced to determine for which x, y ∈ ZΦ+

we have

♣x+ y♣ = ♣x♣+ ♣y♣

where ♣x♣ = √α ♣xα♣. Let ⪯ denote relation on ZΦ+

defined by

x ⪯ y :⇔ ♣y♣ = ♣x♣+ ♣y − x♣(2.3.3)

⇔ xα(yα − xα) ≥ 0 ∀α
⇔ xα = 0 ∨ (xαyα > 0 ∧ ♣xα♣ ≤ ♣yα♣) ∀α

It is easy to see that ⪯ is a partial order. Moreover, the above problem can now be phrased equivalently in
terms of ⪯ as

(2.3.4) d(C,C ′′) = d(C,C ′) + d(C ′, C ′′) ⇔ d⃗(C,C ′) ⪯ d⃗(C,C ′′)

2.3.5 Remark. In particular, fixing a chamber C, the relation

C ′ ⪯C C ′′ :⇔ d(C,C ′′) = d(C,C ′) + d(C ′, C ′′)

⇔ d⃗(C,C ′) ⪯ d⃗(C,C ′′)

defines a partial order on chambers. For C = C0 this is just the weak Bruhat order, i.e. the partial order
induced on Waff via

w′ ⪯ w′′ :⇔ w′(C0) ⪯C0
w′′(C0)

⇔ d(C0, w
′′(C0)) = d(C0, w

′(C0)) + d(w′(C0), w′′(C0))

⇔ ℓ(w′′) = ℓ(w′) + ℓ((w′)−1w′′)
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is the weak Bruhat order.
It is known that the weak Bruhat order on an affine Coxeter group is a well partial order, in fact the affine

Coxeter groups are characterized among the infinite Coxeter group as those for which this property holds (see
[Hul07]). In the next lemma we will prove that ⪯ defines a well partial order on ZΦ+

, thus recovering the first
statement about the weak Bruhat order, as the proof is not difficult and moreover the result is crucial for the
structure theory of affine pro-p Hecke algebras. In fact, the well partial order property guarantees that H(1) is
finitely generated as a left module over a certain subalgebra A(1)

o ⊆ H(1) (see the proof of theorem 2.7.1), which
is an important step in showing that H(1) is finitely generated as a module over its center.

Let us recall the notion of a well partial order (cf. [Kru72]).

2.3.6 Definition. A partial order ≤ on a set X is said to be a well partial order if for every nonempty
subset Λ ⊆ X the set min(Λ) of minimal elements of Λ is nonempty and finite.

Obviously this generalizes the notion of a well ordering from total orders to partial orders, hence the name.
Let us now show that ⪯ defines a well partial order on ZΦ+

.

2.3.7 Lemma (“Dickson’s lemma”). (ZΦ+

,⪯) is a well partial order.

Proof. Let Λ ⊆ X be a nonempty subset and assume that min(Λ) was infinite. We would then find a sequence
(λn)n∈N of pairwise distinct elements λn ∈ min(Λ), which would necessarily be also pairwise incomparable.
Choose a numbering Φ+ = ¶α1, . . . , αm♢ of the positive roots, and look at the sequence (λn(α1))n∈N of ‘first
coordinates’.

There are two possibilities, either this sequence is finite or infinite. In the first case we may (after possibly
replacing (λn)n∈N by a subsequence) assume that the sequence (λn(α1))n∈N is constant. In the second case we
can assume (again replacing (λn)n∈N by a subsequence if necessary) that the sequence (λn(α1))n∈N is strictly
increasing or decreasing with respect to the usual total order on Z, i.e. strictly increasing with respect to the
well partial order (!) x ⪯ y :⇔ x(y − x) ≥ 0 on Z.

Repeating this procedure with α2, α3, . . . , αm, we may therefore assume that for every α ∈ Φ+ the sequence
(λn(α))n∈N is either constant or strictly increasing with respect to the well partial order ⪯ on Z. In particular,
since the order (ZΦ+

,⪯) is just the power of the order (Z,⪯), we would have λ1 ⪯ λ2, contradicting the fact
that the λn are pairwise incomparable.

2.3.8 Corollary. For every chamber C, the relation ⪯C on the set of chambers defined in remark 2.3.5 is a
well partial order.

2.3.9 Remark. Obviously the above proof holds verbatim with (Z,⪯) replaced by any well partial order, and
the argument recovers the basic fact that finite products of well partial orders are again well partial orders (cf.
[Kru72]).

As already mentioned, the well partial order property of ⪯ is crucial for proving the finiteness of H(1) as
a left module over A(1)

o . But it is also crucial for proving yet another finiteness property, namely it ensures
that A(1)

o is finitely generated as an algebra (see theorem 2.7.1). This rests on the finiteness property of the
submonoids XD ≤ X defined below, which we will prove in the next lemma.

2.3.10 Definition. Given a Weyl chamber D ∈ π0

(
V −√α∈Φ Hα

[
, we let

XD := ¶x ∈ X : ρ(x) ∈ D♢

be the submonoid of X consisting of all elements which act by translation by an element of the closure of D ⊆ V
under ρ : W → Autaff(V ).

2.3.11 Lemma (“Gordan’s lemma”). XD is finitely generated as a monoid.

Proof. Consider the evaluation map

ν : V −→ RΦ+

v ↦−→ (α ↦→ α(v))

Since the action of X preserves the set H of affine hyperplanes and by definition of Φ we have for every α ∈ Φ

∀k ∈ R Hα,k ∈ H⇔ k ∈ Z
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it follows from ρ(x)(Hα,0) = Hα,−α(ρ(x)) ∈ H that α(ρ(x)) ∈ Z for every x ∈ X. Hence, ν(ρ(x)) lies in ZΦ+

and
we may consider the image

ΞD := ν(ρ(XD)) ⊆ ZΦ+

As ν is a group homomorphism, ΞD ⊆ ZΦ+

is a submonoid. Moreover, the partial order ⪯ restricted to ΞD is
compatible with the monoid structure in the sense that

(2.3.5) a ⪯ a+ b ∀a, b ∈ ΞD

To see this, let εD,α denote the sign of α(q) for q ∈ D arbitrary. We then have the following equivalence for an
element v ∈ V

v ∈ D ⇔ ∀α ∈ Φ+ εD,αα(v) ≥ 0

The implication ‘⇒’ is obvious and the reverse implication follows by choosing a point q ∈ D and noting that
v lies in the closure of the half-open line segment

¶(1− λ)q + λv : 0 ≤ λ < 1♢ ⊆ D

This implies that ΞD is characterized as

(2.3.6) ΞD = ¶a ∈ ν(ρ(X)) : ∀α ∈ Φ+ εD,αa(α) ≥ 0♢

In particular, for a, b ∈ ΞD and every α ∈ Φ+ we have a(α)b(α) ≥ 0 and hence a ⪯ a+ b by definition of ⪯.
Let us now call an element a ∈ ΞD irreducible if a ̸= 0 and a cannot be written as a sum a = b + c with

b, c ∈ ΞD and b, c ̸= 0. Since ⪯ is a well partial order, it is in particular a well-founded relation. This implies
that every element a ∈ ΞD can be written as a (possibly empty) sum of irreducible elements. Indeed, if this
was not the case, we repeatedly expand a as a sum

a = a1 + b1 = a2 + b2 + b1 = a3 + b3 + b2 + b1 = . . .

with ai, bi ̸= 0 and it would follow from property (2.3.5) that we would have an infinite strictly descending chain

. . . ≺ a2 ≺ a1 ≺ a

contradicting the fact that ⪯ is well-founded.
Hence, every element a ∈ ΞD can be written as a sum of irreducible elements. Because of property (2.3.5),

every element of ΞD − ¶0♢ minimal with respect to ⪯ is irreducible. But the converse also holds. Indeed, by
(2.3.6) and the fact that ν(ρ(X)) ⊆ ZΦ+

is a subgroup, it follows that for a, b ∈ ΞD we have the implication

a ⪯ b ⇒ b− a ∈ ΞD

Namely if b− a would not lie in ΞD, it would follow from (2.3.6) that εD,α(b− a)(α) < 0 for some α ∈ Φ+. If
a(α) = 0, this would imply that εD,αb(α) < 0 and hence b ̸∈ ΞD by (2.3.6) again. If a(α) ̸= 0, it would follow
from a ⪯ b that sgn(a(α)) = sgn((b− a)(α)) and hence εD,αa(α) < 0 implying a ̸∈ ΞD by (2.3.6).

Therefore, the irreducible elements are precisely the minimal elements of ΞD −¶0♢ with respect to ⪯. Since
⪯ is a well partial order, this set is finite. Hence, there exist finitely many elements x1, . . . , xr ∈ XD such that
every element x ∈ X can be written as

x =

r∑

i=1

nixi + y

with ni ∈ Z≥0 and
y ∈ ker(ν ◦ ρ)

By (ACX) X, is a finitely generated abelian group. Hence, the subgroup ker(ν◦ρ) ≤ X is also finitely generated
as a group, say by y1, . . . , ys. Hence

¶x1, . . . , xr, y1,−y1, . . . , ys,−ys♢

forms a set of generators of XD as a monoid.

For later reference we need to record another property of XD.

2.3.12 Lemma. The submonoid XD ≤ X generates X as a group, i.e. every element x ∈ X can be written as

x = y − z

with y, z ∈ XD.
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Proof. It suffices to show that the subset (using the notation of the proof of the previous lemma)

¶x ∈ X : ρ(x) ∈ D♢ = ¶x ∈ X : ∀α ∈ Φ+ εD,αα(ρ(x)) > 0♢ ⊆ XD

is non-empty, since if y denotes an element of this set, then for n ∈ N sufficiently large we have

x+ ny ∈ XD

and hence
x = (x+ ny)− ny

with x+ ny, ny ∈ XD. Let p : V ↠ V/L denote the projection, where

L =
⋂

α∈Φ+

Hα

is the common kernel of the α ∈ Φ+. Denoting α : V/L→ R the functional induced by α ∈ Φ+, we have

¶x ∈ X : ∀α ∈ Φ+ εD,αα(ρ(x))♢ = ¶x ∈ X : ∀α ∈ Φ+ εD,αα(p(ρ(x))) > 0♢

Thus it suffices to show that the subgroup p(ρ(X)) ≤ V/L has non-empty intersection with the image

(V ↠ V/L)(D) = ¶x ∈ V/L : ∀α ∈ Φ+ εD,αα(v) > 0♢ ⊆ V/L

of the chamber D under V ↠ V/L. But since by (ACV) this subgroup generates V/L as an R-vector space,
it contains a basis and hence a full sublattice of V/L. And since the image of D is a non-empty open cone in
V/L, it has non-empty intersection with every full sublattice of V/L.

2.4 Spherical orientations

In this section we fix an affine extended Coxeter group W .
Our goal (in view of remark 1.10.8) is to construct for every Weyl chamber D an orientation oD satisfying

oD • x = oD ∀x ∈ X

and
oD • w = ow−1(D) ∀w ∈W0

The construction of oD can be seen as a variant of the orientations ow0
defined in definition 1.5.7. Instead of

‘orienting towards’ a chamber w ∈Waff of the affine chamber complex corresponding to Waff , we orient towards
the chamber induced by D in the ‘spherical chamber complex at infinity’. In fact, we will show that oD is the
limit

oD = limw0 ow0

in the sense of nets, where the limit is taken over the directed set of chambers endowed with the dominance
order induced by D (defined below).

Let us now define these orientations.

2.4.1 Definition. Given a Weyl chamber D ∈ π0

(
V −√α∈Φ Hα

[
, the associated spherical orientation oD

of W is the map
oD : W × S −→ ¶±♢

defined as follows. Given w ∈W and s ∈ S, let (α, k) ∈ Φ×Z be the unique pair such that α is D-positive, i.e.

D ⊆ ¶v ∈ V : α(v) > 0♢

and such that Hα,k is the hyperplane separating w(C0) and ws(C0). Then let

oD(w, s) := sgn (π0(α)(ws(C0))− π0(α)(w(C0)))

where

π0(α) : π0

(
V −

⋃

H∈H

H

)
−→ π0(R−Z)

is the map induced on connected components by the restriction of α, and the difference is to be understood
with respect to the structure on π0(R−Z) of an affine space over Z.
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2.4.2 Remark. From the defining formula of oD it follows immediately that

oD • w = oρ0(w)−1(D) ∀w ∈ X

In particular
oD • x = oD ∀x ∈ X

and
oD • w = ow−1(D) ∀w ∈W0

However, we still have to show that oD actually is an orientation.

2.4.3 Remark. In lemma 1.7.4 we have seen that orientations are given by singling out for every hyperplane
H ∈ H one of the two half-spaces bounded by H as positive, such that o(w, s) = + iff ws lies in the positive
half-space bounded by H = wsw−1, where the notions of hyperplane and half-space are to be understood in the
sense of abstract Coxeter geometry. Unwinding the above definition, one sees that under the dictionary between
the abstract geometry of W and the concrete geometry of the hyperplane arrangement (V,H), the orientation
oD is given by letting

U+
H = ¶v ∈ V : α(v) + k > 0♢

be the positive half-space bounded by H = Hα,k if α is D-positive.

2.4.4 Definition. Given a Weyl chamber D ∈ π0

(
V −√α∈Φ Hα

[
the dominance order ≼D associated to

D is the partial order on the set of chambers given by

C ≼D C ′ :⇔ π0(α)(C) ≤ π0(α)(C ′) ∀α D-positive

where π0(R−Z) is endowed with the total order ≤ induced from R.

2.4.5 Remark. Obviously ≼ is a partial order. Moreover, any two chambers C,C ′ are dominated C,C ′ ≼D C ′′

by a third, thus making the set of chambers endowed with ≼D into a directed set.
Indeed, for a D-positive root α let

rα := max(supπ0(α)(C), supπ0(α)(C ′)) ∈ Z

Then any chamber C ′′ contained in

U := ¶v ∈ V : α(v) > rα ∀α D-positive♢

satisfies C,C ′ ≼D C ′′. It’s easy to see that such a chamber always exists. Since

D = ¶v ∈ V : α(v) > 0 ∀α D-positive♢ ≠ ∅

it follows that U must also be non-empty, hence it (as an open non-empty subset in V ) must meet some chamber
C ′′, which then must already be contained in U .

Let us now show that ‘spherical orientations’ are indeed orientations.

2.4.6 Proposition. The map oD, considered as an element of the mapping space ¶±♢W×S with its compact-open
topology (cf. remarks 1.5.6 and 1.5.18), is the limit

oD = limC oC

in the sense of nets, where the limit is taken over the directed set of chambers endowed with the dominance
order ≼D, and where oC = ow denotes the orientation towards the ‘chamber’ w in the sense of definition 1.5.7
and w ∈Waff is the unique abstract chamber corresponding to C via w(C0) = C.

In particular, oD lies in the closure of

¶ow : w ∈Waff♢ ⊆ ¶±♢W×S

and hence by remark 1.5.18 it also lies in the subset of orientations.
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Proof. To show that
oD = limC oC

means concretely to show that for every w ∈W and s ∈ S we have

oD(w, s) = oC(w, s)

for C sufficiently large with respect to ≼D. Recall that we have oC(w, s) = + iff ws(C0) is closer to C than
w(C0), i.e. iff the hyperplane H separating w(C0) and ws(C0) also separates w(C0) from C, i.e. if C and ws(C0)
lie in the same half-space with respect to H. Let H = Hα,k with α D-positive. Then on the other hand we have
oD(w, s) = + iff π0(α)(w(C0)) < π0(α)(ws(C0)), i.e. if ws(C0) lies in the positive half-space U+

H determined
by oD. Therefore, oD(w, s) = oC(w, s) iff C lies in the positive half-space U+

H . Moreover, if C,C ′ are chambers
with C ⊆ U+

H and C ≼D C ′ then C ′ also lies in U+
H . Letting C denote an arbitrary chamber contained in U+

H ,
we therefore have

oD(w, s) = oC′(w, s)

for every chamber C ′ with C ≼D C ′.

2.5 Some (almost) commutative subalgebras

In this section, we let o denote an arbitrary spherical orientation (see definition 2.4.1) of W . In remark 1.10.8,
we saw that every submonoid U ≤ StabW (1)(o) gives rise to a subalgebra A(1)

o (U) ⊆ H(1) that has a canonical
R-basis ¶θ̂o(x)♢x∈U indexed by the elements of U . By remark 2.4.2, we may take U = X(1).

2.5.1 Definition.
A(1)

o := A(1)
o (X(1)) =

{

x∈X(1)

Rθ̂o(x)

2.5.2 Remark. Recall from remark 1.10.8 that the subalgebra A(1)
o (X(1)) is commutative if the subgroup X(1)

is. Since X(1) is an extension
1 →→ T →→ X(1) →→ X →→ 0

of abelian groups, certainly X(1) is commutative if this sequence splits (the reverse doesn’t need to hold unless
X is projective). For example, when W (1) is the pro-p Coxeter group associated to a connected reductive group
G over a nonarchimedean local field F as in section 2.2.3, the sequence above splits when the group G is split
because

X(1) = Z/Z0(1)

, where Z is the group of F -rational points of the centralizer Z = Z(T) of the chosen maximal split torus
T ≤ G, and because (see [Mil17, 17.61])

G split ⇔ Z = T

As a first step towards the computation of the center of H(1) in theorem 2.6.3, we will now determine the
centralizer of the subalgebra A(1)

o of H(1). Here and in theorem 2.6.3, we will make use of the following auxiliary
notion.

2.5.3 Definition. Given an element

z =
∑

w∈W (1)

cwθ̂o(w) ∈ H(1), cw ∈ R

and an orientation o of W (1), the set

suppo(z) := ¶w ∈W (1) : cw ̸= 0♢

is called the support of z (with respect to o).

2.5.4 Proposition. The centralizer CH(1)(A(1)
o ) of the R-subalgebra

A(1)
o ⊆ H(1)

is given by the X(1)-invariants

CH(1)(A(1)
o ) =

(
A(1)

o

⎡X(1)
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with respect to the R-linear X(1)-action on A(1) determined by

x(θ̂o(y)) = θ̂o(xyx−1)

In particular Z(H(1)) ⊆
(
A(1)

o

⎡X(1)

.

Proof. First, we show that CH(1)(A(1)
o ) ⊆ A(1)

o . For this, consider an arbitrary element z of the centralizer of
A(1)

o in H(1). Write
z =

∑

w∈W (1)

cwθ̂o(w), cw ∈ R

We need to show that suppo(z) ⊆ X(1). Assume this is not the case and choose w ∈ suppo(z)−X(1) with ℓ(w)
maximal. Fix an element x ∈ X(1) such that π(x) ∈ Ξ, where Ξ ⊆ X is the set associated to w by lemma 2.5.6
below. Consider now the elements θ̂o(x)z and zθ̂o(x). Using the product formula (corollary 1.10.5) and the fact
that o is invariant under X, we see that on the one hand we have

θ̂o(x)z =
∑

w′∈W (1)

cw′ θ̂o(x)θ̂o(w′) =
∑

w′∈W (1)

cw′X(x,w′)θ̂o(τxw′)

On the other hand we have (again using the product formula)

zθ̂o(x) =
∑

w′∈W (1)

cw′ θ̂o(w′)(θ̂o•w′(x) + θ̂o(x)− θ̂o•w′(x))

=
∑

w′∈W (1)

cw′X(w′, x)θ̂o(w′τx) +
∑

w′∈W (1)

cw′ θ̂o(w′)(θ̂o(x)− θ̂o•w′(x))

By the change of basis formula (corollary 1.10.7), the expansions of the two elements θ̂o(x) and θ̂o•w′(x) in the
Iwahori-Matsumoto basis ¶Tw′′♢w′′∈W (1) have the same leading term Tx with respect to the Bruhat order on
W (1). Therefore, θ̂o(x)−θ̂o•w′(x) is an R-linear combination of terms Tw′′ with w′′ < τx and hence ℓ(w′′) < ℓ(x).
It follows that in the expansion of θ̂o(w′)(θ̂o(x)− θ̂o•w′(x)) in the Iwahori-Matsumoto basis only terms Tw′′ with

ℓ(w′′) < ℓ(w′) + ℓ(x) ≤ ℓ(w) + ℓ(x) = ℓ(τxw)

appear. Using corollary 1.10.7 again, it follows that the same is true for the expansion of this expression in the
basis ¶θ̂o(w′′)♢w′′∈W (1) . In particular, the coefficient of θ̂o(τxw) vanishes. Comparing the coefficients of θ̂o(τxw)

on both sides of the equation θ̂o(x)z = zθ̂o(x), we see that there exists w′ ∈W (1) such that τxw = w′τx and

cwX(x,w) = cw′X(w′, x)

Since π(x) ∈ Ξ we have ℓ(τxw) = ℓ(x) + ℓ(w) by definition of Ξ and hence X(x,w) = 1 by remark 1.7.2. Since
cw ̸= 0 by assumption, it follows from the above equation that cw′ ̸= 0 and hence w′ ∈ suppo(z). Moreover, we
have

w′ = τxwτ−x = τx−w(x)w

By lemma 2.5.6 below, we can assume that x has been chosen such that ℓ(w(x)− x) > 2ℓ(w). But then

ℓ(w′) = ℓ(τx−w(x)w) ≥ ℓ(τx−w(x))− ℓ(w) > ℓ(w)

But this is a contradiction to the choice of w, and hence we have shown that

CH(1)(A(1)
o ) ⊆ A(1)

o

Now in order to show that

CH(1)(A(1)
o ) ⊆

(
A(1)

o

⎡X(1)

we have to show that the coefficients of z satisfy

cx = cyxy−1 ∀x, y ∈ X(1)

By lemma 2.5.7 below, it suffices to show this for y ∈ X(1) satisfying ℓ(xy) = ℓ(x) + ℓ(y). From

θ̂o(y)z = zθ̂o(y)
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and the product formula it follows immediately that

X(y, x)cx = X(yxy−1, y)cyxy−1

Since the image of X(1) under π : W (1) →W is commutative, we have

X(yxy−1, y) = X(x, y)

by definition of X. Moreover, from ℓ(xy) = ℓ(x) + ℓ(y) and remark 1.7.2 it follows that

X(x, y) = X(y, x) = 1

Therefore
cx = cyxy−1

Thus it only remains to show the reverse inclusion

(
A(1)

o

⎡X(1)

⊆ CH(1)(A(1)
o )

So let
z =

∑

x∈X(1)

cxθ̂o(x)

be an element of the invariants, i.e.
cx = cyxy−1 , ∀x, y ∈ X(1)

We need to show that
zθ̂o(y) = θ̂o(y)z ∀y ∈ X(1)

This amounts to showing that
X(y, x)cx = X(yxy−1, y)cyxy−1

for all x, y ∈ X(1). But since
X(yxy−1, y) = X(x, y)

this follows from
X(x, y) = X(y, x)

2.5.5 Remark. The action of X(1) on itself is trivial if and only if X(1) is commutative, and when this is the
case, it follows from proposition 2.5.4 that the subalgebra

A(1)
o = A(1)

o (X(1)) ⊆ H(1)

(which is then also commutative; see remark 1.10.8) equals its own centralizer. In particular, this is the case
when W (1) arises from a split reductive group G (see remark 2.5.2), and one should see the equality

A(1)
o = CH(1)(A(1)

o )

as a reflection of the equality
T = ZG(T)

between the split maximal torus T and its centralizer ZG(T) in G.

2.5.6 Lemma. Let W = X ⋊W0 be an affine extended Coxeter group (see definition 2.1.1 and lemma 2.1.2
for notation). Let w ∈W with w ̸∈ X. Then the set

Ξ := ¶x ∈ X : ℓ(τxw) = ℓ(x) + ℓ(w)♢

satisfies
sup¶ℓ(w(x)− x) : x ∈ Ξ♢ =∞
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Proof. By remark 2.3.5 we know that

(2.5.1) ℓ(τxw) = ℓ(x) + ℓ(w) ⇔ d⃗(C0, τ
x(C0)) ⪯ d⃗(C0, (τ

xw)(C0))

where C0 denotes the fundamental chamber and d⃗ is the ‘vector-valued distance’ with values in ZΦ+

and ⪯ the
partial order on ZΦ+

defined in remark 2.3.4. Moreover, from the definition of d⃗ it follows immediately that

d⃗(C0, τ
x(C0)) = −ν(ρ(x)) and d⃗(C0, (τ

xw)(C0)) = −ν(ρ(x)) + d⃗(C0, w(C0))

where ν is the evaluation
ν : V −→ RΦ+

, v ↦−→ (α ↦→ α(v))

map. Note that ν(ρ(x)) ∈ ZΦ+

, as we verified in the proof of lemma 2.3.11. Let D ∈ π0

(
V −√α∈Φ Hα

[
be the

Weyl chamber containing w(C0). For α ∈ Φ+ let

εD,α := sgn(α(p))

where p ∈ D is any point. Then

D = ¶x ∈ V : ∀α ∈ Φ+ εD,αα(x) > 0♢

and hence the closure of D is given by (cf. proof of lemma 2.3.11)

D = ¶x ∈ V : ∀α ∈ Φ+ εD,αα(x) ≥ 0♢

Moreover, by choosing p to lie in w(C0) it follows easily from the definition of d⃗ (remembering that 0 ∈ C0)
that

−εD,αd⃗(C0, w(C0))α ≥ 0 ∀α ∈ Φ+

From the above and the definition of ⪯ it follows that

−ν(ρ(x)) ⪯ −ν(ρ(x)) + d⃗(C0, w(C0))

for all x ∈ XD, where
XD = ¶x ∈ X : ρ(x) ∈ D♢

From (2.5.1) it therefore follows that
XD ⊆ Ξ

Since
ℓ(x) = ♣d⃗(C0, τ

x(C0))♣ = ♣ − ν(ρ(x))♣ =
∑

α∈Φ+

♣α(ρ(x))♣

it follows from the definition of XD that

ℓ(x+ y) = ℓ(x) + ℓ(y) ∀x, y ∈ XD

In particular we have ℓ(nx) = nℓ(x) for n ∈ N, so in order to prove the claim it suffices to show that

¶ℓ(w(x)− x) : x ∈ XD♢

contains a nonzero element. If this was not the case, we would have

ρ(w(x)− x) = ρ0(w)(ρ(x))− ρ(x) ∈ L =
⋂

α∈Φ+

Hα

for all x ∈ XD, where we recall that ρ0 : W → GL(V ) denotes the composition of ρ : W → Autaff = V ⋊GL(V )
with the projection onto the linear part. But every x ∈ X can be written as a difference x = y − z with
y, z ∈ XD by lemma 2.3.12, hence we would have

ρ0(w)(v)− v ∈ L

for all v ∈ ρ(X). Since the image of ρ(X) ⊆ V under V ↠ V/L generates the vector space V/L by (ACV), it
would follow that ρ0(w) acts trivially on the quotient V/L. But by lemma 2.1.2 the group W0 = ρ0(W ) acts
faithfully on V/L, hence

w ∈ ker(ρ0) = X

contradicting the assumption.



2.6 The center of affine pro-p Hecke algebras 85

2.5.7 Lemma. For all x ∈ X(1)

¶yxy−1 : y ∈ X(1)♢ = ¶yxy−1 : y ∈ X(1), ℓ(xy) = ℓ(x) + ℓ(y)♢

Proof. From remark 2.3.3 recall equation (2.3.2)

ℓ(x) = ℓ(π(x)) =
∑

α∈Φ+

♣α(ρ(π(x)))♣

Now given any x, y ∈ X(1) we have

x̃ := yxy−1 = x̃kx̃x̃−k = (x̃ky)x(x̃ky)−1

for all k ∈ Z. It therefore suffices to show that

ℓ(xx̃ky) = ℓ(x) + ℓ(x̃ky)

for k > 0 sufficiently large. Since X is commutative we have π(x̃) = π(x) and hence

α(ρ(π(x̃ky))) = α(ρ(π(x)kπ(y))) = kα(ρ(π(x))) + α(ρ(π(y)))

If α(ρ(π(x))) ̸= 0, we can therefore always choose k big enough such that α(ρ(π(x̃ky))) and α(ρ(π(x))) have
the same sign and hence

♣α(ρ(π(xx̃ky)))♣ = ♣α(ρ(π(x))) + α(ρ(π(x̃ky)))♣ = ♣α(ρ(π(x)))♣+ ♣α(ρ(π(x̃ky)))♣

For those α for which α(ρ(π(x))) = 0 the equation

♣α(ρ(π(x))) + α(ρ(π(x̃ky)))♣ = ♣α(ρ(π(x)))♣+ ♣α(ρ(π(x̃ky)))♣

holds true for trivial reasons. Hence, for k sufficiently large we have

♣α(ρ(π(xx̃ky)))♣ = ♣α(ρ(π(x)))♣+ ♣α(ρ(π(x̃ky)))♣

for every α ∈ Φ+, and hence
ℓ(xx̃ky) = ℓ(x) + ℓ(x̃ky)

2.6 The center of affine pro-p Hecke algebras

In this section, let H(1) be an arbitrary affine pro-p Hecke algebra. Our goal is to show that, for any orientation
o, the center of H(1) is given by the invariants

Z(H(1)) =
(
A(1)

o

⎡W (1)

of the R-linear action of W (1) on A(1)
o by permutation of the basis elements θ̂o(x), x ∈ X(1). Note that the

action of W (1) is by algebra automorphisms, since we have

X(w(x), w(y)) = X(x, y) ∀w ∈W (1), x, y ∈ X(1)

which follows immediately from formula (1.7.2) and the W0-invariance (see lemma 2.6.2) of L on elements of
X ⊆W . In particular, the invariants form a subalgebra.

Let us now show one inclusion.

2.6.1 Proposition. Let W (1)\X(1) denote the set of orbits with respect to the natural conjugation action of
W (1) on X(1) and let (W (1)\X(1))fin denote the subset of finite orbits. For every γ ∈ (W (1)\X(1))fin, the element

zγ :=
∑

x∈γ
θ̂o(x), o spherical orientation

is well defined independent of the choice of a spherical orientation o of W (1). Moreover, the element zγ lies in
the center of Z(H(1)), and hence the subalgebra of W (1)-invariants

(
A(1)

o

⎡W (1)

⊆ Z(H(1))

is contained in the center and independent of o, with distinguished R-basis ¶zγ♢, γ ∈ (W (1)\X(1))fin.
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Proof. Using the specialization argument (see remark 1.10.3), it suffices to prove the statement in the case when
the as ∈ R are invertible and admit square roots. In this case we have by definition 1.10.9 (for some fixed choice
of square roots

√
as)

θ̂o(w) =
√
L(w)θ̃o(w)

From the definition of
√
L : W → R and lemma 2.6.2 below, it follows that we have

√
L(w(x)) =

√
L(x) ∀w ∈W (1), x ∈ X(1)

Therefore, it follows that ∑

x∈γ
θ̂o(x) =

√
L(x0)

∑

x∈γ
θ̃o(x)

for any x0 ∈ γ. We may therefore prove the claim with θ̂ replaced by θ̃, i.e. using the isomorphism of
remark 1.10.11 we may assume that as = 1. In this case the independence of the element

∑

x∈γ
θ̂o(x) ∈ H(1)

from the choice of o is equivalent to this element lying in the center since W0 acts transitively on spherical
orientations and because of the formula

θ̂o(w)θ̂o•w(x)θ̂o(w)−1 = θ̂o(w(x)) ∀w ∈W (1), x ∈ X(1)

So it suffices to show the well-definedness of zγ . Since spherical orientations are in bijection with Weyl chambers
and any two Weyl chambers are connected by a gallery, it suffices to show that

∑

x∈γ
θ̂o(x) =

∑

x∈γ
θ̂o•sα

(x)

where o is any spherical orientation and sα ∈ W0 is associated to a root α ∈ Φ that is simple with respect to
the Weyl chamber Do to which the orientation o corresponds. In this situation, o and o • sα are adjacent in
the sense of definition 1.11.2 since sα permutes the positive roots with respect to Do that are not parallel to α
among themselves.

The decomposition W = W0 ⋉X induces an identification W (1)/X(1) ≃W0, and therefore the W (1)-orbit γ
decomposes into a disjoint union of X(1)-orbits that are permuted amongst themselves by W0. Considering the
action of the subgroup ¶1, sα♢ ≤W0, we can therefore write

γ =
∐

i∈I
ξi ∪ sα(ξi)

where23 ξi ∈ X(1)\X(1) and either sα(ξi) = ξi or sα(ξi) ∩ ξi = ∅. Accordingly, if J ⊆ I denotes the indices i
where sα(ξi) = ξi and σ ∈W (1) denotes any lift of sα, we have that

∑

x∈γ
θ̂o(x) =

∑

i∈J

∑

x∈ξi

θ̂o(x) +
∑

i∈I−J

∑

x∈ξi

θ̂o(x) + θ̂o(σ(x))

Whence it suffices to show that for all x ∈ ξi with sα(ξi) = ξi we have that

θ̂o(x) = θ̂o•sα
(x)

and that for any x ∈ X(1) we have that

θ̂o(x) + θ̂o(σ(x)) = θ̂o•sα
(x) + θ̂o•sα

(σ(x))

Let us begin by proving the first statement, and assume that sα(ξi) = ξi. Note that because X is commutative,
π : W (1) −→W maps X(1)-orbits to singletons; in particular, π(σ(x)) = π(x). Therefore

sα(π(x)) = π(σ(x)) = π(x)

23X(1)\X(1) denotes the set of orbits of X(1) acting on itself via conjugation
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Further, recall that the abstract geometry of the extended Coxeter group W and the concrete geometry of the
affine hyperplane arrangement (V,H) are compatible via ρ (see remark 2.3.1). By definition of the sα ∈W0 (cf.
lemma 2.1.2), we have ρ(sα) = sα, where sα ∈ GL(V ) is given by the formula

sα(ρ(π(x))) = ρ(π(x))− α(ρ(π(x)))α∨

Therefore, it follows from applying ρ to the equality sα(π(x)) = π(x) that α(ρ(π(x))) = 0. This means that 1, x
are not separated by any hyperplane of type α, where we agree to call H a hyperplane of type α if H = Hα,k

for some k ∈ Z. Since o and o • sα agree except at the hyperplanes of type α, it follows that

θ̂o(x) = θ̂o•sα
(x)

Let us now prove the second statement and let x ∈ X(1) be arbitrary. Since o and o • sα are adjacent, we may
apply the Bernstein relation (theorem 1.11.3) to conclude that (remembering that θ̂ = θ̃ in our case)

θ̂o(x)− θ̂o•sα
(x) =

⎛
⎝∑

H̃

o(1, H̃)Ξo•sα
(H̃)

∫
⎠ θ̂o(x)

where the sum runs over all hyperplanes H̃ of type α which separate 1 and x. On the other hand applying
theorem 1.11.3 to σ(x) instead of x gives

θ̂o(σ(x))− θ̂o•sα
(σ(x)) =

(∑

H

o(1, H)Ξo•sα
(H)

)
θ̂o(σ(x))

=

(∑

H

o(1, H)Ξo•sα
(H)θ̂o(σ(x)x−1)

)
θ̂o(x)

where the sum runs over all hyperplanes H of type α separating 1 and σ(x). By lemma 1.11.4 we have

Ξo•sα
(H)θ̂o(σ(x)x−1) = Ξo•sα

(π(x)Hπ(x)−1)

The result follows if we can show that

H ↦−→ H̃ := π(x)Hπ(x)−1

gives a bijection between the hyperplanes H of type α separating 1 and σ(x) and the hyperplanes H̃ of type α
that separate 1 and x, and that

o(1, π(x)Hπ(x)−1) = −o(1, H)

since then

θ̂o(σ(x))− θ̂o•sα
(σ(x)) =

(∑

H

o(1, H)Ξo•sα
(π(x)Hπ(x)−1)

)
θ̂o(x)

= −

⎛
⎝∑

H̃

o(1, H̃)Ξo•sα
(H̃)

∫
⎠ θ̂o(x)

= −
(
θ̂o(x)− θ̂o•sα

(x)
⎡

Let H = Hα,k be a hyperplane of type α and y ∈ C0 an arbitrary point. Then H separates two elements
w,w′ ∈ W if and only if w(y) and w′(y) lie in different connected components of V −Hα,k, i.e. if and only if
α(w(y)) + k and α(w′(y)) + k have different signs. Moreover, for a hyperplane H we have H = Hα,k if and only
if ρ(sH) = sα,k where

sα,k(y) = y − (α(y) + k)α∨

Denoting by τv ∈ Autaff(V ) the translation by a vector v ∈ V , we have the formula

τysα,kτ
−y = sα,k−α(y)

Let now H = Hα,k be a hyperplane of type α. Since X ⊆W gets mapped into the subgroup V ≤ Autaff(V ) of
translations under ρ, it hence follows that

ρ(π(x)Hπ(x)−1) = τρ(π(x))sα,kτ
−ρ(π(x)) = sα,k−α(ρ(π(x)))
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Hence, π(x)Hπ(x)−1 separates 1, x if and only if α(y) + k − α(ρ(π(x))) and

α(y + ρ(π(x))) + k − α(ρ(π(x))) = α(y) + k

have different signs. On the other hand H separates 1, σ(x) if and only if α(y) + k and

α(y + ρ(sα(π(x)))) + k = α(y) + k − α(ρ(π(x)))

have different signs. Hence, H ↦→ H̃ gives a bijection as desired. Moreover

o(1, π(x)Hπ(x)−1) = −o(1, H)

By notation 1.7.5, o(1, H) is the sign attached by o to crossing H at any chamber lying in the same half-space
as the fundamental chamber. Letting ε ∈ ¶±♢ be such that εα is positive with respect to the Weyl chamber Do

corresponding to o, it then follows that

o(1, H) = −ε sgn(α(y) + k)

and
o(1, π(x)Hπ(x)−1) = −ε sgn(α(y) + k − α(π(x)))

As we saw above, H separates 1, x if and only if α(y) + k and α(y) + k − α(π(x)) have different signs. Hence,
the claim follows.

2.6.2 Lemma. The length function of definition 1.7.9

L : W −→ N[H]

satisfies
L(w(x)) = ρ0(w)(L(x)) ∀w ∈W, x ∈ X

where ρ0 : W →W0 denotes the projection.

Proof. Recall from remark 2.3.3 that the number of hyperplanes of the form Hα,k, k ∈ Z separating the
fundamental chamber C0 from ρ(x)(C0) is given by

♣d⃗(C0, ρ(x)(C0))α♣ = ♣ − α(ρ(x))♣

With a bit more notation, we can be more precise and specify the set of these hyperplanes. For k ∈ Z let

[0, k[ :=

⎧
⎪⨄
⎪⎩

¶0, 1, . . . , k − 1♢ : k > 0

∅ : k = 0

¶−k + 1, . . . ,−1, 0♢ : k < 0

Using that 0 ∈ C0 by (ACIX) and that

C0 ⊆ ¶v ∈ V : ∀α ∈ Φ+ α(v) > 0♢

by definition of Φ+, it is easy to see that the set of hyperplanes of the form Hα,k which separate C0 and ρ(x)(C0)
is in fact given by

¶Hα,k : k ∈ [0,−α(ρ(x))[♢
Hence

L(x) =
∏

α∈Φ+

∏

k∈[0,−α(ρ(x))[

Hα,k

Moreover
ρ(w(x)) = ρ0(w)(ρ(x))

and hence
α(ρ(w(x))) = α(ρ0(w)(ρ(x))) = (ρ0(w)−1 • α)(ρ(x))

Since Φ is the disjoint union of Φ+ and −Φ+, we have

ρ0(w)−1 • α = εαϕ(α)
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for some uniquely determined εα ∈ ¶±♢ and ϕ(α) ∈ Φ+. Using that

w(Hα,k) = Hw•α,k ∀w ∈W0, α ∈ Φ, k ∈ Z

that
Hα,k = H−α,−k ∀α ∈ Φ, k ∈ Z

and that ϕ : Φ+ → Φ+ is a bijection, we now simply compute

L(w(x)) =
∏

α∈Φ+

∏

k∈[0,−α(ρ(w(x)))[

Hα,k

=
∏

α∈Φ+

∏

k∈[0,−εαϕ(α)(ρ(x))[

Hα,k

=
∏

α∈Φ+

∏

k∈[0,−ϕ(α)(ρ(x))[

Hα,εαk

=
∏

α∈Φ+

∏

k∈[0,−ϕ(α)(ρ(x))[

Hεαα,k

=
∏

α∈Φ+

∏

k∈[0,−ϕ(α)(ρ(x))[

ρ0(w)(Hϕ(α),k)

= ρ0(w)

⎛
⎝ ∏

α∈Φ+

∏

k∈[0,−ϕ(α)(ρ(x))[

Hϕ(α),k

∫
⎠

= ρ0(w)(L(x))

We will now show that the center Z(H(1)) is in fact equal to
(
A

(1)
o

⎡W (1)

, via induction on the support (see

definition 2.5.3) of an element.

2.6.3 Theorem. The center Z(H(1)) of the affine pro-p Hecke algebra H(1) is given by

Z(H(1)) =
(
A(1)

o

⎡W (1)

for every spherical orientation o of W (1). It is a free R-module with distinguished basis ¶zγ♢γ indexed by the
finite orbits γ ∈ (W (1)\X(1))fin of W (1) in X(1), where

zγ =
∑

x∈γ
θ̂o(x)

for every spherical orientation o.

Proof. It only remains to prove that

Z(H(1)) ⊆
(
A(1)

o

⎡W (1)

In view of the computation of the centralizer of A(1)
o in proposition 2.5.4 we already know that

Z(H(1)) ⊆
(
A(1)

o

⎡X(1)

Therefore, it only remains to show that for an element

z =
∑

x∈X(1)

cxθ̂o(x) =
∑

ξ∈(X(1)\X(1))fin

cξ
∑

x∈ξ
θ̂o(x) ∈ Z(H(1)), cξ ∈ R

we have
cξ = cw(ξ)
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for every w ∈ W0. We will prove this by induction on suppo(z) using proposition 2.6.1. If suppo(z) = ∅, then
z = 0 and the claim is clear. So let’s assume that suppo(z) ̸= ∅. Choose x ∈ suppo(z) with ℓ(x) maximal and
let ξ = X(1) • x be the (finite) X(1)-orbit associated to it. We now want to show that

cξ = cw(ξ) ∀w ∈W0

in order to apply induction. For this, recall that W0 is generated by the reflections sα for roots α that are
simple with respect to the Weyl chamber D0 containing C0 (see lemma 2.1.2) and let s = sα ∈ S for any such
α. We have ℓ(nsx) = ℓ(x)± 1. Moreover, we claim that

ℓ(nsx) = ℓ(x)− 1 ⇒ ℓ(xns) = ℓ(x) + 1

To see this, let x0 ∈ C0 be arbitrary. We have ℓ(nsx) = ℓ(x) + 1 if and only if

d(C0, nsxC0) = d(C0, nsC0) + d(nsC0, nsxC0)

that is, if and only if the set of hyperplanes separating C0 and nsC0 and the set of hyperplanes separating nsC0

and nsxC0 = ns(x)nsC0 = ns(π(x)) +nsC0 are disjoint. Since C0 and nsC0 are separated only by Hα = ker(α)
and this hyperplanes separates nsC0 and ns(π(x)) + nsC0 if and only if

sgn(α(ns(π(x)) + ns(x0))) = − sgn(α(ns(x0)))

we see that
ℓ(nsx) = ℓ(x) + 1 or ℓ(nsx) = ℓ(x)− 1

depending on whether

sgn(α(π(x)) + α(x0)) = sgn(α(x0)) or sgn(α(π(x)) + α(x0)) = − sgn(α(x0))

respectively. Using that xns = nss(x) and ℓ(s(x)) = ℓ(x) it follows from the above that

ℓ(xns) = ℓ(x) + 1 or ℓ(xns) = ℓ(x)− 1

depending on whether

sgn(−α(π(x)) + α(x0)) = sgn(α(x0)) or sgn(−α(π(x)) + α(x0)) = − sgn(α(x0))

In particular it follows that
ℓ(nsx) = ℓ(x)− 1 ⇒ ℓ(xns) = ℓ(x) + 1

We now distinguish two cases. First, assume that ℓ(nsx) = ℓ(x) + 1. We have

θ̂o(ns)z =
∑

y∈X(1)

cy θ̂o(ns)(θ̂o(y)− θ̂o•s(y)) +
∑

y∈X(1)

X(s, π(y))θ̂o(nsy)

We claim that the nsx does not appear in the support of the first big sum. In fact, by the change of basis
formula (corollary 1.10.7) we have

suppo(θ̂o(y)− θ̂o•s(y)) ⊆ ¶w ∈W (1) : w < y♢

In particular each w appearing in the support of θ̂o(y)− θ̂o•s(y) is of length

ℓ(w) ≤ ℓ(y)− 1

Hence, for all
w ∈ suppo(θ̂o(ns)(θ̂o(y)− θ̂o•s(y)))

we have
ℓ(w) ≤ ℓ(ns) + (ℓ(y)− 1) = ℓ(y) ≤ ℓ(x) < ℓ(x) + 1 = ℓ(nsx)

The coefficient of θ̂o(nsx) in θ̂o(ns)z is therefore given by

cxX(s, π(x)) = cx = cξ
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Here we have used that X(s, π(x)) = 1, which follows from ℓ(nsx) = ℓ(ns) + ℓ(x) and remark 1.7.2. On the
other hand we have

zθ̂o(ns) =
∑

y∈X(1)

cyX(π(y), s)θ̂o(yns)

and hence the coefficient of nsx = ns(x)ns in θ̂o(ns)z is given by

cns(x)X(π(s(x)), s) = cns(x)

where again we have used remark 1.7.2 and the fact that

ℓ(s(x)ns) = ℓ(nsx) = ℓ(x) + ℓ(ns) = ℓ(ns(x)) + ℓ(ns)

Since θ̂o(x)z = zθ̂o(x) it follows that
cx = cns(x)

Consider now the case ℓ(nsx) = ℓ(x) − 1. As already observed, in this situation we must have ℓ(nss(x)) =
ℓ(xns) = ℓ(x) + 1. Replacing x by s(x), we are therefore reduced to the first case. Thus we have shown that
for any x ∈ suppo(z) with ℓ(x) maximal we have

cξ = cx = cns(x) = cs(ξ)

for all simple reflections s = sα ∈W0, α ∈ ∆, where ξ = X(1) denotes the (finite) X(1)-orbit of x. In particular
ns(x) is again an element of suppo(z), and since ℓ(x) = ℓ(ns(x)) it is also of maximal length. Inductively it
therefore follows that

cξ = cw(ξ)

for all w ∈W0. Letting γ = W (1) • x =
√
w∈W0

w • ξ, the element

z − cξzγ ∈ Z(H(1))

therefore has support strictly contained in suppo(z), and by induction we conclude that

z ∈
(
A(1)

o

⎡W (1)

2.7 The structure of affine pro-p Hecke algebras

In this section we will give the main theorem on the structure of affine pro-p Hecke algebras.

2.7.1 Theorem. Let H(1) be an affine pro-p Hecke algebra over a ring R in the sense of definition 2.1.4 and
let o a spherical orientation of W (1) in the sense of definition 2.4.1.

Let W (1)\X(1) denote the set of orbits of the conjugation actions of W (1) on X(1), let (W (1)\X(1))fin denote
the subset of finite orbits, and consider the condition

(HeckeFin) (W (1)\X(1))fin = W (1)\X(1) ∧ ( T finite ∨ T finitely generated and R noetherian)

Then the following holds.

(i) There exists an R-subalgebra
A(1)

o ⊆ H(1)

with R-basis ¶θ̂o(x)♢x∈X(1) defined in theorem 1.10.1. The product of two basis elements is given by

θ̂o(x)θ̂o(y) = X(π(x), π(y))θ̂o(xy)

where X : W ×W → R denotes the ‘2-coboundary’ defined in notation 1.10.4.

(ii) The ‘conjugation action’ of W (1) on X(1) induces an action on A(1)
o by R-algebra automorphisms via

w(θ̂o(x)) = θ̂o(w(x))

The centralizer CH(1)(A(1)
o ) of A(1)

o in H(1) is given by the subalgebra of X(1)-invariants in A(1)
o . In

particular, the centralizer is contained in A(1)
o and hence equals the center of A(1)

o :

Z(A(1)
o ) = CH(1)(A(1)

o ) =
(
A(1)

o

⎡X(1)
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(iii) If the abelian group T is finitely generated, the R-algebra A(1)
o is finitely generated. More precisely, the

following holds. The algebra A(1)
o is a finite sum

A(1)
o =

∑

D

ιD(R[X
(1)
D ])

of subalgebras, where the sum ranges over the Weyl chambers D ∈ π0(V −√α∈Φ Hα). Here R[X
(1)
D ] denotes

the monoid algebra over the submonoid

X
(1)
D = ¶x ∈ X(1) : ρ(π(x)) ∈ D♢

of X(1) consisting of those elements which act through ρ : W → Autaff(V ) by translation by an element
lying in the closure of D ⊆ V , and ιD denotes the algebra embedding

ιD : R[X
(1)
D ] ↪→ A(1)

o

determined by ιD(x) = θ̂o(x) for all x ∈ X(1)
D . Moreover, if T is finitely generated, then the submonoid

X
(1)
D and hence the algebra R[X

(1)
D ] are finitely generated, and thus A(1)

o is finitely generated in this case
too.

(iv) If (HeckeFin) holds, then A(1)
o is a finitely generated

(
A(1)

o

⎡X(1)

-module.

(v) If (HeckeFin) holds, then
(
A(1)

o

⎡X(1)

is a finitely generated R-algebra.

(vi) The center Z(H(1)) of H(1) is given by the subalgebra of W (1)-invariants in A(1)
o

Z(H(1)) =
(
A(1)

o

⎡W (1)

It has a distinguished R-basis ¶zγ♢, γ ∈ (W (1)\X(1))fin with

zγ =
∑

x∈γ
θ̂o(x)

independent of the choice of the spherical orientation o.

(vii) H(1) is a finitely generated left A(1)
o -module. More precisely, a finite set of generators is given as follows.

For w ∈ W0 let X • w−1(C0) denote the set of X-translates of the chamber w−1(C0). Let Λw denote the
set of minimal elements of X •w−1(C0) with respect to the partial order ⪯C0

defined in remark 2.3.5. By
corollary 2.3.8, the set Λw is finite.

Choose for each C ∈ Λw an element w̃ ∈W (1) with

π(w̃) ∈ Xw ⊆W and w̃−1(C0) = C

and let Λ̃w ⊆W (1) denote the set of these elements. Then

¶θ̂o(w̃) : w ∈W0, w̃ ∈ Λ̃w♢

is a set of generators of H(1) as a left module over A(1)
o .

(viii) If (HeckeFin) holds, then A(1)
o is a finitely generated Z(H(1))-module.

(ix) If (HeckeFin) holds, then Z(H(1)) is a finitely generated R-algebra.

(x) If (HeckeFin) holds, then H(1) is a finitely generated Z(H(1))-module.

(xi) If (HeckeFin) holds and R is noetherian, then the R-algebras Z(H(1)), A(1)
o , and H(1) are noetherian

(i.e. left and right noetherian).
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Proof. (xi): Follows directly from (viii), (ix), and (x). (i): Was proven in section 1.10. (ii): Was shown in
proposition 2.5.4. (vi): Was shown in theorem 2.6.3. (vii): By corollary 1.10.5 and remark 1.7.2 we know that

ℓ(ww′) = ℓ(w) + ℓ(w′) ⇒ θ̂o(ww′) = θ̂o(w)θ̂o•w(w′) ∀ w,w′ ∈W (1)

Since o is assumed to be a spherical orientation, we have o • x = o for every x ∈ X(1) and hence

(2.7.1) ℓ(xw) = ℓ(x) + ℓ(w) ⇒ θ̂o(xw) = θ̂o(x)θ̂o(w) ∀ x ∈ X(1), w ∈W (1)

We have the equivalences

ℓ(xw) = ℓ(x) + ℓ(w)⇔ ℓ(w−1x−1) = ℓ(x−1) + ℓ(w−1)(2.7.2)

⇔ d(C0, (w
−1x−1)(C0)) = d(C0, w

−1(C0)) + d(C0, x
−1(C0))

⇔ d(C0, (w
−1x−1)(C0)) = d(C0, w

−1(C0))

+ d(w−1(C0), (w−1x−1)(C0))

⇔ w−1(C0) ⪯C0
(w−1x−1)(C0)

Here the first equivalence is simply the invariance ℓ(w) = ℓ(w−1) of the length under inverses, the third
equivalence is the W -invariance of the distance d and the last equivalence is by definition (see remark 2.3.5).

Let now w′ ∈ W (1) be arbitrary. Because W = X ⋊ W0, we have π(w′) ∈ Xw for some w ∈ W0. In
particular (w′)−1(C0) ∈ X • w−1(C0) and hence by definition of Λ̃w we can find w̃ ∈ Λ̃w with π(w̃) ∈ Xw and
w̃−1(C0) ⪯C0 (w′)−1(C0). Hence, for some x ∈ X(1) we have

w′ = xw̃

From
w̃−1(C0) ⪯ (w̃−1x−1)(C0)

and (2.7.2) above it therefore follows that

ℓ(xw̃) = ℓ(x) + ℓ(w̃)

Hence, by equation (2.7.1) above we have

θ̂o(w′) = θ̂o(x)θ̂o(w̃)

and hence θ̂o(w′) lies in the A(1)
o -submodule generated by the set we claim to be a set of generators. Since

w′ ∈W (1) was arbitrary, (vii) follows.
Next, we prove (iii). First, we need to show that ιD is well-defined. Recall that it was shown in the proof

of lemma 2.5.6 that on the submonoid

XD = π(X
(1)
D ) = ¶x ∈ X : ρ(x) ∈ D♢ ≤ X

the length function is additive
ℓ(x+ y) = ℓ(x) + ℓ(y) ∀x, y ∈ XD

Since the length function on W (1) arises by pullback along π : W (1) →W of the length function on W , it follows
that ℓ(xy) = ℓ(x) + ℓ(y) and hence X(x, y) = 1 for all x, y ∈ X

(1)
D . The product formula (corollary 1.10.5)

therefore implies that x ↦→ θ̂o(x) defines a morphism of monoids

X
(1)
D −→ A(1)

o

inducing ιD. Moreover, since V =
√
DD, we have X(1) =

√
DX

(1)
D and thereforeA(1)

o is the R-module sum of the
subalgebras ιD(R[X

(1)
D ]) as claimed. Lastly we need to show that the monoid X(1)

D is finitely generated, assuming
that T is finitely generated as an abelian group (and hence as a monoid). But since T = ker(π : W (1) ↠ W )

is the kernel of π, it suffices to show that the image XD = π(X
(1)
D ) is finitely generated as a monoid. But this

was shown in lemma 2.3.11.
It remains to show claims (iv),(v),(viii) and (ix). Since the subalgebras

Z(H(1)) =
(
A(1)

o

⎡W (1)

⊆
(
A(1)

o

⎡X(1)

⊆ A(1)
o ⊆ H(1)
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have explicit R-bases, it is easy to see that they are preserved under base change. If we are in the situation
where T is finite, we may therefore reduce to the case R = Runiv of the universal coefficient ring, which exists
and is noetherian by remark 1.3.9. Therefore, it suffices to prove the claim in the case where T is finitely
generated and R is noetherian. In this case, claims (iv),(v) and (viii),(ix) each follow from lemma 2.7.2 (which
follows after this theorem). To get (iv) and (v), we apply lemma 2.7.2 with

C =
(
A(1)

o

⎡X(1)

⊆ A(1)
o = B

Λ = ¶θ̂o(x) : x ∈ ΛD, D Weyl chamber♢ ⊆ A(1)
o

and

Π = ¶xyx−1y−1 : x, y ∈ Λ♢ ⊆ T ⊆ Z(A(1)
o ) =

(
A(1)

o

⎡X(1)

where ΛD denotes any finite set of generators of the monoid X(1)
D whose existence is guaranteed by (iii). Let us

verify that assumptions (a)-(d) of the lemma are satisfied. In the discussion of claim (iii) we have seen that (a)
holds. To see that (d) holds, note that an element t ∈ T is annihilated by the monic polynomial

∏

t′∈W•t
(X − t′)

with coefficients in

R[T ]W ⊆
(
A(1)

o

⎡W (1)

= C

Assumption (c) follows by a formal computation from the product formula, the fact that (cf. remark 1.10.6)

θ̂o(tw) = tθ̂o(w) ∀w ∈W (1)

and the fact that (cf. remark 1.10.8)

∀w,w′ ∈W (1) ww′ = w′w ⇒ X(w,w′) = X(w′, w)

Indeed, for any x, y ∈ X(1) we have

θ̂o(x)θ̂o(y) = X(x, y)θ̂o(xy)

= X(y, x)θ̂o(xyx−1y−1

  
=:t∈Π

yx)

= tX(y, x)θ̂o(yx)

= tθ̂o(y)θ̂o(x)

Finally we need to verify (b), i.e. we need to provide monic polynomials fx(Z) ∈
(
A(1)

o

⎡X(1)

[Z] with

fx(θ̂o(x)) = 0. Even though A(1)
o is possibly non-commutative, it still makes sense to form the polynomial ring

A(1)
o [Z] in one variable Z that commutes with A(1)

o . For x ∈ X(1) arbitrary, let ξ = X(1) • x be the orbit of x
under the (conjugation) action of X(1) and let

fx(Z) := fξ(Z) :=
∏

y∈ξ
(Z − θ̂o(y)) ∈ A(1)

o [Z]

Note that ξ is finite since W (1) (and therefore X(1)) acts on X(1) with finite orbits by assumption. However, a
priori the above expression is still ill-defined, as it depends on the choice of an ordering of the factors. However,
the elements θ̂o(y) with y ∈ ξ in fact commute with each other pairwise. This follows from remark 1.10.8 and
the fact that the elements of the orbit ξ themselves commute with each other pairwise, as an easy computation
shows. The expression fξ(Z) therefore is well-defined. Moreover, the R-algebra action of W (1) on A(1)

o extends
to A(1)

o [Z] by acting on coefficients. A formal computation shows that fξ(Z) is invariant under X(1) with respect
to this action, hence we have a well-defined element

fξ(Z) ∈
(
A(1)

o

⎡X(1)

[Z]
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Moreover, fξ(Z) annihilates θ̂o(x) which can be seen as follows. Let A denote the subalgebra ofA(1)
o generated by

the θ̂o(y), y ∈ ξ over the center
(
A(1)

o

⎡X(1)

of A(1)
o . From the previous remarks it follows that A is commutative.

Moreover, we have
fξ(Z) =

∏

y∈ξ
(Z − θ̂o(y)) ∈ A[Z]

as an equation in A[Z]. Using the evaluation homomorphism

ev : A[Z] −→ A

f(Z) ↦−→ f(θ̂o(x))

it follows that
fξ(θ̂o(x)) = ev(fξ) =

∏

y∈ξ
(θ̂o(x)− θ̂o(y)) = 0

Thus the assumptions of the next lemma are satisfied and (iv) and (v) follow. In order to get claims (viii) and
(ix), we apply the lemma with B,Λ and Π as before but with

C =
(
A(1)

o

⎡W (1)

In order to see that assumption (b) of the lemma is satisfied, it suffices to show that

gx(Z) :=
∏

η∈W0•ξ
fη(Z) ∈

(
A(1)

o

⎡X(1)

[Z]

has coefficients in
(
A(1)

o

⎡W (1)

, i.e. that it is invariant under W0. But, considering the expression of the

coefficients of fξ as symmetric polynomials in the θ̂o(y), y ∈ ξ, it follows that

w(fξ) = fw(ξ) ∀w ∈W0

Hence, it follows that gx is invariant under W0 by a formal computation.

2.7.2 Lemma. Let R be a commutative ring, B a not necessarily commutative R-algebra and C ⊆ Z(B) an
R-subalgebra of the center of B. Assume that there exist finite subsets

Λ = ¶x1, . . . , xn♢ ⊆ B

and
Π ⊆ Z(B)

such that

(a) B is generated as an R-algebra by Λ.

(b) Every xi ∈ Λ satisfies a monic equation

fi(xi) = 0, fi(X) = Xni + ai,1X
ni−1 + . . .+ ai,ni

∈ C[X]

with coefficients in C.

(c) The generators commute up to elements of Π, i.e.

∀x, y ∈ Λ ∃t ∈ Π xy = tyx

(d) Every t ∈ Π satisfies a monic equation with coefficients in C, i.e. the C-subalgebra C[Π] ⊆ Z(B) generated
by Π is finitely generated as a C-module.

Then

(i) B is generated as a C-module by

¶txν1
1 . . . xνn

n : t ∈ C[Π], 0 ≤ νi < ni ∀i♢

In particular B is a finitely generated C-module.
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(ii) If R is noetherian, then C is a finitely generated R-algebra.

Proof. Claim (i) follows immediately by combining assumptions (a)-(c). Claim (ii) follows as in the classical
commutative case by dévissage. Let C ′ be the R-subalgebra of C generated by the coefficients ai,j and the
coefficients of the monic equations satisfied by the elements of Π, and let C ′ ⟨x1, . . . , xn⟩ be the C ′-subalgebra
of B generated by x1, . . . , xn. This situation is summarized in the following diagram

C ′ ⊆ C ⊆ C ′ ⟨x1, . . . , xn⟩ ⊆ B

The assumptions of this lemma are still satisfied if one replaces C by C ′ and B by C ′ ⟨x1, . . . , xn⟩. From part
(i) it therefore follows that C ′ ⟨x1, . . . , xn⟩ is a finite C ′-module. Since C ′ is the homomorphic image of a
polynomial ring over R in a finite number of variables it is noetherian, hence it follows that the submodule
C ⊆ C ′ ⟨x1, . . . , xn⟩ is also finitely generated. In particular C is a finitely generated C ′-algebra. Since C ′ is a
finitely generated R-algebra, it follows by transitivity that C is a finitely generated R-algebra.

2.7.3 Remark. In some of the finiteness results proved in the main theorem we had to assume that W (1) acts
with finite orbits on X(1). Let us see what this condition amounts to. Since W0 ≃ W (1)/X(1) is finite, the
group W (1) acts by finite orbits if and only if the subgroup X(1) acts by finite orbits. But, if x, y ∈ X(1) then
by definition

π(x) • y = xyx−1 = xyx−1y−1

  
=:[x,y]

y

Since X is commutative by assumption, the commutator [x, y] lies in T . Thus if T is finite, the group W (1)

always acts with finite orbits.
Let us now consider the case when T is contained in the center of X(1) (but possibly infinite). This means

that X(1) is a central extension

1 →→ T →→ X(1) →→ X →→ 0

of abelian groups, and therefore the commutator [x, y] only depends on π(x) and π(y) and gives rise to an
alternating bilinear pairing

[−,−] : X ×X −→ T

By the above computation the orbit of an element y ∈ X(1) under X is given by the coset

X(1) • y = [X,π(y)]y

under the subgroup
[X,π(y)] ≤ T

This subgroup is always finitely generated, since X is finitely generated by assumption. It is therefore finite
if and only if it lies in the torsion subgroup Ttors ≤ T . Thus, when T is contained in the center of X(1), the
group W (1) (actually W ) acts with finite orbits if and only if the pairing [−,−] takes values in Ttors. This is for
instance the case if X(1) is abelian or T is finite.

3 The Hecke algebra of PGL2(Z)

In the following, we will study the generic Hecke algebraH associated to the Coxeter group (PGL2(Z), ¶s1, s2, s3♢)
over a coefficient ring R. Here, PGL2(Z) = GL2(Z)/¶±♢ denotes extended modular group of invertible integer
2× 2-matrices modulo center. The image of a matrix

⎤
a b
c d

⎣
∈ GL2(Z)

under the map GL2(Z) ↠ PGL2(Z) will be denoted by
⎦
a b
c d

⎢
∈ PGL2(Z)

The distinguished generators si are given by

s1 =

⎦
1

1

⎢
, s2 =

⎦
−1 1

1

⎢
, s3 =

⎦
−1

1

⎢
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The orders m(s, t) = ord(st) are given by

m(s1, s2) = 3, m(s1, s3) = 2, m(s2, s3) =∞

We will write Ti := Tsi
for the generators of H, and ai := asi

∈ R and bi := bsi
∈ R for the parameters of H.

Note that
a1 = a2 and b1 = b2

as s1 and s2 are conjugate ((s1s2)s1(s1s2)−1 = s2), but otherwise the parameters are unconstrained.

3.1 Boundary orientations of PGL2(Z)

Let us now investigate the set Oboundary of the hyperbolic Coxeter group W = PGL2(Z). It is indeed hyperbolic
in every sense of the word, as it’s a hyperbolic reflection group in the sense of Vinberg (cf. [Vin85, Introduction]),
i.e. it’s a discrete subgroup of the group of isometries of the hyperbolic plane H2 generated by reflections at
hyperplanes (totally geodesic codimension one submanifolds) in H2. In fact, such a representation of PGL2(Z)
is afforded by its canonical action on the upper half-plane

H := ¶z ∈ C : ℑz > 0♢

considered as a model of H2 with metric g(x+ iy) = 1
ydx⊗ dy, via fractional linear transformations

⎦
a b
c d

⎢
• z =

⎧
⎪⎪⎪⨄
⎪⎪⎪⎩

az + b

cz + d
if ad− bc = 1

az + b

cz + d
if ad− bc = −1

The generators s1, s2, s3 act as the reflections at the hyperplanes

H1 = ¶z ∈ H : ♣z♣ = 1♢, H2 = ¶z ∈ H : ℜz =
1

2
♢, H3 = ¶z ∈ H : ℜz = 0♢

bounding the fundamental polytope

C := ¶z ∈ H : ♣z♣ > 1, 0 < ℜz < 1

2
♢

To describe the boundary representations of PGL2(Z), it is useful to extend the hyperbolic plane by its natural
boundary, replacing the upper half-plane by the extended upper half-plane

H := H ∪ P1(R) = ¶z ∈ C : ℑz ≥ 0♢ ∪ ¶∞♢

considered as a closed subset of the Riemann sphere P1(C). The boundary orientations o ∈ Oboundary we want
to describe are attached to actual boundary points x ∈ P1(R), but to certain points corresponds more than one
orientation. A precise statement is that there is a W -equivariant correspondence

F

↙↙ ↘↘
P1(R) Oboundary

defined as follows. Since this construction is in part completely general, let (W,S) be an arbitrary Coxeter
group for the moment. The set F is the quotient Γ/∼ of the set

Γ := ¶(wn)n∈N : ∀n wn ∈W, w−1
n wn+1 ∈ S, ℓ(w−1

0 wn) = n♢

of (semi-)infinite reduced galleries (carrying a natural W -action via w • (wn)n∈N = (wwn)n∈N) by the (W -
invariant) equivalence relation ∼ on Γ characterized uniquely by requiring

(3.1.1) w0 = w′
0 ⇒ (wn)n∈N ∼ (w′

n)n∈N ⇔ ∀m∃n n ≥ m ∧ wn = w′
n

and

(3.1.2) ∀m,m′ ∈ N (wn)n∈N ∼ (w′
n)n∈N ⇔ (wn+m)n∈N ∼ (w′

n+m′)n∈N
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for all (wn)n∈N, (w
′
n)n∈N ∈ Γ. Moreover, there is a natural W -equivariant map

F −→ Oboundary, [(wn)n∈N] ↦→ lim
n∈N

own

where the left action on Oboundary is given in terms of the natural right action as w • o := o • w−1. The
equivariance then follows from the formula ow′ • w−1 = oww′ (cf. remark 1.5.8). The limit limn∈N own

exists
(a priori only as an element of ¶±♢W×S , but by remark 1.5.6 also as an element of O), as it does exist for
any infinite gallery (wn)n∈N that crosses every hyperplane only finitely many times. The limit orientation
o = limn∈N own

must lie in Oboundary because

o(wn, w
−1
n wn+1) = +1

for all n by construction, which would be impossible if o were of the form o = ow or o = oop
w .

The set F can be described a little more explicitly (at the price of making the W -action more complicated) as
follows. The embedding Γ0 ⊆ Γ of the subset of infinite reduced galleries starting in w0 = 1 induces a bijection
Γ0/∼ ≃ Γ/∼ of the quotient of Γ0 by the equivalence relation defined by eq. (3.1.1) with F. Indeed, given any
(wn)n∈N ∈ Γ, we can choose m ∈ N such that the subgallery wm, wm+1, . . . does not cross any of the (finitely
many) hyperplanes separating w0 and 1, and then (w′

n)n∈N defined by

w′
n :=

∮
w′′
n if n <= r

wn−r+m if n > r

is an element of Γ0 equivalent to (wn)n∈N, for any reduced gallery w0 = w′′
0 , . . . , w

′′
r = 1 from w0 to 1.

Let now be (W,S) = (PGL2(Z), ¶s1, s2, s3♢) again, then one can make F even more explicit. Indeed in this
case, a complete system of representatives for Γ0/∼ is given by galleries corresponding to the infinite formal
words in the generators of the form

(s2s3)a0s1(s2s3)a1s1(s2s3)a2s1 . . . and (s2s3)a0s1 . . . (s1s2)ars1(s2s3)±∞

where ai ∈ Z, subject to the condition that ∀i ai ≥ 0 or ∀i ai ≤ 0, and ai ̸= 0 for all i > 0. Here, the expressions
(s2s3)−∞ and (s2s3)+∞ are to be understood as s3s2s3s2 . . . and s2s3s2s3 . . . respectively. We can identify
these expressions with formal continued fraction as

[a0, a1, a2, . . . ] and [a0, . . . , ar,±∞]

The map
F −→ P1(R)

is then given by evaluation of formal fractions, sending [a0, a1, a2, . . . ] to

[a0, a1, . . . ] := lim
n→∞

[a0, . . . , an]

where [a0, . . . , an] ∈ Q is defined recursively by

[a0, . . . , an, an+1] := [a0, . . . , an +
1

an+1
], [a0] :=

1

a0

as usual. The W -equivariance of the map F −→ P1(R) can most easily be verified by establishing that the value
of a class [(wn)n∈N] is given by the limit limn→∞ wn • z, independent of the choice of a z ∈ H. From this it also
follows that the point x ∈ P1(R) and the orientation o ∈ Oboundary defined by an element of F satisfy

(3.1.3) StabPGL2(Z)(o) ⊆ StabPGL2(Z)(x)

From the theory of continued fractions it follows that the map F → P1(R) is surjective and that the infinite
formal continued fractions [a0, a1, a2, . . . ] map bijectively onto R−Q, while the finite ones map many to one to
P1(Q), with [a0, . . . , ar,−∞], [a0, . . . , ar,+∞] both mapping to [a0, . . . , ar] ∈ P1(Q). More precisely,∞ ∈ P1(Q)
has the two preimages [−∞], [+∞] (r = −1), whereas every x ∈ Q has four preimages because it can be expressed
as two distinct continued fractions, due to the identity

[a0, . . . , ar, 1] = [a0, . . . , ar + 1]

The orientation o = limn own
defined by a (wn)n∈N ∈ Γ can be described concretely in terms of the

corresponding point x ∈ P1(R) as follows. The set H = ¶wsw−1 : w ∈ W, s ∈ S♢ of formal hyperplanes
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Figure 5: The canonical hyperplane arrangement realizing the Coxeter group W = PGL2(Z) as a hyperbolic
reflection group, viewed in the disk model (isometric to the upper half-plane H via the Cayley transform q = z−i

z+i )
of the hyperbolic plane. The two orientations of W attached to the ‘point at infinity’ z = ∞ (q = 1 ∈ ∆) are
the limits limn→−∞ oCn

, limn→+∞ oCn
attached to the two semi-infinite galleries contained in the ‘horocycle’

(Cn)n∈Z and starting in the fundamental polytope C0.

can be identified as a W -set with the set ¶w •H1, w •H2, w •H3 : w ∈W♢ of W -conjugates of the hyperplanes
in H2 = H bounding the fundamental polytope. If H = wsw−1 corresponds to a hyperplane H ⊆ H such that
x ̸∈ H, then

(3.1.4) o(w, s) = +1 ⇔ w • C and x lie in different connected components of H−H

The condition x ̸∈ H is always satisfied if x ∈ R−Q, since the endpoints of the hyperplanes H ∈ H on P1(R) lie
in P1(Q), and the orientation attached to x is then uniquely and explicitly determined by eq. (3.1.4). It follows
easily that in this case the inclusion in eq. (3.1.3) is an equality. Since the stabilizer StabPGL2(Z)(x) is non-
trivial precisely when x ∈ P1(Q) or x is a quadratic irrational number (by a classical exercise), the orientation
ox attached to an irrational number x ∈ R−Q has a non-trivial stabilizer if and only if it is quadratic irrational.

The two orientations attached to rational boundary points x ∈ P1(Q) also have a non-trivial stabilizer, but
the inclusion in eq. (3.1.3) is proper in this case. In fact, since

x ∈ H ⇔ sH = wsw−1 ∈ StabPGL2(Z)(x)

we have that s2 = sH2
, s3 = sH3

∈ StabPGL2(Z)(∞), but s2 and s3 both interchange the two orientations
attached to x =∞ (cf. figure 5). The stabilizers of these orientations are instead equal to the subgroup

⟨s2s3⟩ =

⎭⎦
1 z

1

⎢
: z ∈ Z

}

3.2 The geometry of PGL2(Z)

3.2.1 Lemma. There exists a unique subset F ⊆W such that every element of W is of the form w = xw0 with
x ∈ X∞ and w0 ∈ F, and

(3.2.1) ∀x ∈ X∞, w ∈ F ℓ(xw) = ℓ(x) + ℓ(w)

Moreover, this set F is given by

F = ¶w ∈W : 1 and w lie in the same half-spaces with respect to s2 and s3♢
= ¶w ∈W : no reduced expression of w starts with s2 or s3♢
= ¶w ∈W : ℓ(siw) > ℓ(w) for i = 2, 3♢
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Proof. We leave it to the reader to verify that the three expressions given for F define the same set (cf. figure 6).
Let us begin by showing that the elements of F constitute a complete system of representatives forX∞\PGL2(Z).
If w ∈ PGL2(Z) does not already lie in F, then there exists a reduced expression w = si1w

′, ℓ(w) = 1 + ℓ(w′)
with i1 = 2 or i1 = 3. Continuing this reasoning, we can write

w = si1si2 . . . sirw
′′

with ℓ(w) = r + ℓ(w′′) and ij ∈ ¶2, 3♢, and where w′′ does not admit a reduced expression starting in s2 or s3,
i.e. w′′ ∈ F. Thus

w = xw′′, ℓ(w) = ℓ(x) + ℓ(w′′), x ∈ X∞, w
′′ ∈ F

where x := si1 . . . sir . This proves in particular that every element of PGL2(Z) is of the form xf , and it
also proves that ℓ(xf) = ℓ(x) + ℓ(f) once we’ve proven that such an expression is unique. So assume that
w = xf = x′f ′ with x, x′ ∈ X∞, f, f ′ ∈ F and ℓ(x) + ℓ(f) = ℓ(x′) + ℓ(f ′). Without loss of generality, we may
assume that ℓ(x) ≤ ℓ(x′). By taking reduced expressions of x−1x and f ′, inserting them into the equality

f = x−1x′f ′

and reducing the resulting expression using the deletion condition, it follows that there is an expression

f = x′′f ′′, ℓ(f) = ℓ(x′′) + ℓ(f ′′)

where x′′ ≤ x−1x′ and f ′′ ≤ f ′ in the strong Bruhat order. Since

ℓ(f) ≥ ℓ(f ′) ≥ ℓ(f ′′) = ℓ(f)− ℓ(x′′)

it follows that either these inequalities are equalities and therefore x′′ = 1, f ′′ = f and hence f ′ = f (since
f ′′ ≤ f ′) or that these inequalities are strict and that x′ ̸= 1, in which case f would have a reduced expression
starting in s2 or s3 contradicting f ∈ F.

Thus, the set F as defined satisfies the claimed properties. The uniqueness of F is clear, since if f ∈ F, then
every other element of the Orbit X∞ • f is of the form w = xf with ℓ(w) = ℓ(x) + ℓ(f) > ℓ(f). But then

ℓ(x−1w) = ℓ(f) < ℓ(x) + ℓ(f) = ℓ(x−1) + ℓ(f) < ℓ(x−1) + ℓ(w)

3.2.2 Remark. Since X∞ = StabPGL2(Z)(∞) and PGL2(Z) acts transitively on P1(Q) = Q ∪ ¶∞♢, we have a
bijection

X∞\PGL2(Z)
∼−→ P1(Q), [w] ↦→ w−1 •∞

By lemma 3.2.1, there exists a complete set F ⊆ PGL2(Z) for the action of X∞, and therefore a bijection

F
∼−→ P1(Q), f ↦→ f−1 •∞

The set F (indicated in blue) and its labelling are illustrated in figure 6

3.3 The subalgebra A∞ ⊆ H
We let

X∞ = ⟨s2, s3⟩ = StabW (∞ ∈ P1(Q))

as before.

3.3.1 Definition. The parabolic Hecke subalgebra associated to the special subgroup (X∞, ¶s2, s3♢) of W is
denoted by A∞. In other words,

A∞ =
{

x∈X∞

RTx ⊆ H

3.3.2 Remark. The Coxeter group (X∞, ¶s2, s3♢) is nothing but the infinite dihedral group D∞, which is also
the same as the extended affine Weyl group W = X∨ ⋊W0 of the root datum

(X,Φ, X∨,Φ∨) = (Z, ¶±2♢,Z, ¶±1♢)

of the group SL2. Under the identification X∞ = X∨ ⋊ W0 = Z ⋊ S2, the subgroup W0 corresponds to
⟨s3⟩ = ¶1, s3♢ and X∨ corresponds to ⟨s2s3⟩ = ¶(s2s3)k : k ∈ Z♢.
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Figure 6: The fundamental domain F (coloured in blue) for the left action of X∞ on PGL2(Z) and the labelling
of its elements via the bijection F

∼→ P1(Q), f ↦→ f−1 •∞.
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In particular, A∞ is the affine Hecke algebra of SL2 with parameters as, bs, s ∈ ¶s2, s3♢, and the structure
theorem 2.7.1 applies (cf. also section 2.2.1), showing that A∞ is noetherian when R is, and that the center of
A∞ is given by the invariants of each of the two commutative subalgebras (ε ∈ ¶±♢)

Aε∞ := A(1)
oε

∞
(X∨) =

{

k∈Z

Rθ̂oε
∞

((s2s3)k) ⊆ A∞

under the action of W0 = ¶1, s3♢, where s3 • θ̂oε
∞

((s2s3)k) = θ̂oε∞ ((s2s3)−k). Note here that the restriction of
the orientations o+

∞, o
−
∞ to X∞ give precisely the two spherical orientations of X∞. More explicitly, we have

θ̂oε
∞

((s2s3)ε) = T2T3, θ̂oε
∞

((s2s3)−ε) = (T3 − b3)(T2 − b2)

and θ̂oε
∞

((s2s3)±k) = θ̂oε
∞

((s2s3)±1)k for k ≥ 0, and

R[X,Y ]/(XY − a2a3)
∼−→ Aε∞

X ↦−→ θ̂oε
∞

(s2s3)

Y ↦−→ θ̂oε
∞

((s2s3)−1)

Under this isomorphism, s3 •X = Y where X,Y denote the images of X,Y under R[X,Y ] ↠ R[X,Y ]/(XY −
a2a3). Moreover, there is an isomorphism of R-algebras

R[Z, T ]/(T 2 − ZT + a2a3)
∼−→ R[X,Y ]/(XY − a2a3)

Z ↦−→ X + Y

T ↦−→ X

with the induced action of s3 being trivial on Z and satisfying s3 • T = Z − T . The invariant subalgebra is
R[Z], and hence

R[Z]
∼−→ Z(A∞), Z ↦−→ T2T3 + (T3 − b3)(T2 − b2)

Moreover, H is free as a left-module over Aε∞ with basis ¶1, θ̂oε
∞

(s2)♢, and θ̂o+
∞

(s2) = T2. As an R[Z]-module,
H is therefore free with basis ¶1, T2, T2T3

T

, T2T3
T

T2♢.

3.3.3 Lemma. H is free as a left-A∞-module, with basis given by the elements

[f ]∞ := Tf = θ̂−o
+
∞

(f) = θ̂−o
−
∞

(f), f ∈ F

Moreover, the relation (ε ∈ ¶±♢)

[f ]∞ · θ̂−oε
∞•f (w) = X(f, w)θ̂−oε

∞
(x)[f ′]∞, x ∈ X∞, f

′ ∈ F, fw = xf ′

holds true for all f ∈ F and w ∈W .

Proof. Let us begin by proving the equalities

Tf = θ̂−o
+
∞

(f) = θ̂−o
−
∞

(f)

By definition
oε∞ = lim

n→∞
o(s2s3)εn

Therefore, for f ∈ F, i ∈ ¶1, 2, 3♢ and n > 0 sufficiently large we have (cf. definition 1.5.7)

oε∞(f, si) = o(s2s3)εn(f, si) =

∮
+1 if ℓ((s2s3)−εnfsi) < ℓ((s2s3)−εnf)

−1 if ℓ((s2s3)−εnfsi) > ℓ((s2s3)−εnf)
(3.3.1)

If moreover fsi ∈ F, then

ℓ((s2s3)εnfsi) = ℓ((s2s3)εn) + ℓ(fsi), ℓ((s2s3)εnf) = ℓ((s2s3)εn) + ℓ(f)

by eq. (3.2.1), hence eq. (3.3.1) simplifies to

oε∞(f, si) =

∮
+1 if ℓ(fsi) < ℓ(f)

−1 if ℓ(fsi) > ℓ(f)
(3.3.2)
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In particular, o+
∞(f, si) = o−

∞(f, si) in that case, and

−oε∞(f, si) = 1 if fsi ∈ F, ℓ(fsi) > ℓ(f)

Moreover, F is convex, i.e. given a reduced expression f = si1 . . . sir we have

si1 . . . sij ∈ F ∀j = 1, . . . , r

Therefore, we can apply the above formula to conclude that oε(si1 . . . sij−1 , sij ) = −1 for all j, and it follows
that (cf. theorem 1.10.1)

θ̂o+
∞

(f) = θ̂
o

−
∞

(f) = Tsi1
. . . Tsir

= Tf

Using this, we compute

[f ]∞ · θ̂−oε
∞•f (w) = θ̂−oε

∞
(f)θ̂−oε

∞•f (w)

= X(f, w)θ̂−oε
∞

(fw)

= X(f, w)θ̂−oε
∞

(xf ′)

= X(f, w)θ̂−oε
∞

(x)θ̂−oε
∞•x(f ′)

= X(f, w)θ̂−oε
∞

(x)[f ′]∞

Here we have used that ℓ(xf ′) = ℓ(x) + ℓ(f ′) in the second-to-last step, and the fact that X∞ leaves ¶o+
∞, o

−
∞♢

invariant in the last step.
That the [f ]∞, f ∈ F constitute a basis of H as left module over A∞ follows from the fact that A∞ is free

as an R-module with basis Tx, x ∈ X∞, and the fact that the elements

TxTf = Txf , x ∈ X∞, f ∈ F

are an R-basis of H.

3.3.4 Remark. Recall from remark 3.2.2 that we have a bijection

F −→ P1(Q), f ↦→ f−1 •∞

Let x ↦→ fx denote the inverse of this bijection, and let us write

[x]∞ := [fx]∞ ∈ H

for x ∈ P1(Q). Then the induction functor M ↦→M ⊗A∞
H can also be written as

M ⊗A∞
H ≃

{

x∈P1(Q)

M [x]∞

Let us now complete explicitly the action of the generators Ti := Tsi
, i = 1, 2, 3 of H on the basis elements

[x]∞.

3.3.5 Lemma. For all x ∈ P1(Q) we have

[x]∞ · T1 =

⎧
⎪⨄
⎪⎩

T2[x]∞ if x ∈ ¶−1, 1♢
X(fx, s1)[ 1

x ]∞ if x ̸∈ ¶−1, 1♢, ℓ(fxs1) > ℓ(fx)

X(fx, s1)[ 1
x ]∞ + b1[x]∞ if x ̸∈ ¶−1, 1♢, ℓ(fxs1) < ℓ(fx)

[x]∞ · T2 =

⎧
⎪⨄
⎪⎩

T2[x]∞ if x ∈ ¶1
2 ,∞♢

X(fx, s2)[−x+ 1]∞ if x ̸∈ ¶1
2 ,∞♢, ℓ(fxs2) > ℓ(fx)

X(fx, s2)[−x+ 1]∞ + b2[x]∞ if x ̸∈ ¶1
2 ,∞♢, ℓ(fxs2) < ℓ(fx)

[x]∞ · T3 =

⎧
⎪⨄
⎪⎩

T3[x]∞ if x ∈ ¶0,∞♢
X(fx, s3)[−x]∞ if x ̸∈ ¶0,∞♢, ℓ(fxs3) > ℓ(fx)

X(fx, s3)[−x]∞ + b3[x]∞ if x ̸∈ ¶0,∞♢, ℓ(fxs3) < ℓ(fx)
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Proof. By lemma 3.3.3, we have

[fx]∞θ̂−oε
∞•fx

(si) = X(fx, si)θ̂−oε
∞

(y)[f ′]∞

where y ∈ X∞ and f ∈ F are such that
fxsi = yf ′

In particular
[fx]∞θ̂−oε

∞•fx
(si) = X(fx, si)[fxsi]∞

if fxsi ∈ F. Moreover in that case we can apply eq. (3.3.2) to see that

(−oε∞ • fx)(1, si) = −oε∞(fx, si) =

∮
+1 if ℓ(fxsi) > ℓ(fx)

−1 if ℓ(fxsi) < ℓ(fx)

Accordingly

θ̂−oε
∞•fx

(si) =

∮
Ti if ℓ(fxsi) > ℓ(fx)

Ti − bi if ℓ(fxsi) < ℓ(fx)

which proves the claimed formulas in the case where fxsi ∈ F because (fxsi)
−1 •∞ = si • x and therefore

fxsi = fsi•x

Now, fx ∈ F, fxsi ̸∈ F happens if and only if the hyperplane H = fxsif
−1
x separating fx and fxsi is one of the

hyperplanes s2, s3 defining the boundary of F, i.e.

fxsi ̸∈ F ⇔ fxsif
−1
x ∈ ¶s2, s3♢

and in that case we have

[fx]∞θ̂−oε
∞•fx

(si) = X(fx, si)θ̂−oε
∞

(sj)[fx]∞ = θ̂−oε
∞

(sj)[fx]∞

if j ∈ ¶2, 3♢ is such that fxsi = sjfx, as the convexity of F and fx ∈ F, fxsi ̸∈ F implies that ℓ(fxsi) > ℓ(fx)
and therefore X(fx, si) = 1. But, as figure figure 6 shows, there are only finitely many f ∈ F which have a facet
lying in the boundary hyperplanes s2 and s3, namely fx for x ∈ ¶∞, 0, 1,−1, 1

2♢. More precisely, inspecting
figure figure 6 again one sees that fxsi ̸∈ F happens precisely when si • x = x, and that

f1s1 = s2f1, f−1s1 = s2f−1

f 1
2
s2 = s2f 1

2
, f∞s2 = s2f∞

f∞s3 = s3f∞, f0s3 = s3f0

Using eq. (3.3.1) and eq. (3.2.1) it follows that

−oε∞(1, si) =

∮
+1 if ℓ((s2s3)−εnsi) > ℓ((s2s3)−εn)

−1 if ℓ((s2s3)−εnsi) < ℓ((s2s3)−εn)

= −oε∞(1, sj)

Moreover, elementary arguments show that

−oε∞(1, si) =

∮
+1 if i = 1 ∨ (i = 2 ∧ ε = −1) ∨ (i = 3 ∧ ε = +1)

−1 if (i = 2 ∧ ε = +1) ∨ (i = 3 ∧ ε = −1)

and hence ε can always be chosen so that

(−oε∞ • fx)(1, si) = −oε∞(1, sj) = 1

which gives
θ̂−oε

∞•fx
(si) = Ti, θ̂−oε

∞
(sj) = Tj

and therefore implies the claimed formulas in the case where fxsi ̸∈ F.
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3.4 Intertwiners

3.4.1 Lemma.
∀w ∈ PGL2(Z) ℓ(ws2) > ℓ(w) ∨ ℓ(ws3) > ℓ(w)

Proof. Assume that ℓ(ws2) < ℓ(w). Then there exists a reduced expression

w = si1 . . . sir

of w ending in s2 (i.e. ir = 2). If we also had ℓ(ws3) < ℓ(w), then there would exist another reduced expression
ending in s3. Since two reduced expressions of the same element of a Coxeter group are connected by a finite
sequence of braid moves, this would imply in particular that ij = 3 for some j < r, and so

max¶j : ij = 3♢ < max¶j : ij = 2♢
But this condition is preserved under braid moves (since m(s2, s3) =∞), which leads to a contradiction. Hence
we must have ℓ(ws3) > ℓ(w).

3.4.2 Theorem. Let χ : A∞ −→ R be a character. If ai ∈ R× for all i, then

End(χ⊗A∞
H) = R

i.e. the induced H-module χ⊗A∞
H ≃⌉x∈P1(Q) χ[x]∞ is Schur-simple.

Proof. Frobenius reciprocity gives

EndH(χ⊗A∞ H) ≃ HomA∞(χ, χ⊗A∞ H)

≃ ¶ϕ ∈ χ⊗A∞ H : ϕ · Ti = χ(Ti)ϕ for i = 2, 3♢
Let ϕ =

√
x∈P1(Q) cx[x]∞ ̸= 0 be a nonvanishing element of the set in the second line above. We must show

that cx = 0 for all x ̸=∞. First, let us show that

(3.4.1) ¶x ∈ P1(Q) : cx ̸= 0♢ ⊆ ¶0, 1

2
,∞♢

To this end, let f be an element of

¶f ∈ F : cf−1•∞ ̸= 0♢ − ¶fx : x ∈ ¶0, 1

2
,∞♢♢ ⊆W

of maximal length. By lemma 3.4.1, we have ℓ(fs2) > ℓ(f) or ℓ(fs3) > ℓ(f). Without loss of generality, we may
assume that ℓ(fs2) > ℓ(f) (the other case is treated similar). Because f ̸∈ ¶fx : ¶0, 1

2 ,∞♢♢ we have fs2 ∈ F,
and by lemma 3.3.5 it follows therefore that (x := f−1 •∞)

[x]∞T2 = a2[s2 • x]∞

Since f was assumed to be of maximum length and ℓ(fs2) > ℓ(f), it follows24 that the coefficient of [s2 • x]∞
in χ(T2)ϕ vanishes; for the same reasons, the coefficient of [s2 • x]∞ in ϕ · T2 equals a2cx. Since ϕ · T2 = χ(T2)ϕ
by assumption, it follows that

a2cx = 0

Since a2 ∈ R×, it follows that cx = 0 in contradiction to our assumptions. This proves eq. (3.4.1), and we can
therefore write

ϕ = c0[0]∞ + c 1
2
[
1

2
]∞ + c∞[∞]∞

Using lemma 3.3.5, we compute

ϕ · T2 = a2c0[1]∞ + χ(T2)c 1
2
[
1

2
]∞ + χ(T2)c∞[∞]∞

χ(T2)ϕ = χ(T2)c0[0]∞ + χ(T2)c 1
2
[
1

2
]∞ + χ(T2)c∞[∞]∞

Thus c0 = 0. Since

ϕ · T3 = a3c 1
2
[−1

2
]∞ + χ(T3)c∞[∞]∞

χ(T3)ϕ = χ(T3)c 1
2
[
1

2
]∞ + χ(T3)c∞[∞]∞

it follows that c 1
2

= 0.
24None of the element fx, x ∈ ¶0, 1

2
, ∞♢ is of the form fx = fsi with ℓ(fx) > ℓ(f), i ∈ ¶2, 3♢; in particular, fs2 ̸∈ ¶fx : x ∈

¶0, 1
2

, ∞♢
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4 Normalizers of Tori

Let G be a split reductive group over a field k with maximal split torus T ≤ G and let N ≤ G be its normalizer.
Then there is a canonical short exact sequence

(4.0.1) 1 →→ T →→ N →→ W0
→→ 1

where N = N(k), T = T(k) denotes the groups of k-rational points and W0 denotes the Weyl group W0 = N/T
of the pair (G,T). Our goal is to determine when this sequence splits in the case when G is almost simple, i.e.
when G has a finite center Z and G/Z is simple, or equivalently, when the root datum of G is semisimple and
its Dynkin diagram connected.

We point out, that this question has already been resolved. In fact, various versions of it have been resolved
by several different people independently, starting with Tits himself who announced their existence in [Tit66]
but never published them (see also [Pop75]). For compact simple real Lie groups, this questions has been settled
by Curtis, Wiederhold and Williams in [CWW74], for the case of split simple groups over an arbitrary field in
[AH17, Theorem 4.16]. Over fields of positive characteristics, these results had also been obtained previously by
Galt in several articles [Gal15], [Gal14], [Gal17a], [Gal17b]. Here, we will provide an answer to this question for
all rings. Note that (a posteriori) the answer for rings is easily deduced from the one for fields (cf. remark 4.2.2).
However, as our method of proof is different and gives new information (the cohomology groups Hk(W0, X

∨)
and Hk(W0, X

∨ ⊗Z F2) for small k), we think it is still of interest.
By Schreier theory (see [BS06, 1.5]), the splitness of eq. (4.0.1) is determined by the vanishing of a cohomology

class [ϕ] ∈ H2(W0, T ) corresponding to this extension. In section 1.8 we explicitly computed a representing
2-cocycle for the canonical extension

1 →→ T →→ W (1) →→ W →→ 1

of a pro-p Coxeter group W (1). In order to make use of this result, we will see in the next section how N can
be endowed with the structure of a pro-p Coxeter group.

4.1 The normalizer as a pro-p Coxeter group and its description in terms of root
data

Let (G,T) be as before. Our goal in this section is to describe the extension eq. (4.0.1) entirely in terms of the
root datum

R := (X,Φ, X∨,Φ∨) := (X∗(T),Φ, X∗(T),Φ∨)

of (G,T).
First of all, the Weyl group W0 = N/T is equal to the Weyl group of the root datum R as a subgroup of

Aut(T) ≃ GLZ(X∗(T))op

and the two may therefore be identified. Moreover, the group T = T(k) of k-rational points of T naturally
identifies with

T ≃ HomZ(X∗(T), k×) ≃ X∗(T)⊗ k×

and this identification respects the action of W0.
By Schreier theory, the extension eq. (4.0.1) is determined (up to isomorphism) by its class in H2(W0, T ).

To compute a representing 2-cocycle ϕ ∈ Z2(W0, T ), we will use the results of section 1.8 by giving N the
structure of a pro-p Coxeter group, i.e. by exhibiting lifts ns ∈ N of the s ∈ S that satisfy the braid relations.

Recall from section 2.2.3 that for every element u ∈ Uα, u ̸= 1, the intersection U−αuU−α ∩N consists of a
single element m(u), where Uα = Uα(k) denotes the group of k-rational points of the root subgroup Uα ≤ G
corresponding to a root α ∈ Φ.

For every root α ∈ Φ, fix an element uα ∈ Uα, uα ̸= 1 and let

nα := m(uα) ∈ U−αuαU−α ∩N

4.1.1 Lemma. With the above notation, it holds that

(i) n2
α = α∨(−1), where α∨ denotes coroot α∨ ∈ X∗(T) = Hom(Gm,T) dual to α

(ii) nαnβnα · · · = nβnαnβ . . . if α, β ∈ Φ are part of a root basis ∆ of Φ, where the number of factors on both
sides equals the order m of sαsβ ∈W0
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Proof. Formula (ii) follows from [BT72, Prop. 6.1.8]. Formula (i) is proven in [Spr98, Lemma 8.1.4] (for a
special choice of the uα; but since m(uα), m(u′

α) for u, u′ ∈ Uα−¶1♢ differ only by α∨(t) for some t ∈ k×, they
square to the same element).

To make N into a pro-p Coxeter group, fix a root basis ∆ ⊆ Φ and consequently a set S ⊆ W0, S = ¶sα :
α ∈ ∆♢, making W0 into a Coxeter group, and put

nsα
:= nα = m(uα) for α ∈ ∆

By section 1.8, a 2-cocycle representing eq. (4.0.1) is explicitly given as follows. First, recall that the lifts nsα

induce a canonical set-theoretic section
n : W0 −→ N

of N ↠W0, determined by

n(s) = ns, n(ww′) = n(w)n(w′) if ℓ(ww′) = ℓ(w) + ℓ(w′)

The 2-cocycle

(4.1.1) ϕ(w,w′) = n(w)n(w′)n(ww′)−1

given by this section is then given in terms of the universal 2-cocycle X by

(4.1.2) ϕ = h ◦X

where
h : Z[H] −→ T

denotes the Z[W0]-module homomorphism from the free abelian group on the set H := ¶wsw−1 : w ∈ W0, s ∈
S♢ = ¶sα : α ∈ Φ♢ of reflections that is determined by

h(sα) = n2
sα

= α∨(−1) ∀α ∈ ∆

4.1.2 Remark. The homomorphism h : Z[H] −→ T = X∗(T) can be factorized into the composition

Z[H]
h̃−→ X∗(T)⊗Z F2

ι−→ X∗(T)⊗Z k
×

sα ↦−→ α∨ ⊗ 1

χ⊗ x ↦−→ χ⊗ (−1)x

of W0-equivariant homomorphisms. In particular, the 2-cocycle ϕ ∈ Z2(W0, T ) defined in eq. (4.1.1) is the
push-forward of

(4.1.3) ϕu := h̃ ◦X ∈ Z2(W0, X∗(T)⊗Z F2)

along ι.

4.2 Characterizing splitting in terms of H2(W0, X∨ ⊗Z F2)

In the previous section we have explicitly computed a representative ϕ of the class in H2(W0, T ) corresponding
to the extension eq. (4.0.1), and we have seen that it only depends on the root datum

(X,Φ, X∨,Φ∨) := (X∗(T),Φ, X∗(T),Φ∨)

of (G,T) and the ground field k. Moreover, we have seen in remark 4.1.2 that ϕ is the pushforward ι∗(ϕu) = ι◦ϕu
of the 2-cocycle ϕu = h̃∗(X) ∈ Z2(W0, X

∨ ⊗Z F2) along the map ι : X∨ ⊗Z F2 −→ X∨ ⊗Z k
× induced by

F2 → k×, x ↦→ (−1)x.
Since these definitions make sense for any root datum and any (commutative) ring k, we will in the following

assume that R = (X,Φ, X∨,Φ∨) is an arbitrary root datum (not necessarily semisimple), that W0 = W0(R) is
the Weyl group of R, that k is a commutative ring, and that

(4.2.1) ϕu := h̃ ◦X ∈ Z2(W0, X
∨ ⊗Z F2)



108 4 NORMALIZERS OF TORI

and

(4.2.2) ϕ := ι ◦ ϕu ∈ Z2(W0, X
∨ ⊗Z k

×)

with h̃ and ι given as before.
Our goal in this section will be to characterize the vanishing of [ϕ] ∈ H2(W0, X

∨ ⊗Z k
×) in terms of the

cohomology of X∨, X∨ ⊗Z F2 and the element [ϕu] ∈ H2(W0, X
∨ ⊗Z F2). Note that if −1 = 1 in k, then ι and

hence ϕ vanish. We will therefore assume in the following that −1 ̸= 1 in k.
The idea is to isolate the dependence on k of the question whether [ϕ] ∈ H2(W0, X

∨ ⊗Z k
×) vanishes using

the following corollary of the Künneth theorem (see theorem 4.4.15).

4.2.1 Corollary (Universal coefficient theorem for group cohomology). Let G be a finite group, M a Z[G]-
module that is flat as a Z-module, and N be any Z-module. Then for any n ∈ Z, there is a split short exact
sequence

(4.2.3) 0 →→ Hn(G,M)⊗Z N →→ Hn(G,M ⊗Z N) →→ TorZ1 (Hn+1(G,M), N) →→ 0

natural in M and N , where M ⊗Z N is viewed as a Z[G]-module by action on the left factor only.

Proof. The group cohomology Hn(G,M) can be computed as the cohomology of the cochain complex

(HomZ[G](Ck,M))k∈Z

where (Ck)k∈Z is any resolution of the trivial Z[G]-module Z by free Z[G]-modules of finite dimension (for
example, the bar resolution). If Sk denotes a basis of the Z[G]-module Ck, then it follows that we have a
natural identification

(4.2.4) HomZ[G](Ck,M) ≃
{

s∈Sk

M

of Z-modules. This implies that the natural map

HomZ[G](Ck,M)⊗Z N −→ HomZ[G](Ck,M ⊗Z N)

is an isomorphism, and hence the cochain complex (HomZ[G](Ck,M)⊗ZN)k∈Z computes (Hk(G,M⊗ZN))k∈Z.
Moreover it follows from eq. (4.2.4) that the cochain complex (HomZ[G](Ck,M))k∈Z is degreewise flat, and we
can apply theorem 4.4.15 with C := (HomZ[G](Ck,M))k∈Z and D = N considered as a complex concentrated
in degree zero.

We now apply corollary 4.2.1 with M = X∨ and j : N = F2 ↪→ k× = N ′ to obtain a commutative diagram

(4.2.5) 0 →→ H2(W0, X
∨)⊗Z F2

ψ=id ⊗j
↓↓

η
→→ H2(W0, X

∨ ⊗Z F2)

↓↓

→→ TorZ1 (H3(W0, X
∨),F2)

↙ ↖

↓

→→ 0

0 →→ H2(W0, X
∨)⊗Z k

× →→ H2(W0, X
∨ ⊗Z k

×) →→ TorZ1 (H3(W0, X
∨), k×) →→ 0

of split exact sequences, where the leftmost horizontal maps are induced by the canonical maps

Z2(W0,M)⊗Z N −→ Z2(W0,M ⊗Z N), ϕ⊗ n ↦→ ((w,w′) ↦→ ϕ(w,w′)⊗ n)

on the level of cocycles, and the injectivity of the rightmost vertical map follows from the injectivity of F2 ↪→ k×

and [HS96, Ch. III, Cor. 8.4]. The class [ϕ] ∈ H2(W0, X
∨ ⊗Z k

×) is the image of [ϕu] ∈ H2(W0, X
∨ ⊗Z F2)

under the middle vertical map. A diagram chase therefore shows that

(4.2.6) [ϕ] = 1⇔ [ϕu] ∈ im(η) ∧ η−1([ϕu]) ∈ ker(ψ)

In particular, to decide the vanishing of [ϕ] it suffices to compute the cohomology groups H2(W0, X
∨) and

H2(W0, X
∨ ⊗Z F2) together with the map η. This computation will be carried out for all semisimple root data

of rank ≤ 8 whose underlying root system is irreducible (i.e. such that the Dynkin diagram is connected) in
section appendix A.

4.2.2 Remark. The following are equivalent:
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(i) The class [ϕu] ∈ H2(W0, X
∨ ⊗Z F2) vanishes.

(ii) The extension eq. (4.0.1) splits for all rings k.

(iii) The extension eq. (4.0.1) split for k = F3.

Proof. As the 2-cocycle classifying the extension eq. (4.0.1) over a ring k is the pushforward of ϕu, it’s clear
that (i) implies (ii). It’s also clear that (ii) implies (iii). Finally, F×

3 = ¶±1♢ ≃ (F2,+), and hence the cocycle
classifying the extension eq. (4.0.1) over k = F3 is precisely ϕu, hence (iii) implies (i).

4.3 Direct products of root data

We preserve the notation and assumptions of the previous section. In particular,

R = (X,Φ, X∨,Φ∨)

is an arbitrary root datum, not assumed to be semisimple. Instead, we assume in this section that R is a direct
product [DG70, Exposé XXI, 6.4]

R = R1 ×R2

of root data
Ri = (Xi,Φi, X

∨
i ,Φ

∨
i ), i = 1, 2

i.e.
X = X1 ⊕X2, X∨ = X∨

1 ⊕X∨
2

and the duality pairing ⟨·, ·⟩ : X∨ ⊗X −→ Z is given in terms of the duality pairings ⟨·, ·⟩i of Ri by

⟨(x1, x2), (y1, y2)⟩ = ⟨x1, y1⟩1 + ⟨x2, y2⟩2
and the sets Φ, Φ∨ of roots and coroots are given by

Φ = Φ1 × ¶0♢ ∪ ¶0♢ × Φ2, Φ∨ = Φ∨
1 × ¶0♢ ∪ ¶0♢ × Φ∨

2

Finally, the bijection Φ↔ Φ∨ between roots and coroots is given by

Φ↔ Φ∨

(α1, 0)↔ (α∨
1 , 0)

(0, α2)↔ (0, α∨
2 )

It follows that the Weyl group W0 of R decomposes into a direct product

W0 = W0(R1)×W0(R2)

of (commuting) subgroups canonically isomorphic to the Weyl groups of R1 and R2 ([DG70, Exposé XXI, Prop.
6.4.2]). More precisely, we have embeddings

W0(R1) ↪→W0, W0(R2) ↪→W0

sα1
↦−→ s(α1,0), sα2

↦−→ s(0,α2)

and the decomposition X = X1 ⊕X2 respects the decomposition W0 = W0(R1)×W0(R2), that is

(w1, w2) • (x1, x2) = (w1 • x1, w2 • x2)

4.3.1 Remark. Our goal is now to relate the vanishing of the class [ϕ] ∈ H2(W0, X
∨ ⊗Z k

×) associated to
R to the vanishing of the classes [ϕ1] ∈ H2(W0(R1), X∨

1 ⊗Z k
×), [ϕ2] ∈ H2(W0(R2), X∨

2 ⊗Z k
×) associated to

R1 and R2. Note that it’s a priori clear that [ϕ] vanishes if and only if both [ϕ1] and [ϕ2] vanish because the
extension eq. (4.0.1) associated to R splits into the direct product

1 →→ X∨
1 ⊗Z k

× ×X∨
2 ⊗Z k

× →→ N1 ×N2
→→ W0(R1)×W0(R2) →→ 1

of the extension associated to R1 and R2, and a direct product of extensions clearly splits if and only if each
factor does. However, since we are also interested in the computation of the cohomology groups Hk(W0(R), X∨)
in itself, it’s more useful to take the more complicated route using the Künneth theorem.
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4.3.2 Lemma. Abbreviate

W1 = W0(R1), W2 = W0(R2), W = W0(R) = W1 ×W2

and
X

∨
1 = X∨

1 ⊗Z F2, X
∨
2 = X∨

2 ⊗Z F2, X
∨

= X∨ ⊗Z F2 = X
∨
1 ⊕X

∨
2

The standard 2-cocycle ϕu : Z2(W,X
∨

) associated to the root datum R by eq. (4.2.1) is reducible to the standard
2-cocycles ϕ1,u ∈ Z2(W1, X

∨
1 ) and ϕ2,u ∈ Z2(W2, X

∨
2 ) associated to the root data R1 and R2 in the sense of

corollary 4.4.17, and therefore
[ϕu] = Φ([ϕ1,u]⊗ 1) + Φ(1⊗ [ϕ2,u])

where

Φ :

2{

p=0

(
Hp(W1, X

∨
1 )⊗H2−p(W2,F2) ⊕ Hp(W1,F2)⊗H2−p(W2, X

∨
2 )
⎡
↪→ H2(W1 ×W2, X

∨
1 ⊕X

∨
2 )

denote the injection defined in corollary 4.4.17.
In particular for any ring k, the induced 2-cocycle ϕ ∈ Z2(W,X∨ ⊗Z k

×) (see eq. (4.2.2)) is reducible to the
respective induced cocycles ϕ1 ∈ Z2(W1, X

∨
1 ⊗Z k

×) and ϕ2 ∈ Z2(W2, X
∨
2 ⊗Z F2), and

[ϕ] = Φ([ϕ1]⊗ 1) + Φ(1⊗ [ϕ2])

with Φ the injection defined by corollary 4.4.17 in this case.

Proof. By remark 1.7.3 the 2-cocycle X is normalized and therefore ϕu is normalized, too. Moreover, from
lemma 1.7.10 it follows that X(w1, w2) = X(w2, w1) whenever w1 and w2 lie in special subgroups that commute
with each other, as

X(w1, w2)2 = L(w1) w1(L(w2))L(w1w2)−1 (!)
= L(w1)L(w2)L(w1w2)−1 = X(w2, w1)2

Therefore ϕu has the same property, and it follows that condition eq. (4.4.11) is satisfied. The validity of
eq. (4.4.12) follows immediately from the definition of the homomorphism h̃ (see remark 4.1.2) appearing in
ϕu := h̃ ◦X and the definition of X (see definition 1.7.1).

Finally, if ϕu is reducible then obviously also its pushforward ϕ.

4.4 Some results from homological algebra

In this section, we will recall some standard (and not so standard) results from homological algebra, in particular
the theory of group cohomology. In the following unless stated otherwise, R will denote an arbitrary commutative
ring and G will denote an arbitrary group.

First, let’s recall some basic definitions (cf. [Bro82, Ch. 0]).

4.4.1 Definition. The category Ch(A) of chain complexes over an additive category A has as objects the
chain complexes over A, i.e. sequences (Ck)k∈Z of objects Ck ∈ A together with a sequence of morphisms
(differentials)

∂k : Ck −→ Ck−1

in A satisfying the chain relation
∂k−1 ◦ ∂k = 0 ∀k ∈ Z

A chain complex (Ck)k∈Z will often be denoted by C•, or simply by C, and if x ∈ Ck, we will write deg(x) := k.
A morphism f• : C• −→ D• of chain complexes (chain map) is a sequence fk : Ck −→ Dk of morphisms in

A satisfying
∂k ◦ fk = fk−1 ◦ ∂k ∀k ∈ Z

More generally, a chain map f• : C• −→ D• of degree r ∈ Z (a regular chain map being of degree zero) is a
sequence of morphisms fk : Ck −→ Dk+r satisfying

∂k+r ◦ fk = fk−1 ◦ ∂k ∀k ∈ Z

A chain homotopy h• : f• −→ g• between parallel chain maps f, g : C → D is a sequence (hk)k∈Z of
morphisms

hk : Ck −→ Dk+1
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satisfying the relation
fk − gk = ∂k+1 ◦ hk + hk−1 ◦ ∂k

A chain complex C is said to be contractible, with contracting chain homotopy h, if there exists a chain
homotopy h : idC → 0C between the identity and the zero map on C, i.e. if

(4.4.1) idCk
= ∂k+1 ◦ hk + hk−1 ◦ ∂k

for all k ∈ Z.
If the category A is moreover endowed with a biadditive bifunctor

−⊗− : A×A −→ A

and A has countable coproducts, then for each pair C, D of chain complexes, one defines their tensor product
C ⊗D degreewise as

(C ⊗D)n :=
{

p+q=n

Cp ⊗Dq

with differential determined by

∂k ◦ ((C ⊗D)n ← Cp ⊗Dq) = ∂Cp ⊗ idDq
+(−1)p idCp

⊗∂Dq

Given chain maps f : C → D, g : C ′ → D′ between chain complexes, their tensor product

f ⊗ g : C ⊗D −→ C ′ ⊗D′

is defined by
(f ⊗ g)n := fn ⊗ gn

More generally, if f and g are chain maps of degrees deg(f) and deg(g), then the tensor product f ⊗ g is the
chain map C ⊗D −→ C ′ ⊗D′ of degree deg(f) + deg(g) determined by

(f ⊗ g)n(x⊗ y) = (−1)deg(g) deg(x)f(x)⊗ g(y)

Given any two chain complexes C, D and assuming that A has countable products, there is the (outer25)
Hom complex Hom(C,D), which is a chain complex of abelian groups (or whatever the hom groups in A are
enriched over in addition), defined by

Hom(C,D)n :=
∏

k∈Z

HomA(Ck, Dk+n)

with differential
(∂nf)k := ∂n+kfk − (−1)nfk−1∂k

If the category A is not only additive but also abelian, then for each chain complex (C•, ∂•) over A and each
k ∈ Z one defines the k-th homology (group) by

Hk(C) :=
ker(∂k)

im(∂k+1)

4.4.2 Remark. There exists a notion dual to chain complexes: a cochain complex C over an additive
category A is a sequence (Ck)k∈Z of objects Ck ∈ A together with maps dk : Ck → Ck+1 satisfying dk+1◦dk = 0.
Correspondingly, when A is abelian, one defines the k-th cohomology (group) by

Hk(C) :=
ker(dk)

im(dk−1)

The distinction between chain complexes and cochain complexes is somewhat formal (and confusing), as there
is an isomorphism between the categories of chain complexes and cochain complexes over A, given by sending a
chain complex (Ck, ∂k)k∈Z to the cochain complex C ′ with C ′

k := C−k and dk := ∂−k. Under this identification,

Hk(C ′) = H−k(C)

25when A is a closed ⊗-category, there is an ‘inner‘ version of the hom complex that is again a complex over A, defined using
the inner hom object, which recovers the outer one as the set of maps from the unit object to the inner one.
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Moreover, let us recall the standard (bar) resolution for a group G over a ring R.

4.4.3 Definition. Given a group R (not necessarily finite) and a (commutative) ring R, the standard reso-
lution over R for R is the chain complex P• of R[G]-modules given by

Pk := R[G][G×k] :=
{

[g1,...,gk]∈G×k

R[G] · [g1, . . . , gk]

, where for a set X we denote by R[G][X] the free R[G]-module with basis X and the elements of the cartesian
power G×k are denote using square brackets, with differential given on basis elements by

∂k[g1, . . . , gk] := g1[g2, . . . , gk] +
∑

1≤j≤k−1

(−1)j [g1, . . . , gj−1, gjgj+1, gj+2, . . . gk] + (−1)k[g1, . . . , gk−1]

for k ≥ 1, and ∂k := 0 for k ≤ 0. This complex is contractible as a chain complex of R-modules26, as witnessed
by the contracting chain homotopy h given on its canonical R-basis by

(4.4.2) hk(g0[g1, . . . , gk]) := [g0, . . . gk]

4.4.4 Remark. Given an R[G]-module M , the cohomology groups Hk(G,M) can be computed as the coho-
mology groups of the cochain complex HomR[G](P•,M) induced by the standard resolution P• for G. It is
customary and convenient to identify degree n piece HomR[G](P•,M)n = HomR[G](Pn,M) with the set of all
functions G×n −→ M , and hence to denote the value of an element ϕ ∈ HomR[G](P•,M)n at a basis element
[g1, . . . , gn] by

ϕ(g1, . . . , gn) := ϕ([g1, . . . , gn])

4.4.5 Remark. The cohomology groups Hk(G,M) can be viewed as functors in two variables, as follows
(cf. [Bro82, III.8]). Consider the category D whose objects are pairs (G,M) consisting of a group G and a
Z[G]-module M . A morphism

(G,M) −→ (G′,M ′)

between two such pairs shall be a pair (φ0, φ1), where φ0 : G → G′ is a homomorphism of groups and where
φ1 : M ′ →M is a homomorphism of Z-modules which is equivariant in the sense that

(4.4.3) φ1(φ0(g) •m′) = g • φ1(m′) ∀g ∈ G, m′ ∈M ′

Such a pair (φ0, φ1) then induces a map

(φ0, φ1)∗ : Hk(G′,M ′) −→ Hk(G,M)

in a functorial way, given as follows. Let F• and F ′
• be projective resolutions of G and G′ respectively, with

augmentations maps ε : F• → Z and ε′ : F ′
• → Z. Let φ∗

0(F ′) denote F ′ considered as a chain complex of
Z[G]-modules using the map φ0. Then φ∗

0(F ′) is still acyclic (even though it may not be degreewise projective
anymore), and therefore we can apply the ‘fundamental lemma of homological algebra‘ ([Bro82, I.7.4]) to the
diagram

. . . →→ F2

f2

↓↓

→→ F1

f1

↓↓

→→ F0

↓↓

ε0 →→ Z

f−1:=id

↓↓

→→ 0

. . . →→ F ′
2

→→ F ′
1

→→ F ′
0

ε′
0 →→ Z →→ 0

yielding a map f : F → φ∗
0(F ′) of chain complexes of Z[G]-modules that makes the diagram

F

f

↓↓

ε

↘↘
Z

φ∗
0(F ′)

ε′

↗↗

26but not as a complex of R[G]-modules
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commutative, and f is uniquely determined up to chain homotopy by this property. Since the functor HomZ[G](-
−,M) from chain complexes of Z[G]-modules to cochain complexes of Z-modules preserves the relation of chain
homotopy, and chain homotopic maps induce the same maps on (co-)homology, it follows that the induced map

Hk(HomZ[G](f,M) : Hk(HomZ[G](φ
∗
0(F ′),M) −→ Hk(HomZ[G](F,M)) = Hk(G,M)

is independent of the choice of f . Precomposing this map with

Hk(HomZ[G](φ
∗
0(F ′), φ1)) : Hk(HomZ[G](φ

∗
0(F ′), φ∗

0(M ′))) −→ Hk(HomZ[G](φ
∗
0(F ′),M))

and the map
Hk(G′,M ′) = Hk(HomZ[G′](F

′,M ′)) −→ Hk(HomZ[G](φ
∗
0(F ′), φ∗

0(M ′))

induced by the forgetful map HomZ[G′](F
′,M ′)→ HomZ[G](φ

∗
0(F ′), φ∗

0(M ′)) then yields the desired

Hk(G′,M ′) −→ Hk(G,M)

4.4.6 Remark. The functoriality described in remark 4.4.5 has a simple description when using the standard
resolution (see definition 4.4.3, remark 4.4.4) to compute the cohomology groups. Namely, there exists a natural
map

f : P −→ φ∗
0(P ′)

between the standard resolutions P and P ′ of G and G′ that is compatible with the augmentations. This map
is given in degree k on basis elements by

fk([g1, . . . , gk]) = [φ0(g1), . . . , φ0(gk)]

One can check that the map
HomZ[G′](P

′,M ′) −→ HomZ[G](P,M)

of cochain complexes of Z-modules that induces the maps Hk(G′,M ′) −→ Hk(G,M) by definition (in re-
mark 4.4.5) is given in terms of standard cochains by

HomSet((G
′)×k,M ′) −→ HomSet(G,M)

ϕ ↦−→ φ1 ◦ ϕ ◦ φ×k
0

4.4.7 Remark. From the identification of HomR[G](P•,M)n ≃ HomSet(G
×n,M) given in remark 4.4.4, it fol-

lows that the cohomology groups Hk(G,M) of an R[G]-module M and the cohomology groups of the underlying
Z[G]-module are canonically identified. In particular, there is no need to reference the underlying coefficient
ring R explicitly in the notation. However, it is still useful to consider a coefficient ring e.g. in statements of
theorems as an R[G]-module can be flat over R without being flat over Z.

We now specialize our situation, and assume that the group G decomposes into a direct product G = G1×G2

of commuting normal subgroups.

4.4.8 Lemma. Let P1,• and P2,• be free (resp. projective) resolutions of the trivial R[G1]-module R and the
trivial R[G2]-module R, respectively, and let ε1 : P1,• −→ R and ε2 : P2,• −→ R be the associated augmentation
maps.

Then, the tensor product complex P1⊗P2, taken in the category of R-chain complexes and endowed with the
natural R[G1] ⊗R R[G2] ≃ R[G1 × G2] = R[G] action, is a free (resp. projective) resolution of R as a trivial
R[G]-module, with augmentation map given by ε1 ⊗ ε2 (tensor product of chain maps), given in degree zero by

(ε1 ⊗ ε2)(x⊗ y) = ε1(x)ε2(y) ∈ R, x ∈ P1,0, y ∈ P2,0

Proof. Cf. [Bro82, Ch. V]. Because P1 and P2 are resolutions of R, it follows that ε1 and ε2 are chain homotopy
equivalences (see [Bro82, Ch. 0, Cor. 7.6]) of complexes of R-modules. Since the tensor product of maps of
chain complexes preserves the relation of chain homotopy and therefore preserves chain homotopy equivalences
(see [Bro82, Ch. 0, Sec. I, Ex. 7c]), it follows that the tensor product

ε1 ⊗ ε2 : P1 ⊗ P2 −→ R⊗R = R

of R-chain complexes is again a chain homotopy equivalence (here R considered as a chain complex concentrated
in degree zero), and therefore P1⊗P2 is a resolution of R as a trivial R[G]-module. Moreover, the tensor product
C1 ⊗C2 of a complex C1 of R[G1]-modules with a complex C2 of R[G2]-modules is again degreewise free (resp.
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projective) if C1 and C2 are degreewise free (resp. projective) as R[G1]- and R[G2]-modules, respectively. This
follows immediately from the fact that the tensor product M1 ⊗RM2 of a free (resp. projective) R[G1]-module
M1 with a free (resp. projective) R[G2]-module M2 is a free (resp. projective) R[G]-module. Indeed, for free
modules this follows immediately from the special case M1 = R[G1], M2 = R[G2] and the identification

R[G1]⊗R R[G2] ≃ R[G1 ×G2] = R[G]

Because projective modules are characterized as the direct summands of free modules, the statement for pro-
jective modules follows from the one for free modules.

We now have two ways to compute the cohomology groups Hk(G,M) of a G-module M , using the bar
resolution P• for G as the cohomology of the cochain complex HomR[G](P•,M), or using the product resolution
P1,•⊗P2,• as the cohomology of the cochain complex HomR[G](P1,•⊗P2,•,M). It is a basic result of homological
algebra that these groups are canonically isomorphic; however, in order to make this isomorphism explicit, we
need a constructive version of this basic result, which we will recall now.

4.4.9 Lemma (Fundamental Lemma of Homological Algebra). Let R any commutative ring, let A be an R-
algebra, and let C = (C•, ∂•) and D = (D•, ∂•) be chain complexes of left-A-modules. Assume that, in each
degree k, Ck is a free left-A-module with basis Bk, and moreover assume that D is chain contractible27 as a
chain complex of R-modules, with explicit contracting chain homotopy h•.

Then, given any integer r and any family fk : Ck → Dk (k ≤ r) of A-linear maps that satisfy the chain map
relation

(4.4.4) ∂k ◦ fk = fk−1 ◦ ∂k

for all k ≤ r, there exist maps fk : Ck → Dk (k > r) extending this family to all integers, to a map f• : C• → D•
of chain complexes of left-A-modules. Any two such extensions are chain homotopic via a chain homotopy
h′

• : C• → D•+1 vanishing h′
k = 0 in all degree k ≤ r.

Moreover, in this situation there is a canonical extension, determined recursively by the conditions

(4.4.5) fk+1♣Bk+1
= hk ◦ fk ◦ ∂k+1♣Bk+1

∀k ≥ r

Proof. We refer to [Bro82, Ch. 0, Lemma 7.4] for details; here, we’ll only give a sketch and explain why the
formula eq. (4.4.5) gives rise to such an extension.

To prove the existence of such an extension, one argues by induction of course. So assume that such an
extension satisfying eq. (4.4.4) has been constructed up to degree k, and consider the mapping problem

Ck+1

fk+1

↓↓

∂k+1
→→ Ck

fk

↓↓

∂k →→ Ck−1

fk−1

↓↓
Dk+1

∂k+1
→→ Dk

∂k →→ Dk−1

Now, a map fk+1 completing the diagram amounts to a lift Ck+1 −→ Dk+1 of fk ◦ ∂k+1 : Ck+1 −→ Dk along
∂k+1 : Dk+1 −→ Dk. However, because

∂k ◦ fk ◦ ∂k+1 = fk−1 ◦ ∂k ◦ ∂k+1 = 0

φ := fk ◦∂k+1 restricts to a map Ck+1 −→ ker(∂Dk ), and fk+1 must in fact be a lift of φ along Dk+1 ↠ ker(∂Dk ),
where the surjectivity of the map Dk+1 → ker(∂Dk ) follows abstractly from the acyclicity of D, and the existence
of fk+1 follows abstractly from the projectivity of Ck+1. However, in our situation we are given a basis Bk+1 of
Ck+1, providing an explicit witness of the projectivity of Ck+1, and we are given a contracting chain homotopy
h•, providing an explicit witness of the acyclicity of D, and it follows immediately that formula eq. (4.4.5)
defines such an extension fk+1.

4.4.10 Remark. The previous lemma illustrates the difference between abstract and constructive mathematics
(where ‘abstract‘ is not to be equated with ‘conceptual‘), the former of which most mathematicians are more
accustomed to, since it is easier. That is, it is easier to prove and use abstract existence statements because
one can essentially ‘forget‘ their proof. In contrast, in constructive mathematics the proof of a property, in this
example the proof of projectivity by exhibiting a basis or the proof of acyclicity by providing a contracting chain

27and therefore in particular acyclic
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homotopy, becomes a necessary ‘input‘ into any proof using this property, much like an input into a computer
program. In fact, exactly like an input into a computer program, as the emerging marriage of constructive and
formal mathematics via type theory and the ‘Curry-Howard isomorphism‘ shows.

It is the conviction of the author that the formalization of mathematics, long thought to be a hopeless
endeavour, is inevitable, and that therefore the constructive nature of proofs of classic results, which have been
mostly used abstractly, needs to be rediscovered and appreciated.

We now return to our previous situation of a group G = G1 ×G2, and will compute the ‘comparison map‘

f• : P1,• ⊗ P2,• −→ P•

between the product P1,• ⊗ P2,• of the standard resolutions for G1 and G2, and the standard resolution P• for
G, up to degree 2.

4.4.11 Lemma. The map

(4.4.6) f• : P1,• ⊗ P2,• −→ P•

of chain complexes of R[G]-modules, defined by eq. (4.4.5) of lemma 4.4.9 (with A = R[G]), is explicitly given
on the canonical R[G]-basis elements (see definition 4.4.3 for notation) by

f0([]⊗ []) = []

f1([g]⊗ []) = [g]− [1] g ∈ G1

f1([]⊗ [g]) = [g]− [1] g ∈ G2

f2([g1, g2]⊗ []) = [g1, g2]− [g1, 1]− [1, g1g2] + [1, g1] g1, g2 ∈ G1

f2([g1]⊗ [g2]) = [g1, g2]− [g1, 1]− [1, g2]− [g2, g1] + [g2, 1] + [1, g1] g1 ∈ G1, g2 ∈ G2

f2([]⊗ [g1, g2]) = [g1, g2]− [g1, 1]− [1, g1g2] + [1, g1] g1, g2 ∈ G2

Proof. Left to the reader.

4.4.12 Corollary. Given an R[G]-module M , the map

HomR[G](P•,M)
f∗

−→ HomR[G](P1,• ⊗ P2,•,M)

of cochain complexes induced by eq. (4.4.6) is given in degree two by

f∗(ϕ)(x) =

⎧
⎪⨄
⎪⎩

ϕ(g1, g2)− ϕ(g1, 1) + ϕ(1, g1)− ϕ(1, g1g2) if x = [g1, g2]⊗ []

ϕ(g1, g2)− ϕ(g2, g1) + ϕ(1, g1)− ϕ(g1, 1) + ϕ(g2, 1)− ϕ(1, g2) if x = [g1]⊗ [g2]

ϕ(g1, g2)− ϕ(g1, 1) + ϕ(1, g1)− ϕ(1, g1g2) if x = []⊗ [g1, g2]

(we keep the notation of lemma 4.4.11; see also remark 4.4.4).

The reason for considering the resolution P1,•⊗P2,• is that it allows the comparison between the cohomology
groups of G1 and G2, and the product G = G1 ×G2 via the following map:

4.4.13 Definition. Given an R[G1]-module M1 and an R[G2]-module M2, the cochain cross product (cf.
[Bro82, Ch. V]) is the map

(4.4.7) HomR[G1](P1,•,M1)⊗HomR[G2](P2,•,M2) −→ HomR[G](P1,• ⊗ P2,•,M1 ⊗RM)

of cochain complexes given in degree n by ϕ⊗ ψ ↦→ ϕ× ψ, where

(ϕ× ψ)([g1, . . . , gp]⊗ [h1, . . . , hq]) :=

∮
(−1)pqϕ(g1, . . . , gp)⊗ ψ(h1, . . . , hq) if p = deg(ϕ), q = deg(ψ)

0 otherwise

4.4.14 Lemma. If G1 and G2 are finite, then eq. (4.4.7) is an isomorphism.
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Proof. (Cf. [Bro82, Ch. V, Sec. 3, Exercise 2]). First of all, since the chain complexes P1,• and P2,• vanish in
negative degree, the direct sum

(P1,• ⊗ P2,•)n =
{

p+q=n

P1,p ⊗R P2,q

is finite for all n ∈ Z. Therefore, the direct product in

HomR[G](P1,• ⊗ P2,•,M1 ⊗RM2)n = HomR[G]((P1,• ⊗ P2,•)n,M1 ⊗RM2)

≃
∏

p+q=n

HomR[G](P1,p ⊗R P2,q,M1 ⊗RM2)

is actually a direct sum and hence it suffices (we don’t need to bother with the sign (−1)pq) to show that for
all p, q ∈ N the map

HomR[G1](P1,p,M1)⊗R HomR[G2](P2,q,M2) −→ HomR[G](P1,p ⊗R P2,q,M1 ⊗RM2)

ϕ⊗ ψ ↦−→ ϕ⊗R ψ

is an isomorphism, where ϕ⊗R ψ denotes the map ϕ⊗R ψ : P1,p⊗R P2,q →M1⊗RM2 induced by ϕ, ψ and the
functoriality of ⊗R. Now, since P1,p, P2,q and P1,p ⊗R P2,q are free modules over R[G1], R[G2] and R[G] with
bases G×p

1 , G×q
2 , G×p

1 ×G×q
2 respectively, we have a commutative diagram

HomR[G1](P1,p,M1)⊗R HomR[G2](P2,q,M2)

∼
↓↓

→→ HomR[G](P1,p ⊗R P2,q,M1 ⊗RM2)

∼
↓↓(√

[g1,...,gp]∈G×p
1
M1

⎡
⊗R

(√
[h1,...,hq ]∈G×q

2
M2

⎡
→→
√

([g1,...,gp],[h1,...,hq ])∈G×p
1 ×G×q

2
M1 ⊗RM2

Since G1 and G2 are finite by assumptions, the bases are finite and the direct products above are actually direct
sums, and it follows that the bottom homomorphism is an isomorphism since the bifunctor −⊗R − commutes
with direct sums.

Finally, to use the cochain cross product isomorphism eq. (4.4.7) to relate the group cohomology of finite
groups G1, G2 to that of their product G = G1 ×G2, we apply the Künneth theorem which we will recall now.

4.4.15 Theorem (Künneth). Let C,D be cochain complexes over a principal ideal domain R, and suppose that
one of C, D is degreewise flat. Then for any n ∈ Z, there is a short exact sequence
(4.4.8)

0 →→
⌉

p+q=nH
p(C)⊗R Hq(D)

η
→→ Hn(C⊗R D) →→

⌉
p+q=n+1 TorR1 (Hp(C), Hq(D)) →→ 0

natural in C and D. This sequence splits (but not naturally), and the map η is induced by the inclusion maps

Zp(C)⊗R Zq(D) ↪→ Zp+q(C⊗D), x⊗ y ↦→ x⊗ y

of cocycles.

Proof. For a proof of this statement for chain complexes instead of cochain complexes, see [HS96, Ch. V, Thm.
2.1]. The statement for cochain complexes follows by viewing a cochain complex (C, d) as a chain complex
(C′, ∂) with C′

n = C−n and ∂n = d−n.

4.4.16 Corollary. Let R be a principal ideal domain, G1, G2 finite groups and G = G1 × G2 their product.
Then given an R[G1]-module M1 and an R[G2]-module M2 such that at least one of them is flat as an R-module,
we have for all n ∈ Z a split exact sequence

(4.4.9) 0 →→
⌉

p+q=nH
p(G1,M1)⊗R Hq(G2,M2)

φ
→→ Hn(G,M1 ⊗RM2) . . .

. . . →→
⌉

p+q=n+1 TorR1 (Hp(G1,M1), Hq(G2,M2)) →→ 0

natural in M1 and M2, where, if Hn(G,M1⊗RM2) is computed as the cohomology group of the cochain complex
HomR[G](P1,• ⊗ P2,•,M1 ⊗RM2) and Hp(G1,M1) and Hq(G2,M2) are computed as the cohomology groups of
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the cochain complexes HomR[G1](P1,•,M1) and HomR[G2](P2,•,M2), the map φ is given in terms of the cochain
cross product eq. (4.4.7) by

φ([ϕ]⊗ [ψ]) = [ϕ× ψ]

for representing cocycles ϕ ∈ Zp(G1,M1), ψ ∈ Zq(G2,M2).
Moreover, if R = k is a field, this exact sequence simplifies to an isomorphism

φ :
{

p+q=n

Hp(G1,M1)⊗k Hq(G2,M2)
∼−→ Hn(G,M1 ⊗kM2)

Proof. This follows immediately by applying theorem 4.4.15 with

C := HomR[G1](P1,•,M1), and D := HomR[G2](P2,•,M2)

and using the isomorphism between C ⊗ D and HomR[G](P1,• ⊗ P2,•,M1 ⊗R M2) of lemma 4.4.14, observing
that C and D are degreewise finite direct sums of copies of M1 and M2, respectively. The final remark follows
from standard properties of the Tor functor and the fact that every module over a field is flat.

R[G]-modules of the form M1 ⊕M2, where G = G1 × G2 acts on each summand through the respective
projection pi : G1 ×G2 → Gi, can also be viewed as the direct sum

M1 ⊕M2 ≃M1 ⊗R R ⊕ R⊗RM2

as tensor product R[G]-modules, where R is considered as a trivial R[G2]-module or a trivial R[G1]-module
respectively. Since cohomology functors are additive, we can therefore derive the following version of corol-
lary 4.4.16 for R[G]-modules of that form.

4.4.17 Corollary. Given an R[G1]-module M1 and an R[G2]-module M2, for a principal ideal domain R and
finite groups G1, G2, the cohomology groups of the R[G]-module M1 ⊕M2 over the product G = G1 ×G2 sit in
a natural split exact sequence

(4.4.10)

{

p+q=n

(Hp(G1,M1)⊗R Hq(G2, R))⊕ (Hp(G1, R)⊗R Hq(G2,M2))
Φ
↪→ Hn(G,M1 ⊕M2)

↠

{

p+q=n+1

TorR1 (Hp(G1,M1), Hq(G2, R))⊕ TorR1 (Hp(G1, R), Hq(G2,M2))

where, if Hn(G,M1 ⊕M2) is computed using the resolution P1,• ⊗ P2,•, the injection Φ is explicitly described
in terms of representing standard cocycles and the cochain cross product eq. (4.4.7) by

Φ([ϕ]⊗ [ψ]) = [ι1 ◦ (ϕ× ψ)] ϕ : G×p
1 →M1, ψ : G×q

2 → R

Φ([ϕ]⊗ [ψ]) = [ι2 ◦ (ϕ× ψ)] ϕ : G×p
1 → R, ψ : G×q

2 →M2

where ι1 : M1 ⊗R R ↪→ M1 ⊕M2, ι2 : R ⊗RM2 ↪→ M1 ⊕M2 are the canonical inclusions. If R = k is a field,
this exact sequence simplifies to an isomorphism

{

p+q=n

(Hp(G1,M1)⊗R Hq(G2, k))⊕ (Hp(G1, k)⊗k Hq(G2,M2))
∼−→ Hn(G,M1 ⊕M2)

Moreover, if [ϕ] ∈ H2(G,M1 ⊕M2) is a class represented by a standard 2-cocycle ϕ : G×2 −→M1 ⊕M2 that is
reducible to standard 2-cocycles ϕ1 : G×2

1 →M1, ϕ2 : G×2
2 →M2, in the sense that

ϕ(g1, g2) = ϕ(g2, g1) ∀g1 ∈ G1, g2 ∈ G2 ϕ(1, 1) = 0 (ϕ normalized)(4.4.11)

and

ϕ(g1, g
′
1) = j1(ϕ1(g1, g

′
1)) ∀g1, g

′
1 ∈ G1 ϕ(g2, g

′
2) = j2(ϕ2(g2, g

′
2)) ∀g2, g

′
2 ∈ G2(4.4.12)

(where ji : Mi ↪→ M1 ⊕M2 denote the inclusions) then [ϕ] is the sum of the images of [ϕ1] ∈ H2(G1,M1) and
[ϕ2] ∈ H2(G2,M2) under

H2(G1,M1) ≃ H2(G1,M1)⊗R
R  

H0(G2, R)
Φ
↪→ H2(G,M1 ⊕M2)
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and

H2(G2,M2) ≃
R  

H0(G1, R)⊗RH2(G2,M2)
Φ
↪→ H2(G,M1 ⊕M2)]

In particular,

(4.4.13) [ϕ] = 0 ⇔ [ϕ1] = 0 and [ϕ2] = 0

Proof. The statement about the existence of the exact sequence follows by applying corollary 4.4.16 to the pairs
M1 and R, and R and M2, and taking the direct sum of those two split exact sequences, noting that since R
is flat, the hypotheses of the previous corollary are satisfied. The statement about reducible 2-cocycles follows
from the description of the map φ of corollary 4.4.16 (signs!) and the combination of corollary 4.4.12 with the
properties eq. (4.4.11) and eq. (4.4.12) (using that for a normalized cocycle ϕ(1, g) = ϕ(g, 1) = 0 for all g).

Finally, eq. (4.4.13) follows from the injectivity of Φ.

4.5 Maps between root data

In this preparatory section, we consider conditions under which there exist Weyl-equivariant maps (in a sense
to be defined)

R1 = (X1,Φ
∨
1 , X

∨
2 ,Φ

∨
2 ) −→ (X2,Φ2, X

∨
2 ,Φ

∨
2 ) = R2

between root data R1 and R2. In particular, such a map should yield a group homomorphism

φ0 : W0(R1) −→W0(R2)

and Z-linear maps
φ1 : X1 −→ X2 and φ∨

1 : X∨
2 −→ X∨

1

which are equivariant in the sense that

φ1(w • x) = φ0(w) • φ1(x) and φ∨
1 (φ0(w) • y) = w • φ∨

1 (y)

for all w ∈W0(R1), x ∈ X1 and y ∈ X∨
2 .

There does exist a notion of morphisms between root data ([DG70, Exposé XXI, 6.1]), but it is very restrictive.
In particular, a morphism between R1 and R2 in the sense of [DG70] always yields an isomorphism between
W0(R1) and W0(R2).

The following definition is more useful for our purposes:

4.5.1 Definition. A frugal morphism φ : R1 → R2 between root data Ri = (Xi,Φi, X
∨
i ,Φ

∨
i ) (i = 1, 2) is

a Z-linear map
φ : X1 −→ X2

satisfying

(4.5.1) φ(Φ1) ⊆ Φ2

and

(4.5.2) ∀α ∈ Φ1 φ∨(φ(α)∨) = α∨

, where φ∨ : X∨
2 → X∨

1 denotes the adjoint of φ determined by

∀x ∈ X1, y ∈ X∨
2 ⟨x, φ∨(y)⟩ = ⟨φ(x), y⟩

4.5.2 Lemma. (i) If φ : R1 → R2 and ψ : R2 → R3 are frugal morphisms, then ψ ◦ φ : X1 → X3 defines a
frugal morphism R1 → R3, and (ψ ◦φ)∨ = φ∨ ◦ψ∨ (as Z-linear maps). In particular, root data form the
objects of a category whose morphisms are frugal morphisms.

(ii) For every frugal morphism φ : R1 −→ R2, restriction defines an injection

φ♣ : Φ1 ↪→ Φ2
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(iii) Given a frugal morphism φ : R1 → R2 of root data, there exists a morphism

φ0 : W0(R1) −→W0(R2)

of groups determined by

(4.5.3) φ0(sα) = sφ(α) ∀α ∈ Φ1

Moreover, the maps φ and φ∨ are equivariant with respect to φ0 in the sense that

φ(w • x) = φ0(w) • φ(x) and φ∨(φ0(w) • y) = w • φ∨(y)

for all x ∈ X1 and y ∈ X∨
2 .

Proof. ad (i): It follows from the definitions that (ψ ◦ φ)∨ = φ∨ ◦ ψ∨. Moreover, clearly ψ(φ(Φ1)) ⊆ Φ3 and

φ∨(ψ∨(ψ(φ(α))∨))) = φ∨(φ(α)∨) = α∨ ∀α ∈ Φ1

Since the identity idX : X → X is obviously a frugal morphism, it follows that this defines the structure of a
category.

ad (ii): Follows immediately from eq. (4.5.2) and the fact that the map α ↦→ α∨ is a bijection between roots
and coroots.

ad (iii): First of all, we have

⟨φ(α), φ(β)∨⟩ = ⟨α,φ∨(φ(β)∨)⟩ = ⟨α, β∨⟩

and therefore also

(4.5.4) ord(sφ(α)sφ(β)) = ord(sαsβ)

for all α, β ∈ Φ1. Chosing a root basis ∆1 ⊆ Φ1, the pair (W0(R1), ¶sα : α ∈ ∆1♢) is a Coxeter group, and by
the characterization of Coxeter groups via generators and relations it follows from eq. (4.5.4) that there exists
a unique morphism

φ0 : W0(R1) −→W0(R2)

satisfying eq. (4.5.3) for all α ∈ ∆1. But, since

wsαw
−1 = sw(α) ∀w ∈W0(R1), α ∈ Φ1

and every α ∈ Φ1 is W0(R1)-conjugate to some α ∈ ∆1 up to a rational multiple, and parallel roots define the
same element of the Weyl group, it follows that eq. (4.5.3) holds for all α ∈ Φ1.

Finally, the equivariance of φ∨ follows formally from the equivariance of φ, and it suffices to check the
equivariance of φ on the generators w = sα, for which they follow from explicit computation

φ(sα • x) = φ(x− ⟨x, α∨⟩α) = φ(x)− ⟨x, φ∨(φ(α)∨)⟩φ(α)

= φ(x)− ⟨φ(x), φ(α)∨⟩φ(α)

= sφ(α)(φ(x)) = φ0(sα) • φ(x)

The fundamental example of a frugal morphism is the following:

4.5.3 Lemma. Let R1 and R2 be root data with bases ∆1 ⊆ Φ1 and ∆2 ⊆ Φ2, and assume that R1 is reduced
and satisfies X1 = Z ⟨Φ1⟩. Then, every map

φ : ∆1 −→ Φ2

satisfying

(4.5.5) ∀α, β ∈ ∆1 ⟨φ(α), φ(β)∨⟩ = ⟨α, β∨⟩

extends uniquely to a frugal morphism
φ : R1 −→ R2
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Proof. (Cf. [Bou07, Ch. VI, §1.5, Cor. of Prop. 15]) From eq. (4.5.5) it follows that

ord(sφ(α)sφ(β)) = ord(sαsβ) ∀α, β ∈ ∆1

Therefore, by the characterization of Coxeter groups in terms of generators and relations it follows that there
exists a unique group homomorphism

φ0 : W0(R1) −→W0(R2)

satisfying φ0(sα) = sφ(α) for all α ∈ ∆1. Moreover, since the Z-module is spanned by Φ1, it follows that ∆1 is
a basis of it. Hence, the map φ extends uniquely to a Z-module homomorphism

φ : X1 −→ X2

, and by assumption this morphism satisfies φ(α) ∈ Φ2 for all α ∈ ∆1. Now, since R1 is reduced, every β ∈ Φ1

can be written in the form β = w • α with α ∈ ∆1. But,

φ(sα • x) = φ(x− ⟨x, α∨⟩α) = φ(x)− ⟨x, α∨⟩φ(α)

= φ(x)− ⟨φ(x), φ(alpha)∨⟩φ(α)

= sφ(α) • φ(x)

for all x ∈ X1 and α ∈ ∆1, which shows that φ(Φ1) ⊆ Φ2 and that φ : X1 → X2 is equivariant with respect to
φ0. Here we have used that

(4.5.6) ⟨φ(x), φ(α)∨⟩ = ⟨x, α∨⟩
for all x ∈ X1 and α ∈ ∆1, which follows by linearity from the assumption that this equation holds for all
x ∈ ∆1.

Moreover, eq. (4.5.6) also holds for x ∈ X1 and all α ∈ Φ1. To see this, note first that for every root datum
R the bijection α ↦→ α∨ between roots and coroots respects the action of the Weyl group, i.e.

(4.5.7) w(α)∨ = (w∨)−1(α∨) ∀α ∈ Φ, w ∈W0(R)

(see [DG70, Exposé XXI, Proposition 1.2.9] for a proof of this). Now, given any α ∈ Φ1, use the reducedness of
R1 to write α = w(β) with β ∈ ∆1. It then follows that

⟨φ(x), φ(α)∨⟩ = ⟨φ(x), φ(w(β))∨⟩ = ⟨φ(x), (φ0(w)(φ(β)))∨⟩
=
⟨
φ(x), (φ0(w)∨)−1(φ(β)∨)

/

= ⟨φ0(w)(φ(x)), φ(β)∨⟩
= ⟨φ(w(x)), φ(β)∨⟩
= ⟨w(x), β∨⟩
=
⟨
x, (w∨)−1(β∨)

/

= ⟨x,w(β)∨⟩
= ⟨x, α∨⟩

for all x ∈ X1. But since we can rewrite eq. (4.5.6) equivalently as

⟨φ(x), φ(α)∨⟩ = ⟨x, α∨⟩ ⇔ ⟨x, φ∨(φ(α)∨)⟩ = ⟨x, α∨⟩
, the validity of this equation for all x ∈ X1 implies that

φ∨(φ(α)∨) = α∨

for all α ∈ Φ1, showing that eq. (4.5.2) holds. We have therefore shown that the linear extension φ : X1 → X2

of φ : ∆1 → Φ2 is a frugal morphism of root data. Uniqueness is clear.

Until now, the fact that the Weyl group W0(R) is a Coxeter group didn’t enter, except in proofs. But of
course, this aspect is very important, and so we need to make up a new definition:

4.5.4 Definition. A root datum together with a choice of a root basis ∆ ⊆ Φ is called a based root datum.
Given based root data Ri = (Xi,Φi, X

∨
i ,Φ

∨
i ,∆i) (i = 1, 2), a frugal morphism

φ : R1 −→ R2

is called basic if it preserves the chosen root bases, i.e. if

φ(∆1) ⊆ ∆2
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4.5.5 Lemma. Given a basic frugal morphism

φ : R1 −→ R2

between based root data Ri = (Xi,Φi, X
∨
i ,Φ

∨
i ,∆i), the morphism

φ0 : W0(R1) −→W0(R2)

defined in lemma 4.5.2 is a morphism of Coxeter groups for the canonical structures of Coxeter groups on
W0(Ri), i.e.

φ0(S(∆1)) ⊆ S(∆2)

where
S(∆i) = ¶sα : α ∈ ∆i♢

Moreover, φ0 is isometric, i.e. it preserves the length functions

∀w ∈W0(R1) ℓ(φ0(w)) = ℓ(w)

and (cf. lemma 4.7.4) restricts to an isomorphism

φ0 : (W0(R1), S(∆1))
∼−→ (⟨φ0(S(∆1))⟩ , φ0(S(∆1)))

of Coxeter groups.

Proof. Omitted.

4.5.6 Lemma. Given based root data Ri = (Xi,Φi, X
∨
i ,Φ

∨
i ,∆i) (i = 1, 2), such that X1 = Z ⟨Φ1⟩, every map

φ : ∆1 −→ ∆2

satisfying eq. (4.5.5) extends uniquely to a basic frugal morphism

φ : R1 −→ R2

Proof. Follows immediately from lemma 4.5.3.

4.6 The theory of FIW -modules

The goal of this section is to review the theory of FIW -modules, and to construct examples associated to the
classical families Aℓ, Bℓ, Cℓ, Dℓ of root systems.

The theory of FI-modules (without W ) goes back to Church, Ellenberg and Farb [CEF15], and relates to
the earlier theory of representation stability of Church and Farb [CF13]. Both theories are aimed at providing
a framework in which to establish stability properties for families (Gn)n∈N of groups that naturally embed
Gn ↪→ Gn+1 into each other, the most notable example being the family Gn = Sn of symmetric groups.

A representative example of the kind of stability phenomena studied is homological stability. A family
(Gn)n∈N as above is called (co-)homologically stable with respect to a coefficient group A, if for every fixed
k ∈ N and all sufficiently large n, the natural map

Hk(Gn, A) −→ Hk(Gn+1, A)
(
resp. Hk(Gn+1, A) −→ Hk(Gn, A)

[

induced by Gn ↪→ Gn+1 is an isomorphism. For example, the family of symmetric groups is homologically and
cohomologically stable for all finite abelian groups A by a theorem of Nakaoka [Nak60].

The newer theory of FI-modules algebraizes these stability phenomena, at least for the family (Sn)n∈N, by
turning them into finiteness properties of the name-bearing FI-modules, more precisely the property of being
finitely generated. Later, the theory of FI-modules was generalized by Wilson [Wil14] into the theory of FIW -
modules, which extends the former by allowing the symmetric groups Sn to be replaced by the Weyl groups of
any of the classical families Aℓ, Bℓ, Cℓ, and Dℓ of root systems.

4.6.1 Definition ([Wil14, 1.1]). The category28 FIBC is the (nonfull) subcategory of the category of finite sets
with objects

n := ¶k ∈ Z : 1 ≤ ♣k♣ ≤ n♢
28We will write FIB = FIC = FIBC for convenience.
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for every natural number n ∈ ¶0, 1, 2, . . . ♢, and with morphisms

HomFIBC
(n,m) = ¶f ∈ HomSet(n,m) : f injective, f(−a) = −f(a) ∀a ∈ n♢

The category FID is the subcategory of FIBC with the same objects and

HomFID
(n,m) = ¶f ∈ HomFIBC

(n,m) : #¶i : i > 0, f(i) < 0♢ even♢

The category FIA is the subcategory of FID with the same objects and

HomFIA
(n,m) = ¶f ∈ HomFID

(n,m) : ∀i i > 0⇒ f(i) > 0♢

The categories FIX (X ∈ ¶A,B,C,D♢) relate to the corresponding families of root systems Xℓ via the
identifications

W0(Xℓ) ≃
∮

EndFIX
(ℓ + 1) if X = A

EndFIX
(ℓ) if X ∈ ¶B,C,D♢

These identifications are canonical (even natural), once we have numbered the simple roots of the families Xℓ

coherently. So let us do this.

4.6.2 Remark. In the following, we will describe the root system Xℓ for X ∈ ¶A,B,C,D♢ and ℓ a natural
number (≥ 0 for type A and ≥ 1 for the other ones). In particular, this means (see [Bou07, Ch. VI, §1.1])
giving a Q-vector space Vℓ and a subset Φℓ ⊆ Vℓ. Moreover, we also want to describe a set ∆ℓ of simple roots
together with a (coherent) numbering. Let us therefore agree that, if we write

α1 = . . . , α2 = . . . , . . . , αℓ = . . .

, that this means that ∆ℓ = ¶α1, . . . , αℓ♢ with the numbering implied in the notation. Also, e1, e2, . . . denote
the standard basis vectors of the standard vector space relevant to the given context. For convenience, we will
also describe the Weyl group Wℓ = W0(Xℓ) as a subgroup of GLQ(Vℓ) as well as the Cartan matrix

C = (Ci,j)1≤i,j≤ℓ with Ci,j =
⟨
αi, α

∨
j

/

each case.

(i) Type A:

Vℓ = ¶x ∈ Qℓ+1 :
∑

i

xi = 0♢

Φℓ = ¶ei − ej : i ̸= j, 1 ≤ i, j ≤ ℓ+ 1♢
αi = ei+1 − ei
Wℓ = Sℓ+1 (permuting the basis vectors)

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
0 0 −1 2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . −1 2

∫
ˆ̂
ˆ̂
ˆ̂
⎠

(ii) Type B:

Vℓ = Qℓ

Φℓ = ¶±ei : 1 ≤ i ≤ ℓ♢ ∪ ¶±ei ± ej : i ̸= j, 1 ≤ i < j ≤ ℓ♢
α1 = e1 and αi = ei − ei−1 for 2 ≤ i ≤ ℓ
Wℓ = ¶±1♢ℓ ⋊ Sℓ with ¶±1♢ℓ acting by multiplication

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 . . . 0 0 0 0
2 2 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 2 −1 0 0
0 0 . . . −1 2 −1 0
0 0 . . . 0 −1 2 −1
0 0 . . . 0 0 −1 2

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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(iii) Type C:

Vℓ = Qℓ

Φℓ = ¶±2ei : 1 ≤ i ≤ ℓ♢ ∪ ¶±ei ± ej : i ̸= j, 1 ≤ i < j ≤ ℓ♢
α1 = 2e1 and αi = ei − ei−1 for 2 ≤ i ≤ ℓ
Wℓ = ¶±1♢ℓ ⋊ Sℓ with ¶±1♢ℓ acting by multiplication

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 . . . 0 0 0 0
−1 2 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 2 −1 0 0
0 0 . . . −1 2 −1 0
0 0 . . . 0 −1 2 −1
0 0 . . . 0 0 −1 2

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

(iv) Type D:

Vℓ = Qℓ

Φℓ = ¶±ei ± ej : i ̸= j, 1 ≤ i < j ≤ ℓ♢
α1 = e1 + e2 and αi = ei − ei−1 for 2 ≤ i ≤ ℓ
Wℓ = ¶(εi)i ∈ ¶±1♢ℓ :

∏

i

εi = 1♢⋊ Sℓ

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0 . . . 0 0
0 2 −1 0 . . . 0 0
−1 −1 2 −1 . . . 0 0
0 0 −1 2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 2 −1
0 0 0 0 . . . −1 2

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

Via the identification
ℓ ≃ ¶±ei : 1 ≤ i ≤ ℓ♢

we therefore have an equality

(4.6.1) EndFIX
(ℓ) =

∮
Wℓ−1 if X = A

Wℓ if X ∈ ¶B,C,D♢

as subgroups of the permutation group of ℓ.

4.6.3 Definition ([Wil14, Definition 1.2]). For X ∈ ¶A,B,C,D♢, an FIX -module with coefficients in a ring k
is a functor

FIX −→ Mod(k)

Because of eq. (4.6.1), every FIX -module M gives rise to a sequence Mn := M(n) of representations of
Wn−1 (type A) resp. of Wn (type B,C,D). Moreover, for every n ≥ 0, the inclusion

n ⊆ n + 1

of sets defines a canonical element In ∈ HomFIA
(n,n + 1), and more generally, for n ≥ m ≥ 0 the inclusion

m ⊆ n defines a canonical element Im,n ∈ HomFIA
(m,n), which is also the composition

Im,n = In−1 ◦ In−2 ◦ · · · ◦ Im+1 ◦ . . . Im
In particular, the sequence Mn of representations comes equipped with maps

ϕn = M(In) : Mn −→Mn+1

and these maps are equivariant (in the obvious way) with respect to the canonical inclusion

EndFIX
(n) ↪→ EndFIX

(n + 1)

A sequence (Mn, ϕn) with these properties is also called a consistent sequence. Not every such sequence
(Mn, ϕn) comes from an FIX -module, however there is the following lemma:
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4.6.4 Lemma ([Wil14, Lemma 3.4]). A consistent sequence (Mn, ϕn) of representations of EndFIX
(n) is ob-

tained from an FIX-module if and only if for all n ≥ m ≥ 0 the stabilizer

Hm,n := ¶σ ∈ EndFIX
(n) : σ ◦ Im,n = Im,n♢ ≤ EndFIX

(n)

acts trivial on the image ϕm,n(Mm) ⊆Mn of the map

ϕm,n = ϕn ◦ ϕn−1 ◦ · · · ◦ ϕm+1 ◦ ϕm

Let us now show that, for a fixed type X and varying ℓ, the root lattices

Qℓ = ZΦℓ ⊆ Vℓ

and coroot lattices
Q∨
ℓ = ZΦ∨

ℓ ⊆ V ∨
ℓ

of the root system Xℓ form an FIX -module. Here, V ∨
ℓ = HomQ(Vℓ,Q) denotes the dual vector space and

Φ∨
ℓ ⊆ V ∨

ℓ denotes the set of dual roots (which is determined by the roots; see [Bou07, Ch. VI, §1.1]).

4.6.5 Lemma. Let X ∈ ¶A,B,C,D♢. For ℓ′ ≥ ℓ, the map of sets

φℓ,ℓ′ : ∆ℓ ↪→ ∆ℓ′

αi ↦−→ αi

is isometric, i.e. it respects the Cartan matrices in the sense that

⟨φℓ,ℓ′(α), φℓ,ℓ′(β)∨⟩ = ⟨α, β∨⟩ ∀α, β ∈ ∆ℓ

Moreover, its linear extension to a map of Z-modules

φℓ,ℓ′ : Qℓ −→ Qℓ′

is equivariant with respect to Wℓ ↪→Wℓ′ , and

φℓ,ℓ′(Qℓ) ⊆ Qℓ′

is invariant under the action of Iℓ+1,ℓ′+1 (type A) resp. Iℓ,ℓ′ (types B,C,D). Therefore, the consistent sequence
(Qℓ−1, φℓ−1,ℓ) (type A) resp. (Qℓ, φℓ,ℓ+1) (types B,C,D) defines an FIX-module Q over Z.

Proof. The isometry follows immediately from the description of the Cartan matrices (to be honest, it’s probably
more immediate from the Dynkin graphs; see the diagrams provided in appendix A). The equivariance of φℓ,ℓ′

follows from lemma 4.5.2 since the linear extension φℓ,ℓ′ : Qℓ −→ Qℓ′ is a basic frugal morphism (for the ‘adjoint’
root data of types Xℓ and Xℓ′) by lemma 4.5.6. Now, the invariance of

φℓ,ℓ′(Qℓ) = Z¶αi : 1 ≤ i ≤ ℓ♢ ⊆ Qℓ′

under the action of Iℓ+1,ℓ′+1 in type A resp. Iℓ,ℓ′ in the other types is clear, since this group fixed the vectors
ei, 1 ≤ i ≤ ℓ + 1 of the ambient vector space Qℓ

′+1 for type A resp. the vectors ei, 1 ≤ i ≤ ℓ of the ambient
vector space Qℓ

′

for types B,C,D, and the roots αi, 1 ≤ i ≤ ℓ in both cases lie in the subspace spanned by
these vectors.

4.6.6 Remark. To avoid confusion, we denote by Q(n) the degree n piece of the FIX -module Q, and by Qℓ
the root lattice in Xℓ. Note that Q(ℓ) = Qℓ−1 in type A, but Q(ℓ) = Qℓ for the other types.

4.6.7 Corollary. For fixed type X ∈ ¶A,B,C,D♢ and varying ℓ, the coroot lattices Q∨
ℓ together with the

transition maps

Q∨
ℓ ↪→ Q∨

ℓ+1

α∨
i ↦−→ α∨

i

form an FIX-module.

Proof. The same proof as for lemma 4.6.5 works; however, this also follows from the fact that the coroot lattice
is the root lattice in the dual root system (B and C are dual, whereas A and D are self-dual).
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The main ‘slogan’ of the theory of FIX -modules is that periodicity should be equivalent to the property of
being finitely generated. Let us therefore recall this important notion.

4.6.8 Definition ([Wil14, Definition 3.13]). Given an FIX -module M and a subset

S ⊆
∐

n≥0

Mn

the span of S—denoted by spanM (S)—is the minimal FIX -submodule29 of M containing S. This module is
also called the FIX-submodule generated by S.

An FIX -module M is called finitely generated, if there exists a finite subset S ⊆∐n≥0 Mn such that

M = spanM (S)

More specifically, M is said to be finitely generated in degree ≤ m if S can be chosen to lie in
∐
n≤mMn.

The above ‘abstract’ notion of being finitely generated is equivalent to another, more concrete one, which
we are going to explain now.

4.6.9 Definition ([Wil14, Definition 3.7]). For a given m ≥ 0, there exists an FIX -module M(m), where

M(m)n := k[HomFIX
(m,n)] (free module over k)

with the action of EndFIX
(n) being given by post-composition, and the transition map induced by the natural

map

HomFIX
(m,n) −→ HomFIX

(m,n + 1)

f ↦−→ In ◦ f

The fundamental property of the modules M(m) is the following:

4.6.10 Proposition ([Wil14, Proposition 3.11]). For every m ≥ 0, the ‘forgetful’ functor

Fun(FIX ,Mod(k)) −→ Rep(EndFIX
(m))

M −→Mm

admits a left adjoint, given by V ↦−→M(m)⊗k[EndFIX
(m)] V , where

(M(m)⊗k[EndFIX
(m)] V )n := M(m)n ⊗k[EndFIX

(m)] V

with M(m) being a right-k[EndFIX
(m)]-module in the obvious way. In particular, for every FIX-module M we

have a canonical bijection
HomFun(FIX ,Mod(k))(M(m),M) ≃Mm

Using this lemma, one deduces:

4.6.11 Proposition ([Wil14, Proposition 3.15]). An FIX-module M is finitely generated in degree ≤ m if and
only if there exists a (degree-wise) surjection

m{

n=0

M(n)⊕kn ↠M

for some integers kn ≥ 0.

This characterization of being finitely generated is more useful, since allows one to define the notion of being
finitely presented in a straight-forward way:

4.6.12 Definition ([Wil14, Definition 3.18]). An FIX -module M is called finitely presented with generators
in degree ≤ g and relations in degree ≤ r, if there exists a right exact sequence

⌉r
n=0 M(n)⊕kn →→

⌉g
n=0 M(n)⊕k′

n →→ M →→ 0

for some integers kn, k′
n ≥ 0.

29The notion of FIX -submodule is the obvious one.
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There is also a notion of degree, at least when k is a field (and in any case for X = A):

4.6.13 Definition (Cf. [NS18, 1.2]). Let k be a field. An FIX -module is said to be of degree m, if the
function

n ↦−→ dimkMn

agrees with a (necessarily unique) polynomial of degree m, for sufficiently large n.

We come now to the main goal of this section, which is to prepare the ground for applying [NS18, Theorem
1.6] to the FIA-module Q∨.

4.6.14 Proposition. The FIX-modules Q and Q∨ (over Z) are finitely generated with generators in degree
≤ 2 and their base change Q⊗Z k, Q∨⊗Z k is of degree 1 for every field k. Further, for type A the FIA-modules
Q and Q∨ is finitely presented with generators in degree ≤ 2 and relations in degree ≤ 2.

Proof. By duality, it suffices to prove everything for Q. Now,

rkZQℓ = ℓ = rkZQ
∨
ℓ

hence the claim regarding the degree is clear. Moreover for ℓ ≥ 2, Qℓ is generated as a Z[Wℓ]-module by
α1 ∈ Q1 = Q(2) for type A, and by α2 ∈ Q2 = Q(ℓ) for the other types. Hence, the map of FIX -modules

(4.6.2) M(2) ↠ Q

sending the canonical element id2 ∈ HomFIX
(2,2) ⊆ M(2)2 to the mentioned generator is surjective for all

degree ℓ ≥ 2, and hence it follows that Q is finitely generated in degree ≤ 2. Assume now that X = A. We can
identify HomFIA

(2, n) with the set of pairs (i, j) of distinct integers 1 ≤ i, j ≤ n, i ̸= j. An arbitrary element
of M(2)n is therefore of the form

∑

1≤i,j≤n, i ̸=j
λi,j(i, j) with λi,j ∈ Z

It lies in the kernel of eq. (4.6.2) if and only if

0 =
∑

i,j

λi,j(ei − ej) =
n∑

i=1

(
∑

j ̸=i
λi,j − λj,i)ei

which is equivalent to

(4.6.3) ∀i
∑

j ̸=i
λi,j =

∑

j ̸=i
λj,i

It follows that the kernel is generated as a Z-module by expressions of the form
∑

j ̸=i
λi,j(i, j) + λj,i(j, i)

with λi,j , λj,i ∈ Z, j ∈ ¶1, . . . , n♢− ¶i♢ satisfying eq. (4.6.3). But, by applying eq. (4.6.3) with j instead of i for
some j ∈ ¶1, . . . , n♢ − ¶i♢, it follows that we must have

λj,i =
∑

k ̸=j
λj,k =

∑

k ̸=j
λk,j = λi,j

Hence the kernel is generated as a Z-module by expressions of the form

(i, j) + (j, i)

hence as a Z[Sn]-module by the I2,n-invariant element

(1, 2) + (2, 1) ∈M(2)I2,n
n

Since M(2)n ≃ IndSn

I2,n
k (see the remark following [Wil14, Definition 3.7]), it follows that for n ≥ 2, the

Z[Sn]-module homomorphism
M(2)n −→M(2)n

sending the canonical generator of M(2)n ≃ IndSn

I2,n
to (1, 2) + (2, 1) maps surjectively onto the kernel of

eq. (4.6.2) in degree n, hence the morphism

M(2) −→M(2)

of FIA-modules sending the generator id2 ∈ HomFIA
(2,2) to (1, 2) + (2, 1) maps surjectively onto the kernel of

eq. (4.6.2) in degrees ≥ 2.
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4.7 The DeConcini-Salvetti resolution

Throughout this section (W,S) denotes a Coxeter group with S countable30. Moreover, we assume that a total
ordering S = ¶s1, s2, . . . ♢ has been chosen.

The goal of this section is to recall a free resolution CS• of the trivial Z[W ]-module Z found by DeConcini
and Salvetti. Its usefulness for concrete computations rests on the fact that the rank (for #S <∞) grows only
polynomially in #S

rkZ[W ] CSk =

⎤
#S + k − 1

k

⎣
= O((#S)k)

whereas the rank of the standard resolution grows polynomially in #W

rkZ[W ] Pk = (#W )k

For example, in the case W = Sn of symmetric groups the growth rates would be (n−1)k and (n!)k respectively.
This resolution was originally [CS00] only explicitly stated for finite Coxeter groups, even though it was

remarked [CS00, p. 215] that the construction would carry over with minor modifications to the finitely
generated case (#S < ∞), without providing details however. The definition in the general finitely generated
case was given later in [MSV12, 2.5] (see also [Sal02]).

We will now state the resolution in the countably generated case, noting that it is easily reduced to the
finitely generated by considering W as the union W =

√∞
n=1 ⟨s1, . . . , sn⟩.

4.7.1 Definition. (Cf. [MSV12, 2.5].) For k ∈ Z, let CSk be the free Z[W ]-module over the set

(4.7.1) Fk := ¶Γ = (Γi)i∈N,i≥1 : S ⊇ Γ1 ⊇ Γ2 ⊇ . . . , #Γ = k, # ⟨Γ1⟩ <∞♢
of descending flags of cardinality k of subsets Γi of S generating finite subgroups ⟨Γi⟩ of W , where the cardinality
of a flag Γ is defined by

#Γ :=
∑

i≥1

#Γi = k

In particular, #Γ <∞ implies that Γi = ∅ for i≫ 0. Note also that Fk = ∅ for k < 0.
For k ∈ Z, define the differential

∂k : CSk −→ CSk−1

on basis elements by

(4.7.2) ∂k([Γ]) :=
∑

i≥1
#Γi>#Γi+1

∑

τ∈Γi

∑

β∈WΓi−¶τ♢

Γi

β−1Γi+1β ⊆ Γi−¶τ♢

(−1)α(Γ,i,τ,β)β[Γi,τ,β ]

where Γi,τ,β ∈ Fk−1 is defined by

(4.7.3) Γi,τ,βj :=

⎧
⎪⨄
⎪⎩

Γj if j < i

Γi − ¶τ♢ if j = i

β−1Γjβ if j > i

where

(4.7.4) α(Γ, i, τ, β) := i · ℓ(β) +
∑

j<i

#Γj + µ(Γi, τ) +
∑

j>i

σ(β,Γj)

with
µ(Γi, τ) := #¶s ∈ Γi : s ≤ τ♢

the number of elements of Γi smaller or equal than τ in the fixed ordering of S and

σ(β,Γj) := #¶(x, y) ∈ Γj × Γj : x < y and β−1xβ > β−1yβ♢
the number of inversions of the map Γj −→ Γi − ¶τ♢ given by x ↦→ β−1xβ. Finally,

W
Γi−¶τ♢
Γi

:= ¶g ∈ ⟨Γi⟩ : ∀h ∈ ⟨Γi − ¶τ♢⟩ ℓ(gh) ≥ ℓ(g)♢
denotes the set of minimal coset representatives31 of the group ⟨Γi⟩ with respect to the special subgroup
⟨Γi − ¶τ♢⟩.

30The reader may assume that W is finite, since we only need the resolution in that case. Stating it in greater generality is useful
however, since this allows one to treat e.g. the infinite symmetric group S∞ :=

√
n≥1

Sn directly.
31By the theory of Coxeter groups [Bou07, Ch. IV, Exercises §1, Ex. 3], every such coset contains a unique element of minimal

length.
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4.7.2 Notation. A flag Γ ∈ Fk with Γi = ∅ for i > n will also be denoted by the expression

Γ1 ⊇ Γ2 ⊇ · · · ⊇ Γn

and the basis element of CSk corresponding to Γ will be denoted alternatively by

[Γ] or [Γ1 ⊇ Γ2 ⊇ · · · ⊇ Γn]

For example,
[S] = [S ⊇ ∅] = [S ⊇ ∅ ⊇ ∅]

all denote the same basis element in CS2, corresponding to the flag Γ with Γ1 = S and Γi = ∅ for i > 0. Also,

[] = [∅]

both denote the (unique) canonical basis element of CS0 ≃ Z[W ].

4.7.3 Lemma. The chain complex CS of definition 4.7.1 together with the augmentation map

ε : CS −→ Z

given in degree zero by
ε0(g[]) = ε(g), g ∈ Z[W ]

, where ε : Z[W ]→ Z denotes the augmentation map of the group algebra, is a (free) resolution of the complex
Z (concentrated in degree zero).

Proof. This is proven in [CS00, Theorem 3.1.7] in the finite and in [MSV12, Theorem 8] in the finitely generated
case; the infinite case is easily reduced to this. For example, to prove that it is exact, given an element x ∈ CSk
with ∂k(x) = 0, there exists a finite subsets S′ ⊆ S such that the formula for ∂k(x) only involves flags Γ with
S′ ⊇ Γ1.

In 4.4.6 we described how the map

Hk(G′,M ′) −→ Hk(G,M)

induced by a morphism (φ0, φ1) : (G,M) → (G′,M ′) of the category D (see remark 4.4.5) has a simple
description when using the standard resolution to compute the cohomology groups. A similar situation holds
for the DeConcini-Salvetti resolution, at least when one restricts to morphisms of Coxeter groups:

4.7.4 Lemma. Let (W,S) and (W ′, S′) be Coxeter groups with S and S′ countable, together with total orderings
on S and S′. Moreover, let

φ0 : W −→W ′

be a monotonous isometric morphism of Coxeter groups, i.e. a homomorphism of groups such that φ0(S) ⊆ S′

and the induced map
φ0♣S : S ↪→ S′

is strictly monotonous (i.e. s < t⇔ φ0(s) < φ0(t)), and such that the lengths are preserved (‘isometry’), i.e.

∀w ∈W ℓ(φ0(w)) = ℓ(w)

Then there is a morphism
f : CS −→ φ∗

0(CS ′)

of chain complexes of Z[W ]-modules, where CS and CS ′ denote the DeConcini-Salvetti complexes of (W,S) and
(W ′, S′) (and the chosen total orderings) respectively, compatible with the augmentations defined in lemma 4.7.3,
given in degree k on basis elements by

fk([Γ1 ⊇ Γ2 ⊇ . . . ]) = [φ0(Γ1) ⊇ φ1(Γ2) ⊇ . . . ]

Proof. Omitted.
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4.7.5 Corollary. If (φ0, φ1) : (W,M) −→ (W ′,M ′) is a morphism of the category D of remark 4.4.5 such that
φ0 : W →W ′ is as in lemma 4.7.4, then the functoriality map

(φ0, φ1)∗ : Hk(W ′,M ′) −→ Hk(W,M)

is induced by the map
HomZ[W ′](CS ′

k,M
′) −→ HomZ[W ](CSk,M)

on cochains sending a cochain α to the cochain α′ given by

α′([Γ1 ⊇ Γ2 ⊇ . . . ]) = φ1(α([φ0(Γ1) ⊇ φ0(Γ2) ⊇ . . . ]))
4.7.6 Remark. Given a morphism φ : W → W ′ between Coxeter groups (W,S) and (W ′, S′) satisfying
φ(S) ⊆ S′, the condition

∀w ∈W ℓ(φ(w)) = ℓ(w)

is equivalent to
∀s, t ∈ S ord(φ(st)) = ord(st)

Moreover, if these conditions are satisfied, then φ is necessarily injective and induces an isomorphism of W with
the parabolic subgroups ⟨φ(S)⟩ ⊆W ′ of W ′.

We can use the resolution CS to compute the cohomology group H2(W0, X
∨ ⊗Z F2) for the Weyl group W0

of a root system (X,Φ, X∨,Φ∨) as an abstract group. But in order to determine when eq. (4.0.1) splits, we
also need to know [ϕu] as an element of this group. Hence, we need to explicitly compute a comparison map
between the standard resolution and CS, which we will do now.

4.7.7 Lemma. The map

(4.7.5) f• : CS• −→ P•

of chain complexes of Z[W ]-modules between the DeConcini-Salvetti complex CS (definition 4.7.1) and the
standard resolution P (definition 4.4.3) for W that is given by the recursion eq. (4.4.5) of lemma 4.4.9, the
contracting chain homotopy h of definition 4.4.3, and by requiring that

f0([]) = []

is given up to degree 2 by (for notations see remark 4.4.4 and notation 4.7.2

f1([¶s♢]) = [s]− [1] s ∈ S
f2([¶s♢ ⊇ ¶s♢] = [s, s]− [s, 1] + [1, s]− [1, 1] s ∈ S

f2([¶s, t♢]) =

m(s,t)−1∑

k=0

(−1)k ([prod(t, s; k), s]− [prod(t, s; k), 1]

−[prod(s, t; k), t] + [prod(s, t; k), 1]) s, t ∈ S, s < t

Proof. First, we explicitly compute the differential ∂CS
• on basis elements using eq. (4.7.2). In degree one, a

basis element is of the form [Γ] with Γ ∈ F1 of the form Γ1 = ¶s♢ and Γi = ∅ for i > 0. It follows that

(4.7.6) ∂CS
1 [Γ] =

∑

β∈¶1,s♢
(−1)α(Γ,1,s,β)β[Γ1,s,β ] = s[]− []

in this case (here τ = s, Γi = ¶s♢ and W
Γi−¶τ♢
Γi

= W ∅
¶s♢ = ¶1, s♢). In degree two there are two kinds of basis

elements, the ‘degenerate’ ones of the form [Γ] with Γ1 = ¶s♢ = Γ2 and Γi = ∅ for i > 1, for which

(4.7.7) ∂CS
2 [Γ] =

∑

β∈¶1,s♢
(−1)α(Γ,2,s,β)β[Γ2,s,β ] = [¶s♢] + s[¶s♢]

and the ‘non-degenerate’ ones of the form [Γ] with Γ1 = ¶s, t♢, Γi = ∅ for i > 0 and s, t ∈ S with s < t (recall
that we fix a total ordering of S), for which

(4.7.8)

∂CS
2 [Γ] =

∑

τ∈¶s,t♢

∑

β∈W¶s,t♢−¶τ♢

¶s,t♢

(−1)α(Γ,1,τ,β)β[Γ1,τ,β ]

=
∑

β∈W¶t♢

¶s,t♢

(−1)ℓ(β)+1β[¶t♢] +
∑

β∈W¶s♢

¶s,t♢

(−1)ℓ(β)+2β[¶s♢]

=

m(s,t)−1∑

k=0

(−1)k+1 prod(s, t; k)[¶t♢] +

m(s,t)−1∑

k=0

(−1)k prod(t, s; k)[¶s♢]
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where we have used that the minimal coset representatives are given by

W
¶t♢
¶s,t♢ = ¶prod(s, t; k) : 0 ≤ k ≤ m(s, t)− 1♢ and W

¶s♢
¶s,t♢ = ¶prod(t, s; k) : 0 ≤ k ≤ m(s, t)− 1♢

with
prod(s, t; k) := . . . sts  

k factors

and m(s, t) = ord(st) <∞ equal to the order of st.
Using the recursion eq. (4.4.5) and the definition eq. (4.7.2) of the differential of CS, it follows from eq. (4.7.6)

that
f1([¶s♢]) = h0(f0(∂CS

1 [¶s♢])) = h0(f0(s[]− [])) = h0(s[]− []) = [s]− [1]

From eq. (4.7.7) and eq. (4.7.8) it follows that

f2([¶s♢ ⊇ ¶s♢]) = h1(f1(∂CS
2 [¶s♢ ⊇ ¶s♢])) = h1(f1(s[¶s♢] + [¶s♢]))

= h1(s([s]− [1]) + [s]− [1]) = [s, s]− [s, 1] + [1, s]− [1, 1]

and

f2([¶s, t♢]) = h1(f1(∂CS
2 [¶s, t♢])) = h1

⎛
⎝f1

⎛
⎝
m(s,t)−1∑

k=0

(−1)k (prod(t, s; k)[¶s♢]− prod(s, t; k)[¶t♢])

∫
⎠
∫
⎠

= h1

⎛
⎝
m(s,t)−1∑

k=0

(−1)k (prod(t, s; k)([s]− [1])− prod(s, t; k)([t]− [1]))

∫
⎠

=

m(s,t)−1∑

k=0

(−1)k ([prod(t, s; k), s]− [prod(t, s; k), 1]− [prod(s, t; k), t] + [prod(s, t; k), 1])

4.7.8 Corollary. Given a Z[W ]-module M , the induced map

f∗ : HomZ[W ](P•,M) −→ HomZ[W ](CS•,M)

on cochains is given in degree two by

(4.7.9)

f∗
2 (ϕ)([¶s♢ ⊇ ¶s♢]) = ϕ(s, s)− ϕ(s, 1) + ϕ(1, s)− ϕ(1, 1) s ∈ S

f∗
2 (ϕ)([¶s, t♢]) =

m(s,t)−1∑

k=0

(−1)k (ϕ(prod(t, s; k), s)− ϕ(prod(t, s; k), 1)

−ϕ(prod(s, t; k), t) + ϕ(prod(s, t; k), 1)) s, t ∈ S, s < t

In particular, if the 2-cocycle ϕ satisfies

(4.7.10) ∀w,w′ ∈W ℓ(ww′) = ℓ(w) + ℓ(w′) ⇒ ϕ(w,w′) = 1

then f∗(ϕ) is given by

(4.7.11)
f∗

2 (ϕ)([¶s♢ ⊇ ¶s♢]) = ϕ(s, s)

f∗
2 (ϕ)([¶s, t♢]) = 0 s, t ∈ S, s < t

Proof. Equation (4.7.9) follows directly from lemma 4.7.7 and the definitions. To see that eq. (4.7.11) holds, note
first that ϕ is normalized, i.e. ϕ(1, w) = 0 = ϕ(w, 1) for all w ∈ W ; this follows immediately from eq. (4.7.10).
Moreover,

ℓ(prod(s, t; k) · t) = k + 1 = ℓ(prod(t, s; k) · s) ∀ 0 ≤ k ≤ m(s, t)− 1

and therefore
ϕ(prod(s, t; k), t) = 0 = ϕ(prod(t, s; k), s) ∀ 0 ≤ k ≤ m(s, t)− 1

Equation (4.7.9) then follows.
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4.7.9 Corollary. Let (X,Φ, X∨,Φ∨) be a root datum and W0 its Weyl group. Fix a root basis ∆ ⊆ Φ and a
total ordering ∆ = ¶α1, . . . , αℓ♢ of the simple roots, and let (W0, S) = (W0, ¶sα1

, . . . , sαℓ
♢) be the corresponding

Coxeter group and CS the DeConcini-Salvetti complex associated to (W0, S) and the total ordering of S.
The 2-cocycle f∗

2 (ϕu) ∈ Z2(W0, X
∨ ⊗Z F2) ⊆ HomZ[W0](CS2, X

∨ ⊗Z F2) induced by the standard 2-cocycle
ϕu defined in eq. (4.1.3) is given by

(4.7.12)
f∗

2 (ϕu)([¶sα♢ ⊇ ¶sα♢]) = α∨ ⊗ 1 α ∈ ∆

f∗
2 (ϕu)([¶sα, sβ♢]) = 0 α, β ∈ ∆, α < β

Proof. Follows immediately from corollary 4.7.8—noting that eq. (4.7.10) is satisfied by remark 1.7.2—by re-
mark 4.1.2 and the fact that

X(sα, sα) = sα ∀α ∈ ∆

by definition of X (see definition 1.7.1).

4.7.10 Corollary. Given a basic frugal morphism (see definition 4.5.4)

φ : (X1,Φ1, X
∨
1 ,Φ

∨
1 ,∆1) −→ (X2,Φ2, X

∨
2 ,Φ

∨
2 ,∆2)

between based root data, the map

(4.7.13) (φ0, φ
∨)∗ : H2(W0(R2), X∨

2 ⊗Z F2) −→ H2(W0(R1), X∨
1 ⊗Z F2)

induced by the pair (φ0, φ
∨) (belonging to the category D defined in remark 4.4.5) preserves the canonical classes

[ϕu,i] ∈ H2(W0(Ri), X∨
i ⊗Z F2). Here,

φ0 : W0(R1) −→W0(R2)

denotes the morphism defined in lemma 4.5.2 and φ∨ : X∨
2 → X∨

1 denotes the adjoint of φ : X1 → X2.

Proof. First, note that by lemma 4.5.2 the pair (φ0, φ
∨) really belongs to the category D, i.e. φ∨ is equivariant

with respect to φ0. Moreover, by lemma 4.5.5 the morphism φ0 is isometric, i.e. preserves the length functions
of the Coxeter groups. Also, the restriction

φ♣ : Φ1 −→ Φ2

is injective by lemma 4.5.2, hence we may chose a total ordering of ∆2 and endow ∆1 with the ordering induced
by identifying it with the subset φ(∆1) ⊆ ∆2. With these ordering, the maps φ0 is hence a monotonous
isometric morphism of Coxeter groups, and by corollary 4.7.5 the map eq. (4.7.13) is explicitly described in
terms of cochains of the DeConcini-Salvetti-complexes. Moreover, a (canonical) DeConcini-Salvetti-cochain
representing the class [ϕu] is explicitly described in corollary 4.7.9. It therefore follows that the image of [ϕu,2]
under eq. (4.7.13) is represented by the cocycle f determined by (where α, β ∈ ∆1)

f([¶sα♢ ⊇ ¶sα♢]) = (φ∨ ⊗ id)(ϕu,2([¶φ0(sα)♢ ⊇ ¶φ0(sα)♢]))
= (φ∨ ⊗ id)(ϕu,2([¶sφ(α)♢ ⊇ ¶sφ(α)♢])
= (φ∨ ⊗ id)(φ(α)∨ ⊗ 1)

= (φ∨(φ(α)∨)⊗ 1

= α∨ ⊗ 1 = ϕu,1([¶sα♢ ⊇ ¶sα♢])
f([¶sα, sβ♢]) = (φ∨ ⊗ id)(ϕu,2([¶φ0(sα), φ0(sβ)♢]))

= (φ∨ ⊗ id)(ϕu,2([¶sφ(α), sφ(β)♢])
= (φ∨ ⊗ id)(0)

= 0 = ϕu,1([¶sα, sβ♢])

where we have used the equality φ∨(φ(α)∨) = α∨ which holds since φ is frugal (see eq. (4.5.2)). Therefore it
follows that f = ϕu,1, in particular [f ] = [ϕu,1], and hence the claim follows.

4.8 Discussion of the computational results

We have computed the cohomology groups Hk(W0, X
∨) and Hk(W0, X

∨⊗ZF2) = Hk(W0, X∨) for k = 0, 1, 2, 3
and all sublattices Q∨ ⊆ X∨ ⊆ P∨ of all irreducible reduced root systems of rank ℓ ≤ 8. We have also



132 4 NORMALIZERS OF TORI

determined, for each such X∨, whether the class [ϕu] ∈ H2(W0, X∨) vanishes, and—if it doesn’t—whether or
not this class lies in the image of the comparison map

comp2 : H2(W0, X
∨)⊗Z F2 ↪→ H2(W0, X∨)

coming from the Künneth theorem (see eq. (4.2.5)). The detailed results of these computations are given in the
appendix (appendix A).

Let us discuss some conclusions to draw from these computations (in particular, what these imply for the
question of the splitness of eq. (4.0.1)). First of all, it turned out that in all examples computed, the class [ϕu]
never lies in the image of comp2 unless it is already zero. In particular:

4.8.1 Observation. For the lattices X∨ considered in appendix A, the splitting of eq. (4.0.1) is independent
of the ring k. That is, this sequence either splits for all rings, or it never splits except in the trivial case where
2 = 0 in k.

Proof. This follows from eq. (4.2.6).

That the splitness of eq. (4.0.1) turns out to be independent of the ground ring k may not be surprising
morally, given the rigid behaviour of semisimple groups in general. But, this is far from being obvious! Indeed,
before the final resolution of this question for all fields by Adams and He in [AH17], this question had been
decided separately in the case of fields of positive characteristic by Galt in several articles ([Gal15], [Gal14],
[Gal17a], [Gal17b]) using delicate computations.

4.8.2 Observation. We have

(4.8.1) H1(W0, P
∨) = 0

for all irreducible reduced root systems of rank ℓ ≤ 8, except for A1 and the ones of type B (for which always
H1(W0, P

∨) ≈ Z/2Z)).
In particular for the former root systems, eq. (4.8.1) implies that for every sublattice Q∨ ⊆ X∨ ⊆ P∨, the

long exact sequence in cohomology induced by the short exact sequence

0 →→ X∨ →→ P∨ →→ P∨/X∨ →→ 0

gives a canonical isomorphism
P∨/X∨ ∼−→ H1(W0, X

∨)

Regarding the question of the splitness of eq. (4.0.1), i.e. the vanishing of the class [ϕu] we find in accordance
with [AH17] that

4.8.3 Observation. For simple root systems up to rank 8, the class [ϕu] ∈ H2(W0, X∨) vanishes precisely in
the following cases (where G denotes the corresponding split almost-simple semisimple group):

(i) For type Aℓ (ℓ ≥ 1), when the order of P∨/X∨ (isomorphic to the center of G) is odd or if ℓ = 3 and
X∨ = Q∨ + Ω for the unique subgroup Ω ≤ P∨/Q∨ ≈ Z/4Z of order 2 (corresponding to G = SL4/¶±♢).

(ii) For type Bℓ (ℓ ≥ 2), when X∨ = P∨ (corresponding to G = SO(2ℓ+ 1)).

(iii) For type Cℓ (ℓ ≥ 2), when ℓ = 2 and X∨ = P∨ (corresponding to G = PSp4).

(iv) For type Dℓ (ℓ ≥ 3), when ℓ is odd and X∨ = Q∨ + Ω for a nonzero subgroup

Ω ≤ P∨/Q∨ =
⟨

Λ∨
ℓ

⟩
≃ Z/4Z

(corresponding to G = SO(2ℓ) and G = PSO(2ℓ)). Or, when ℓ is even, and X∨ = Q∨ +Ω for a subgroup

Ω ≤ P∨/Q∨ =
⟨

Λ∨
ℓ−1,Λ

∨
ℓ

⟩
≃ Z/2Z⊕Z/2Z

of the form Ω =
⟨

Λ∨
ℓ−1

⟩
or Ω =

⟨
Λ∨
ℓ

⟩
(both corresponding to G = SO(2ℓ)) or of the form Ω = P∨/Q∨

(corresponding to G = PSO(2ℓ)).

Moreover, when ℓ = 4 also whenX∨ = Q∨+Ω with Ω =
⟨

Λ∨
3 + Λ∨

4

⟩
(corresponding to G = Semispin(8)),

because in this case all proper sublattices Q∨ ⊊ X∨ ⊊ P∨ are conjugate under the action of the automor-
phism group of the Dykin diagram (corresponding to the isomorphism SO(8) ≃ Semispin(8) provided
by triality).
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(v) For type G2.

Unfortunately, computations can only ever a finite number of cases, but there are infinitely many irreducible
root systems. The question therefore becomes, can we infer any information about an infinite number of cases
from finitely many?

To answer this question, let’s follow the time-honored tradition of putting things you don’t understand into
tables, and let’s group together all the first cohomology groups H1(W0, Q

∨) of the coroot lattices of the root
systems Xℓ, X ∈ ¶A,B,C,D♢, 1 ≤ ℓ ≤ 8:

ℓ A B C D

1 2 − − −
2 3 2 2 −
3 4 2 2 4

4 5 2 2 2, 2

5 6 2 2 4

6 7 2 2 2, 2

7 8 2 2 4

8 9 2 2 2, 2

Table 2: The invariants of H1(W0, Q
∨) for the classical root systems.

Here we list in each row the invariants of the finite abelian groups H1(W0, Q
∨), i.e. the entry 2, 2 stands for

the group Z2Z⊕Z/2Z. Clearly, all the columns except the first one exhibit periodicity. Let’s now look at the
first cohomology groups of the reductions Q∨ = Q∨ ⊗Z F2, describing now each group via its dimension as an
F2-vector space:

ℓ A B C D

1 1 − − −
2 0 2 2 −
3 2 3 3 2

4 0 2 3 4

5 2 3 3 2

6 0 2 3 4

7 2 3 3 2

8 0 2 3 4

Table 3: The F2-dimensions of H1(W0, Q∨) for the classical root systems.

This time, we see that all columns exhibit periodicity (with period at most two) eventually. Moreover, the
same periodicity can also be observed for the higher cohomology groups:

ℓ A B C D

1 1 − − −
2 0 3 3 −
3 2 5 6 2
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ℓ A B C D

4 0 4 7 8

5 3 7 8 4

6 0 4 8 8

7 3 7 8 4

8 0 4 8 8

Table 4: The F2-dimensions of H2(W0, Q∨) for the classical root systems.

ℓ A B C D

1 1 − − −
2 0 4 4 −
3 3 8 10 3

4 0 9 14 17

5 5 15 18 8

6 0 10 19 19

7 6 17 20 10

8 0 10 20 19

Table 5: The F2-dimensions of H3(W0, Q∨) for the classical root systems.

At least for the family Aℓ, this periodicity phenomenon is explained by the theory of FI-modules and the
following theorem of Nagpal and Snowden:

4.8.4 Theorem. [Let M be a finitely generated FI-module over a field k of characteristic p.] Suppose
that M is generated in degrees ≤ g with relations in degrees ≤ r and has degree δ. Let q be the smallest
power of p such that δ < p. Then

dimkH
t(Sn,Mn) = dimkH

t(Sn+q,Mn+q)

holds for all n ≥ max(g + r, 2t+ δ).

([NS18, Theorem 1.6])

In proposition 4.6.14, we have shown that the root and coroot lattices of the families Aℓ, Bℓ, Cℓ, Dℓ naturally
form finitely generated FIW -modules. Moreover, we have shown that the coroot lattices of Aℓ form a finitely
presented FI-module generated in degrees ≤ 2 with relations in degrees ≤ 2 having degree δ = 1. Therefore,
we have shown that

4.8.5 Theorem. The dimension

dk(ℓ) := dimF2 H
k(Sℓ+1, Q

∨
ℓ ⊗Z F2)

of the first cohomology group of the mod 2 reduction of the coroot lattice Q∨
ℓ of the root system Aℓ is given in

degrees k = 1 by

d1(ℓ) =

⎧
⎪⨄
⎪⎩

1 if ℓ = 1

0 if ℓ ≥ 2, and ℓ even
2 if ℓ ≥ 2, and ℓ odd
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in degree k = 2 by

d2(ℓ) =

⎧
⎪⎪⎪⎪⎪⎪⨄
⎪⎪⎪⎪⎪⎪⎩

1 if ℓ = 1

0 if ℓ = 2

2 if ℓ = 3

0 if ℓ ≥ 4, and ℓ even
3 if ℓ ≥ 4, and ℓ odd

and in degree k = 3 by

d3(ℓ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⨄
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ℓ = 1

0 if ℓ = 2

3 if ℓ = 3

0 if ℓ = 4

5 if ℓ = 5

0 if ℓ ≥ 6, and ℓ even
6 if ℓ ≥ 6, and ℓ odd

Proof. The bound of theorem 4.8.4 in this case is (t = k in our notation)

max(g + r, 2k + δ) = max(2 + 2, 2k + 1) = 2k + 1

and 1 = δ < p = 2. Therefore dk(ℓ) satisfies

dk(ℓ) = dk(ℓ+ 2) for ℓ+ 1 ≥ 2k + 1

The claim then follows from table 3, table 4, and table 5. Note, that in the cases k = 2, 3 the bound provided
by the theorem of Nagpal and Snowden is optimal.

From the theorem, the following corollary follows formally.

4.8.6 Corollary. For k = 1, 2, 3 and ℓ even, the group

Hk(Sℓ+1, Q
∨
ℓ )

has no 2-torsion.

Proof. By the Künneth theorem, for every prime p we have a natural identification

Hk(Sℓ+1, Q
∨
ℓ )(p) ≃ Hk(Sℓ+1, Q

∨
ℓ,(p))

Moreover, again by the Künneth theorem, we have a natural injection

Hk(Sℓ+1, Q
∨
ℓ,(p))⊗Z(p) Z/pZ ≃ Hk(Sℓ+1, Q

∨
ℓ ⊗Z Z/pZ)

Since the Z(p)-module Hk(Sℓ+1, Q
∨
ℓ,(p)) is finitely generated (as Sℓ+1 is finite and Q∨

ℓ is a finitely generated
Z-module), it follows from Nakayama’s lemma that

Hk(Sℓ+1, Q
∨
ℓ ⊗Z Z/pZ) = 0 ⇒ Hk(Sℓ+1, Q

∨
ℓ,(p)) = 0

Since we know from theorem 4.8.5 that the left hand side vanishes for p = 2 and ℓ even, the claim follows.

What about the other families? Unfortunately, there is (yet) no analogue of theorem 4.8.4 for FIW -modules
of the other types, even though table 3, table 4, and table 5 highly suggest that it should exist.

Also, what about the other lattices X∨, especially the coweight lattice P∨? We know from lemma 4.6.5
that the coweight lattices of the classical families—being the duals of the root lattices—form FIop

W -modules.
Furthermore, the first cohomology group of the coweight lattices clearly exhibits the same periodicity:

ℓ A B C D

1 1 − − −
2 0 2 2 −
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ℓ A B C D

3 1 3 1 1

4 0 3 1 2

5 0 3 0 0

6 0 3 0 0

7 0 3 0 0

8 0 3 0 0

Table 6: The F2-dimensions of H1(W0, P∨) for the classical root systems.

In the second and third cohomology groups, the periodicity is still discernible even though less clearly.

ℓ A B C D

1 1 − − −
2 0 3 3 −
3 2 6 3 2

4 0 7 4 7

5 1 8 2 2

6 0 8 2 3

7 0 8 1 1

8 0 8 1 1

Table 7: The F2-dimensions of H2(W0, P∨) for the classical root systems.

ℓ A B C D

1 1 − − −
2 0 4 4 −
3 2 10 5 2

4 0 14 7 11

5 2 18 6 4

6 0 19 6 8

7 1 20 4 3

8 0 20 4 4

Table 8: The F2-dimensions of H3(W0, P∨) for the classical root systems.

Unfortunately, there is also no analogue of theorem 4.8.4 for FIop-modules, let alone FIop
W -modules. Moreover—

now coming back to our original question of the splitness of eq. (4.0.1)—even theorem 4.8.4 is clearly insufficient
insofar as it only show that certain cohomology groups are isomorphic without providing an actual isomorphism.
In particular, we can’t hope to use theorem 4.8.4 to establish the vanishing/non-vanishing of the class [ϕu], de-
spite the fact that not only the cohomology groups H2(W0, X

∨ ⊗Z F2) clearly become periodic but also the
coefficients of the class [ϕu] expressed as a linear combination of the generating cocycles given in appendix A.
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Given the naturality of [ϕu] under basic frugal morphisms (corollary 4.7.10), we therefore conjecture the follow-
ing:

4.8.7 Conjecture. Given a type X ∈ ¶A,B,C,D♢, let φℓ : Qℓ ↪→ Qℓ+1 denote the canonical embedding between
the root lattices of the root systems Xℓ and Xℓ+1. Then, for types A, B, and D, the restriction map

H2(W0, Q
∨
ℓ+2 ⊗Z F2) −→ H2(W0, Q

∨
ℓ ⊗Z F2)

(induced by the composition φ∨
ℓ ◦ φ∨

ℓ+1 : Q∨
ℓ+2 → Q∨

ℓ ) is an isomorphism for ℓ sufficiently large.
Furthermore, for type C the restriction map

H2(W0, Q
∨
ℓ+1 ⊗Z F2) −→ H2(W0, Q

∨
ℓ ⊗Z F2)

(induced by φ∨
ℓ : Q∨

ℓ+1 → Q∨
ℓ ) is an isomorphism for ℓ sufficiently large.

This conjecture gains further plausibility by the fact that the theorem of Nakaoka ([Nak60]), which is cited
in the beginning of [NS18], states that the restriction map

Hk(Sℓ+1, A) −→ Hk(Sℓ, A)

(for A a finite abelian group with trivial action) is an isomorphism of sufficiently large ℓ. Moreover, despite the
fact that the periodicity result of Nagpal and Snowden provides no explicit isomorphism, their proofs do involve
a specific connection ∇ defined in terms of the restriction map (cf. [NS18, Proposition 4.7]). This question is
also acknowledged by Nagpal and Snowden in their introduction [NS18, 1.6] (despite their claim that their main
theorem [NS18, Theorem 1.2] generalizes Nakaoka’s theorem).

A Computational Results

A.1 User’s guide

Before listing the computational results, let us explain how they can be reproduced as well as the form in which
they are presented.

A.1.1 Reproducing the results

For as long as entropy allows, the most convenient way to reproduce the computational results is by downloading
the software from the author’s git repository hosted on GitHub.com, by running

git clone https://github.com/mr−infty/crd.git
cd crd

If that fails, I’m afraid you have to type in the listings in appendix B by hand. In any case, once you have all
necessary files, you should edit the file Makefile and in the line

SAGE = /Applications/SageMath/sage

replace /Applications/SageMath/sage with the path to your Sage executable (which you should have
already installed); for example, if Sage is globally available from your command line, then

SAGE = sage

should work. Once you have edited Makefile correctly, you should run

make compute

in the command line, wait one day, and then have the results as LATEX files in your working directory (they
follow the naming scheme cohomology of <X> <l>.tex). You can include these files in another LATEX files
using the command \include{<name-of-the-file>}, but make sure that you have imported the packages
tabu, longtable, bm, float, tikz, and booktabs. Also, you should have defined LATEX macros \Z and \F
producing the symbols Z and F.

If the computation fails, then you probably have a different version of Sage installed (I tested it with versions
8.1 and 8.2). In this case, please feel free to open a new issue on my GitHub page or write me an email at
zero@fromzerotoinfinity.xyz.

mailto:zero@fromzerotoinfinity.xyz
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A.1.2 Description of root systems

For a simple root systems Xℓ, where X is any of the letters A,B,C,D,E, F,G and 1 ≤ ℓ ≤ 8 denotes the
rank (= the number of simple roots) of the root system, there is a separate section named ‘Root system Xℓ’.
The beginning of this section describes the Dynkin diagram of this root system—together with a labelling of
its nodes by positive integers—and its fundamental group P∨/Q∨, which is the quotient of the coweight lattice
P∨ by the root lattice Q∨.32

The nodes of the Dynkin diagram are in bijection with a set ∆ of simple roots of the root system, and the
labelling of the Dynkin diagram therefore gives a numbering ∆ = ¶α1, . . . , αℓ♢ of the simple roots. The dual
basis Λ∨

1 , . . . ,Λ
∨
ℓ of the simple roots (determined by Λ∨

i (αj) = δi,j) gives a Z-basis of P∨, and a set of generators
of P∨/Q∨ is described in terms of these ‘fundamental coweights’ Λ∨

i . More precisely, if it is written that

P∨/Q∨ ≃ Z/d1Z⊕ . . .Z/dmZ

generated by x1, . . . , xm ∈ P∨ mod Q∨

this should be interpreted as saying that the map

m{

i=1

Zei −→ P∨, ei ↦→ xi

induces an isomorphism

(

m{

i=1

Zei)/(

m{

i=1

diZei)
∼−→ P∨/Q∨

A.1.3 Description of the cohomology groups of sublattices X∨

After the description of the Dynkin diagram and the fundamental group of this root system follow the compu-
tations of the cohomology groups for all the sublattices Q∨ ⊆ X∨ ⊆ P∨ as well as for the trivial coefficients Z

and F2, given in separate subsections.
The coroot lattice X∨ = Q∨ and the coweight lattice X∨ = P∨ are referred to by name, the other sublattices

X∨ are denoted by the subgroups Ω of the fundamental groups to which they correspond under the bijection

¶Q∨ ⊆ X∨ ⊆ sublattice♢ ∼−→ ¶subgroups Ω ≤ P∨/Q∨♢
X∨ ↦−→ Ω = X∨/Q∨

These subgroups are denoted by the coefficients of their generators in the given generators x1, . . . , xm of P∨/Q∨,
i.e.

Ω = ⟨(µ1,1, . . . , µ1,m), . . . , (µn,1, . . . , µn,m)⟩
denotes the subgroup generated by the elements

√
j µi,jxj (i = 1, . . . , n).

For every sublattice X∨, the corresponding subsection describes the cocycle ϕu (defined in remark 4.1.2),
the cohomology groups Hk(W0, X

∨) and Hk(W0, X∨) for k = 0, 1, 2, 3, and the comparison map

compk : Hk(W0, X
∨)⊗Z F2 ↪→ Hk(W0, X∨)

coming from the Künneth sequence (see eq. (4.2.5) for the case k = 2). Here (and later) we use the abbreviation

X∨ := X∨ ⊗Z F2

More precisely, the integral cohomology groups Hk(W0, X
∨) are described by tables with three columns, where

the first column contains the integer k, the second column contains an abelian group isomorphic to Hk(W0, X
∨),

written in the form Z/d1Z⊕ . . .Z/dnZ, and the third column contains a list of cocycles whose classes generate
Hk(W0, X

∨) and which corresponds with the second column in the sense that, if ϕ1, . . . , ϕn is the list of these
cocycles (from top to bottom), then the map

n{

i=1

(Z/diZ)ei −→ Hk(W0, X
∨)

ei ↦−→ [ϕi]

32see [Bou07, Ch. VI, §1.9], where they are denoted P (R∨) and Q(R∨), for the definitions of P ∨ and Q∨
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is a well-defined isomorphism of abelian groups. More precisely, the cocycles given in the third column are
cocycles (of degree k) of the cochain complex

HomZ[W0](CS•, X
∨)

induced by the DeConcini-Salvetti resolution CS• (see definition 4.7.1) of the Weyl group W0 of Xℓ for the total
ordering33 of the simple reflections

S = ¶sα1 , . . . , sαℓ
♢ ⊆W0

induced by the numbering of the simple roots given by the Dynkin diagram (i.e. sαi
< sαj

iff i < j). Recall
that CSk is the free Z[W0]-module over the set Fk of flags Γ = (Γi)i≥1 in S of cardinality k, i.e.

S ⊇ Γ1 ⊇ Γ2 ⊇ . . . , and
∑

i≥1

#Γi = k

Consequently, it follows that

HomZ[W0](CS•, X
∨)k = HomZ[W0](CSk, X∨) ≃ HomSet(Fk, X∨)

i.e. degree k cochains identify with maps of sets Fk −→ X∨. Since Fk is finite, we can also identify degree k
cochains also with formal sums ∑

Γ∈Fk

aΓ[Γ], aΓ ∈ X∨

the corresponding map of sets being Γ ↦→ aΓ. We use this identification to denote the generating cochains
ϕi ∈ HomZ[W0](CS•, X∨)k by such formal sum, where we use an abbreviated notation for the flags Γ. For
example,

4Λ∨
3 [1, 2 ⊇ 1] + (−4Λ∨

3 ) [1, 2 ⊇ 2]

would denote the cochain of degree 3 given by the formal sum

x[Γ] + x′[Γ′]

where x, x′ ∈ X∨ are the elements given in terms of the basis Λ∨
1 , . . . ,Λ

∨
ℓ of P∨ ⊇ X∨ by

x = 4Λ∨
3 , x′ = −4Λ∨

3

and where Γ,Γ′ ∈ F3 are the flags

Γ : Γ1 = ¶sα1
, sα2
♢ ⊇ Γ2 = ¶sα1

♢ ⊇ Γ3 = ∅ ⊇ . . .
Γ′ : Γ′

1 = ¶sα1
, sα2
♢ ⊇ Γ′

2 = ¶sα2
♢ ⊇ Γ′

3 = ∅ ⊇ . . .

The cohomology groups Hk(W0, X
∨

) of the reduction X∨ = X∨ ⊗Z F2 are described in a similar vein, using a
table of three columns, but there are some small differences. First, since Hk(W0, X

∨
) is an F2-vector space, it

suffices to denote its dimension (in the second column), which we abbreviate as

hk(X∨) := dimF2
Hk(W0, X∨)

In the third column, we again give a list of generating cocycles denoted using the abbreviated formal sum
notation x1[Γ1] + x2[Γ2] + . . . . However, the expressions for the ‘coefficients’ xi strictly speaking don’t denote
elements of X∨ but rather elements of X∨: this is of course to be understood as defining an element of X∨ by
specifying a lift under the projection pr : X∨ ↠ X∨. For example, the expression

(2Λ∨
1 + Λ∨

2 )[1, 3, 5 ⊇ 3] + Λ∨
3 [2, 3 ⊇ 2, 3]

would denote the degree 4 cochain given by x[Γ] + x′[Γ′] with

x = pr(2Λ∨
1 + Λ∨

2 ), x′ = pr(Λ∨
3 )

and

Γ : Γ1 = ¶sα1
, sα3

, sα5
♢ ⊇ Γ2 = ¶sα3

♢ ⊇ Γ3 = ∅ ⊇ . . .
Γ′ : Γ′

1 = ¶sα2
, sα3
♢ ⊇ Γ′

2 = ¶sα2
, sα3
♢ ⊇ Γ′

3 = ∅ ⊇ . . .
Beware here that although pr is the reduction modulo two, we cannot conclude that

pr(2Λ∨
1 + Λ∨

2 ) = pr(Λ∨
2 )

because the summands in the expression 2Λ∨
1 + Λ∨

2 don’t have to lie in X∨.
33Recall from section 4.7 that the DeConcini-Salvetti resolution depends on a Coxeter group (W, S) as well as a choice of a total

ordering on S.
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A.1.4 Description of the comparison maps compk : Hk(W0, X
∨)⊗Z F2 ↪→ Hk(W0, X∨)

This concludes the description of the form in which the cohomology groups Hk(W0, X
∨) and Hk(W0, X∨) are

presented in each subsection. The comparison map

compk : Hk(W0, X
∨)⊗Z F2 ↪→ Hk(W0, X∨)

is described at the end of each subsection, by exhibiting the matrix of compk relative to the lists of generating
cocycles of Hk(W0, X

∨) and Hk(W0, X∨) that are given.
More precisely, if ϕ1, . . . , ϕn is the list of generators of Hk(W0, X

∨) and ψ1, . . . , ψm is the list of generators
of Hk(W0, X∨), then compk is described by the matrix A with m rows and n columns determined by

compk(ϕi) =

m∑

j=1

Aj,iψj

A.1.5 Description of the cocycle ϕu ∈ Z2(W0, X∨)

The cocycle ϕu is described in the beginning of each subsection, in the following way. If the cocycle ϕu happens
to vanish (this can happen), this is indicated. If ϕu ̸= 0 but its class [ϕu] = 0 vanishes, then a cochain τ of
degree 1 exhibiting ϕu as its coboundary

ϕu = ∂τ

is described (using the conventions for describing cochains detailed above).
Finally, if [ϕu] ̸= 0, then the class [ϕu] ∈ H2(W0, X∨) is described in terms of its basis expansion relative to

the generating cocycles ψ1, . . . , ψm of H2(W0, X∨) described earlier. For example,

[ϕu] = (1, 1, 1, 0, 1)

would mean that
[ϕu] = ψ1 + ψ2 + ψ3 + ψ5

Moreover whenever [ϕu] ̸= 0, is is explicitly stated whether this class lies in the image of the comparison
map comp2 or not, and if it does34 a preimage in H2(W0, X

∨) is described.

A.1.6 Description of the cohomology of W0 with trivial coefficients

Lastly, after the subsections describing the cohomology groups (and ϕu and compk) for all sublattices X∨,
follows a subsection that describes the cohomology groups Hk(W0,Z) and Hk(W0,F2), using the same notations
conventions as for the groups Hk(W0, X

∨).

A.1.7 Redundancy in the computational results

The computational results presented below contain some redundance that we have decided to keep for conve-
nience’ sake.

First, since the computation of the zeroth cohomology group is elementary (for Hk(W0, X∨)) or even trivial
(for the others, as H0(W0, X

∨) = 0, H0(W0,Z) = Z and H0(W0,F2) = F2), it would not be necessary to list
them. Second, by the duality theory for Tate cohomology [Bro82, VI.7], it follows that the groups H3(W0,Z)
are dual to the second homology groups H2(W0,Z), which in turn are dual to the Schur multipliers H2(W0,C

×),
and these have been computed for all finite reflection groups by Ihara and Yokonuma [IY65].

Third, the cohomology groups Hk(W0,F2) with trivial modular coefficients are easily computed from coho-
mology with trivial integer coefficients using the Künneth theorem. Fourth, for the root system G2 the Weyl
group W0 is a dihedral group of order 12, and the cohomology groups Hk(Dm,Z) of the dihedral groups Dm

with integer coefficients are known [Han93, Proof of Theorem 5.2].
Fourth and final, because of the presence of the automorphism group of the Dynkin diagram, it can happen

that some sublattices Q∨ ⊆ X∨
1 , X

∨
2 ⊆ P∨ are isomorphic as W0-modules, in the sense that there is a group

automorphism φ0 : W0
∼−→W0 and a Z-linear isomorphism φ1 : X∨

1
∼−→ X∨

2 such that

φ1(φ0(w) • x) = w • φ1(x) ∀w ∈W0 ∀x ∈ X∨
1

In other words, the pair (φ0, φ1) is an object of the category D defined in remark 4.4.5, and therefore induces
an isomorphism

Hk(W0, X
∨
1 )

∼−→ Hk(W0, X
∨
2 )

34This case actually never happens.
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, which by remark 4.4.6 is given in terms of standard cochains (in degree k) by

(A.1.1)
HomSet(W

×k
0 , X∨

1 )
∼−→ HomSet(W

×k
0 , X∨

2 )

ϕ ↦−→ φ1 ◦ ϕ ◦ ϕ×k
0

Such pairs (φ0, φ1) of isomorphisms between sublattices are provided by the automorphism group of the Dykin
diagram, as follows.

First, the automorphism group of the Dynkin diagram can be identified with the group

Ω̃ = ¶u ∈ AutSet(∆) : ∀α, β ∈ ∆ ⟨u(α), u(β)∨⟩ = ⟨α, β∨⟩♢

i.e. the subgroup of the group permutations of the set ∆ of simple roots that preserve the Cartan matrix. By
linear extension, every u ∈ Ω̃ gives rise to a Z-linear automorphism of the root lattice Q, by permutation of its
basis ∆. This automorphism is compatible with the action of W0 in the sense that (cf. [DG70, Exposé XXI,
Lemma 6.7.1])

(A.1.2) u ◦ sαu−1 = su(α) ∀α ∈ Φ

By duality, the group Ω̃ also acts on the coweight lattice P∨ = HomZ(Q,Z), and this action preserves the
coroots lattice Q∨ ⊆ P∨. Concretely, if ∆ = ¶α1, . . . , αℓ♢ and Λ∨

1 , . . . ,Λ
∨
ℓ denotes the corresponding dual basis

of P∨ (i.e.
⟨
αi,Λ

∨
j

/
= δi,j), then we can identify Ω̃ with a subgroup AutSet(¶1, . . . , ℓ♢) (i.e. u(αi) = αu(i)), and

the action of Ω̃ on P∨ is determined by
u(Λ∨

i ) = Λ∨
u(i)

For every sublattice Q∨ ⊆ X∨ ⊆ P∨ and every u ∈ Ω̃, we then have a pair (φ0, φ1) as above, providing an
isomorphism between X∨ and the sublattice u(X∨), given by

φ0(w) = u−1 ◦ w ◦ u, φ1(x) := u(x)

Moreover, from eq. (A.1.2) it follows that φ0 is an automorphism of Coxeter groups (i.e. it preserves S), and
from corollary 4.7.10 induced isomorphism

H2(W0, X
∨ ⊗Z F2)

∼−→ H2(W0, u(X∨)⊗Z F2)

preserves the canonical classes [ϕu]. In particular, the canonical class in H2(W0, X
∨ ⊗Z F2) vanishes iff the

canonical class in H2(W0, u(X∨)⊗Z F2) vanishes.
As an example, consider the root system Xℓ = D4. Then ∆ = ¶α1, α2, α3, α4♢, and Ω̃ identifies with

AutSet(¶1, 3, 4♢). It is then not hard to see that Ω̃ acts transitively on the three proper sublattices Q∨ ⊊ X∨ ⊆
P∨ (corresponding to the exceptional isomorphism SO(8) ≃ Semispin(8) given by triality).

A.2 Root system A1

Dynkin diagram 1

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
1 ∈ P∨ mod Q∨

A.2.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0
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k Hk(W0,X
∨) generating cocycles

1 Z/2Z 2Λ∨
1 [1]

2 0

3 Z/2Z 2Λ∨
1 [1 ⊇ 1 ⊇ 1]

k hk(X∨) generating cocycles

0 1 2Λ∨
1 []

1 1 2Λ∨
1 [1]

2 1 2Λ∨
1 [1 ⊇ 1]

3 1 2Λ∨
1 [1 ⊇ 1 ⊇ 1]

k 0 1 2 3

compk
([ (

1
[ ([ (

1
[

A.2.2 Cohomology of coweight lattice X∨ = P∨

ϕu = 0

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z Λ∨
1 [1]

2 0

3 Z/2Z Λ∨
1 [1 ⊇ 1 ⊇ 1]

k hk(X∨) generating cocycles

0 1 Λ∨
1 []

1 1 Λ∨
1 [1]

2 1 Λ∨
1 [1 ⊇ 1]

3 1 Λ∨
1 [1 ⊇ 1 ⊇ 1]

k 0 1 2 3

compk
([ (

1
[ ([ (

1
[
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A.2.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1]

3 0

k hk(F2) generating cocycles

0 1 []

1 1 [1]

2 1 [1 ⊇ 1]

3 1 [1 ⊇ 1 ⊇ 1]

A.3 Root system A2

Dynkin diagram 1 2

Fundamental group
P∨/Q∨ ≃ Z/3Z

generated by Λ∨
2 ∈ P∨ mod Q∨

A.3.1 Cohomology of coroot lattice X∨ = Q∨

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

2 ) [1] + (Λ∨
1 + Λ∨

2 ) [2]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/3Z
(

Λ∨
1 − 2Λ∨

2

[
[2]

2 0

3 0

k hk(X∨) generating cocycles

0 0

1 0
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k hk(X∨) generating cocycles

2 0

3 0

k 0 1 2 3

compk
([ ([ ([ ([

A.3.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1] + Λ∨

2 [2]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/3Z Λ∨
1 [1, 2 ⊇ 2]

k hk(X∨) generating cocycles

0 0

1 0

2 0

3 0

k 0 1 2 3

compk
([ ([ ([ ([

A.3.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2]
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k Hk(W0,Z) generating cocycles

3 0

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2]

2 1 [1 ⊇ 1] + [2 ⊇ 2]

3 1 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2]

A.4 Root system A3

Dynkin diagram 1 2 3

Fundamental group
P∨/Q∨ ≃ Z/4Z

generated by Λ∨
3 ∈ P∨ mod Q∨

A.4.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/4Z
(

Λ∨
2 − 2Λ∨

3

[
[3]

2 Z/2Z 4Λ∨
3 [1 ⊇ 1] +

(
−4Λ∨

3

[
[2 ⊇ 2] + 4Λ∨

3 [1, 2] +
(

−2Λ∨
2

[
[3 ⊇ 3] +

(
−2Λ∨

2 + 4Λ∨
3

[
[1, 3] +(

−2Λ∨
1 + 6Λ∨

2 − 6Λ∨
3

[
[2, 3]

3 Z/2Z 4Λ∨
3 [1, 3 ⊇ 1] + 2Λ∨

2 [1, 3 ⊇ 3] +
(

−2Λ∨
1 + 2Λ∨

2 − 2Λ∨
3

[
[1, 2, 3]

k hk(X∨) generating cocycles

0 1 4Λ∨
3 []

1 2
(

Λ∨
2 + 2Λ∨

3

[
[1]

4Λ∨
3 [1] + 4Λ∨

3 [2] + 4Λ∨
3 [3]

2 2
(

Λ∨
2 + 2Λ∨

3

[
[1 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + 3Λ∨

3

[
[1, 2] +

(
Λ∨

2 + 2Λ∨
3

[
[1, 3]

4Λ∨
3 [1 ⊇ 1] + 4Λ∨

3 [2 ⊇ 2] + 4Λ∨
3 [3 ⊇ 3]
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k hk(X∨) generating cocycles

3 3
(

Λ∨
2 + 2Λ∨

3

[
[1 ⊇ 1 ⊇ 1] +

(
Λ∨

1 + Λ∨
3

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + 6Λ∨
3

[
[1, 2 ⊇ 2] + 4Λ∨

3 [1, 3 ⊇ 3] +(
Λ∨

1 + Λ∨
3

[
[1, 2, 3]

4Λ∨
3 [1 ⊇ 1 ⊇ 1] + 4Λ∨

3 [2 ⊇ 2 ⊇ 2] + 4Λ∨
3 [3 ⊇ 3 ⊇ 3]

(
Λ∨

2 + 6Λ∨
3

[
[3 ⊇ 3 ⊇ 3] + 4Λ∨

3 [1, 3 ⊇ 3] +
(

Λ∨
2 + 2Λ∨

3

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + Λ∨
3

[
[2, 3 ⊇ 3] +(

Λ∨
1 + Λ∨

3

[
[1, 2, 3]

k 0 1 2 3

compk
([ ⎤

1
0

⎣ ⎤
0
1

⎣ ⎛
⎝

1
0
1

∫
⎠

A.4.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(2)⟩

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

3 ) [1] + (Λ∨
2 + 2Λ∨

3 ) [2] + (Λ∨
1 + Λ∨

3 ) [3]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
2 − 2Λ∨

3

[
[3]

2 Z/2Z 2Λ∨
3 [1 ⊇ 1] +

(
−2Λ∨

3

[
[2 ⊇ 2] + 2Λ∨

3 [1, 2] +
(

−Λ∨
2

[
[3 ⊇ 3] +

(
−Λ∨

2 + 2Λ∨
3

[
[1, 3] +(

−Λ∨
1 + 3Λ∨

2 − 3Λ∨
3

[
[2, 3]

3 Z/2Z⊕Z/2Z
(

2Λ∨
1 − Λ∨

2

[
[1, 3 ⊇ 3] +

(
−Λ∨

1 + Λ∨
2 − Λ∨

3

[
[1, 2, 3]

2Λ∨
3 [1, 3 ⊇ 1] + Λ∨

2 [1, 3 ⊇ 3] +
(

−Λ∨
1 + Λ∨

2 − Λ∨
3

[
[1, 2, 3]

k hk(X∨) generating cocycles

0 1 2Λ∨
3 []

1 2 Λ∨
2 [1] + 2Λ∨

3 [2] + 2Λ∨
3 [3]

2Λ∨
3 [1] + 2Λ∨

3 [2] + 2Λ∨
3 [3]

2 3 Λ∨
2 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2] + 2Λ∨

3 [3 ⊇ 3]

2Λ∨
3 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3]

Λ∨
2 [1, 3]

3 4 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

3

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + 2Λ∨
3

[
[1, 2 ⊇ 2] + 2Λ∨

3 [3 ⊇ 3 ⊇ 3] +(
Λ∨

1 + Λ∨
3

[
[1, 2, 3]

2Λ∨
3 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3 ⊇ 3]

Λ∨
2 [1, 2 ⊇ 1] + 2Λ∨

3 [1, 2 ⊇ 2] + Λ∨
2 [1, 2, 3]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

3 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2, 3]
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k 0 1 2 3

compk
([ ⎤

1
1

⎣ ⎛
⎝

0
1
0

∫
⎠

⎛
⎜⎜⎝

1 0
1 0
1 0
0 1

∫
ˆ̂
⎠

A.4.3 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1] + (Λ∨

1 + Λ∨
2 ) [2] + Λ∨

3 [3]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 Z/2Z Λ∨
3 [1 ⊇ 1] +

(
−Λ∨

3

[
[2 ⊇ 2] + Λ∨

3 [1, 2] +
(

−Λ∨
1

[
[3 ⊇ 3] +

(
Λ∨

1 − Λ∨
2 + Λ∨

3

[
[1, 3] +

(
Λ∨

2 − Λ∨
3

[
[2, 3]

3 Z/4Z Λ∨
3 [1, 3 ⊇ 1] +

(
−Λ∨

1 + Λ∨
2

[
[1, 3 ⊇ 3] +

(
−Λ∨

3

[
[2, 3 ⊇ 2] +

(
−Λ∨

1 + Λ∨
2

[
[2, 3 ⊇ 3] +(

−Λ∨
1 + Λ∨

2 − Λ∨
3

[
[1, 2, 3]

k hk(X∨) generating cocycles

0 0

1 1 Λ∨
3 [1] + Λ∨

3 [2] + Λ∨
1 [3]

2 2 Λ∨
3 [1 ⊇ 1] + Λ∨

3 [2 ⊇ 2] + Λ∨
1 [3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[1, 3] +

(
Λ∨

2 + Λ∨
3

[
[2, 3]

Λ∨
3 [1, 2]

3 2 Λ∨
3 [1 ⊇ 1 ⊇ 1] + Λ∨

3 [2 ⊇ 2 ⊇ 2] + Λ∨
1 [3 ⊇ 3 ⊇ 3] + Λ∨

1 [1, 3 ⊇ 1] + Λ∨
3 [1, 3 ⊇ 3] + Λ∨

2 [2, 3 ⊇ 2] +(
Λ∨

1 + Λ∨
3

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3]

Λ∨
3 [1, 3 ⊇ 1] + Λ∨

1 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2, 3]

k 0 1 2 3

compk
([ ([ ⎤

1
0

⎣ ⎤
0
1

⎣

A.4.4 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3]
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k Hk(W0,Z) generating cocycles

3 Z/2Z [1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3]

[1, 3]

3 3 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3]

[1, 2, 3]

A.5 Root system A4

Dynkin diagram 1 2 3 4

Fundamental group
P∨/Q∨ ≃ Z/5Z

generated by Λ∨
4 ∈ P∨ mod Q∨

A.5.1 Cohomology of coroot lattice X∨ = Q∨

ϕu = ∂τ with τ =
(Λ∨

1 + 6Λ∨
4 ) [1] + (Λ∨

1 + Λ∨
2 + 8Λ∨

4 ) [2] + (Λ∨
3 + 3Λ∨

4 ) [3] + (Λ∨
3 + 3Λ∨

4 ) [4]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/5Z
(

Λ∨
3 − 2Λ∨

4

[
[4]

2 0

3 0

k hk(X∨) generating cocycles

0 0

1 0

2 0
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k hk(X∨) generating cocycles

3 0

k 0 1 2 3

compk
([ ([ ([ ([

A.5.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1] + (Λ∨

1 + Λ∨
2 ) [2] + (Λ∨

2 + Λ∨
3 ) [3] + Λ∨

4 [4]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 0

k hk(X∨) generating cocycles

0 0

1 0

2 0

3 0

k 0 1 2 3

compk
([ ([ ([ ([

A.5.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4]

3 Z/2Z [1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4]
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k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4]

[1, 3] + [1, 4] + [2, 4]

3 3 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4]

[1, 2, 3] + [2, 3, 4]

A.6 Root system A5

Dynkin diagram 1 2 3 4 5

Fundamental group
P∨/Q∨ ≃ Z/6Z

generated by Λ∨
5 ∈ P∨ mod Q∨

A.6.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/6Z
(

Λ∨
4 − 2Λ∨

5

[
[5]

2 Z/2Z 6Λ∨
5 [1 ⊇ 1] +

(
−6Λ∨

5

[
[2 ⊇ 2] + 6Λ∨

5 [1, 2] +
(

−6Λ∨
5

[
[3 ⊇ 3] +

(
−6Λ∨

5

[
[4 ⊇ 4] +

(
−3Λ∨

4

[
[5 ⊇ 5] +(

−3Λ∨
4 + 6Λ∨

5

[
[1, 5] +

(
3Λ∨

4 − 6Λ∨
5

[
[2, 5] +

(
3Λ∨

4 − 6Λ∨
5

[
[3, 5] +

(
−3Λ∨

3 + 9Λ∨
4 − 9Λ∨

5

[
[4, 5]

3 Z/2Z⊕Z/2Z
(

Λ∨
4 − 2Λ∨

5

[
[1, 5 ⊇ 1] +

(
−Λ∨

4 − 10Λ∨
5

[
[2, 5 ⊇ 2] +

(
−6Λ∨

4

[
[2, 5 ⊇ 5] +

(
−Λ∨

4 − 4Λ∨
5

[
[1, 2, 5] +(

−Λ∨
4 − 10Λ∨

5

[
[3, 5 ⊇ 3] +

(
−Λ∨

2 + 2Λ∨
3 − 7Λ∨

4

[
[3, 5 ⊇ 5] +

(
6Λ∨

4 − 6Λ∨
5

[
[2, 4, 5] +(

Λ∨
2 + 4Λ∨

3 − 4Λ∨
4 + 4Λ∨

5

[
[3, 4, 5]

6Λ∨
5 [1, 3 ⊇ 1] + 6Λ∨

5 [1, 3 ⊇ 3] +
(

−6Λ∨
5

[
[1, 2, 3] +

(
−6Λ∨

5

[
[1, 4 ⊇ 1] +

(
−6Λ∨

5

[
[1, 4 ⊇ 4] +(

−6Λ∨
5

[
[2, 4 ⊇ 2] +

(
−6Λ∨

5

[
[2, 4 ⊇ 4] + 6Λ∨

5 [1, 3, 4] + 6Λ∨
5 [2, 3, 4] +

(
−6Λ∨

5

[
[1, 5 ⊇ 1] +(

−3Λ∨
4

[
[1, 5 ⊇ 5] +

(
−6Λ∨

5

[
[2, 5 ⊇ 2] +

(
−3Λ∨

4

[
[2, 5 ⊇ 5] +

(
−6Λ∨

5

[
[3, 5 ⊇ 3] +(

−3Λ∨
4

[
[3, 5 ⊇ 5] +

(
−3Λ∨

4 + 6Λ∨
5

[
[1, 3, 5] +

(
−3Λ∨

3 + 9Λ∨
4 − 9Λ∨

5

[
[1, 4, 5] +(

−3Λ∨
3 + 9Λ∨

4 − 9Λ∨
5

[
[2, 4, 5] +

(
3Λ∨

3 − 3Λ∨
4 + 3Λ∨

5

[
[3, 4, 5]

k hk(X∨) generating cocycles

0 1 6Λ∨
5 []
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k hk(X∨) generating cocycles

1 2
(

Λ∨
2 + 2Λ∨

5

[
[1]

6Λ∨
5 [1] + 6Λ∨

5 [2] + 6Λ∨
5 [3] + 6Λ∨

5 [4] + 6Λ∨
5 [5]

2 3
(

Λ∨
2 + 2Λ∨

5

[
[1 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + 3Λ∨

5

[
[1, 2] +

(
Λ∨

4 + 10Λ∨
5

[
[2, 5] +

(
Λ∨

2 + 8Λ∨
5

[
[3, 5]

6Λ∨
5 [1 ⊇ 1] + 6Λ∨

5 [2 ⊇ 2] + 6Λ∨
5 [3 ⊇ 3] + 6Λ∨

5 [4 ⊇ 4] + 6Λ∨
5 [5 ⊇ 5]

6Λ∨
5 [1, 3] + 6Λ∨

5 [1, 4] + 6Λ∨
5 [2, 4] + 6Λ∨

5 [1, 5] + 6Λ∨
5 [2, 5] + 6Λ∨

5 [3, 5]

3 5
(

Λ∨
2 + 2Λ∨

5

[
[1 ⊇ 1 ⊇ 1] +

(
Λ∨

1 + Λ∨
5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + 5Λ∨

5

[
[1, 2 ⊇ 2] +

(
Λ∨

2 + 2Λ∨
5

[
[1, 2, 3] +(

Λ∨
4 + 10Λ∨

5

[
[2, 5 ⊇ 2] +

(
Λ∨

4 + 10Λ∨
5

[
[3, 5 ⊇ 3] +

(
Λ∨

2 + 8Λ∨
5

[
[3, 5 ⊇ 5] +

(
Λ∨

2 + 2Λ∨
5

[
[1, 3, 5] +(

Λ∨
1 + Λ∨

5

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + 7Λ∨

5

[
[3, 4, 5]

6Λ∨
5 [1 ⊇ 1 ⊇ 1] + 6Λ∨

5 [2 ⊇ 2 ⊇ 2] + 6Λ∨
5 [3 ⊇ 3 ⊇ 3] + 6Λ∨

5 [4 ⊇ 4 ⊇ 4] + 6Λ∨
5 [5 ⊇ 5 ⊇ 5]

(
Λ∨

2 + 2Λ∨
5

[
[1, 3 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + 6Λ∨
5

[
[1, 2, 3] +

(
Λ∨

1 + Λ∨
5

[
[1, 3, 4] +

(
Λ∨

4 + 4Λ∨
5

[
[1, 3, 5]

6Λ∨
5 [1, 3 ⊇ 1] + 6Λ∨

5 [1, 3 ⊇ 3] + 6Λ∨
5 [1, 4 ⊇ 1] + 6Λ∨

5 [1, 4 ⊇ 4] + 6Λ∨
5 [2, 4 ⊇ 2] + 6Λ∨

5 [2, 4 ⊇ 4] +
6Λ∨

5 [1, 5 ⊇ 1] + 6Λ∨
5 [1, 5 ⊇ 5] + 6Λ∨

5 [2, 5 ⊇ 2] + 6Λ∨
5 [2, 5 ⊇ 5] + 6Λ∨

5 [3, 5 ⊇ 3] + 6Λ∨
5 [3, 5 ⊇ 5]

6Λ∨
5 [1, 2, 3] + 6Λ∨

5 [2, 3, 4] + 6Λ∨
5 [3, 4, 5]

k 0 1 2 3

compk
([ ⎤

1
0

⎣ ⎛
⎝

1
1
0

∫
⎠

⎛
⎜⎜⎜⎜⎝

1 0
0 0
0 1
0 1
0 1

∫
ˆ̂
ˆ̂
⎠

A.6.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(3)⟩

ϕu = ∂τ with τ = (Λ∨
1 + 4Λ∨

5 ) [1] + (Λ∨
2 + Λ∨

3 + 2Λ∨
5 ) [2] + (Λ∨

2 + Λ∨
3 + 2Λ∨

5 ) [3] +
(Λ∨

4 + Λ∨
5 ) [4] + (Λ∨

4 + Λ∨
5 ) [5]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/3Z
(

Λ∨
4 − 2Λ∨

5

[
[5]

2 0

3 Z/2Z 3Λ∨
5 [1, 3 ⊇ 1] + 3Λ∨

5 [1, 3 ⊇ 3] +
(

−3Λ∨
5

[
[1, 2, 3] +

(
−3Λ∨

5

[
[1, 4 ⊇ 1] +

(
−3Λ∨

5

[
[1, 4 ⊇ 4] +(

−3Λ∨
5

[
[2, 4 ⊇ 2] +

(
−3Λ∨

5

[
[2, 4 ⊇ 4] + 3Λ∨

5 [1, 3, 4] + 3Λ∨
5 [2, 3, 4] +

(
−Λ∨

3

[
[1, 5 ⊇ 1] +(

−Λ∨
3

[
[1, 5 ⊇ 5] +

(
−Λ∨

3

[
[2, 5 ⊇ 2] +

(
−Λ∨

3

[
[2, 5 ⊇ 5] +

(
−Λ∨

1 − 4Λ∨
5

[
[3, 5 ⊇ 3] +(

−Λ∨
1 − 2Λ∨

4

[
[3, 5 ⊇ 5] +

(
−Λ∨

1 + Λ∨
3 − 2Λ∨

4 + 3Λ∨
5

[
[1, 3, 5] +

(
−Λ∨

2 + Λ∨
3 − 2Λ∨

5

[
[2, 3, 5] +(

−Λ∨
3 + 3Λ∨

4 − 3Λ∨
5

[
[1, 4, 5] +

(
−Λ∨

3 + 3Λ∨
4 − 3Λ∨

5

[
[2, 4, 5] +

(
Λ∨

1 + 2Λ∨
3 − 2Λ∨

4 + 2Λ∨
5

[
[3, 4, 5]

k hk(X∨) generating cocycles

0 0
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k hk(X∨) generating cocycles

1 0

2 1
(

Λ∨
4 + Λ∨

5

[
[1, 3] + 3Λ∨

5 [1, 4] + 3Λ∨
5 [2, 4] +

(
Λ∨

1 + Λ∨
5

[
[3, 4] + Λ∨

3 [1, 5] + Λ∨
3 [2, 5] +

(
Λ∨

1 + 4Λ∨
5

[
[3, 5] +

Λ∨
3 [4, 5]

3 2
(

Λ∨
2 + 2Λ∨

5

[
[1, 3 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + 3Λ∨
5

[
[1, 2, 3] +

(
Λ∨

1 + Λ∨
5

[
[1, 3, 4] + 3Λ∨

5 [2, 3, 4] +(
Λ∨

1 + 4Λ∨
5

[
[2, 3, 5] +

(
Λ∨

1 + 4Λ∨
5

[
[3, 4, 5]

(
Λ∨

4 + Λ∨
5

[
[1, 3 ⊇ 1] + 3Λ∨

5 [1, 3 ⊇ 3] + Λ∨
3 [2, 3 ⊇ 2] +

(
Λ∨

1 + 4Λ∨
5

[
[2, 3 ⊇ 3] +(

Λ∨
1 + Λ∨

3 + Λ∨
5

[
[1, 2, 3] + 3Λ∨

5 [1, 4 ⊇ 1] + 3Λ∨
5 [1, 4 ⊇ 4] + 3Λ∨

5 [2, 4 ⊇ 2] + 3Λ∨
5 [2, 4 ⊇ 4] +(

Λ∨
1 + Λ∨

5

[
[1, 3, 4] + Λ∨

3 [2, 3, 4] + Λ∨
3 [1, 5 ⊇ 1] + Λ∨

3 [1, 5 ⊇ 5] + Λ∨
3 [2, 5 ⊇ 2] + Λ∨

3 [2, 5 ⊇ 5] +(
Λ∨

1 + 4Λ∨
5

[
[3, 5 ⊇ 3] +

(
Λ∨

1 + 4Λ∨
5

[
[3, 5 ⊇ 5] +

(
Λ∨

1 + Λ∨
3 + Λ∨

5

[
[1, 3, 5] +

(
Λ∨

2 + Λ∨
3 + 2Λ∨

5

[
[2, 3, 5] +(

Λ∨
3 + Λ∨

4 + Λ∨
5

[
[1, 4, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[2, 4, 5] +

(
Λ∨

1 + 4Λ∨
5

[
[3, 4, 5]

k 0 1 2 3

compk
([ ([ ([ ⎤

0
1

⎣

A.6.3 Cohomology of lattice X∨ corresponding to Ω = ⟨(2)⟩

[ϕu] = (1, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
4 − 2Λ∨

5

[
[5]

2 Z/2Z 2Λ∨
5 [1 ⊇ 1] +

(
−2Λ∨

5

[
[2 ⊇ 2] + 2Λ∨

5 [1, 2] +
(

−2Λ∨
5

[
[3 ⊇ 3] +

(
−2Λ∨

5

[
[4 ⊇ 4] +

(
−Λ∨

4

[
[5 ⊇ 5] +(

−Λ∨
4 + 2Λ∨

5

[
[1, 5] +

(
Λ∨

4 − 2Λ∨
5

[
[2, 5] +

(
Λ∨

4 − 2Λ∨
5

[
[3, 5] +

(
−Λ∨

3 + 3Λ∨
4 − 3Λ∨

5

[
[4, 5]

3 Z/2Z⊕Z/2Z
(

Λ∨
4 − 2Λ∨

5

[
[1, 5 ⊇ 1] +

(
−Λ∨

4 − 2Λ∨
5

[
[2, 5 ⊇ 2] +

(
−2Λ∨

4

[
[2, 5 ⊇ 5] +

(
−Λ∨

4

[
[1, 2, 5] +(

−Λ∨
4 − 2Λ∨

5

[
[3, 5 ⊇ 3] +

(
−Λ∨

2 + 2Λ∨
3 − 3Λ∨

4

[
[3, 5 ⊇ 5] +

(
2Λ∨

4 − 2Λ∨
5

[
[2, 4, 5] + Λ∨

2 [3, 4, 5]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

−2Λ∨
5

[
[1, 2, 3] +

(
−2Λ∨

5

[
[1, 4 ⊇ 1] +

(
−2Λ∨

5

[
[1, 4 ⊇ 4] +(

−2Λ∨
5

[
[2, 4 ⊇ 2] +

(
−2Λ∨

5

[
[2, 4 ⊇ 4] + 2Λ∨

5 [1, 3, 4] + 2Λ∨
5 [2, 3, 4] +

(
−2Λ∨

5

[
[1, 5 ⊇ 1] +(

−Λ∨
4

[
[1, 5 ⊇ 5] +

(
−2Λ∨

5

[
[2, 5 ⊇ 2] +

(
−Λ∨

4

[
[2, 5 ⊇ 5] +

(
−2Λ∨

5

[
[3, 5 ⊇ 3] +(

−Λ∨
4

[
[3, 5 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5

[
[1, 3, 5] +

(
−Λ∨

3 + 3Λ∨
4 − 3Λ∨

5

[
[1, 4, 5] +(

−Λ∨
3 + 3Λ∨

4 − 3Λ∨
5

[
[2, 4, 5] +

(
Λ∨

3 − Λ∨
4 + Λ∨

5

[
[3, 4, 5]

k hk(X∨) generating cocycles

0 1 2Λ∨
5 []

1 2 Λ∨
2 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4] + 2Λ∨
5 [5]

2Λ∨
5 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4] + 2Λ∨
5 [5]
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k hk(X∨) generating cocycles

2 3 Λ∨
2 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
5

[
[1, 2] + 2Λ∨

5 [3 ⊇ 3] + 2Λ∨
5 [4 ⊇ 4] + 2Λ∨

5 [5 ⊇ 5] +(
Λ∨

4 + 2Λ∨
5

[
[2, 5] + Λ∨

2 [3, 5]

2Λ∨
5 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4] + 2Λ∨
5 [5 ⊇ 5]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
5

[
[2, 3] + 2Λ∨

5 [1, 4] + 2Λ∨
5 [2, 4] +

(
Λ∨

1 + Λ∨
5

[
[3, 4] + 2Λ∨

5 [1, 5] + 2Λ∨
5 [2, 5] + Λ∨

4 [3, 5]

3 5 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

5

[
[1, 2 ⊇ 2] +

2Λ∨
5 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
5 [4 ⊇ 4 ⊇ 4] + 2Λ∨

5 [2, 3, 4] + 2Λ∨
5 [5 ⊇ 5 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
5

[
[2, 5 ⊇ 2] +(

Λ∨
4 + 2Λ∨

5

[
[3, 5 ⊇ 3] + Λ∨

2 [3, 5 ⊇ 5] + Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + Λ∨
5

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[3, 4, 5]

2Λ∨
5 [1 ⊇ 1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4 ⊇ 4] + 2Λ∨
5 [5 ⊇ 5 ⊇ 5]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

5

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

5

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
5

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
5 [2, 3, 4] +(

Λ∨
4 + 2Λ∨

5

[
[2, 5 ⊇ 2] + 2Λ∨

5 [3, 4, 5]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

5

[
[1, 2, 3] + 2Λ∨

5 [1, 4 ⊇ 1] + 2Λ∨
5 [1, 4 ⊇ 4] +

2Λ∨
5 [2, 4 ⊇ 2] + 2Λ∨

5 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

5

[
[1, 3, 4] + 2Λ∨

5 [1, 5 ⊇ 1] + 2Λ∨
5 [1, 5 ⊇ 5] + 2Λ∨

5 [2, 5 ⊇ 2] +

2Λ∨
5 [2, 5 ⊇ 5] + 2Λ∨

5 [3, 5 ⊇ 3] + 2Λ∨
5 [3, 5 ⊇ 5] + Λ∨

4 [1, 3, 5]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
5

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
5

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

5

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

5

[
[1, 3, 4] +

(
Λ∨

3 + 3Λ∨
5

[
[2, 3, 4] +

(
Λ∨

4 + 2Λ∨
5

[
[3, 5 ⊇ 3] + Λ∨

2 [3, 5 ⊇ 5] +
(

Λ∨
2 + Λ∨

4

[
[1, 3, 5] +(

Λ∨
1 + Λ∨

5

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[3, 4, 5]

k 0 1 2 3

compk
([ ⎤

1
1

⎣ ⎛
⎝

1
0
0

∫
⎠

⎛
⎜⎜⎜⎜⎝

0 0
0 0
1 1
0 1
1 0

∫
ˆ̂
ˆ̂
⎠

A.6.4 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1] + (Λ∨

1 + Λ∨
2 ) [2] + (Λ∨

2 + Λ∨
3 ) [3] + (Λ∨

3 + Λ∨
4 ) [4] + Λ∨

5 [5]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] +
(

−Λ∨
5

[
[1, 2, 3] +

(
−Λ∨

5

[
[1, 4 ⊇ 1] +

(
−Λ∨

5

[
[1, 4 ⊇ 4] +(

−Λ∨
5

[
[2, 4 ⊇ 2] +

(
−Λ∨

5

[
[2, 4 ⊇ 4] + Λ∨

5 [1, 3, 4] + Λ∨
5 [2, 3, 4] +

(
−Λ∨

3

[
[1, 5 ⊇ 1] +(

−Λ∨
3

[
[1, 5 ⊇ 5] +

(
−Λ∨

3

[
[2, 5 ⊇ 2] +

(
−Λ∨

3

[
[2, 5 ⊇ 5] +

(
−Λ∨

1

[
[3, 5 ⊇ 3] +

(
−Λ∨

1

[
[3, 5 ⊇ 5] +(

−Λ∨
1 + Λ∨

3 − Λ∨
4 + Λ∨

5

[
[1, 3, 5] +

(
−Λ∨

2 + Λ∨
3

[
[2, 3, 5] +

(
Λ∨

4 − Λ∨
5

[
[1, 4, 5] +

(
Λ∨

4 − Λ∨
5

[
[2, 4, 5] +

Λ∨
1 [3, 4, 5]
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k hk(X∨) generating cocycles

0 0

1 0

2 1 Λ∨
5 [1, 3] + Λ∨

5 [1, 4] + Λ∨
5 [2, 4] + Λ∨

3 [1, 5] + Λ∨
3 [2, 5] + Λ∨

1 [3, 5]

3 2 Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] + Λ∨
5 [1, 4 ⊇ 1] + Λ∨

5 [1, 4 ⊇ 4] + Λ∨
5 [2, 4 ⊇ 2] + Λ∨

5 [2, 4 ⊇ 4] + Λ∨
3 [1, 5 ⊇ 1] +

Λ∨
3 [1, 5 ⊇ 5] + Λ∨

3 [2, 5 ⊇ 2] + Λ∨
3 [2, 5 ⊇ 5] + Λ∨

1 [3, 5 ⊇ 3] + Λ∨
1 [3, 5 ⊇ 5] +

(
Λ∨

1 + Λ∨
3 + Λ∨

5

[
[1, 3, 5] +(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[1, 4, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[2, 4, 5]

Λ∨
5 [1, 2, 3] + Λ∨

5 [2, 3, 4] + Λ∨
1 [2, 3, 5] + Λ∨

3 [1, 4, 5] + Λ∨
3 [2, 4, 5] + Λ∨

1 [3, 4, 5]

k 0 1 2 3

compk
([ ([ ([ ⎤

1
1

⎣

A.6.5 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5]

3 Z/2Z [1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5]

3 4 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5]

[1, 3, 5]
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A.7 Root system A6

Dynkin diagram 1 2 3 4 5 6

Fundamental group
P∨/Q∨ ≃ Z/7Z

generated by Λ∨
6 ∈ P∨ mod Q∨

A.7.1 Cohomology of coroot lattice X∨ = Q∨

ϕu = ∂τ with τ = (Λ∨
1 + 8Λ∨

6 ) [1] + (Λ∨
1 + Λ∨

2 + 10Λ∨
6 ) [2] +

(Λ∨
2 + Λ∨

3 + 12Λ∨
6 ) [3] + (Λ∨

3 + Λ∨
4 + 14Λ∨

6 ) [4] + (Λ∨
5 + 5Λ∨

6 ) [5] + (Λ∨
5 + 5Λ∨

6 ) [6]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/7Z
(

Λ∨
5 − 2Λ∨

6

[
[6]

2 0

3 0

k hk(X∨) generating cocycles

0 0

1 0

2 0

3 0

k 0 1 2 3

compk
([ ([ ([ ([

A.7.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ =
Λ∨

1 [1] + (Λ∨
1 + Λ∨

2 ) [2] + (Λ∨
2 + Λ∨

3 ) [3] + (Λ∨
3 + Λ∨

4 ) [4] + (Λ∨
4 + Λ∨

5 ) [5] + Λ∨
6 [6]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0
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k Hk(W0,X
∨) generating cocycles

3 0

k hk(X∨) generating cocycles

0 0

1 0

2 0

3 0

k 0 1 2 3

compk
([ ([ ([ ([

A.7.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] + (−1) [6 ⊇ 6]

3 Z/2Z [1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5] + [6]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5] + [1, 6] + [2, 6] + [3, 6] + [4, 6]

3 4 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [4, 5, 6]

[1, 3, 5] + [1, 3, 6] + [1, 4, 6] + [2, 4, 6]
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A.8 Root system A7

Dynkin diagram 1 2 3 4 5 6 7

Fundamental group
P∨/Q∨ ≃ Z/8Z

generated by Λ∨
7 ∈ P∨ mod Q∨

A.8.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/8Z
(

Λ∨
6 − 2Λ∨

7

[
[7]

2 Z/2Z 8Λ∨
7 [1 ⊇ 1] +

(
−8Λ∨

7

[
[2 ⊇ 2] + 8Λ∨

7 [1, 2] +
(

−8Λ∨
7

[
[3 ⊇ 3] +

(
−8Λ∨

7

[
[4 ⊇ 4] +

(
−8Λ∨

7

[
[5 ⊇ 5] +(

−8Λ∨
7

[
[6 ⊇ 6] +

(
−4Λ∨

6

[
[7 ⊇ 7] +

(
−4Λ∨

6 + 8Λ∨
7

[
[1, 7] +

(
4Λ∨

6 − 8Λ∨
7

[
[2, 7] +(

4Λ∨
6 − 8Λ∨

7

[
[3, 7] +

(
4Λ∨

6 − 8Λ∨
7

[
[4, 7] +

(
4Λ∨

6 − 8Λ∨
7

[
[5, 7] +

(
−4Λ∨

5 + 12Λ∨
6 − 12Λ∨

7

[
[6, 7]

3 Z/2Z⊕Z/2Z
(

Λ∨
6 − 2Λ∨

7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6 − 14Λ∨
7

[
[2, 7 ⊇ 2] +

(
−8Λ∨

6

[
[2, 7 ⊇ 7] +

(
−Λ∨

6 − 6Λ∨
7

[
[1, 2, 7] +(

−Λ∨
6 − 14Λ∨

7

[
[3, 7 ⊇ 3] +

(
−8Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 − 14Λ∨
7

[
[4, 7 ⊇ 4] +

(
−8Λ∨

6

[
[4, 7 ⊇ 7] +(

−Λ∨
6 − 14Λ∨

7

[
[5, 7 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − 9Λ∨

6

[
[5, 7 ⊇ 7] +

(
8Λ∨

6 − 8Λ∨
7

[
[2, 6, 7] +(

8Λ∨
6 − 8Λ∨

7

[
[3, 6, 7] +

(
8Λ∨

6 − 8Λ∨
7

[
[4, 6, 7] +

(
Λ∨

4 + 6Λ∨
5 − 6Λ∨

6 + 6Λ∨
7

[
[5, 6, 7]

8Λ∨
7 [1, 3 ⊇ 1] + 8Λ∨

7 [1, 3 ⊇ 3] +
(

−8Λ∨
7

[
[1, 2, 3] +

(
−8Λ∨

7

[
[1, 4 ⊇ 1] +

(
−8Λ∨

7

[
[1, 4 ⊇ 4] +(

−8Λ∨
7

[
[2, 4 ⊇ 2] +

(
−8Λ∨

7

[
[2, 4 ⊇ 4] + 8Λ∨

7 [1, 3, 4] + 8Λ∨
7 [2, 3, 4] +

(
−8Λ∨

7

[
[1, 5 ⊇ 1] +(

−8Λ∨
7

[
[1, 5 ⊇ 5] +

(
−8Λ∨

7

[
[2, 5 ⊇ 2] +

(
−8Λ∨

7

[
[2, 5 ⊇ 5] +

(
−8Λ∨

7

[
[3, 5 ⊇ 3] +(

−8Λ∨
7

[
[3, 5 ⊇ 5] + 8Λ∨

7 [3, 4, 5] +
(

−8Λ∨
7

[
[1, 6 ⊇ 1] +

(
−8Λ∨

7

[
[1, 6 ⊇ 6] +

(
−8Λ∨

7

[
[2, 6 ⊇ 2] +(

−8Λ∨
7

[
[2, 6 ⊇ 6] +

(
−8Λ∨

7

[
[3, 6 ⊇ 3] +

(
−8Λ∨

7

[
[3, 6 ⊇ 6] +

(
−8Λ∨

7

[
[4, 6 ⊇ 4] +(

−8Λ∨
7

[
[4, 6 ⊇ 6] + 8Λ∨

7 [4, 5, 6] +
(

−8Λ∨
7

[
[1, 7 ⊇ 1] +

(
−4Λ∨

6

[
[1, 7 ⊇ 7] +

(
−8Λ∨

7

[
[2, 7 ⊇ 2] +(

−4Λ∨
6

[
[2, 7 ⊇ 7] +

(
−8Λ∨

7

[
[3, 7 ⊇ 3] +

(
−4Λ∨

6

[
[3, 7 ⊇ 7] +

(
−4Λ∨

6 + 8Λ∨
7

[
[1, 3, 7] +(

−8Λ∨
7

[
[4, 7 ⊇ 4] +

(
−4Λ∨

6

[
[4, 7 ⊇ 7] +

(
4Λ∨

6 − 8Λ∨
7

[
[1, 4, 7] +

(
4Λ∨

6 − 8Λ∨
7

[
[2, 4, 7] +(

−8Λ∨
7

[
[5, 7 ⊇ 5] +

(
−4Λ∨

6

[
[5, 7 ⊇ 7] +

(
4Λ∨

6 − 8Λ∨
7

[
[1, 5, 7] +

(
4Λ∨

6 − 8Λ∨
7

[
[2, 5, 7] +(

4Λ∨
6 − 8Λ∨

7

[
[3, 5, 7] +

(
−4Λ∨

5 + 12Λ∨
6 − 12Λ∨

7

[
[1, 6, 7] +

(
−4Λ∨

5 + 12Λ∨
6 − 12Λ∨

7

[
[2, 6, 7] +(

−4Λ∨
5 + 12Λ∨

6 − 12Λ∨
7

[
[3, 6, 7] +

(
−4Λ∨

5 + 12Λ∨
6 − 12Λ∨

7

[
[4, 6, 7] +

(
4Λ∨

5 − 4Λ∨
6 + 4Λ∨

7

[
[5, 6, 7]

k hk(X∨) generating cocycles

0 1 8Λ∨
7 []

1 2
(

Λ∨
2 + 2Λ∨

7

[
[1]

8Λ∨
7 [1] + 8Λ∨

7 [2] + 8Λ∨
7 [3] + 8Λ∨

7 [4] + 8Λ∨
7 [5] + 8Λ∨

7 [6] + 8Λ∨
7 [7]

2 3
(

Λ∨
2 + 2Λ∨

7

[
[1 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + 3Λ∨

7

[
[1, 2] +

(
Λ∨

6 + 14Λ∨
7

[
[2, 7] +

(
Λ∨

6 + 14Λ∨
7

[
[3, 7] +(

Λ∨
6 + 14Λ∨

7

[
[4, 7] +

(
Λ∨

4 + 12Λ∨
7

[
[5, 7]

8Λ∨
7 [1 ⊇ 1] + 8Λ∨

7 [2 ⊇ 2] + 8Λ∨
7 [3 ⊇ 3] + 8Λ∨

7 [4 ⊇ 4] + 8Λ∨
7 [5 ⊇ 5] + 8Λ∨

7 [6 ⊇ 6] + 8Λ∨
7 [7 ⊇ 7]

8Λ∨
7 [1, 3] + 8Λ∨

7 [1, 4] + 8Λ∨
7 [2, 4] + 8Λ∨

7 [1, 5] + 8Λ∨
7 [2, 5] + 8Λ∨

7 [3, 5] + 8Λ∨
7 [1, 6] + 8Λ∨

7 [2, 6] + 8Λ∨
7 [3, 6] +

8Λ∨
7 [4, 6] + 8Λ∨

7 [1, 7] + 8Λ∨
7 [2, 7] + 8Λ∨

7 [3, 7] + 8Λ∨
7 [4, 7] + 8Λ∨

7 [5, 7]
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k hk(X∨) generating cocycles

3 6
(

Λ∨
2 + 2Λ∨

7

[
[1 ⊇ 1 ⊇ 1] +

(
Λ∨

1 + Λ∨
7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + 5Λ∨

7

[
[1, 2 ⊇ 2] +

(
Λ∨

2 + 2Λ∨
7

[
[1, 2, 3] +(

Λ∨
6 + 14Λ∨

7

[
[2, 7 ⊇ 2] +

(
Λ∨

6 + 14Λ∨
7

[
[3, 7 ⊇ 3] +

(
Λ∨

6 + 14Λ∨
7

[
[4, 7 ⊇ 4] +

(
Λ∨

6 + 14Λ∨
7

[
[5, 7 ⊇ 5] +(

Λ∨
4 + 12Λ∨

7

[
[5, 7 ⊇ 7] +

(
Λ∨

2 + Λ∨
4 + 6Λ∨

7

[
[3, 5, 7] +

(
Λ∨

3 + 3Λ∨
7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + 11Λ∨

7

[
[5, 6, 7]

8Λ∨
7 [1 ⊇ 1 ⊇ 1] + 8Λ∨

7 [2 ⊇ 2 ⊇ 2] + 8Λ∨
7 [3 ⊇ 3 ⊇ 3] + 8Λ∨

7 [4 ⊇ 4 ⊇ 4] + 8Λ∨
7 [5 ⊇ 5 ⊇ 5] +

8Λ∨
7 [6 ⊇ 6 ⊇ 6] + 8Λ∨

7 [7 ⊇ 7 ⊇ 7]

(
Λ∨

2 + 2Λ∨
7

[
[1, 3 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + 6Λ∨
7

[
[1, 2, 3] +

(
Λ∨

1 + Λ∨
7

[
[1, 3, 4] +

(
Λ∨

6 + 14Λ∨
7

[
[1, 4, 7] +(

Λ∨
6 + 14Λ∨

7

[
[2, 4, 7] +

(
Λ∨

4 + 12Λ∨
7

[
[1, 5, 7] +

(
Λ∨

4 + 12Λ∨
7

[
[2, 5, 7] +

(
Λ∨

2 + 10Λ∨
7

[
[3, 5, 7]

8Λ∨
7 [1, 3 ⊇ 1] + 8Λ∨

7 [1, 3 ⊇ 3] + 8Λ∨
7 [1, 4 ⊇ 1] + 8Λ∨

7 [1, 4 ⊇ 4] + 8Λ∨
7 [2, 4 ⊇ 2] + 8Λ∨

7 [2, 4 ⊇ 4] +
8Λ∨

7 [1, 5 ⊇ 1] + 8Λ∨
7 [1, 5 ⊇ 5] + 8Λ∨

7 [2, 5 ⊇ 2] + 8Λ∨
7 [2, 5 ⊇ 5] + 8Λ∨

7 [3, 5 ⊇ 3] + 8Λ∨
7 [3, 5 ⊇ 5] +

8Λ∨
7 [1, 6 ⊇ 1] + 8Λ∨

7 [1, 6 ⊇ 6] + 8Λ∨
7 [2, 6 ⊇ 2] + 8Λ∨

7 [2, 6 ⊇ 6] + 8Λ∨
7 [3, 6 ⊇ 3] + 8Λ∨

7 [3, 6 ⊇ 6] +
8Λ∨

7 [4, 6 ⊇ 4] + 8Λ∨
7 [4, 6 ⊇ 6] + 8Λ∨

7 [1, 7 ⊇ 1] + 8Λ∨
7 [1, 7 ⊇ 7] + 8Λ∨

7 [2, 7 ⊇ 2] + 8Λ∨
7 [2, 7 ⊇ 7] +

8Λ∨
7 [3, 7 ⊇ 3] + 8Λ∨

7 [3, 7 ⊇ 7] + 8Λ∨
7 [4, 7 ⊇ 4] + 8Λ∨

7 [4, 7 ⊇ 7] + 8Λ∨
7 [5, 7 ⊇ 5] + 8Λ∨

7 [5, 7 ⊇ 7]

8Λ∨
7 [1, 2, 3] + 8Λ∨

7 [2, 3, 4] + 8Λ∨
7 [3, 4, 5] + 8Λ∨

7 [4, 5, 6] + 8Λ∨
7 [5, 6, 7]

8Λ∨
7 [1, 3, 5] + 8Λ∨

7 [1, 3, 6] + 8Λ∨
7 [1, 4, 6] + 8Λ∨

7 [2, 4, 6] + 8Λ∨
7 [1, 3, 7] + 8Λ∨

7 [1, 4, 7] + 8Λ∨
7 [2, 4, 7] +

8Λ∨
7 [1, 5, 7] + 8Λ∨

7 [2, 5, 7] + 8Λ∨
7 [3, 5, 7]

k 0 1 2 3

compk
([ ⎤

1
0

⎣ ⎛
⎝

0
1
0

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
0 0
0 0
0 1
0 1
0 0

∫
ˆ̂
ˆ̂
ˆ̂
⎠

A.8.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(4)⟩

[ϕu] = (1, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/4Z
(

Λ∨
6 − 2Λ∨

7

[
[7]

2 Z/2Z 4Λ∨
7 [1 ⊇ 1] +

(
−4Λ∨

7

[
[2 ⊇ 2] + 4Λ∨

7 [1, 2] +
(

−4Λ∨
7

[
[3 ⊇ 3] +

(
−4Λ∨

7

[
[4 ⊇ 4] +

(
−4Λ∨

7

[
[5 ⊇ 5] +(

−4Λ∨
7

[
[6 ⊇ 6] +

(
−2Λ∨

6

[
[7 ⊇ 7] +

(
−2Λ∨

6 + 4Λ∨
7

[
[1, 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[2, 7] +(

2Λ∨
6 − 4Λ∨

7

[
[3, 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[4, 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[5, 7] +

(
−2Λ∨

5 + 6Λ∨
6 − 6Λ∨

7

[
[6, 7]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z
(

Λ∨
6 − 2Λ∨

7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6 − 6Λ∨
7

[
[2, 7 ⊇ 2] +

(
−4Λ∨

6

[
[2, 7 ⊇ 7] +

(
−Λ∨

6 − 2Λ∨
7

[
[1, 2, 7] +(

−Λ∨
6 − 6Λ∨

7

[
[3, 7 ⊇ 3] +

(
−4Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 − 6Λ∨
7

[
[4, 7 ⊇ 4] +

(
−4Λ∨

6

[
[4, 7 ⊇ 7] +(

−Λ∨
6 − 6Λ∨

7

[
[5, 7 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − 5Λ∨

6

[
[5, 7 ⊇ 7] +

(
4Λ∨

6 − 4Λ∨
7

[
[2, 6, 7] +(

4Λ∨
6 − 4Λ∨

7

[
[3, 6, 7] +

(
4Λ∨

6 − 4Λ∨
7

[
[4, 6, 7] +

(
Λ∨

4 + 2Λ∨
5 − 2Λ∨

6 + 2Λ∨
7

[
[5, 6, 7]

4Λ∨
7 [1, 3 ⊇ 1] + 4Λ∨

7 [1, 3 ⊇ 3] +
(

−4Λ∨
7

[
[1, 2, 3] +

(
−4Λ∨

7

[
[1, 4 ⊇ 1] +

(
−4Λ∨

7

[
[1, 4 ⊇ 4] +(

−4Λ∨
7

[
[2, 4 ⊇ 2] +

(
−4Λ∨

7

[
[2, 4 ⊇ 4] + 4Λ∨

7 [1, 3, 4] + 4Λ∨
7 [2, 3, 4] +

(
−4Λ∨

7

[
[1, 5 ⊇ 1] +(

−4Λ∨
7

[
[1, 5 ⊇ 5] +

(
−4Λ∨

7

[
[2, 5 ⊇ 2] +

(
−4Λ∨

7

[
[2, 5 ⊇ 5] +

(
−4Λ∨

7

[
[3, 5 ⊇ 3] +(

−4Λ∨
7

[
[3, 5 ⊇ 5] + 4Λ∨

7 [3, 4, 5] +
(

−4Λ∨
7

[
[1, 6 ⊇ 1] +

(
−4Λ∨

7

[
[1, 6 ⊇ 6] +

(
−4Λ∨

7

[
[2, 6 ⊇ 2] +(

−4Λ∨
7

[
[2, 6 ⊇ 6] +

(
−4Λ∨

7

[
[3, 6 ⊇ 3] +

(
−4Λ∨

7

[
[3, 6 ⊇ 6] +

(
−4Λ∨

7

[
[4, 6 ⊇ 4] +(

−4Λ∨
7

[
[4, 6 ⊇ 6] + 4Λ∨

7 [4, 5, 6] +
(

−4Λ∨
7

[
[1, 7 ⊇ 1] +

(
−2Λ∨

6

[
[1, 7 ⊇ 7] +

(
−4Λ∨

7

[
[2, 7 ⊇ 2] +(

−2Λ∨
6

[
[2, 7 ⊇ 7] +

(
−4Λ∨

7

[
[3, 7 ⊇ 3] +

(
−2Λ∨

6

[
[3, 7 ⊇ 7] +

(
−2Λ∨

6 + 4Λ∨
7

[
[1, 3, 7] +(

−4Λ∨
7

[
[4, 7 ⊇ 4] +

(
−2Λ∨

6

[
[4, 7 ⊇ 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[1, 4, 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[2, 4, 7] +(

−4Λ∨
7

[
[5, 7 ⊇ 5] +

(
−2Λ∨

6

[
[5, 7 ⊇ 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[1, 5, 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[2, 5, 7] +(

2Λ∨
6 − 4Λ∨

7

[
[3, 5, 7] +

(
−2Λ∨

5 + 6Λ∨
6 − 6Λ∨

7

[
[1, 6, 7] +

(
−2Λ∨

5 + 6Λ∨
6 − 6Λ∨

7

[
[2, 6, 7] +(

−2Λ∨
5 + 6Λ∨

6 − 6Λ∨
7

[
[3, 6, 7] +

(
−2Λ∨

5 + 6Λ∨
6 − 6Λ∨

7

[
[4, 6, 7] +

(
2Λ∨

5 − 2Λ∨
6 + 2Λ∨

7

[
[5, 6, 7]

k hk(X∨) generating cocycles

0 1 4Λ∨
7 []

1 2
(

Λ∨
2 + 2Λ∨

7

[
[1]

4Λ∨
7 [1] + 4Λ∨

7 [2] + 4Λ∨
7 [3] + 4Λ∨

7 [4] + 4Λ∨
7 [5] + 4Λ∨

7 [6] + 4Λ∨
7 [7]

2 3
(

Λ∨
2 + 2Λ∨

7

[
[1 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + 3Λ∨

7

[
[1, 2] +

(
Λ∨

6 + 6Λ∨
7

[
[2, 7] +

(
Λ∨

6 + 6Λ∨
7

[
[3, 7] +(

Λ∨
6 + 6Λ∨

7

[
[4, 7] +

(
Λ∨

4 + 4Λ∨
7

[
[5, 7]

4Λ∨
7 [1 ⊇ 1] + 4Λ∨

7 [2 ⊇ 2] + 4Λ∨
7 [3 ⊇ 3] + 4Λ∨

7 [4 ⊇ 4] + 4Λ∨
7 [5 ⊇ 5] + 4Λ∨

7 [6 ⊇ 6] + 4Λ∨
7 [7 ⊇ 7]

Λ∨
4 [1, 3] + 4Λ∨

7 [1, 4] + 4Λ∨
7 [2, 4] +

(
Λ∨

1 + Λ∨
7

[
[3, 4] + 4Λ∨

7 [1, 5] + 4Λ∨
7 [2, 5] + 4Λ∨

7 [3, 5] + 4Λ∨
7 [1, 6] +

4Λ∨
7 [2, 6] + 4Λ∨

7 [3, 6] + 4Λ∨
7 [4, 6] + 4Λ∨

7 [1, 7] + 4Λ∨
7 [2, 7] + 4Λ∨

7 [3, 7] +
(

Λ∨
6 + 2Λ∨

7

[
[4, 7] + Λ∨

4 [5, 7]

3 6
(

Λ∨
2 + 2Λ∨

7

[
[1 ⊇ 1 ⊇ 1] +

(
Λ∨

1 + Λ∨
7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + 5Λ∨

7

[
[1, 2 ⊇ 2] +

(
Λ∨

2 + 2Λ∨
7

[
[1, 2, 3] +(

Λ∨
6 + 6Λ∨

7

[
[2, 7 ⊇ 2] +

(
Λ∨

6 + 6Λ∨
7

[
[3, 7 ⊇ 3] +

(
Λ∨

6 + 6Λ∨
7

[
[4, 7 ⊇ 4] +

(
Λ∨

6 + 6Λ∨
7

[
[5, 7 ⊇ 5] +(

Λ∨
4 + 4Λ∨

7

[
[5, 7 ⊇ 7] +

(
Λ∨

2 + Λ∨
4 + 6Λ∨

7

[
[3, 5, 7] +

(
Λ∨

3 + 3Λ∨
7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[5, 6, 7]

4Λ∨
7 [1 ⊇ 1 ⊇ 1] + 4Λ∨

7 [2 ⊇ 2 ⊇ 2] + 4Λ∨
7 [3 ⊇ 3 ⊇ 3] + 4Λ∨

7 [4 ⊇ 4 ⊇ 4] + 4Λ∨
7 [5 ⊇ 5 ⊇ 5] +

4Λ∨
7 [6 ⊇ 6 ⊇ 6] + 4Λ∨

7 [7 ⊇ 7 ⊇ 7]

(
Λ∨

2 + 2Λ∨
7

[
[1, 3 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + 6Λ∨
7

[
[1, 2, 3] +

(
Λ∨

1 + Λ∨
7

[
[1, 3, 4] +

(
Λ∨

6 + 6Λ∨
7

[
[1, 4, 7] +(

Λ∨
6 + 6Λ∨

7

[
[2, 4, 7] +

(
Λ∨

4 + 4Λ∨
7

[
[1, 5, 7] +

(
Λ∨

4 + 4Λ∨
7

[
[2, 5, 7] +

(
Λ∨

2 + 2Λ∨
7

[
[3, 5, 7]

Λ∨
4 [1, 3 ⊇ 1]+4Λ∨

7 [1, 3 ⊇ 3]+
(

Λ∨
3 + 3Λ∨

7

[
[2, 3 ⊇ 2]+

(
Λ∨

1 + Λ∨
7

[
[2, 3 ⊇ 3]+

(
Λ∨

1 + Λ∨
3 + 4Λ∨

7

[
[1, 2, 3]+

4Λ∨
7 [1, 4 ⊇ 1] + 4Λ∨

7 [1, 4 ⊇ 4] + 4Λ∨
7 [2, 4 ⊇ 2] + 4Λ∨

7 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

7

[
[1, 3, 4] +(

Λ∨
3 + Λ∨

5 + 8Λ∨
7

[
[2, 3, 4]+4Λ∨

7 [1, 5 ⊇ 1]+4Λ∨
7 [1, 5 ⊇ 5]+4Λ∨

7 [2, 5 ⊇ 2]+4Λ∨
7 [2, 5 ⊇ 5]+4Λ∨

7 [3, 5 ⊇ 3]+

4Λ∨
7 [3, 5 ⊇ 5] + 4Λ∨

7 [1, 6 ⊇ 1] + 4Λ∨
7 [1, 6 ⊇ 6] + 4Λ∨

7 [2, 6 ⊇ 2] + 4Λ∨
7 [2, 6 ⊇ 6] + 4Λ∨

7 [3, 6 ⊇ 3] +
4Λ∨

7 [3, 6 ⊇ 6] + 4Λ∨
7 [4, 6 ⊇ 4] + 4Λ∨

7 [4, 6 ⊇ 6] + 4Λ∨
7 [1, 7 ⊇ 1] + 4Λ∨

7 [1, 7 ⊇ 7] + 4Λ∨
7 [2, 7 ⊇ 2] +

4Λ∨
7 [2, 7 ⊇ 7] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7 ⊇ 3] + 4Λ∨

7 [3, 7 ⊇ 7] +
(

Λ∨
6 + 2Λ∨

7

[
[4, 7 ⊇ 4] + 4Λ∨

7 [4, 7 ⊇ 7] +(
Λ∨

6 + 6Λ∨
7

[
[1, 4, 7]+

(
Λ∨

6 + 6Λ∨
7

[
[2, 4, 7]+

(
Λ∨

6 + 2Λ∨
7

[
[5, 7 ⊇ 5]+Λ∨

4 [5, 7 ⊇ 7]+
(

Λ∨
4 + 4Λ∨

7

[
[1, 5, 7]+(

Λ∨
4 + 4Λ∨

7

[
[2, 5, 7] +

(
Λ∨

4 + 4Λ∨
7

[
[3, 5, 7] +

(
Λ∨

3 + 3Λ∨
7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[5, 6, 7]

Λ∨
4 [1, 2, 3] + 4Λ∨

7 [2, 3, 4] + 4Λ∨
7 [3, 4, 5] + 4Λ∨

7 [4, 5, 6] + 4Λ∨
7 [5, 6, 7]

Λ∨
4 [1, 3, 5] +

(
Λ∨

3 + 3Λ∨
7

[
[1, 4, 5] +

(
Λ∨

3 + 3Λ∨
7

[
[2, 4, 5] + 4Λ∨

7 [1, 3, 6] + 4Λ∨
7 [1, 4, 6] + 4Λ∨

7 [2, 4, 6] +(
Λ∨

3 + 3Λ∨
7

[
[1, 5, 6] +

(
Λ∨

3 + 3Λ∨
7

[
[2, 5, 6] +

(
Λ∨

1 + Λ∨
7

[
[3, 5, 6] + 4Λ∨

7 [1, 3, 7] + 4Λ∨
7 [1, 4, 7] +

4Λ∨
7 [2, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[1, 5, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 5, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 5, 7]



160 A COMPUTATIONAL RESULTS

k 0 1 2 3

compk
([ ⎤

1
0

⎣ ⎛
⎝

0
1
0

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1
0 0
0 1
0 1
0 1
0 0

∫
ˆ̂
ˆ̂
ˆ̂
⎠

A.8.3 Cohomology of lattice X∨ corresponding to Ω = ⟨(2)⟩

[ϕu] = (1, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
6 − 2Λ∨

7

[
[7]

2 Z/2Z 2Λ∨
7 [1 ⊇ 1] +

(
−2Λ∨

7

[
[2 ⊇ 2] + 2Λ∨

7 [1, 2] +
(

−2Λ∨
7

[
[3 ⊇ 3] +

(
−2Λ∨

7

[
[4 ⊇ 4] +

(
−2Λ∨

7

[
[5 ⊇ 5] +(

−2Λ∨
7

[
[6 ⊇ 6] +

(
−Λ∨

6

[
[7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[3, 7] +(

Λ∨
6 − 2Λ∨

7

[
[4, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[5, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7

[
[6, 7]

3 Z/2Z⊕Z/2Z
(

Λ∨
6 − 2Λ∨

7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6 − 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
−2Λ∨

6

[
[2, 7 ⊇ 7] +

(
−Λ∨

6

[
[1, 2, 7] +(

−Λ∨
6 − 2Λ∨

7

[
[3, 7 ⊇ 3] +

(
−2Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 − 2Λ∨
7

[
[4, 7 ⊇ 4] +

(
−2Λ∨

6

[
[4, 7 ⊇ 7] +(

−Λ∨
6 − 2Λ∨

7

[
[5, 7 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − 3Λ∨

6

[
[5, 7 ⊇ 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[2, 6, 7] +(

2Λ∨
6 − 2Λ∨

7

[
[3, 6, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[4, 6, 7] + Λ∨

4 [5, 6, 7]

2Λ∨
7 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] +
(

−2Λ∨
7

[
[1, 2, 3] +

(
−2Λ∨

7

[
[1, 4 ⊇ 1] +

(
−2Λ∨

7

[
[1, 4 ⊇ 4] +(

−2Λ∨
7

[
[2, 4 ⊇ 2] +

(
−2Λ∨

7

[
[2, 4 ⊇ 4] + 2Λ∨

7 [1, 3, 4] + 2Λ∨
7 [2, 3, 4] +

(
−2Λ∨

7

[
[1, 5 ⊇ 1] +(

−2Λ∨
7

[
[1, 5 ⊇ 5] +

(
−2Λ∨

7

[
[2, 5 ⊇ 2] +

(
−2Λ∨

7

[
[2, 5 ⊇ 5] +

(
−2Λ∨

7

[
[3, 5 ⊇ 3] +(

−2Λ∨
7

[
[3, 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +
(

−2Λ∨
7

[
[1, 6 ⊇ 1] +

(
−2Λ∨

7

[
[1, 6 ⊇ 6] +

(
−2Λ∨

7

[
[2, 6 ⊇ 2] +(

−2Λ∨
7

[
[2, 6 ⊇ 6] +

(
−2Λ∨

7

[
[3, 6 ⊇ 3] +

(
−2Λ∨

7

[
[3, 6 ⊇ 6] +

(
−2Λ∨

7

[
[4, 6 ⊇ 4] +(

−2Λ∨
7

[
[4, 6 ⊇ 6] + 2Λ∨

7 [4, 5, 6] +
(

−2Λ∨
7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6

[
[1, 7 ⊇ 7] +

(
−2Λ∨

7

[
[2, 7 ⊇ 2] +(

−Λ∨
6

[
[2, 7 ⊇ 7] +

(
−2Λ∨

7

[
[3, 7 ⊇ 3] +

(
−Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 3, 7] +(

−2Λ∨
7

[
[4, 7 ⊇ 4] +

(
−Λ∨

6

[
[4, 7 ⊇ 7] +

(
Λ∨

6 − 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 4, 7] +(

−2Λ∨
7

[
[5, 7 ⊇ 5] +

(
−Λ∨

6

[
[5, 7 ⊇ 7] +

(
Λ∨

6 − 2Λ∨
7

[
[1, 5, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 5, 7] +(

Λ∨
6 − 2Λ∨

7

[
[3, 5, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7

[
[1, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7

[
[2, 6, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7

[
[3, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7

[
[4, 6, 7] +

(
Λ∨

5 − Λ∨
6 + Λ∨

7

[
[5, 6, 7]

k hk(X∨) generating cocycles

0 1 2Λ∨
7 []

1 2 Λ∨
2 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6] + 2Λ∨
7 [7]

2Λ∨
7 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6] + 2Λ∨
7 [7]
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k hk(X∨) generating cocycles

2 3 Λ∨
2 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
7

[
[1, 2] + 2Λ∨

7 [3 ⊇ 3] + 2Λ∨
7 [4 ⊇ 4] + 2Λ∨

7 [5 ⊇ 5] +

2Λ∨
7 [6 ⊇ 6] + 2Λ∨

7 [7 ⊇ 7] +
(

Λ∨
6 + 2Λ∨

7

[
[2, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[4, 7] + Λ∨

4 [5, 7]

2Λ∨
7 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5] + 2Λ∨

7 [6 ⊇ 6] + 2Λ∨
7 [7 ⊇ 7]

Λ∨
2 [1, 3]+

(
Λ∨

1 + Λ∨
7

[
[2, 3]+ 2Λ∨

7 [1, 4]+ 2Λ∨
7 [2, 4]+

(
Λ∨

1 + Λ∨
7

[
[3, 4]+ 2Λ∨

7 [1, 5]+ 2Λ∨
7 [2, 5]+ 2Λ∨

7 [3, 5]+

2Λ∨
7 [1, 6] + 2Λ∨

7 [2, 6] + 2Λ∨
7 [3, 6] + 2Λ∨

7 [4, 6] + 2Λ∨
7 [1, 7] + 2Λ∨

7 [2, 7] + Λ∨
6 [3, 7] + 2Λ∨

7 [4, 7] + 2Λ∨
7 [5, 7]

3 6 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

7

[
[1, 2 ⊇ 2] +

2Λ∨
7 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
7 [4 ⊇ 4 ⊇ 4] + 2Λ∨

7 [2, 3, 4] + 2Λ∨
7 [5 ⊇ 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +

2Λ∨
7 [6 ⊇ 6 ⊇ 6] + 2Λ∨

7 [4, 5, 6] + 2Λ∨
7 [7 ⊇ 7 ⊇ 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7 ⊇ 3] +(

Λ∨
6 + 2Λ∨

7

[
[4, 7 ⊇ 4] +

(
Λ∨

6 + 2Λ∨
7

[
[5, 7 ⊇ 5] + Λ∨

4 [5, 7 ⊇ 7] +
(

Λ∨
2 + Λ∨

4 + 2Λ∨
7

[
[3, 5, 7] +(

Λ∨
3 + Λ∨

7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7

[
[5, 6, 7]

2Λ∨
7 [1 ⊇ 1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5 ⊇ 5] +

2Λ∨
7 [6 ⊇ 6 ⊇ 6] + 2Λ∨

7 [7 ⊇ 7 ⊇ 7]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

7

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

7

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
7

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

7

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
7 [2, 3, 4] + 2Λ∨

7 [3, 4, 5] +

2Λ∨
7 [4, 5, 6] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7 ⊇ 2] + 2Λ∨

7 [5, 6, 7]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

7

[
[1, 2, 3] + 2Λ∨

7 [1, 4 ⊇ 1] + 2Λ∨
7 [1, 4 ⊇ 4] +

2Λ∨
7 [2, 4 ⊇ 2] + 2Λ∨

7 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

7

[
[1, 3, 4] + 2Λ∨

7 [1, 5 ⊇ 1] + 2Λ∨
7 [1, 5 ⊇ 5] + 2Λ∨

7 [2, 5 ⊇ 2] +

2Λ∨
7 [2, 5 ⊇ 5] + 2Λ∨

7 [3, 5 ⊇ 3] + 2Λ∨
7 [3, 5 ⊇ 5] + 2Λ∨

7 [1, 6 ⊇ 1] + 2Λ∨
7 [1, 6 ⊇ 6] + 2Λ∨

7 [2, 6 ⊇ 2] +
2Λ∨

7 [2, 6 ⊇ 6] + 2Λ∨
7 [3, 6 ⊇ 3] + 2Λ∨

7 [3, 6 ⊇ 6] + 2Λ∨
7 [4, 6 ⊇ 4] + 2Λ∨

7 [4, 6 ⊇ 6] + 2Λ∨
7 [1, 7 ⊇ 1] +

2Λ∨
7 [1, 7 ⊇ 7] + 2Λ∨

7 [2, 7 ⊇ 2] + 2Λ∨
7 [2, 7 ⊇ 7] + 2Λ∨

7 [3, 7 ⊇ 3] + 2Λ∨
7 [3, 7 ⊇ 7] + 2Λ∨

7 [4, 7 ⊇ 4] +

2Λ∨
7 [4, 7 ⊇ 7] +

(
Λ∨

6 + 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 4, 7] + 2Λ∨

7 [5, 7 ⊇ 5] + 2Λ∨
7 [5, 7 ⊇ 7] +

Λ∨
4 [1, 5, 7] + Λ∨

4 [2, 5, 7] +
(

Λ∨
2 + 2Λ∨

7

[
[3, 5, 7]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
7

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
7

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

7

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

7

[
[1, 3, 4] +

(
Λ∨

3 + Λ∨
5 + 2Λ∨

7

[
[2, 3, 4] + 2Λ∨

7 [3, 4, 5] + 2Λ∨
7 [4, 5, 6] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7 ⊇ 3] +(

Λ∨
6 + 2Λ∨

7

[
[4, 7 ⊇ 4] +

(
Λ∨

6 + 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[5, 7 ⊇ 5] +

Λ∨
4 [5, 7 ⊇ 7] + Λ∨

4 [1, 5, 7] + Λ∨
4 [2, 5, 7] + Λ∨

4 [3, 5, 7] +
(

Λ∨
3 + Λ∨

7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7

[
[5, 6, 7]

Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + Λ∨
7

[
[2, 3, 5] + 2Λ∨

7 [1, 3, 6] + 2Λ∨
7 [1, 4, 6] + 2Λ∨

7 [2, 4, 6] +
(

Λ∨
1 + Λ∨

7

[
[3, 5, 6] +

2Λ∨
7 [1, 3, 7] + 2Λ∨

7 [1, 4, 7] + 2Λ∨
7 [2, 4, 7] + 2Λ∨

7 [1, 5, 7] + 2Λ∨
7 [2, 5, 7] + Λ∨

6 [3, 5, 7]

k 0 1 2 3

compk
([ ⎤

1
1

⎣ ⎛
⎝

1
0
0

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
0 1
0 0
0 0

∫
ˆ̂
ˆ̂
ˆ̂
⎠

A.8.4 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1] + (Λ∨

1 + Λ∨
2 ) [2] + (Λ∨

2 + Λ∨
3 ) [3] + (Λ∨

3 + Λ∨
4 ) [4] +

(Λ∨
4 + Λ∨

5 ) [5] + (Λ∨
5 + Λ∨

6 ) [6] + Λ∨
7 [7]

k Hk(W0,X
∨) generating cocycles

0 0

1 0
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k Hk(W0,X
∨) generating cocycles

2 0

3 0

k hk(X∨) generating cocycles

0 0

1 0

2 0

3 1 Λ∨
7 [1, 3, 5] + Λ∨

7 [1, 3, 6] + Λ∨
7 [1, 4, 6] + Λ∨

7 [2, 4, 6] + Λ∨
5 [1, 3, 7] + Λ∨

5 [1, 4, 7] + Λ∨
5 [2, 4, 7] + Λ∨

3 [1, 5, 7] +
Λ∨

3 [2, 5, 7] + Λ∨
1 [3, 5, 7]

k 0 1 2 3

compk
([ ([ ([ ([

A.8.5 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] +
(−1) [6 ⊇ 6] + (−1) [7 ⊇ 7]

3 Z/2Z [1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6] + (−1) [1, 7 ⊇ 1] +
(−1) [1, 7 ⊇ 7] + (−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [3, 7 ⊇ 3] + (−1) [3, 7 ⊇ 7] +
(−1) [4, 7 ⊇ 4] + (−1) [4, 7 ⊇ 7] + (−1) [5, 7 ⊇ 5] + (−1) [5, 7 ⊇ 7] + [5, 6, 7]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5] + [6] + [7]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6] + [7 ⊇ 7]

[1, 3]+[1, 4]+[2, 4]+[1, 5]+[2, 5]+[3, 5]+[1, 6]+[2, 6]+[3, 6]+[4, 6]+[1, 7]+[2, 7]+[3, 7]+[4, 7]+[5, 7]
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k hk(F2) generating cocycles

3 4 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6] + [7 ⊇ 7 ⊇ 7]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6] + [1, 7 ⊇ 1] + [1, 7 ⊇ 7] + [2, 7 ⊇ 2] + [2, 7 ⊇ 7] +
[3, 7 ⊇ 3] + [3, 7 ⊇ 7] + [4, 7 ⊇ 4] + [4, 7 ⊇ 7] + [5, 7 ⊇ 5] + [5, 7 ⊇ 7]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [4, 5, 6] + [5, 6, 7]

[1, 3, 5] + [1, 3, 6] + [1, 4, 6] + [2, 4, 6] + [1, 3, 7] + [1, 4, 7] + [2, 4, 7] + [1, 5, 7] + [2, 5, 7] + [3, 5, 7]

A.9 Root system A8

Dynkin diagram 1 2 3 4 5 6 7 8

Fundamental group
P∨/Q∨ ≃ Z/9Z

generated by Λ∨
8 ∈ P∨ mod Q∨

A.9.1 Cohomology of coroot lattice X∨ = Q∨

ϕu = ∂τ with τ = (Λ∨
1 + 10Λ∨

8 ) [1] + (Λ∨
1 + Λ∨

2 + 12Λ∨
8 ) [2] +

(Λ∨
2 + Λ∨

3 + 14Λ∨
8 ) [3] + (Λ∨

3 + Λ∨
4 + 16Λ∨

8 ) [4] + (Λ∨
4 + Λ∨

5 + 18Λ∨
8 ) [5] +

(Λ∨
5 + Λ∨

6 + 20Λ∨
8 ) [6] + (Λ∨

7 + 7Λ∨
8 ) [7] + (Λ∨

7 + 7Λ∨
8 ) [8]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/9Z
(

Λ∨
7 − 2Λ∨

8

[
[8]

2 0

3 0

k hk(X∨) generating cocycles

0 0

1 0

2 0

3 0

k 0 1 2 3

compk
([ ([ ([ ([
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A.9.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(3)⟩

ϕu = ∂τ with τ = (Λ∨
1 + 4Λ∨

8 ) [1] + (Λ∨
2 + Λ∨

3 + 2Λ∨
8 ) [2] + (Λ∨

2 + Λ∨
3 + 2Λ∨

8 ) [3] +
(Λ∨

3 + Λ∨
4 + 4Λ∨

8 ) [4] + (Λ∨
5 + Λ∨

6 + 2Λ∨
8 ) [5] + (Λ∨

5 + Λ∨
6 + 2Λ∨

8 ) [6] +
(Λ∨

7 + Λ∨
8 ) [7] + (Λ∨

7 + Λ∨
8 ) [8]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/3Z
(

Λ∨
7 − 2Λ∨

8

[
[8]

2 0

3 0

k hk(X∨) generating cocycles

0 0

1 0

2 0

3 0

k 0 1 2 3

compk
([ ([ ([ ([

A.9.3 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1] + (Λ∨

1 + Λ∨
2 ) [2] + (Λ∨

2 + Λ∨
3 ) [3] + (Λ∨

3 + Λ∨
4 ) [4] +

(Λ∨
4 + Λ∨

5 ) [5] + (Λ∨
5 + Λ∨

6 ) [6] + (Λ∨
6 + Λ∨

7 ) [7] + Λ∨
8 [8]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 0

k hk(X∨) generating cocycles

0 0
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k hk(X∨) generating cocycles

1 0

2 0

3 0

k 0 1 2 3

compk
([ ([ ([ ([

A.9.4 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] +
(−1) [6 ⊇ 6] + (−1) [7 ⊇ 7] + (−1) [8 ⊇ 8]

3 Z/2Z [1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6] + (−1) [1, 7 ⊇ 1] +
(−1) [1, 7 ⊇ 7] + (−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [3, 7 ⊇ 3] + (−1) [3, 7 ⊇ 7] +
(−1) [4, 7 ⊇ 4] + (−1) [4, 7 ⊇ 7] + (−1) [5, 7 ⊇ 5] + (−1) [5, 7 ⊇ 7] + [5, 6, 7] +
(−1) [1, 8 ⊇ 1] + (−1) [1, 8 ⊇ 8] + (−1) [2, 8 ⊇ 2] + (−1) [2, 8 ⊇ 8] + (−1) [3, 8 ⊇ 3] +
(−1) [3, 8 ⊇ 8] + (−1) [4, 8 ⊇ 4] + (−1) [4, 8 ⊇ 8] + (−1) [5, 8 ⊇ 5] + (−1) [5, 8 ⊇ 8] +
(−1) [6, 8 ⊇ 6] + (−1) [6, 8 ⊇ 8] + [6, 7, 8]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5] + [6] + [7] + [8]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6] + [7 ⊇ 7] + [8 ⊇ 8]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5] + [1, 6] + [2, 6] + [3, 6] + [4, 6] + [1, 7] + [2, 7] + [3, 7] +
[4, 7] + [5, 7] + [1, 8] + [2, 8] + [3, 8] + [4, 8] + [5, 8] + [6, 8]

3 4 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6] + [7 ⊇ 7 ⊇ 7] +
[8 ⊇ 8 ⊇ 8]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6] + [1, 7 ⊇ 1] + [1, 7 ⊇ 7] + [2, 7 ⊇ 2] + [2, 7 ⊇ 7] +
[3, 7 ⊇ 3]+[3, 7 ⊇ 7]+[4, 7 ⊇ 4]+[4, 7 ⊇ 7]+[5, 7 ⊇ 5]+[5, 7 ⊇ 7]+[1, 8 ⊇ 1]+[1, 8 ⊇ 8]+[2, 8 ⊇ 2]+
[2, 8 ⊇ 8] + [3, 8 ⊇ 3] + [3, 8 ⊇ 8] + [4, 8 ⊇ 4] + [4, 8 ⊇ 8] + [5, 8 ⊇ 5] + [5, 8 ⊇ 8] + [6, 8 ⊇ 6] + [6, 8 ⊇ 8]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [4, 5, 6] + [5, 6, 7] + [6, 7, 8]

[1, 3, 5] + [1, 3, 6] + [1, 4, 6] + [2, 4, 6] + [1, 3, 7] + [1, 4, 7] + [2, 4, 7] + [1, 5, 7] + [2, 5, 7] + [3, 5, 7] +
[1, 3, 8] + [1, 4, 8] + [2, 4, 8] + [1, 5, 8] + [2, 5, 8] + [3, 5, 8] + [1, 6, 8] + [2, 6, 8] + [3, 6, 8] + [4, 6, 8]
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A.10 Root system B2

Dynkin diagram 1 2

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
1 ∈ P∨ mod Q∨

A.10.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

2Λ∨
1 − Λ∨

2

[
[1]

2 Z/2Z Λ∨
2 [1 ⊇ 1] +

(
−2Λ∨

1 + 2Λ∨
2

[
[1, 2]

3 Z/2Z⊕Z/2Z Λ∨
2 [1, 2 ⊇ 1]

(
2Λ∨

1 − Λ∨
2

[
[1 ⊇ 1 ⊇ 1]

k hk(X∨) generating cocycles

0 1 2Λ∨
1 []

1 2 2Λ∨
1 [1]

Λ∨
2 [1]

2 3 2Λ∨
1 [1 ⊇ 1]

Λ∨
2 [1 ⊇ 1]

2Λ∨
1 [1, 2]

3 4 2Λ∨
1 [1 ⊇ 1 ⊇ 1]

Λ∨
2 [1 ⊇ 1 ⊇ 1]

2Λ∨
1 [1, 2 ⊇ 1]

Λ∨
2 [1, 2 ⊇ 1]

k 0 1 2 3

compk
([ ⎤

1
1

⎣ ⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎝

0 1
0 1
0 0
1 0

∫
ˆ̂
⎠
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A.10.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
1 − Λ∨

2

[
[2]

2 Z/2Z Λ∨
1 [2 ⊇ 2] +

(
−2Λ∨

1 + Λ∨
2

[
[1, 2]

3 Z/2Z⊕Z/2Z Λ∨
1 [1, 2 ⊇ 2]

(
Λ∨

1 − Λ∨
2

[
[2 ⊇ 2 ⊇ 2]

k hk(X∨) generating cocycles

0 1 Λ∨
2 []

1 2 Λ∨
1 [2]

Λ∨
2 [2]

2 3 Λ∨
1 [2 ⊇ 2]

Λ∨
2 [2 ⊇ 2]

Λ∨
2 [1, 2]

3 4 Λ∨
1 [2 ⊇ 2 ⊇ 2]

Λ∨
2 [2 ⊇ 2 ⊇ 2]

Λ∨
1 [1, 2 ⊇ 2]

Λ∨
2 [1, 2 ⊇ 2]

k 0 1 2 3

compk
([ ⎤

1
1

⎣ ⎛
⎝

1
0
1

∫
⎠

⎛
⎜⎜⎝

0 1
0 1
1 0
0 0

∫
ˆ̂
⎠

A.10.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [2 ⊇ 2]

[1 ⊇ 1]
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k Hk(W0,Z) generating cocycles

3 Z/2Z [1, 2 ⊇ 1] + [1, 2 ⊇ 2]

k hk(F2) generating cocycles

0 1 []

1 2 [1]

[2]

2 3 [1 ⊇ 1]

[2 ⊇ 2]

[1, 2]

3 4 [1 ⊇ 1 ⊇ 1]

[2 ⊇ 2 ⊇ 2]

[1, 2 ⊇ 1]

[1, 2 ⊇ 2]

A.11 Root system B3

Dynkin diagram 1 2 3

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
3 ∈ P∨ mod Q∨

A.11.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 1, 0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

2Λ∨
2 − 2Λ∨

3

[
[3]

2 Z/2Z⊕Z/2Z Λ∨
2 [3 ⊇ 3] +

(
Λ∨

1 − 2Λ∨
2 + Λ∨

3

[
[2, 3]

2Λ∨
3 [1 ⊇ 1] +

(
−2Λ∨

3

[
[2 ⊇ 2] + 2Λ∨

3 [1, 2] +
(

−2Λ∨
2 + 2Λ∨

3

[
[1, 3] +

(
4Λ∨

2 − 4Λ∨
3

[
[2, 3]

3 Z/2Z⊕Z/2Z⊕Z/2Z 2Λ∨
3 [2, 3 ⊇ 2] + 2Λ∨

2 [2, 3 ⊇ 3] +
(

4Λ∨
1 − 4Λ∨

2 + 2Λ∨
3

[
[1, 2, 3]

(
2Λ∨

1 − Λ∨
2

[
[1, 3 ⊇ 3]

2Λ∨
3 [1, 3 ⊇ 1] + 2Λ∨

2 [1, 3 ⊇ 3] +
(

4Λ∨
1 − 4Λ∨

2

[
[1, 2, 3]
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k hk(X∨) generating cocycles

0 1 2Λ∨
3 []

1 3 Λ∨
2 [1] + 2Λ∨

3 [2]

2Λ∨
3 [1] + 2Λ∨

3 [2]

Λ∨
2 [3]

2 5 Λ∨
2 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2]

2Λ∨
3 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2]

(
Λ∨

1 + Λ∨
3

[
[2 ⊇ 2] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3

[
[1, 2]

Λ∨
2 [3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[2, 3]

2Λ∨
3 [3 ⊇ 3]

3 8 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

3

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + 2Λ∨
3

[
[1, 2 ⊇ 2]

2Λ∨
3 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2]

(
Λ∨

1 + Λ∨
3

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
3

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + 2Λ∨
3

[
[1, 2 ⊇ 2]

Λ∨
2 [1, 2 ⊇ 1] + 2Λ∨

3 [1, 2 ⊇ 2]

Λ∨
2 [3 ⊇ 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[2, 3 ⊇ 3]

2Λ∨
3 [3 ⊇ 3 ⊇ 3]

Λ∨
2 [1, 3 ⊇ 1]

Λ∨
2 [2, 3 ⊇ 3]

k 0 1 2 3

compk
([

⎛
⎝

1
1
0

∫
⎠

⎛
⎜⎜⎜⎜⎝

0 1
0 0
0 0
1 0
0 0

∫
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 1
1 0 0
1 0 1
0 0 0
0 1 0
0 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.11.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

3 ) [1] + Λ∨
2 [2]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
2 − Λ∨

3

[
[3]

2 Z/2Z⊕Z/2Z Λ∨
2 [3 ⊇ 3] +

(
Λ∨

1 − 2Λ∨
2 + Λ∨

3

[
[2, 3]

Λ∨
3 [1 ⊇ 1] +

(
−Λ∨

3

[
[2 ⊇ 2] + Λ∨

3 [1, 2] +
(

−Λ∨
2 + Λ∨

3

[
[1, 3] +

(
2Λ∨

2 − 2Λ∨
3

[
[2, 3]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z

(
Λ∨

1 − Λ∨
2

[
[2, 3 ⊇ 3]

Λ∨
3 [2, 3 ⊇ 2] + Λ∨

2 [2, 3 ⊇ 3] +
(

2Λ∨
1 − 2Λ∨

2 + Λ∨
3

[
[1, 2, 3]

Λ∨
3 [1, 3 ⊇ 1] + Λ∨

2 [1, 3 ⊇ 3] +
(

2Λ∨
1 − 2Λ∨

2

[
[1, 2, 3]

(
Λ∨

2 − Λ∨
3

[
[3 ⊇ 3 ⊇ 3]

k hk(X∨) generating cocycles

0 1 Λ∨
3 []

1 3 Λ∨
3 [1] + Λ∨

3 [2]

Λ∨
2 [3]

Λ∨
3 [3]

2 6 Λ∨
3 [1 ⊇ 1] + Λ∨

3 [2 ⊇ 2]

Λ∨
2 [3 ⊇ 3]

Λ∨
3 [3 ⊇ 3]

Λ∨
3 [1, 3]

Λ∨
1 [2, 3]

Λ∨
3 [2, 3]

3 10 Λ∨
3 [1 ⊇ 1 ⊇ 1] + Λ∨

3 [2 ⊇ 2 ⊇ 2]

Λ∨
2 [3 ⊇ 3 ⊇ 3]

Λ∨
3 [3 ⊇ 3 ⊇ 3]

Λ∨
3 [1, 3 ⊇ 1]

Λ∨
3 [1, 3 ⊇ 3]

Λ∨
1 [2, 3 ⊇ 2]

Λ∨
1 [2, 3 ⊇ 3]

Λ∨
2 [2, 3 ⊇ 3]

Λ∨
3 [2, 3 ⊇ 3]

Λ∨
3 [1, 2, 3]

k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
1 0
0 0
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 0 0
0 1 0 0
1 0 0 0
1 1 0 0
0 0 0 0
0 1 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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A.11.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [3 ⊇ 3]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2]

3 Z/2Z⊕Z/2Z [2, 3 ⊇ 2] + [2, 3 ⊇ 3]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2]

[3]

2 4 [1 ⊇ 1] + [2 ⊇ 2]

[3 ⊇ 3]

[1, 3]

[2, 3]

3 7 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2]

[3 ⊇ 3 ⊇ 3]

[1, 3 ⊇ 1]

[1, 3 ⊇ 3]

[2, 3 ⊇ 2]

[2, 3 ⊇ 3]

[1, 2, 3]

A.12 Root system B4

Dynkin diagram 1 2 3 4

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
3 ∈ P∨ mod Q∨
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A.12.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
2 − 2Λ∨

3 + Λ∨
4

[
[3]

2 Z/2Z 2Λ∨
3 [1 ⊇ 1] +

(
−2Λ∨

3

[
[2 ⊇ 2] + 2Λ∨

3 [1, 2] +
(

−Λ∨
2 − Λ∨

4

[
[3 ⊇ 3] +(

−Λ∨
2 + 2Λ∨

3 − Λ∨
4

[
[1, 3] +

(
−Λ∨

1 + 3Λ∨
2 − 3Λ∨

3 + Λ∨
4

[
[2, 3] +

(
2Λ∨

3 − 2Λ∨
4

[
[3, 4]

3 Z/2Z⊕Z/2Z⊕Z/2Z
(

Λ∨
2 − Λ∨

4

[
[3, 4 ⊇ 3]

Λ∨
4 [1, 3 ⊇ 1] + Λ∨

4 [1, 3 ⊇ 3] +
(

−Λ∨
4

[
[1, 2, 3] +

(
−2Λ∨

3 + 2Λ∨
4

[
[1, 3, 4]

2Λ∨
3 [1, 3 ⊇ 1] +

(
Λ∨

2 + Λ∨
4

[
[1, 3 ⊇ 3] +

(
−Λ∨

1 + Λ∨
2 − Λ∨

3 − Λ∨
4

[
[1, 2, 3] +(

−2Λ∨
3 + 2Λ∨

4

[
[1, 3, 4]

k hk(X∨) generating cocycles

0 1 2Λ∨
3 []

1 2 Λ∨
2 [1] + 2Λ∨

3 [2] + 2Λ∨
3 [3]

2Λ∨
3 [1] + 2Λ∨

3 [2] + 2Λ∨
3 [3]

2 4 Λ∨
2 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2] + 2Λ∨

3 [3 ⊇ 3] + Λ∨
2 [1, 3]

2Λ∨
3 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3]

(
Λ∨

2 + 2Λ∨
3 + Λ∨

4

[
[3 ⊇ 3] + Λ∨

2 [1, 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[2, 3]

2Λ∨
3 [1, 3]

3 9 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

3

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + 2Λ∨
3

[
[1, 2 ⊇ 2] + 2Λ∨

3 [3 ⊇ 3 ⊇ 3] +

Λ∨
4 [1, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[1, 2, 3]

2Λ∨
3 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3 ⊇ 3]

Λ∨
2 [1, 2 ⊇ 1] + 2Λ∨

3 [1, 2 ⊇ 2] + Λ∨
2 [1, 2, 3]

(
Λ∨

2 + 2Λ∨
3 + Λ∨

4

[
[3 ⊇ 3 ⊇ 3] + Λ∨

4 [1, 3 ⊇ 3] + Λ∨
2 [2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
3 + Λ∨

4

[
[2, 3 ⊇ 3] +(

Λ∨
1 + Λ∨

3

[
[1, 2, 3]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

3 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2, 3]

2Λ∨
3 [1, 3 ⊇ 1] + 2Λ∨

3 [1, 3 ⊇ 3]

(
Λ∨

2 + 2Λ∨
3 + Λ∨

4

[
[1, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3

[
[1, 2, 3]

2Λ∨
3 [3, 4 ⊇ 3]

Λ∨
2 [3, 4 ⊇ 4]
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k 0 1 2 3

compk
([ ⎤

1
1

⎣
⎛
⎜⎜⎝

1
0
0
1

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1 0
1 1 0
1 0 0
0 0 1
0 0 0
1 1 0
0 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.12.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

4 ) [1] + (Λ∨
1 + Λ∨

2 + Λ∨
4 ) [2] + Λ∨

3 [3]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
3 − Λ∨

4

[
[4]

2 Z/2Z⊕Z/2Z Λ∨
3 [4 ⊇ 4] +

(
Λ∨

2 − 2Λ∨
3 + Λ∨

4

[
[3, 4]

Λ∨
4 [1 ⊇ 1] +

(
−Λ∨

4

[
[2 ⊇ 2] + Λ∨

4 [1, 2] +
(

−Λ∨
4

[
[3 ⊇ 3] +

(
−Λ∨

3 + Λ∨
4

[
[1, 4] +(

Λ∨
3 − Λ∨

4

[
[2, 4] +

(
2Λ∨

3 − 2Λ∨
4

[
[3, 4]

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

2 − Λ∨
3

[
[3, 4 ⊇ 4]

Λ∨
4 [3, 4 ⊇ 3] + Λ∨

3 [3, 4 ⊇ 4] +
(

−Λ∨
1 + 2Λ∨

2 − 2Λ∨
3 + Λ∨

4

[
[2, 3, 4]

Λ∨
4 [1, 4 ⊇ 1] + Λ∨

3 [1, 4 ⊇ 4] +
(

−Λ∨
4

[
[2, 4 ⊇ 2] +

(
−Λ∨

3

[
[2, 4 ⊇ 4] +

(
−Λ∨

4

[
[1, 2, 4] +(

Λ∨
2 − 2Λ∨

3 + Λ∨
4

[
[1, 3, 4] +

(
−2Λ∨

2 + 2Λ∨
3

[
[2, 3, 4]

Λ∨
3 [1, 4 ⊇ 1] + Λ∨

3 [1, 4 ⊇ 4] +
(

−Λ∨
3

[
[2, 4 ⊇ 2] +

(
−Λ∨

3

[
[2, 4 ⊇ 4] +

(
−Λ∨

3

[
[1, 2, 4] +(

Λ∨
2 − 2Λ∨

3 + Λ∨
4

[
[1, 3, 4] +

(
−2Λ∨

2 + 2Λ∨
3

[
[2, 3, 4]

(
Λ∨

3 − Λ∨
4

[
[4 ⊇ 4 ⊇ 4]

k hk(X∨) generating cocycles

0 1 Λ∨
4 []

1 3 Λ∨
4 [1] + Λ∨

4 [2] + Λ∨
4 [3]

Λ∨
3 [4]

Λ∨
4 [4]
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k hk(X∨) generating cocycles

2 7 Λ∨
4 [1 ⊇ 1] + Λ∨

4 [2 ⊇ 2] + Λ∨
4 [3 ⊇ 3]

Λ∨
3 [4 ⊇ 4]

Λ∨
4 [4 ⊇ 4]

Λ∨
3 [1, 4] + Λ∨

3 [2, 4]

Λ∨
4 [1, 4] + Λ∨

4 [2, 4]

Λ∨
2 [3, 4]

Λ∨
4 [3, 4]

3 14 Λ∨
4 [1 ⊇ 1 ⊇ 1] + Λ∨

4 [2 ⊇ 2 ⊇ 2] + Λ∨
4 [3 ⊇ 3 ⊇ 3]

Λ∨
3 [4 ⊇ 4 ⊇ 4]

Λ∨
4 [4 ⊇ 4 ⊇ 4]

Λ∨
3 [1, 4 ⊇ 1] + Λ∨

3 [2, 4 ⊇ 2]

Λ∨
4 [1, 4 ⊇ 1] + Λ∨

4 [2, 4 ⊇ 2]

Λ∨
3 [1, 4 ⊇ 4] + Λ∨

3 [2, 4 ⊇ 4]

Λ∨
4 [1, 4 ⊇ 4] + Λ∨

4 [2, 4 ⊇ 4]

Λ∨
2 [3, 4 ⊇ 3]

Λ∨
2 [3, 4 ⊇ 4]

Λ∨
3 [3, 4 ⊇ 4]

Λ∨
4 [3, 4 ⊇ 4]

Λ∨
4 [1, 3, 4]

Λ∨
1 [2, 3, 4]

Λ∨
4 [2, 3, 4]

k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.12.3 Cohomology with trivial coefficients
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k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [4 ⊇ 4]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3]

3 Z/2Z⊕Z/2Z⊕Z/2Z [3, 4 ⊇ 3] + [3, 4 ⊇ 4]

[1, 4 ⊇ 1] + [1, 4 ⊇ 4] + (−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + (−1) [1, 2, 4]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3]

[4]

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3]

[1, 3]

[4 ⊇ 4]

[1, 4] + [2, 4]

[3, 4]

3 10 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3]

[1, 2, 3]

[4 ⊇ 4 ⊇ 4]

[1, 4 ⊇ 1] + [2, 4 ⊇ 2]

[1, 4 ⊇ 4] + [2, 4 ⊇ 4]

[3, 4 ⊇ 3]

[3, 4 ⊇ 4]

[1, 3, 4]

[2, 3, 4]

A.13 Root system B5

Dynkin diagram 1 2 3 4 5

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
5 ∈ P∨ mod Q∨
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A.13.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 0, 1, 0, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

2Λ∨
4 − 2Λ∨

5

[
[5]

2 Z/2Z⊕Z/2Z Λ∨
4 [5 ⊇ 5] +

(
Λ∨

3 − 2Λ∨
4 + Λ∨

5

[
[4, 5]

2Λ∨
5 [1 ⊇ 1] +

(
−2Λ∨

5

[
[2 ⊇ 2] + 2Λ∨

5 [1, 2] +
(

−2Λ∨
5

[
[3 ⊇ 3] +

(
−2Λ∨

5

[
[4 ⊇ 4] +(

−2Λ∨
4 + 2Λ∨

5

[
[1, 5] +

(
2Λ∨

4 − 2Λ∨
5

[
[2, 5] +

(
2Λ∨

4 − 2Λ∨
5

[
[3, 5] +

(
4Λ∨

4 − 4Λ∨
5

[
[4, 5]

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

2Λ∨
5 [4, 5 ⊇ 4] + 2Λ∨

4 [4, 5 ⊇ 5] +
(

−2Λ∨
2 + 4Λ∨

3 − 4Λ∨
4 + 2Λ∨

5

[
[3, 4, 5]

(
Λ∨

2 − 2Λ∨
3 + Λ∨

4

[
[3, 5 ⊇ 5]

2Λ∨
5 [1, 5 ⊇ 1] + 2Λ∨

4 [1, 5 ⊇ 5] +
(

−2Λ∨
5

[
[2, 5 ⊇ 2] +

(
−2Λ∨

4

[
[2, 5 ⊇ 5] +(

−2Λ∨
5

[
[1, 2, 5] +

(
−2Λ∨

5

[
[3, 5 ⊇ 3] +

(
−2Λ∨

4

[
[3, 5 ⊇ 5] +(

2Λ∨
3 − 4Λ∨

4 + 2Λ∨
5

[
[1, 4, 5] +

(
−2Λ∨

3 + 4Λ∨
4 − 2Λ∨

5

[
[2, 4, 5] +

(
−4Λ∨

3 + 4Λ∨
4

[
[3, 4, 5]

Λ∨
4 [1, 5 ⊇ 1] + Λ∨

4 [1, 5 ⊇ 5] +
(

−Λ∨
4

[
[2, 5 ⊇ 2] +

(
−Λ∨

4

[
[2, 5 ⊇ 5] +

(
−Λ∨

4

[
[1, 2, 5] +(

−Λ∨
4

[
[3, 5 ⊇ 3] +

(
−Λ∨

4

[
[3, 5 ⊇ 5] +

(
Λ∨

3 − 2Λ∨
4 + Λ∨

5

[
[1, 4, 5] +(

−Λ∨
3 + 2Λ∨

4 − Λ∨
5

[
[2, 4, 5] +

(
−2Λ∨

3 + 2Λ∨
4

[
[3, 4, 5]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

−2Λ∨
5

[
[1, 2, 3] +

(
−2Λ∨

5

[
[1, 4 ⊇ 1] +(

−2Λ∨
5

[
[1, 4 ⊇ 4] +

(
−2Λ∨

5

[
[2, 4 ⊇ 2] +

(
−2Λ∨

5

[
[2, 4 ⊇ 4] + 2Λ∨

5 [1, 3, 4] +

2Λ∨
5 [2, 3, 4] +

(
−2Λ∨

4 + 2Λ∨
5

[
[1, 3, 5] +

(
4Λ∨

4 − 4Λ∨
5

[
[1, 4, 5] +

(
4Λ∨

4 − 4Λ∨
5

[
[2, 4, 5]

k hk(X∨) generating cocycles

0 1 2Λ∨
5 []

1 3 Λ∨
2 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4]

2Λ∨
5 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4]

Λ∨
4 [5]

2 7 Λ∨
2 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
5

[
[1, 2] + 2Λ∨

5 [3 ⊇ 3] + 2Λ∨
5 [4 ⊇ 4] + 2Λ∨

5 [2, 5] + 2Λ∨
5 [3, 5]

2Λ∨
5 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
5

[
[2, 3] + 2Λ∨

5 [1, 4] + 2Λ∨
5 [2, 4] +

(
Λ∨

1 + Λ∨
5

[
[3, 4] + 2Λ∨

5 [3, 5]

(
Λ∨

3 + Λ∨
5

[
[4 ⊇ 4] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[3, 4]

Λ∨
4 [5 ⊇ 5] +

(
Λ∨

3 + Λ∨
5

[
[4, 5]

2Λ∨
5 [5 ⊇ 5]

Λ∨
4 [1, 5] + Λ∨

4 [2, 5] + Λ∨
4 [3, 5]
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k hk(X∨) generating cocycles

3 15 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

5

[
[1, 2 ⊇ 2] +

2Λ∨
5 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
5 [4 ⊇ 4 ⊇ 4] + 2Λ∨

5 [2, 3, 4] + 2Λ∨
5 [2, 5 ⊇ 2] + 2Λ∨

5 [3, 5 ⊇ 3]

2Λ∨
5 [1 ⊇ 1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4 ⊇ 4]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

5

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

5

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
5

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
5 [2, 3, 4] + 2Λ∨

5 [2, 5 ⊇ 2]

Λ∨
4 [1, 2 ⊇ 1] + Λ∨

4 [1, 2 ⊇ 2] +
(

Λ∨
3 + Λ∨

5

[
[2, 4 ⊇ 2] + Λ∨

4 [3, 4 ⊇ 3] +
(

Λ∨
2 + 2Λ∨

5

[
[3, 4 ⊇ 4] +(

Λ∨
3 + Λ∨

5

[
[2, 3, 4]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

5

[
[1, 2, 3] + 2Λ∨

5 [1, 4 ⊇ 1] + 2Λ∨
5 [1, 4 ⊇ 4] +

2Λ∨
5 [2, 4 ⊇ 2] + 2Λ∨

5 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

5

[
[1, 3, 4]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
5

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
5

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

5

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

5

[
[1, 3, 4] +

(
Λ∨

3 + 3Λ∨
5

[
[2, 3, 4] + 2Λ∨

5 [3, 5 ⊇ 3]

(
Λ∨

3 + Λ∨
5

[
[4 ⊇ 4 ⊇ 4] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[3, 4 ⊇ 3] + Λ∨

4 [3, 4 ⊇ 4]

(
Λ∨

3 + Λ∨
5

[
[1, 4 ⊇ 4] + Λ∨

4 [1, 2, 4] +
(

Λ∨
3 + Λ∨

4 + Λ∨
5

[
[1, 3, 4] + 2Λ∨

5 [2, 4, 5]

Λ∨
4 [5 ⊇ 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
5

[
[4, 5 ⊇ 5]

2Λ∨
5 [5 ⊇ 5 ⊇ 5]

Λ∨
2 [1, 5 ⊇ 1] + 2Λ∨

5 [2, 5 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

5

[
[1, 2, 5] + 2Λ∨

5 [3, 5 ⊇ 3] + Λ∨
2 [1, 3, 5]

Λ∨
4 [1, 5 ⊇ 1] + Λ∨

4 [2, 5 ⊇ 2] + Λ∨
4 [3, 5 ⊇ 3]

Λ∨
4 [1, 5 ⊇ 5] + Λ∨

4 [2, 5 ⊇ 5] + Λ∨
4 [3, 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
5

[
[1, 4, 5] +

(
Λ∨

3 + Λ∨
5

[
[2, 4, 5]

Λ∨
4 [4, 5 ⊇ 5]

Λ∨
2 [3, 4, 5]

k 0 1 2 3

compk
([

⎛
⎝

1
1
0

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
0 0
0 0
1 0
0 0
0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.13.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

5 ) [1]+(Λ∨
1 + Λ∨

2 + Λ∨
5 ) [2]+(Λ∨

2 + Λ∨
3 + Λ∨

5 ) [3]+Λ∨
4 [4]
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k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
4 − Λ∨

5

[
[5]

2 Z/2Z⊕Z/2Z Λ∨
4 [5 ⊇ 5] +

(
Λ∨

3 − 2Λ∨
4 + Λ∨

5

[
[4, 5]

Λ∨
5 [1 ⊇ 1] +

(
−Λ∨

5

[
[2 ⊇ 2] + Λ∨

5 [1, 2] +
(

−Λ∨
5

[
[3 ⊇ 3] +

(
−Λ∨

5

[
[4 ⊇ 4] +(

−Λ∨
4 + Λ∨

5

[
[1, 5] +

(
Λ∨

4 − Λ∨
5

[
[2, 5] +

(
Λ∨

4 − Λ∨
5

[
[3, 5] +

(
2Λ∨

4 − 2Λ∨
5

[
[4, 5]

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

3 − Λ∨
4

[
[4, 5 ⊇ 5]

Λ∨
5 [4, 5 ⊇ 4] + Λ∨

4 [4, 5 ⊇ 5] +
(

−Λ∨
2 + 2Λ∨

3 − 2Λ∨
4 + Λ∨

5

[
[3, 4, 5]

Λ∨
5 [1, 5 ⊇ 1] + Λ∨

4 [1, 5 ⊇ 5] +
(

−Λ∨
5

[
[2, 5 ⊇ 2] +

(
−Λ∨

4

[
[2, 5 ⊇ 5] +

(
−Λ∨

5

[
[1, 2, 5] +(

−Λ∨
5

[
[3, 5 ⊇ 3] +

(
−Λ∨

4

[
[3, 5 ⊇ 5] +

(
Λ∨

3 − 2Λ∨
4 + Λ∨

5

[
[1, 4, 5] +(

−Λ∨
3 + 2Λ∨

4 − Λ∨
5

[
[2, 4, 5] +

(
−2Λ∨

3 + 2Λ∨
4

[
[3, 4, 5]

Λ∨
4 [1, 5 ⊇ 1] + Λ∨

4 [1, 5 ⊇ 5] +
(

−Λ∨
4

[
[2, 5 ⊇ 2] +

(
−Λ∨

4

[
[2, 5 ⊇ 5] +

(
−Λ∨

4

[
[1, 2, 5] +(

−Λ∨
4

[
[3, 5 ⊇ 3] +

(
−Λ∨

4

[
[3, 5 ⊇ 5] +

(
Λ∨

3 − 2Λ∨
4 + Λ∨

5

[
[1, 4, 5] +(

−Λ∨
3 + 2Λ∨

4 − Λ∨
5

[
[2, 4, 5] +

(
−2Λ∨

3 + 2Λ∨
4

[
[3, 4, 5]

(
Λ∨

4 − Λ∨
5

[
[5 ⊇ 5 ⊇ 5]

Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] +
(

−Λ∨
5

[
[1, 2, 3] +

(
−Λ∨

5

[
[1, 4 ⊇ 1] +

(
−Λ∨

5

[
[1, 4 ⊇ 4] +(

−Λ∨
5

[
[2, 4 ⊇ 2] +

(
−Λ∨

5

[
[2, 4 ⊇ 4] + Λ∨

5 [1, 3, 4] + Λ∨
5 [2, 3, 4] +

(
−Λ∨

4 + Λ∨
5

[
[1, 3, 5] +(

2Λ∨
4 − 2Λ∨

5

[
[1, 4, 5] +

(
2Λ∨

4 − 2Λ∨
5

[
[2, 4, 5]

k hk(X∨) generating cocycles

0 1 Λ∨
5 []

1 3 Λ∨
5 [1] + Λ∨

5 [2] + Λ∨
5 [3] + Λ∨

5 [4]

Λ∨
4 [5]

Λ∨
5 [5]

2 8 Λ∨
5 [1 ⊇ 1] + Λ∨

5 [2 ⊇ 2] + Λ∨
5 [3 ⊇ 3] + Λ∨

5 [4 ⊇ 4]

Λ∨
5 [1, 3] + Λ∨

5 [1, 4] + Λ∨
5 [2, 4]

Λ∨
4 [5 ⊇ 5]

Λ∨
5 [5 ⊇ 5]

Λ∨
4 [1, 5] + Λ∨

4 [2, 5] + Λ∨
4 [3, 5]

Λ∨
5 [1, 5] + Λ∨

5 [2, 5] + Λ∨
5 [3, 5]

Λ∨
3 [4, 5]

Λ∨
5 [4, 5]
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k hk(X∨) generating cocycles

3 18 Λ∨
5 [1 ⊇ 1 ⊇ 1] + Λ∨

5 [2 ⊇ 2 ⊇ 2] + Λ∨
5 [3 ⊇ 3 ⊇ 3] + Λ∨

5 [4 ⊇ 4 ⊇ 4]

Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] + Λ∨
5 [1, 4 ⊇ 1] + Λ∨

5 [1, 4 ⊇ 4] + Λ∨
5 [2, 4 ⊇ 2] + Λ∨

5 [2, 4 ⊇ 4]

Λ∨
5 [1, 2, 3] + Λ∨

5 [2, 3, 4]

Λ∨
4 [5 ⊇ 5 ⊇ 5]

Λ∨
5 [5 ⊇ 5 ⊇ 5]

Λ∨
4 [1, 5 ⊇ 1] + Λ∨

4 [2, 5 ⊇ 2] + Λ∨
4 [3, 5 ⊇ 3]

Λ∨
5 [1, 5 ⊇ 1] + Λ∨

5 [2, 5 ⊇ 2] + Λ∨
5 [3, 5 ⊇ 3]

Λ∨
4 [1, 5 ⊇ 5] + Λ∨

4 [2, 5 ⊇ 5] + Λ∨
4 [3, 5 ⊇ 5]

Λ∨
5 [1, 5 ⊇ 5] + Λ∨

5 [2, 5 ⊇ 5] + Λ∨
5 [3, 5 ⊇ 5]

Λ∨
5 [1, 3, 5]

Λ∨
3 [4, 5 ⊇ 4]

Λ∨
3 [4, 5 ⊇ 5]

Λ∨
4 [4, 5 ⊇ 5]

Λ∨
5 [4, 5 ⊇ 5]

Λ∨
3 [1, 4, 5] + Λ∨

3 [2, 4, 5]

Λ∨
5 [1, 4, 5] + Λ∨

5 [2, 4, 5]

Λ∨
2 [3, 4, 5]

Λ∨
5 [3, 4, 5]

k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.13.3 Cohomology with trivial coefficients
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k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [5 ⊇ 5]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4]

3 Z/2Z⊕Z/2Z⊕Z/2Z [4, 5 ⊇ 4] + [4, 5 ⊇ 5]

[1, 5 ⊇ 1] + [1, 5 ⊇ 5] + (−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [1, 2, 5] +
(−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3] + [4]

[5]

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4]

[1, 3] + [1, 4] + [2, 4]

[5 ⊇ 5]

[1, 5] + [2, 5] + [3, 5]

[4, 5]

3 11 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4]

[1, 2, 3] + [2, 3, 4]

[5 ⊇ 5 ⊇ 5]

[1, 5 ⊇ 1] + [2, 5 ⊇ 2] + [3, 5 ⊇ 3]

[1, 5 ⊇ 5] + [2, 5 ⊇ 5] + [3, 5 ⊇ 5]

[1, 3, 5]

[4, 5 ⊇ 4]

[4, 5 ⊇ 5]

[1, 4, 5] + [2, 4, 5]

[3, 4, 5]
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A.14 Root system B6

Dynkin diagram 1 2 3 4 5 6

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
5 ∈ P∨ mod Q∨

A.14.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
4 − 2Λ∨

5 + Λ∨
6

[
[5]

2 Z/2Z 2Λ∨
5 [1 ⊇ 1] +

(
−2Λ∨

5

[
[2 ⊇ 2] + 2Λ∨

5 [1, 2] +
(

−2Λ∨
5

[
[3 ⊇ 3] +

(
−2Λ∨

5

[
[4 ⊇ 4] +(

−Λ∨
4 − Λ∨

6

[
[5 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − Λ∨

6

[
[1, 5] +

(
Λ∨

4 − 2Λ∨
5 + Λ∨

6

[
[2, 5] +(

Λ∨
4 − 2Λ∨

5 + Λ∨
6

[
[3, 5] +

(
−Λ∨

3 + 3Λ∨
4 − 3Λ∨

5 + Λ∨
6

[
[4, 5] +

(
2Λ∨

5 − 2Λ∨
6

[
[5, 6]

3 Z/2Z⊕Z/2Z⊕Z/2Z
(

Λ∨
4 − Λ∨

6

[
[5, 6 ⊇ 5]

(
Λ∨

4 − 2Λ∨
5 − Λ∨

6

[
[1, 5 ⊇ 1] +

(
−2Λ∨

6

[
[1, 5 ⊇ 5] +

(
−Λ∨

4 − 2Λ∨
5 − Λ∨

6

[
[2, 5 ⊇ 2] +(

−2Λ∨
4 − 2Λ∨

6

[
[2, 5 ⊇ 5] +

(
−Λ∨

4

[
[1, 2, 5] +

(
−Λ∨

4 − 2Λ∨
5 − Λ∨

6

[
[3, 5 ⊇ 3] +(

−Λ∨
2 + 2Λ∨

3 − 3Λ∨
4 − 2Λ∨

6

[
[3, 5 ⊇ 5] + Λ∨

6 [1, 4, 5] +
(

2Λ∨
4 − 2Λ∨

5 + 2Λ∨
6

[
[2, 4, 5] +(

Λ∨
2 + 3Λ∨

6

[
[3, 4, 5]+

(
4Λ∨

5 − 4Λ∨
6

[
[1, 5, 6]+

(
4Λ∨

5 − 4Λ∨
6

[
[2, 5, 6]+

(
4Λ∨

5 − 4Λ∨
6

[
[3, 5, 6]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

−2Λ∨
5

[
[1, 2, 3] +

(
−2Λ∨

5

[
[1, 4 ⊇ 1] +(

−2Λ∨
5

[
[1, 4 ⊇ 4] +

(
−2Λ∨

5

[
[2, 4 ⊇ 2] +

(
−2Λ∨

5

[
[2, 4 ⊇ 4] + 2Λ∨

5 [1, 3, 4] +

2Λ∨
5 [2, 3, 4] +

(
−2Λ∨

5

[
[1, 5 ⊇ 1] +

(
−Λ∨

4 − Λ∨
6

[
[1, 5 ⊇ 5] +

(
−2Λ∨

5

[
[2, 5 ⊇ 2] +(

−Λ∨
4 − Λ∨

6

[
[2, 5 ⊇ 5] +

(
−2Λ∨

5

[
[3, 5 ⊇ 3] +

(
−Λ∨

4 − Λ∨
6

[
[3, 5 ⊇ 5] +(

−Λ∨
4 + 2Λ∨

5 − Λ∨
6

[
[1, 3, 5] +

(
−Λ∨

3 + 3Λ∨
4 − 3Λ∨

5 + Λ∨
6

[
[1, 4, 5] +(

−Λ∨
3 + 3Λ∨

4 − 3Λ∨
5 + Λ∨

6

[
[2, 4, 5] +

(
Λ∨

3 − Λ∨
4 + Λ∨

5 + Λ∨
6

[
[3, 4, 5] +(

2Λ∨
5 − 2Λ∨

6

[
[1, 5, 6] +

(
2Λ∨

5 − 2Λ∨
6

[
[2, 5, 6] +

(
2Λ∨

5 − 2Λ∨
6

[
[3, 5, 6]

k hk(X∨) generating cocycles

0 1 2Λ∨
5 []

1 2 Λ∨
2 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4] + 2Λ∨
5 [5]

2Λ∨
5 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4] + 2Λ∨
5 [5]

2 4 Λ∨
2 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
5

[
[1, 2] + 2Λ∨

5 [3 ⊇ 3] + 2Λ∨
5 [4 ⊇ 4] + 2Λ∨

5 [5 ⊇ 5] +(
Λ∨

4 + 2Λ∨
5 + Λ∨

6

[
[2, 5] +

(
Λ∨

2 + Λ∨
6

[
[3, 5]

2Λ∨
5 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4] + 2Λ∨
5 [5 ⊇ 5]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
5

[
[2, 3] + 2Λ∨

5 [1, 4] + 2Λ∨
5 [2, 4] +

(
Λ∨

1 + Λ∨
5

[
[3, 4] + 2Λ∨

5 [1, 5] + 2Λ∨
5 [2, 5] +(

Λ∨
4 + Λ∨

6

[
[3, 5]

(
Λ∨

4 + 2Λ∨
5 + Λ∨

6

[
[5 ⊇ 5] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

5

[
[3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[4, 5]
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k hk(X∨) generating cocycles

3 10 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

5

[
[1, 2 ⊇ 2] +

2Λ∨
5 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
5 [4 ⊇ 4 ⊇ 4] + 2Λ∨

5 [2, 3, 4] + 2Λ∨
5 [5 ⊇ 5 ⊇ 5] +(

Λ∨
4 + 2Λ∨

5 + Λ∨
6

[
[2, 5 ⊇ 2] +

(
Λ∨

4 + 2Λ∨
5 + Λ∨

6

[
[3, 5 ⊇ 3] +

(
Λ∨

2 + Λ∨
6

[
[3, 5 ⊇ 5] + Λ∨

2 [1, 3, 5] +(
Λ∨

1 + Λ∨
5

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5 + Λ∨
6

[
[3, 4, 5] + 2Λ∨

5 [3, 5, 6]

2Λ∨
5 [1 ⊇ 1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4 ⊇ 4] + 2Λ∨
5 [5 ⊇ 5 ⊇ 5]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

5

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

5

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
5

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
5 [2, 3, 4] +(

Λ∨
4 + 2Λ∨

5 + Λ∨
6

[
[2, 5 ⊇ 2] + 2Λ∨

5 [3, 4, 5]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

5

[
[1, 2, 3] + 2Λ∨

5 [1, 4 ⊇ 1] + 2Λ∨
5 [1, 4 ⊇ 4] +

2Λ∨
5 [2, 4 ⊇ 2] + 2Λ∨

5 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

5

[
[1, 3, 4] + 2Λ∨

5 [1, 5 ⊇ 1] + 2Λ∨
5 [1, 5 ⊇ 5] + 2Λ∨

5 [2, 5 ⊇ 2] +

2Λ∨
5 [2, 5 ⊇ 5] + 2Λ∨

5 [3, 5 ⊇ 3] + 2Λ∨
5 [3, 5 ⊇ 5] + Λ∨

4 [1, 3, 5]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
5

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
5

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

5

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

5

[
[1, 3, 4] +

(
Λ∨

3 + 3Λ∨
5

[
[2, 3, 4] +

(
Λ∨

4 + 2Λ∨
5 + Λ∨

6

[
[3, 5 ⊇ 3] +

(
Λ∨

2 + Λ∨
6

[
[3, 5 ⊇ 5] +(

Λ∨
2 + Λ∨

4

[
[1, 3, 5] +

(
Λ∨

1 + Λ∨
5

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5 + Λ∨
6

[
[3, 4, 5] + 2Λ∨

5 [3, 5, 6]

(
Λ∨

4 + 2Λ∨
5 + Λ∨

6

[
[5 ⊇ 5 ⊇ 5] +

(
Λ∨

2 + Λ∨
6

[
[3, 5 ⊇ 5] + Λ∨

2 [1, 3, 5] +
(

Λ∨
1 + Λ∨

5

[
[2, 3, 5] +

Λ∨
4 [4, 5 ⊇ 4] +

(
Λ∨

3 + 3Λ∨
5 + Λ∨

6

[
[4, 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
5

[
[3, 4, 5] + 2Λ∨

5 [3, 5, 6]

(
Λ∨

2 + 2Λ∨
5

[
[1, 5 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + 2Λ∨
5

[
[1, 2, 5] +

(
Λ∨

2 + Λ∨
4

[
[1, 3, 5] +(

Λ∨
1 + Λ∨

3 + 2Λ∨
5

[
[1, 4, 5] + 2Λ∨

5 [2, 4, 5]

(
Λ∨

4 + 2Λ∨
5 + Λ∨

6

[
[1, 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
5

[
[1, 2, 5] +

(
Λ∨

2 + Λ∨
4

[
[1, 3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[1, 4, 5] +(

2Λ∨
5 + Λ∨

6

[
[2, 4, 5] + 2Λ∨

5 [2, 5, 6] + 2Λ∨
5 [3, 5, 6]

2Λ∨
5 [5, 6 ⊇ 5]

Λ∨
4 [5, 6 ⊇ 6]

k 0 1 2 3

compk
([ ⎤

1
1

⎣
⎛
⎜⎜⎝

1
0
0
0

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1 0
0 1 1
0 0 1
0 0 0
1 0 0
1 1 0
0 0 0
0 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.14.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

6 ) [1] + (Λ∨
1 + Λ∨

2 + Λ∨
6 ) [2] + (Λ∨

2 + Λ∨
3 + Λ∨

6 ) [3] +
(Λ∨

3 + Λ∨
4 + Λ∨

6 ) [4] + Λ∨
5 [5]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
5 − Λ∨

6

[
[6]
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k Hk(W0,X
∨) generating cocycles

2 Z/2Z⊕Z/2Z Λ∨
5 [6 ⊇ 6] +

(
Λ∨

4 − 2Λ∨
5 + Λ∨

6

[
[5, 6]

Λ∨
6 [1 ⊇ 1] +

(
−Λ∨

6

[
[2 ⊇ 2] + Λ∨

6 [1, 2] +
(

−Λ∨
6

[
[3 ⊇ 3] +

(
−Λ∨

6

[
[4 ⊇ 4] +(

−Λ∨
6

[
[5 ⊇ 5] +

(
−Λ∨

5 + Λ∨
6

[
[1, 6] +

(
Λ∨

5 − Λ∨
6

[
[2, 6] +

(
Λ∨

5 − Λ∨
6

[
[3, 6] +(

Λ∨
5 − Λ∨

6

[
[4, 6] +

(
2Λ∨

5 − 2Λ∨
6

[
[5, 6]

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

4 − Λ∨
5

[
[5, 6 ⊇ 6]

Λ∨
6 [5, 6 ⊇ 5] + Λ∨

5 [5, 6 ⊇ 6] +
(

−Λ∨
3 + 2Λ∨

4 − 2Λ∨
5 + Λ∨

6

[
[4, 5, 6]

Λ∨
6 [1, 6 ⊇ 1] + Λ∨

5 [1, 6 ⊇ 6] +
(

−Λ∨
6

[
[2, 6 ⊇ 2] +

(
−Λ∨

5

[
[2, 6 ⊇ 6] +

(
−Λ∨

6

[
[1, 2, 6] +(

−Λ∨
6

[
[3, 6 ⊇ 3] +

(
−Λ∨

5

[
[3, 6 ⊇ 6] +

(
−Λ∨

6

[
[4, 6 ⊇ 4] +

(
−Λ∨

5

[
[4, 6 ⊇ 6] +(

Λ∨
4 − 2Λ∨

5 + Λ∨
6

[
[1, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5 − Λ∨

6

[
[2, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5 − Λ∨

6

[
[3, 5, 6] +(

−2Λ∨
4 + 2Λ∨

5

[
[4, 5, 6]

Λ∨
5 [1, 6 ⊇ 1] + Λ∨

5 [1, 6 ⊇ 6] +
(

−Λ∨
5

[
[2, 6 ⊇ 2] +

(
−Λ∨

5

[
[2, 6 ⊇ 6] +

(
−Λ∨

5

[
[1, 2, 6] +(

−Λ∨
5

[
[3, 6 ⊇ 3] +

(
−Λ∨

5

[
[3, 6 ⊇ 6] +

(
−Λ∨

5

[
[4, 6 ⊇ 4] +

(
−Λ∨

5

[
[4, 6 ⊇ 6] +(

Λ∨
4 − 2Λ∨

5 + Λ∨
6

[
[1, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5 − Λ∨

6

[
[2, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5 − Λ∨

6

[
[3, 5, 6] +(

−2Λ∨
4 + 2Λ∨

5

[
[4, 5, 6]

(
Λ∨

5 − Λ∨
6

[
[6 ⊇ 6 ⊇ 6]

Λ∨
6 [1, 3 ⊇ 1] + Λ∨

6 [1, 3 ⊇ 3] +
(

−Λ∨
6

[
[1, 2, 3] +

(
−Λ∨

6

[
[1, 4 ⊇ 1] +

(
−Λ∨

6

[
[1, 4 ⊇ 4] +(

−Λ∨
6

[
[2, 4 ⊇ 2] +

(
−Λ∨

6

[
[2, 4 ⊇ 4] + Λ∨

6 [1, 3, 4] + Λ∨
6 [2, 3, 4] +

(
−Λ∨

6

[
[1, 5 ⊇ 1] +(

−Λ∨
6

[
[1, 5 ⊇ 5] +

(
−Λ∨

6

[
[2, 5 ⊇ 2] +

(
−Λ∨

6

[
[2, 5 ⊇ 5] +

(
−Λ∨

6

[
[3, 5 ⊇ 3] +(

−Λ∨
6

[
[3, 5 ⊇ 5] + Λ∨

6 [3, 4, 5] +
(

−Λ∨
5 + Λ∨

6

[
[1, 3, 6] +

(
Λ∨

5 − Λ∨
6

[
[1, 4, 6] +(

Λ∨
5 − Λ∨

6

[
[2, 4, 6]+

(
2Λ∨

5 − 2Λ∨
6

[
[1, 5, 6]+

(
2Λ∨

5 − 2Λ∨
6

[
[2, 5, 6]+

(
2Λ∨

5 − 2Λ∨
6

[
[3, 5, 6]

k hk(X∨) generating cocycles

0 1 Λ∨
6 []

1 3 Λ∨
6 [1] + Λ∨

6 [2] + Λ∨
6 [3] + Λ∨

6 [4] + Λ∨
6 [5]

Λ∨
5 [6]

Λ∨
6 [6]

2 8 Λ∨
6 [1 ⊇ 1] + Λ∨

6 [2 ⊇ 2] + Λ∨
6 [3 ⊇ 3] + Λ∨

6 [4 ⊇ 4] + Λ∨
6 [5 ⊇ 5]

Λ∨
6 [1, 3] + Λ∨

6 [1, 4] + Λ∨
6 [2, 4] + Λ∨

6 [1, 5] + Λ∨
6 [2, 5] + Λ∨

6 [3, 5]

Λ∨
5 [6 ⊇ 6]

Λ∨
6 [6 ⊇ 6]

Λ∨
5 [1, 6] + Λ∨

5 [2, 6] + Λ∨
5 [3, 6] + Λ∨

5 [4, 6]

Λ∨
6 [1, 6] + Λ∨

6 [2, 6] + Λ∨
6 [3, 6] + Λ∨

6 [4, 6]

Λ∨
4 [5, 6]

Λ∨
6 [5, 6]
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k hk(X∨) generating cocycles

3 19 Λ∨
6 [1 ⊇ 1 ⊇ 1] + Λ∨

6 [2 ⊇ 2 ⊇ 2] + Λ∨
6 [3 ⊇ 3 ⊇ 3] + Λ∨

6 [4 ⊇ 4 ⊇ 4] + Λ∨
6 [5 ⊇ 5 ⊇ 5]

Λ∨
6 [1, 3 ⊇ 1] + Λ∨

6 [1, 3 ⊇ 3] + Λ∨
6 [1, 4 ⊇ 1] + Λ∨

6 [1, 4 ⊇ 4] + Λ∨
6 [2, 4 ⊇ 2] + Λ∨

6 [2, 4 ⊇ 4] +
Λ∨

6 [1, 5 ⊇ 1] + Λ∨
6 [1, 5 ⊇ 5] + Λ∨

6 [2, 5 ⊇ 2] + Λ∨
6 [2, 5 ⊇ 5] + Λ∨

6 [3, 5 ⊇ 3] + Λ∨
6 [3, 5 ⊇ 5]

Λ∨
6 [1, 2, 3] + Λ∨

6 [2, 3, 4] + Λ∨
6 [3, 4, 5]

Λ∨
5 [6 ⊇ 6 ⊇ 6]

Λ∨
6 [6 ⊇ 6 ⊇ 6]

Λ∨
5 [1, 6 ⊇ 1] + Λ∨

5 [2, 6 ⊇ 2] + Λ∨
5 [3, 6 ⊇ 3] + Λ∨

5 [4, 6 ⊇ 4]

Λ∨
6 [1, 6 ⊇ 1] + Λ∨

6 [2, 6 ⊇ 2] + Λ∨
6 [3, 6 ⊇ 3] + Λ∨

6 [4, 6 ⊇ 4]

Λ∨
5 [1, 6 ⊇ 6] + Λ∨

5 [2, 6 ⊇ 6] + Λ∨
5 [3, 6 ⊇ 6] + Λ∨

5 [4, 6 ⊇ 6]

Λ∨
6 [1, 6 ⊇ 6] + Λ∨

6 [2, 6 ⊇ 6] + Λ∨
6 [3, 6 ⊇ 6] + Λ∨

6 [4, 6 ⊇ 6]

Λ∨
5 [1, 3, 6] + Λ∨

5 [1, 4, 6] + Λ∨
5 [2, 4, 6]

Λ∨
6 [1, 3, 6] + Λ∨

6 [1, 4, 6] + Λ∨
6 [2, 4, 6]

Λ∨
4 [5, 6 ⊇ 5]

Λ∨
4 [5, 6 ⊇ 6]

Λ∨
5 [5, 6 ⊇ 6]

Λ∨
6 [5, 6 ⊇ 6]

Λ∨
4 [1, 5, 6] + Λ∨

4 [2, 5, 6] + Λ∨
4 [3, 5, 6]

Λ∨
6 [1, 5, 6] + Λ∨

6 [2, 5, 6] + Λ∨
6 [3, 5, 6]

Λ∨
3 [4, 5, 6]

Λ∨
6 [4, 5, 6]

k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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A.14.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [6 ⊇ 6]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5]

3 Z/2Z⊕Z/2Z⊕Z/2Z [5, 6 ⊇ 5] + [5, 6 ⊇ 6]

[1, 6 ⊇ 1] + [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [1, 2, 6] +
(−1) [3, 6 ⊇ 3] + (−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3] + [4] + [5]

[6]

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5]

[6 ⊇ 6]

[1, 6] + [2, 6] + [3, 6] + [4, 6]

[5, 6]

3 12 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5]

[1, 3, 5]

[6 ⊇ 6 ⊇ 6]

[1, 6 ⊇ 1] + [2, 6 ⊇ 2] + [3, 6 ⊇ 3] + [4, 6 ⊇ 4]

[1, 6 ⊇ 6] + [2, 6 ⊇ 6] + [3, 6 ⊇ 6] + [4, 6 ⊇ 6]

[1, 3, 6] + [1, 4, 6] + [2, 4, 6]

[5, 6 ⊇ 5]

[5, 6 ⊇ 6]

[1, 5, 6] + [2, 5, 6] + [3, 5, 6]

[4, 5, 6]
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A.15 Root system B7

Dynkin diagram 1 2 3 4 5 6 7

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
7 ∈ P∨ mod Q∨

A.15.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 0, 1, 0, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

2Λ∨
6 − 2Λ∨

7

[
[7]

2 Z/2Z⊕Z/2Z Λ∨
6 [7 ⊇ 7] +

(
Λ∨

5 − 2Λ∨
6 + Λ∨

7

[
[6, 7]

2Λ∨
7 [1 ⊇ 1] +

(
−2Λ∨

7

[
[2 ⊇ 2] + 2Λ∨

7 [1, 2] +
(

−2Λ∨
7

[
[3 ⊇ 3] +

(
−2Λ∨

7

[
[4 ⊇ 4] +(

−2Λ∨
7

[
[5 ⊇ 5] +

(
−2Λ∨

7

[
[6 ⊇ 6] +

(
−2Λ∨

6 + 2Λ∨
7

[
[1, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[2, 7] +(

2Λ∨
6 − 2Λ∨

7

[
[3, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[4, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[5, 7] +

(
4Λ∨

6 − 4Λ∨
7

[
[6, 7]

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

2Λ∨
7 [6, 7 ⊇ 6] + 2Λ∨

6 [6, 7 ⊇ 7] +
(

−2Λ∨
4 + 4Λ∨

5 − 4Λ∨
6 + 2Λ∨

7

[
[5, 6, 7]

(
Λ∨

4 − 2Λ∨
5 + Λ∨

6

[
[5, 7 ⊇ 7]

2Λ∨
7 [1, 7 ⊇ 1] + 2Λ∨

6 [1, 7 ⊇ 7] +
(

−2Λ∨
7

[
[2, 7 ⊇ 2] +

(
−2Λ∨

6

[
[2, 7 ⊇ 7] +(

−2Λ∨
7

[
[1, 2, 7] +

(
−2Λ∨

7

[
[3, 7 ⊇ 3] +

(
−2Λ∨

6

[
[3, 7 ⊇ 7] +

(
−2Λ∨

7

[
[4, 7 ⊇ 4] +(

−2Λ∨
6

[
[4, 7 ⊇ 7] +

(
−2Λ∨

7

[
[5, 7 ⊇ 5] +

(
−2Λ∨

6

[
[5, 7 ⊇ 7] +(

2Λ∨
5 − 4Λ∨

6 + 2Λ∨
7

[
[1, 6, 7] +

(
−2Λ∨

5 + 4Λ∨
6 − 2Λ∨

7

[
[2, 6, 7] +(

−2Λ∨
5 + 4Λ∨

6 − 2Λ∨
7

[
[3, 6, 7] +

(
−2Λ∨

5 + 4Λ∨
6 − 2Λ∨

7

[
[4, 6, 7] +

(
−4Λ∨

5 + 4Λ∨
6

[
[5, 6, 7]

Λ∨
6 [1, 7 ⊇ 1] + Λ∨

6 [1, 7 ⊇ 7] +
(

−Λ∨
6

[
[2, 7 ⊇ 2] +

(
−Λ∨

6

[
[2, 7 ⊇ 7] +

(
−Λ∨

6

[
[1, 2, 7] +(

−Λ∨
6

[
[3, 7 ⊇ 3] +

(
−Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6

[
[4, 7 ⊇ 4] +

(
−Λ∨

6

[
[4, 7 ⊇ 7] +(

−Λ∨
6

[
[5, 7 ⊇ 5] +

(
−Λ∨

6

[
[5, 7 ⊇ 7] +

(
Λ∨

5 − 2Λ∨
6 + Λ∨

7

[
[1, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − Λ∨
7

[
[2, 6, 7] +

(
−Λ∨

5 + 2Λ∨
6 − Λ∨

7

[
[3, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − Λ∨
7

[
[4, 6, 7] +

(
−2Λ∨

5 + 2Λ∨
6

[
[5, 6, 7]

2Λ∨
7 [1, 3 ⊇ 1]+2Λ∨

7 [1, 3 ⊇ 3]+
(

−2Λ∨
7

[
[1, 2, 3]+

(
−2Λ∨

7

[
[1, 4 ⊇ 1]+

(
−2Λ∨

7

[
[1, 4 ⊇ 4]+(

−2Λ∨
7

[
[2, 4 ⊇ 2] +

(
−2Λ∨

7

[
[2, 4 ⊇ 4] + 2Λ∨

7 [1, 3, 4] + 2Λ∨
7 [2, 3, 4] +

(
−2Λ∨

7

[
[1, 5 ⊇ 1] +(

−2Λ∨
7

[
[1, 5 ⊇ 5] +

(
−2Λ∨

7

[
[2, 5 ⊇ 2] +

(
−2Λ∨

7

[
[2, 5 ⊇ 5] +

(
−2Λ∨

7

[
[3, 5 ⊇ 3] +(

−2Λ∨
7

[
[3, 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +
(

−2Λ∨
7

[
[1, 6 ⊇ 1] +

(
−2Λ∨

7

[
[1, 6 ⊇ 6] +(

−2Λ∨
7

[
[2, 6 ⊇ 2] +

(
−2Λ∨

7

[
[2, 6 ⊇ 6] +

(
−2Λ∨

7

[
[3, 6 ⊇ 3] +

(
−2Λ∨

7

[
[3, 6 ⊇ 6] +(

−2Λ∨
7

[
[4, 6 ⊇ 4] +

(
−2Λ∨

7

[
[4, 6 ⊇ 6] + 2Λ∨

7 [4, 5, 6] +
(

−2Λ∨
6 + 2Λ∨

7

[
[1, 3, 7] +(

2Λ∨
6 − 2Λ∨

7

[
[1, 4, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[2, 4, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[1, 5, 7] +(

2Λ∨
6 − 2Λ∨

7

[
[2, 5, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[3, 5, 7] +

(
4Λ∨

6 − 4Λ∨
7

[
[1, 6, 7] +(

4Λ∨
6 − 4Λ∨

7

[
[2, 6, 7] +

(
4Λ∨

6 − 4Λ∨
7

[
[3, 6, 7] +

(
4Λ∨

6 − 4Λ∨
7

[
[4, 6, 7]

k hk(X∨) generating cocycles

0 1 2Λ∨
7 []



A.15 Root system B7 187

k hk(X∨) generating cocycles

1 3 Λ∨
2 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6]

2Λ∨
7 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6]

Λ∨
6 [7]

2 7 Λ∨
2 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
7

[
[1, 2] + 2Λ∨

7 [3 ⊇ 3] + 2Λ∨
7 [4 ⊇ 4] + 2Λ∨

7 [5 ⊇ 5] +

2Λ∨
7 [6 ⊇ 6] + 2Λ∨

7 [2, 7] + 2Λ∨
7 [3, 7] + 2Λ∨

7 [4, 7] + 2Λ∨
7 [5, 7]

2Λ∨
7 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5] + 2Λ∨

7 [6 ⊇ 6]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
7

[
[2, 3] + 2Λ∨

7 [1, 4] + 2Λ∨
7 [2, 4] +

(
Λ∨

1 + Λ∨
7

[
[3, 4] + 2Λ∨

7 [1, 5] + 2Λ∨
7 [2, 5] +

2Λ∨
7 [3, 5] + 2Λ∨

7 [1, 6] + 2Λ∨
7 [2, 6] + 2Λ∨

7 [3, 6] + 2Λ∨
7 [4, 6] + 2Λ∨

7 [3, 7]

(
Λ∨

5 + Λ∨
7

[
[6 ⊇ 6] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7

[
[5, 6]

Λ∨
6 [7 ⊇ 7] +

(
Λ∨

5 + Λ∨
7

[
[6, 7]

2Λ∨
7 [7 ⊇ 7]

Λ∨
6 [1, 7] + Λ∨

6 [2, 7] + Λ∨
6 [3, 7] + Λ∨

6 [4, 7] + Λ∨
6 [5, 7]
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k hk(X∨) generating cocycles

3 17 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

7

[
[1, 2 ⊇ 2] +

2Λ∨
7 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
7 [4 ⊇ 4 ⊇ 4] + 2Λ∨

7 [2, 3, 4] + 2Λ∨
7 [5 ⊇ 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +
2Λ∨

7 [6 ⊇ 6 ⊇ 6] + 2Λ∨
7 [4, 5, 6] + 2Λ∨

7 [2, 7 ⊇ 2] + 2Λ∨
7 [3, 7 ⊇ 3] + 2Λ∨

7 [4, 7 ⊇ 4] + 2Λ∨
7 [5, 7 ⊇ 5]

2Λ∨
7 [1 ⊇ 1 ⊇ 1]+2Λ∨

7 [2 ⊇ 2 ⊇ 2]+2Λ∨
7 [3 ⊇ 3 ⊇ 3]+2Λ∨

7 [4 ⊇ 4 ⊇ 4]+2Λ∨
7 [5 ⊇ 5 ⊇ 5]+2Λ∨

7 [6 ⊇ 6 ⊇ 6]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

7

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

7

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
7

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

7

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
7 [2, 3, 4] + 2Λ∨

7 [3, 4, 5] +

2Λ∨
7 [4, 5, 6] + 2Λ∨

7 [2, 7 ⊇ 2]

Λ∨
6 [1, 2 ⊇ 1] + Λ∨

6 [1, 2 ⊇ 2] +
(

Λ∨
5 + Λ∨

7

[
[2, 6 ⊇ 2] +

(
Λ∨

5 + Λ∨
7

[
[3, 6 ⊇ 3] +

(
Λ∨

5 + Λ∨
7

[
[4, 6 ⊇ 4] +

Λ∨
6 [5, 6 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
7

[
[5, 6 ⊇ 6] +

(
Λ∨

5 + Λ∨
7

[
[4, 5, 6]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

7

[
[1, 2, 3] + 2Λ∨

7 [1, 4 ⊇ 1] + 2Λ∨
7 [1, 4 ⊇ 4] +

2Λ∨
7 [2, 4 ⊇ 2] + 2Λ∨

7 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

7

[
[1, 3, 4] + 2Λ∨

7 [1, 5 ⊇ 1] + 2Λ∨
7 [1, 5 ⊇ 5] + 2Λ∨

7 [2, 5 ⊇ 2] +

2Λ∨
7 [2, 5 ⊇ 5] + 2Λ∨

7 [3, 5 ⊇ 3] + 2Λ∨
7 [3, 5 ⊇ 5] + 2Λ∨

7 [1, 6 ⊇ 1] + 2Λ∨
7 [1, 6 ⊇ 6] + 2Λ∨

7 [2, 6 ⊇ 2] +
2Λ∨

7 [2, 6 ⊇ 6] + 2Λ∨
7 [3, 6 ⊇ 3] + 2Λ∨

7 [3, 6 ⊇ 6] + 2Λ∨
7 [4, 6 ⊇ 4] + 2Λ∨

7 [4, 6 ⊇ 6] + 2Λ∨
7 [1, 4, 7] +

2Λ∨
7 [2, 4, 7] + 2Λ∨

7 [1, 5, 7] + 2Λ∨
7 [2, 5, 7] + 2Λ∨

7 [3, 5, 7]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
7

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
7

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

7

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

7

[
[1, 3, 4] +

(
Λ∨

3 + Λ∨
5 + 2Λ∨

7

[
[2, 3, 4] + 2Λ∨

7 [3, 4, 5] + 2Λ∨
7 [4, 5, 6] + 2Λ∨

7 [3, 7 ⊇ 3] +

2Λ∨
7 [4, 7 ⊇ 4] + 2Λ∨

7 [1, 4, 7] + 2Λ∨
7 [2, 4, 7] + 2Λ∨

7 [5, 7 ⊇ 5] + 2Λ∨
7 [1, 5, 7] + 2Λ∨

7 [2, 5, 7] + 2Λ∨
7 [3, 5, 7]

Λ∨
2 [1, 3, 5]+

(
Λ∨

1 + Λ∨
7

[
[2, 3, 5]+2Λ∨

7 [1, 3, 6]+2Λ∨
7 [1, 4, 6]+2Λ∨

7 [2, 4, 6]+
(

Λ∨
1 + Λ∨

7

[
[3, 5, 6]+2Λ∨

7 [3, 5, 7]

(
Λ∨

5 + Λ∨
7

[
[6 ⊇ 6 ⊇ 6] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7

[
[5, 6 ⊇ 5] + Λ∨

6 [5, 6 ⊇ 6]

(
Λ∨

5 + Λ∨
7

[
[1, 6 ⊇ 6] + Λ∨

6 [1, 2, 6] +
(

Λ∨
5 + Λ∨

6 + Λ∨
7

[
[1, 5, 6] + 2Λ∨

7 [2, 6, 7] + 2Λ∨
7 [3, 6, 7] + 2Λ∨

7 [4, 6, 7]

Λ∨
6 [7 ⊇ 7 ⊇ 7] +

(
Λ∨

5 + Λ∨
7

[
[6, 7 ⊇ 7]

2Λ∨
7 [7 ⊇ 7 ⊇ 7]

Λ∨
2 [1, 7 ⊇ 1] + 2Λ∨

7 [2, 7 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
5 + 2Λ∨

7

[
[1, 2, 7] + 2Λ∨

7 [3, 7 ⊇ 3] + 2Λ∨
7 [4, 7 ⊇ 4] +

2Λ∨
7 [5, 7 ⊇ 5] +

(
Λ∨

4 + Λ∨
6 + 2Λ∨

7

[
[2, 5, 7] +

(
Λ∨

2 + Λ∨
6

[
[3, 5, 7]

Λ∨
6 [1, 7 ⊇ 1] + Λ∨

6 [2, 7 ⊇ 2] + Λ∨
6 [3, 7 ⊇ 3] + Λ∨

6 [4, 7 ⊇ 4] + Λ∨
6 [5, 7 ⊇ 5]

Λ∨
6 [1, 7 ⊇ 7] + Λ∨

6 [2, 7 ⊇ 7] + Λ∨
6 [3, 7 ⊇ 7] + Λ∨

6 [4, 7 ⊇ 7] + Λ∨
6 [5, 7 ⊇ 7] +

(
Λ∨

5 + Λ∨
7

[
[1, 6, 7] +(

Λ∨
5 + Λ∨

7

[
[2, 6, 7] +

(
Λ∨

5 + Λ∨
7

[
[3, 6, 7] +

(
Λ∨

5 + Λ∨
7

[
[4, 6, 7]

Λ∨
6 [1, 3, 7] + Λ∨

6 [1, 4, 7] + Λ∨
6 [2, 4, 7] + Λ∨

6 [1, 5, 7] + Λ∨
6 [2, 5, 7] + Λ∨

6 [3, 5, 7]

Λ∨
6 [6, 7 ⊇ 7]

Λ∨
4 [5, 6, 7]
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k 0 1 2 3

compk
([

⎛
⎝

1
1
0

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
0 0
0 0
1 0
0 0
0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.15.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

7 ) [1] + (Λ∨
1 + Λ∨

2 + Λ∨
7 ) [2] + (Λ∨

2 + Λ∨
3 + Λ∨

7 ) [3] +
(Λ∨

3 + Λ∨
4 + Λ∨

7 ) [4] + (Λ∨
4 + Λ∨

5 + Λ∨
7 ) [5] + Λ∨

6 [6]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
6 − Λ∨

7

[
[7]

2 Z/2Z⊕Z/2Z Λ∨
6 [7 ⊇ 7] +

(
Λ∨

5 − 2Λ∨
6 + Λ∨

7

[
[6, 7]

Λ∨
7 [1 ⊇ 1] +

(
−Λ∨

7

[
[2 ⊇ 2] + Λ∨

7 [1, 2] +
(

−Λ∨
7

[
[3 ⊇ 3] +

(
−Λ∨

7

[
[4 ⊇ 4] +(

−Λ∨
7

[
[5 ⊇ 5] +

(
−Λ∨

7

[
[6 ⊇ 6] +

(
−Λ∨

6 + Λ∨
7

[
[1, 7] +

(
Λ∨

6 − Λ∨
7

[
[2, 7] +(

Λ∨
6 − Λ∨

7

[
[3, 7] +

(
Λ∨

6 − Λ∨
7

[
[4, 7] +

(
Λ∨

6 − Λ∨
7

[
[5, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[6, 7]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

5 − Λ∨
6

[
[6, 7 ⊇ 7]

Λ∨
7 [6, 7 ⊇ 6] + Λ∨

6 [6, 7 ⊇ 7] +
(

−Λ∨
4 + 2Λ∨

5 − 2Λ∨
6 + Λ∨

7

[
[5, 6, 7]

Λ∨
7 [1, 7 ⊇ 1] + Λ∨

6 [1, 7 ⊇ 7] +
(

−Λ∨
7

[
[2, 7 ⊇ 2] +

(
−Λ∨

6

[
[2, 7 ⊇ 7] +

(
−Λ∨

7

[
[1, 2, 7] +(

−Λ∨
7

[
[3, 7 ⊇ 3] +

(
−Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

7

[
[4, 7 ⊇ 4] +

(
−Λ∨

6

[
[4, 7 ⊇ 7] +(

−Λ∨
7

[
[5, 7 ⊇ 5] +

(
−Λ∨

6

[
[5, 7 ⊇ 7] +

(
Λ∨

5 − 2Λ∨
6 + Λ∨

7

[
[1, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − Λ∨
7

[
[2, 6, 7] +

(
−Λ∨

5 + 2Λ∨
6 − Λ∨

7

[
[3, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − Λ∨
7

[
[4, 6, 7] +

(
−2Λ∨

5 + 2Λ∨
6

[
[5, 6, 7]

Λ∨
6 [1, 7 ⊇ 1] + Λ∨

6 [1, 7 ⊇ 7] +
(

−Λ∨
6

[
[2, 7 ⊇ 2] +

(
−Λ∨

6

[
[2, 7 ⊇ 7] +

(
−Λ∨

6

[
[1, 2, 7] +(

−Λ∨
6

[
[3, 7 ⊇ 3] +

(
−Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6

[
[4, 7 ⊇ 4] +

(
−Λ∨

6

[
[4, 7 ⊇ 7] +(

−Λ∨
6

[
[5, 7 ⊇ 5] +

(
−Λ∨

6

[
[5, 7 ⊇ 7] +

(
Λ∨

5 − 2Λ∨
6 + Λ∨

7

[
[1, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − Λ∨
7

[
[2, 6, 7] +

(
−Λ∨

5 + 2Λ∨
6 − Λ∨

7

[
[3, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − Λ∨
7

[
[4, 6, 7] +

(
−2Λ∨

5 + 2Λ∨
6

[
[5, 6, 7]

(
Λ∨

6 − Λ∨
7

[
[7 ⊇ 7 ⊇ 7]

Λ∨
7 [1, 3 ⊇ 1] + Λ∨

7 [1, 3 ⊇ 3] +
(

−Λ∨
7

[
[1, 2, 3] +

(
−Λ∨

7

[
[1, 4 ⊇ 1] +

(
−Λ∨

7

[
[1, 4 ⊇ 4] +(

−Λ∨
7

[
[2, 4 ⊇ 2] +

(
−Λ∨

7

[
[2, 4 ⊇ 4] + Λ∨

7 [1, 3, 4] + Λ∨
7 [2, 3, 4] +

(
−Λ∨

7

[
[1, 5 ⊇ 1] +(

−Λ∨
7

[
[1, 5 ⊇ 5] +

(
−Λ∨

7

[
[2, 5 ⊇ 2] +

(
−Λ∨

7

[
[2, 5 ⊇ 5] +

(
−Λ∨

7

[
[3, 5 ⊇ 3] +(

−Λ∨
7

[
[3, 5 ⊇ 5] + Λ∨

7 [3, 4, 5] +
(

−Λ∨
7

[
[1, 6 ⊇ 1] +

(
−Λ∨

7

[
[1, 6 ⊇ 6] +(

−Λ∨
7

[
[2, 6 ⊇ 2] +

(
−Λ∨

7

[
[2, 6 ⊇ 6] +

(
−Λ∨

7

[
[3, 6 ⊇ 3] +

(
−Λ∨

7

[
[3, 6 ⊇ 6] +(

−Λ∨
7

[
[4, 6 ⊇ 4] +

(
−Λ∨

7

[
[4, 6 ⊇ 6] + Λ∨

7 [4, 5, 6] +
(

−Λ∨
6 + Λ∨

7

[
[1, 3, 7] +(

Λ∨
6 − Λ∨

7

[
[1, 4, 7] +

(
Λ∨

6 − Λ∨
7

[
[2, 4, 7] +

(
Λ∨

6 − Λ∨
7

[
[1, 5, 7] +

(
Λ∨

6 − Λ∨
7

[
[2, 5, 7] +(

Λ∨
6 − Λ∨

7

[
[3, 5, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[1, 6, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[2, 6, 7] +(

2Λ∨
6 − 2Λ∨

7

[
[3, 6, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[4, 6, 7]

k hk(X∨) generating cocycles

0 1 Λ∨
7 []

1 3 Λ∨
7 [1] + Λ∨

7 [2] + Λ∨
7 [3] + Λ∨

7 [4] + Λ∨
7 [5] + Λ∨

7 [6]

Λ∨
6 [7]

Λ∨
7 [7]

2 8 Λ∨
7 [1 ⊇ 1] + Λ∨

7 [2 ⊇ 2] + Λ∨
7 [3 ⊇ 3] + Λ∨

7 [4 ⊇ 4] + Λ∨
7 [5 ⊇ 5] + Λ∨

7 [6 ⊇ 6]

Λ∨
7 [1, 3] + Λ∨

7 [1, 4] + Λ∨
7 [2, 4] + Λ∨

7 [1, 5] + Λ∨
7 [2, 5] + Λ∨

7 [3, 5] + Λ∨
7 [1, 6] + Λ∨

7 [2, 6] + Λ∨
7 [3, 6] + Λ∨

7 [4, 6]

Λ∨
6 [7 ⊇ 7]

Λ∨
7 [7 ⊇ 7]

Λ∨
6 [1, 7] + Λ∨

6 [2, 7] + Λ∨
6 [3, 7] + Λ∨

6 [4, 7] + Λ∨
6 [5, 7]

Λ∨
7 [1, 7] + Λ∨

7 [2, 7] + Λ∨
7 [3, 7] + Λ∨

7 [4, 7] + Λ∨
7 [5, 7]

Λ∨
5 [6, 7]

Λ∨
7 [6, 7]
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k hk(X∨) generating cocycles

3 20 Λ∨
7 [1 ⊇ 1 ⊇ 1] + Λ∨

7 [2 ⊇ 2 ⊇ 2] + Λ∨
7 [3 ⊇ 3 ⊇ 3] + Λ∨

7 [4 ⊇ 4 ⊇ 4] + Λ∨
7 [5 ⊇ 5 ⊇ 5] + Λ∨

7 [6 ⊇ 6 ⊇ 6]

Λ∨
7 [1, 3 ⊇ 1] + Λ∨

7 [1, 3 ⊇ 3] + Λ∨
7 [1, 4 ⊇ 1] + Λ∨

7 [1, 4 ⊇ 4] + Λ∨
7 [2, 4 ⊇ 2] + Λ∨

7 [2, 4 ⊇ 4] + Λ∨
7 [1, 5 ⊇ 1] +

Λ∨
7 [1, 5 ⊇ 5] + Λ∨

7 [2, 5 ⊇ 2] + Λ∨
7 [2, 5 ⊇ 5] + Λ∨

7 [3, 5 ⊇ 3] + Λ∨
7 [3, 5 ⊇ 5] + Λ∨

7 [1, 6 ⊇ 1] +
Λ∨

7 [1, 6 ⊇ 6] + Λ∨
7 [2, 6 ⊇ 2] + Λ∨

7 [2, 6 ⊇ 6] + Λ∨
7 [3, 6 ⊇ 3] + Λ∨

7 [3, 6 ⊇ 6] + Λ∨
7 [4, 6 ⊇ 4] + Λ∨

7 [4, 6 ⊇ 6]

Λ∨
7 [1, 2, 3] + Λ∨

7 [2, 3, 4] + Λ∨
7 [3, 4, 5] + Λ∨

7 [4, 5, 6]

Λ∨
7 [1, 3, 5] + Λ∨

7 [1, 3, 6] + Λ∨
7 [1, 4, 6] + Λ∨

7 [2, 4, 6]

Λ∨
6 [7 ⊇ 7 ⊇ 7]

Λ∨
7 [7 ⊇ 7 ⊇ 7]

Λ∨
6 [1, 7 ⊇ 1] + Λ∨

6 [2, 7 ⊇ 2] + Λ∨
6 [3, 7 ⊇ 3] + Λ∨

6 [4, 7 ⊇ 4] + Λ∨
6 [5, 7 ⊇ 5]

Λ∨
7 [1, 7 ⊇ 1] + Λ∨

7 [2, 7 ⊇ 2] + Λ∨
7 [3, 7 ⊇ 3] + Λ∨

7 [4, 7 ⊇ 4] + Λ∨
7 [5, 7 ⊇ 5]

Λ∨
6 [1, 7 ⊇ 7] + Λ∨

6 [2, 7 ⊇ 7] + Λ∨
6 [3, 7 ⊇ 7] + Λ∨

6 [4, 7 ⊇ 7] + Λ∨
6 [5, 7 ⊇ 7]

Λ∨
7 [1, 7 ⊇ 7] + Λ∨

7 [2, 7 ⊇ 7] + Λ∨
7 [3, 7 ⊇ 7] + Λ∨

7 [4, 7 ⊇ 7] + Λ∨
7 [5, 7 ⊇ 7]

Λ∨
6 [1, 3, 7] + Λ∨

6 [1, 4, 7] + Λ∨
6 [2, 4, 7] + Λ∨

6 [1, 5, 7] + Λ∨
6 [2, 5, 7] + Λ∨

6 [3, 5, 7]

Λ∨
7 [1, 3, 7] + Λ∨

7 [1, 4, 7] + Λ∨
7 [2, 4, 7] + Λ∨

7 [1, 5, 7] + Λ∨
7 [2, 5, 7] + Λ∨

7 [3, 5, 7]

Λ∨
5 [6, 7 ⊇ 6]

Λ∨
5 [6, 7 ⊇ 7]

Λ∨
6 [6, 7 ⊇ 7]

Λ∨
7 [6, 7 ⊇ 7]

Λ∨
5 [1, 6, 7] + Λ∨

5 [2, 6, 7] + Λ∨
5 [3, 6, 7] + Λ∨

5 [4, 6, 7]

Λ∨
7 [1, 6, 7] + Λ∨

7 [2, 6, 7] + Λ∨
7 [3, 6, 7] + Λ∨

7 [4, 6, 7]

Λ∨
4 [5, 6, 7]

Λ∨
7 [5, 6, 7]

k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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A.15.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [7 ⊇ 7]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] + (−1) [6 ⊇ 6]

3 Z/2Z⊕Z/2Z⊕Z/2Z [6, 7 ⊇ 6] + [6, 7 ⊇ 7]

[1, 7 ⊇ 1] + [1, 7 ⊇ 7] + (−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [1, 2, 7] + (−1) [3, 7 ⊇ 3] +
(−1) [3, 7 ⊇ 7] + (−1) [4, 7 ⊇ 4] + (−1) [4, 7 ⊇ 7] + (−1) [5, 7 ⊇ 5] + (−1) [5, 7 ⊇ 7]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3] + [4] + [5] + [6]

[7]

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5] + [1, 6] + [2, 6] + [3, 6] + [4, 6]

[7 ⊇ 7]

[1, 7] + [2, 7] + [3, 7] + [4, 7] + [5, 7]

[6, 7]

3 12 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [4, 5, 6]

[1, 3, 5] + [1, 3, 6] + [1, 4, 6] + [2, 4, 6]

[7 ⊇ 7 ⊇ 7]

[1, 7 ⊇ 1] + [2, 7 ⊇ 2] + [3, 7 ⊇ 3] + [4, 7 ⊇ 4] + [5, 7 ⊇ 5]

[1, 7 ⊇ 7] + [2, 7 ⊇ 7] + [3, 7 ⊇ 7] + [4, 7 ⊇ 7] + [5, 7 ⊇ 7]

[1, 3, 7] + [1, 4, 7] + [2, 4, 7] + [1, 5, 7] + [2, 5, 7] + [3, 5, 7]

[6, 7 ⊇ 6]

[6, 7 ⊇ 7]

[1, 6, 7] + [2, 6, 7] + [3, 6, 7] + [4, 6, 7]

[5, 6, 7]
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A.16 Root system B8

Dynkin diagram 1 2 3 4 5 6 7 8

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
7 ∈ P∨ mod Q∨

A.16.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
6 − 2Λ∨

7 + Λ∨
8

[
[7]

2 Z/2Z 2Λ∨
7 [1 ⊇ 1] +

(
−2Λ∨

7

[
[2 ⊇ 2] + 2Λ∨

7 [1, 2] +
(

−2Λ∨
7

[
[3 ⊇ 3] +

(
−2Λ∨

7

[
[4 ⊇ 4] +(

−2Λ∨
7

[
[5 ⊇ 5] +

(
−2Λ∨

7

[
[6 ⊇ 6] +

(
−Λ∨

6 − Λ∨
8

[
[7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7 − Λ∨

8

[
[1, 7] +(

Λ∨
6 − 2Λ∨

7 + Λ∨
8

[
[2, 7] +

(
Λ∨

6 − 2Λ∨
7 + Λ∨

8

[
[3, 7] +

(
Λ∨

6 − 2Λ∨
7 + Λ∨

8

[
[4, 7] +(

Λ∨
6 − 2Λ∨

7 + Λ∨
8

[
[5, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7 + Λ∨
8

[
[6, 7] +

(
2Λ∨

7 − 2Λ∨
8

[
[7, 8]

3 Z/2Z⊕Z/2Z⊕Z/2Z
(

Λ∨
6 − Λ∨

8

[
[7, 8 ⊇ 7]

(
Λ∨

6 − 2Λ∨
7 − Λ∨

8

[
[1, 7 ⊇ 1] +

(
−2Λ∨

8

[
[1, 7 ⊇ 7] +

(
−Λ∨

6 − 2Λ∨
7 − Λ∨

8

[
[2, 7 ⊇ 2] +(

−2Λ∨
6 − 2Λ∨

8

[
[2, 7 ⊇ 7] +

(
−Λ∨

6

[
[1, 2, 7] +

(
−Λ∨

6 − 2Λ∨
7 − Λ∨

8

[
[3, 7 ⊇ 3] +(

−2Λ∨
6 − 2Λ∨

8

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 − 2Λ∨
7 − Λ∨

8

[
[4, 7 ⊇ 4] +

(
−2Λ∨

6 − 2Λ∨
8

[
[4, 7 ⊇ 7] +(

−Λ∨
6 − 2Λ∨

7 − Λ∨
8

[
[5, 7 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − 3Λ∨

6 − 2Λ∨
8

[
[5, 7 ⊇ 7] + Λ∨

8 [1, 6, 7] +(
2Λ∨

6 − 2Λ∨
7 + 2Λ∨

8

[
[2, 6, 7]+

(
2Λ∨

6 − 2Λ∨
7 + 2Λ∨

8

[
[3, 6, 7]+

(
2Λ∨

6 − 2Λ∨
7 + 2Λ∨

8

[
[4, 6, 7]+(

Λ∨
4 + 3Λ∨

8

[
[5, 6, 7] +

(
4Λ∨

7 − 4Λ∨
8

[
[1, 7, 8] +

(
4Λ∨

7 − 4Λ∨
8

[
[2, 7, 8] +(

4Λ∨
7 − 4Λ∨

8

[
[3, 7, 8] +

(
4Λ∨

7 − 4Λ∨
8

[
[4, 7, 8] +

(
4Λ∨

7 − 4Λ∨
8

[
[5, 7, 8]

2Λ∨
7 [1, 3 ⊇ 1]+2Λ∨

7 [1, 3 ⊇ 3]+
(

−2Λ∨
7

[
[1, 2, 3]+

(
−2Λ∨

7

[
[1, 4 ⊇ 1]+

(
−2Λ∨

7

[
[1, 4 ⊇ 4]+(

−2Λ∨
7

[
[2, 4 ⊇ 2] +

(
−2Λ∨

7

[
[2, 4 ⊇ 4] + 2Λ∨

7 [1, 3, 4] + 2Λ∨
7 [2, 3, 4] +

(
−2Λ∨

7

[
[1, 5 ⊇ 1] +(

−2Λ∨
7

[
[1, 5 ⊇ 5] +

(
−2Λ∨

7

[
[2, 5 ⊇ 2] +

(
−2Λ∨

7

[
[2, 5 ⊇ 5] +

(
−2Λ∨

7

[
[3, 5 ⊇ 3] +(

−2Λ∨
7

[
[3, 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +
(

−2Λ∨
7

[
[1, 6 ⊇ 1] +

(
−2Λ∨

7

[
[1, 6 ⊇ 6] +(

−2Λ∨
7

[
[2, 6 ⊇ 2] +

(
−2Λ∨

7

[
[2, 6 ⊇ 6] +

(
−2Λ∨

7

[
[3, 6 ⊇ 3] +

(
−2Λ∨

7

[
[3, 6 ⊇ 6] +(

−2Λ∨
7

[
[4, 6 ⊇ 4] +

(
−2Λ∨

7

[
[4, 6 ⊇ 6] + 2Λ∨

7 [4, 5, 6] +
(

−2Λ∨
7

[
[1, 7 ⊇ 1] +(

−Λ∨
6 − Λ∨

8

[
[1, 7 ⊇ 7] +

(
−2Λ∨

7

[
[2, 7 ⊇ 2] +

(
−Λ∨

6 − Λ∨
8

[
[2, 7 ⊇ 7] +(

−2Λ∨
7

[
[3, 7 ⊇ 3] +

(
−Λ∨

6 − Λ∨
8

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7 − Λ∨

8

[
[1, 3, 7] +(

−2Λ∨
7

[
[4, 7 ⊇ 4] +

(
−Λ∨

6 − Λ∨
8

[
[4, 7 ⊇ 7] +

(
Λ∨

6 − 2Λ∨
7 + Λ∨

8

[
[1, 4, 7] +(

Λ∨
6 − 2Λ∨

7 + Λ∨
8

[
[2, 4, 7] +

(
−2Λ∨

7

[
[5, 7 ⊇ 5] +

(
−Λ∨

6 − Λ∨
8

[
[5, 7 ⊇ 7] +(

Λ∨
6 − 2Λ∨

7 + Λ∨
8

[
[1, 5, 7] +

(
Λ∨

6 − 2Λ∨
7 + Λ∨

8

[
[2, 5, 7] +

(
Λ∨

6 − 2Λ∨
7 + Λ∨

8

[
[3, 5, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7 + Λ∨

8

[
[1, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7 + Λ∨
8

[
[2, 6, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7 + Λ∨

8

[
[3, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7 + Λ∨
8

[
[4, 6, 7] +(

Λ∨
5 − Λ∨

6 + Λ∨
7 + Λ∨

8

[
[5, 6, 7] +

(
2Λ∨

7 − 2Λ∨
8

[
[1, 7, 8] +

(
2Λ∨

7 − 2Λ∨
8

[
[2, 7, 8] +(

2Λ∨
7 − 2Λ∨

8

[
[3, 7, 8] +

(
2Λ∨

7 − 2Λ∨
8

[
[4, 7, 8] +

(
2Λ∨

7 − 2Λ∨
8

[
[5, 7, 8]

k hk(X∨) generating cocycles

0 1 2Λ∨
7 []
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k hk(X∨) generating cocycles

1 2 Λ∨
2 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6] + 2Λ∨
7 [7]

2Λ∨
7 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6] + 2Λ∨
7 [7]

2 4 Λ∨
2 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
7

[
[1, 2] + 2Λ∨

7 [3 ⊇ 3] + 2Λ∨
7 [4 ⊇ 4] + 2Λ∨

7 [5 ⊇ 5] + 2Λ∨
7 [6 ⊇ 6] +

2Λ∨
7 [7 ⊇ 7]+

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[2, 7]+

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[3, 7]+

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[4, 7]+

(
Λ∨

4 + Λ∨
8

[
[5, 7]

2Λ∨
7 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5] + 2Λ∨

7 [6 ⊇ 6] + 2Λ∨
7 [7 ⊇ 7]

Λ∨
2 [1, 3]+

(
Λ∨

1 + Λ∨
7

[
[2, 3]+ 2Λ∨

7 [1, 4]+ 2Λ∨
7 [2, 4]+

(
Λ∨

1 + Λ∨
7

[
[3, 4]+ 2Λ∨

7 [1, 5]+ 2Λ∨
7 [2, 5]+ 2Λ∨

7 [3, 5]+

2Λ∨
7 [1, 6]+2Λ∨

7 [2, 6]+2Λ∨
7 [3, 6]+2Λ∨

7 [4, 6]+2Λ∨
7 [1, 7]+2Λ∨

7 [2, 7]+
(

Λ∨
6 + Λ∨

8

[
[3, 7]+2Λ∨

7 [4, 7]+2Λ∨
7 [5, 7]

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[7 ⊇ 7] +

(
Λ∨

4 + Λ∨
6 + 2Λ∨

7

[
[5, 7] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7

[
[6, 7]

3 10 Λ∨
2 [1 ⊇ 1 ⊇ 1]+2Λ∨

7 [2 ⊇ 2 ⊇ 2]+
(

Λ∨
1 + Λ∨

7

[
[1, 2 ⊇ 1]+

(
Λ∨

2 + Λ∨
3 + Λ∨

7

[
[1, 2 ⊇ 2]+2Λ∨

7 [3 ⊇ 3 ⊇ 3]+

Λ∨
2 [1, 2, 3] + 2Λ∨

7 [4 ⊇ 4 ⊇ 4] + 2Λ∨
7 [2, 3, 4] + 2Λ∨

7 [5 ⊇ 5 ⊇ 5] + 2Λ∨
7 [3, 4, 5] + 2Λ∨

7 [6 ⊇ 6 ⊇ 6] +

2Λ∨
7 [4, 5, 6] + 2Λ∨

7 [7 ⊇ 7 ⊇ 7] +
(

Λ∨
6 + 2Λ∨

7 + Λ∨
8

[
[2, 7 ⊇ 2] +

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[3, 7 ⊇ 3] +(

Λ∨
6 + 2Λ∨

7 + Λ∨
8

[
[4, 7 ⊇ 4] +

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[5, 7 ⊇ 5] +

(
Λ∨

4 + Λ∨
8

[
[5, 7 ⊇ 7] +(

Λ∨
2 + Λ∨

4 + 2Λ∨
7

[
[3, 5, 7] +

(
Λ∨

3 + Λ∨
7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7 + Λ∨
8

[
[5, 6, 7] + 2Λ∨

7 [5, 7, 8]

2Λ∨
7 [1 ⊇ 1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5 ⊇ 5] +

2Λ∨
7 [6 ⊇ 6 ⊇ 6] + 2Λ∨

7 [7 ⊇ 7 ⊇ 7]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

7

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

7

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
7

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

7

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
7 [2, 3, 4] + 2Λ∨

7 [3, 4, 5] +

2Λ∨
7 [4, 5, 6] +

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[2, 7 ⊇ 2] + 2Λ∨

7 [5, 6, 7]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

7

[
[1, 2, 3] + 2Λ∨

7 [1, 4 ⊇ 1] + 2Λ∨
7 [1, 4 ⊇ 4] +

2Λ∨
7 [2, 4 ⊇ 2] + 2Λ∨

7 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

7

[
[1, 3, 4] + 2Λ∨

7 [1, 5 ⊇ 1] + 2Λ∨
7 [1, 5 ⊇ 5] + 2Λ∨

7 [2, 5 ⊇ 2] +

2Λ∨
7 [2, 5 ⊇ 5] + 2Λ∨

7 [3, 5 ⊇ 3] + 2Λ∨
7 [3, 5 ⊇ 5] + 2Λ∨

7 [1, 6 ⊇ 1] + 2Λ∨
7 [1, 6 ⊇ 6] + 2Λ∨

7 [2, 6 ⊇ 2] +
2Λ∨

7 [2, 6 ⊇ 6] + 2Λ∨
7 [3, 6 ⊇ 3] + 2Λ∨

7 [3, 6 ⊇ 6] + 2Λ∨
7 [4, 6 ⊇ 4] + 2Λ∨

7 [4, 6 ⊇ 6] + 2Λ∨
7 [1, 7 ⊇ 1] +

2Λ∨
7 [1, 7 ⊇ 7] + 2Λ∨

7 [2, 7 ⊇ 2] + 2Λ∨
7 [2, 7 ⊇ 7] + 2Λ∨

7 [3, 7 ⊇ 3] + 2Λ∨
7 [3, 7 ⊇ 7] + 2Λ∨

7 [4, 7 ⊇ 4] +

2Λ∨
7 [4, 7 ⊇ 7] +

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[2, 4, 7] + 2Λ∨

7 [5, 7 ⊇ 5] + 2Λ∨
7 [5, 7 ⊇ 7] +(

Λ∨
4 + Λ∨

8

[
[1, 5, 7] +

(
Λ∨

4 + Λ∨
8

[
[2, 5, 7] +

(
Λ∨

2 + 2Λ∨
7 + Λ∨

8

[
[3, 5, 7]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
7

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
7

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

7

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

7

[
[1, 3, 4]+

(
Λ∨

3 + Λ∨
5 + 2Λ∨

7

[
[2, 3, 4]+2Λ∨

7 [3, 4, 5]+2Λ∨
7 [4, 5, 6]+

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[3, 7 ⊇ 3]+(

Λ∨
6 + 2Λ∨

7 + Λ∨
8

[
[4, 7 ⊇ 4] +

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[2, 4, 7] +(

Λ∨
6 + 2Λ∨

7 + Λ∨
8

[
[5, 7 ⊇ 5] +

(
Λ∨

4 + Λ∨
8

[
[5, 7 ⊇ 7] +

(
Λ∨

4 + Λ∨
8

[
[1, 5, 7] +

(
Λ∨

4 + Λ∨
8

[
[2, 5, 7] +(

Λ∨
4 + Λ∨

8

[
[3, 5, 7] +

(
Λ∨

3 + Λ∨
7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7 + Λ∨
8

[
[5, 6, 7] + 2Λ∨

7 [5, 7, 8]

Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + Λ∨
7

[
[2, 3, 5] + 2Λ∨

7 [1, 3, 6] + 2Λ∨
7 [1, 4, 6] + 2Λ∨

7 [2, 4, 6] +
(

Λ∨
1 + Λ∨

7

[
[3, 5, 6] +

2Λ∨
7 [1, 3, 7] + 2Λ∨

7 [1, 4, 7] + 2Λ∨
7 [2, 4, 7] + 2Λ∨

7 [1, 5, 7] + 2Λ∨
7 [2, 5, 7] +

(
Λ∨

6 + Λ∨
8

[
[3, 5, 7]

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[7 ⊇ 7 ⊇ 7] +

(
Λ∨

4 + Λ∨
8

[
[5, 7 ⊇ 7] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

7

[
[3, 5, 7] +(

Λ∨
3 + Λ∨

7

[
[4, 5, 7] + Λ∨

6 [6, 7 ⊇ 6] +
(

Λ∨
5 + 3Λ∨

7 + Λ∨
8

[
[6, 7 ⊇ 7] +

(
Λ∨

5 + Λ∨
7

[
[5, 6, 7] + 2Λ∨

7 [5, 7, 8]

(
Λ∨

6 + 2Λ∨
7 + Λ∨

8

[
[1, 7 ⊇ 7] +

(
Λ∨

5 + Λ∨
7

[
[1, 2, 7] +

(
Λ∨

4 + Λ∨
6 + 2Λ∨

7

[
[1, 5, 7] +(

Λ∨
5 + Λ∨

6 + Λ∨
7

[
[1, 6, 7] +

(
2Λ∨

7 + Λ∨
8

[
[2, 6, 7] +

(
2Λ∨

7 + Λ∨
8

[
[3, 6, 7] +

(
2Λ∨

7 + Λ∨
8

[
[4, 6, 7] +

2Λ∨
7 [2, 7, 8] + 2Λ∨

7 [3, 7, 8] + 2Λ∨
7 [4, 7, 8] + 2Λ∨

7 [5, 7, 8]

2Λ∨
7 [7, 8 ⊇ 7]

Λ∨
6 [7, 8 ⊇ 8]
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k 0 1 2 3

compk
([ ⎤

1
1

⎣
⎛
⎜⎜⎝

1
0
0
0

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1 0
0 1 1
0 0 1
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.16.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

8 ) [1] + (Λ∨
1 + Λ∨

2 + Λ∨
8 ) [2] + (Λ∨

2 + Λ∨
3 + Λ∨

8 ) [3] +
(Λ∨

3 + Λ∨
4 + Λ∨

8 ) [4] + (Λ∨
4 + Λ∨

5 + Λ∨
8 ) [5] + (Λ∨

5 + Λ∨
6 + Λ∨

8 ) [6] + Λ∨
7 [7]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
7 − Λ∨

8

[
[8]

2 Z/2Z⊕Z/2Z Λ∨
7 [8 ⊇ 8] +

(
Λ∨

6 − 2Λ∨
7 + Λ∨

8

[
[7, 8]

Λ∨
8 [1 ⊇ 1] +

(
−Λ∨

8

[
[2 ⊇ 2] + Λ∨

8 [1, 2] +
(

−Λ∨
8

[
[3 ⊇ 3] +

(
−Λ∨

8

[
[4 ⊇ 4] +(

−Λ∨
8

[
[5 ⊇ 5] +

(
−Λ∨

8

[
[6 ⊇ 6] +

(
−Λ∨

8

[
[7 ⊇ 7] +

(
−Λ∨

7 + Λ∨
8

[
[1, 8] +(

Λ∨
7 − Λ∨

8

[
[2, 8] +

(
Λ∨

7 − Λ∨
8

[
[3, 8] +

(
Λ∨

7 − Λ∨
8

[
[4, 8] +

(
Λ∨

7 − Λ∨
8

[
[5, 8] +(

Λ∨
7 − Λ∨

8

[
[6, 8] +

(
2Λ∨

7 − 2Λ∨
8

[
[7, 8]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

6 − Λ∨
7

[
[7, 8 ⊇ 8]

Λ∨
8 [7, 8 ⊇ 7] + Λ∨

7 [7, 8 ⊇ 8] +
(

−Λ∨
5 + 2Λ∨

6 − 2Λ∨
7 + Λ∨

8

[
[6, 7, 8]

Λ∨
8 [1, 8 ⊇ 1] + Λ∨

7 [1, 8 ⊇ 8] +
(

−Λ∨
8

[
[2, 8 ⊇ 2] +

(
−Λ∨

7

[
[2, 8 ⊇ 8] +

(
−Λ∨

8

[
[1, 2, 8] +(

−Λ∨
8

[
[3, 8 ⊇ 3] +

(
−Λ∨

7

[
[3, 8 ⊇ 8] +

(
−Λ∨

8

[
[4, 8 ⊇ 4] +

(
−Λ∨

7

[
[4, 8 ⊇ 8] +(

−Λ∨
8

[
[5, 8 ⊇ 5] +

(
−Λ∨

7

[
[5, 8 ⊇ 8] +

(
−Λ∨

8

[
[6, 8 ⊇ 6] +

(
−Λ∨

7

[
[6, 8 ⊇ 8] +(

Λ∨
6 − 2Λ∨

7 + Λ∨
8

[
[1, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − Λ∨

8

[
[2, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − Λ∨

8

[
[3, 7, 8] +(

−Λ∨
6 + 2Λ∨

7 − Λ∨
8

[
[4, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − Λ∨

8

[
[5, 7, 8] +

(
−2Λ∨

6 + 2Λ∨
7

[
[6, 7, 8]

Λ∨
7 [1, 8 ⊇ 1] + Λ∨

7 [1, 8 ⊇ 8] +
(

−Λ∨
7

[
[2, 8 ⊇ 2] +

(
−Λ∨

7

[
[2, 8 ⊇ 8] +

(
−Λ∨

7

[
[1, 2, 8] +(

−Λ∨
7

[
[3, 8 ⊇ 3] +

(
−Λ∨

7

[
[3, 8 ⊇ 8] +

(
−Λ∨

7

[
[4, 8 ⊇ 4] +

(
−Λ∨

7

[
[4, 8 ⊇ 8] +(

−Λ∨
7

[
[5, 8 ⊇ 5] +

(
−Λ∨

7

[
[5, 8 ⊇ 8] +

(
−Λ∨

7

[
[6, 8 ⊇ 6] +

(
−Λ∨

7

[
[6, 8 ⊇ 8] +(

Λ∨
6 − 2Λ∨

7 + Λ∨
8

[
[1, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − Λ∨

8

[
[2, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − Λ∨

8

[
[3, 7, 8] +(

−Λ∨
6 + 2Λ∨

7 − Λ∨
8

[
[4, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − Λ∨

8

[
[5, 7, 8] +

(
−2Λ∨

6 + 2Λ∨
7

[
[6, 7, 8]

(
Λ∨

7 − Λ∨
8

[
[8 ⊇ 8 ⊇ 8]

Λ∨
8 [1, 3 ⊇ 1] + Λ∨

8 [1, 3 ⊇ 3] +
(

−Λ∨
8

[
[1, 2, 3] +

(
−Λ∨

8

[
[1, 4 ⊇ 1] +

(
−Λ∨

8

[
[1, 4 ⊇ 4] +(

−Λ∨
8

[
[2, 4 ⊇ 2] +

(
−Λ∨

8

[
[2, 4 ⊇ 4] + Λ∨

8 [1, 3, 4] + Λ∨
8 [2, 3, 4] +

(
−Λ∨

8

[
[1, 5 ⊇ 1] +(

−Λ∨
8

[
[1, 5 ⊇ 5] +

(
−Λ∨

8

[
[2, 5 ⊇ 2] +

(
−Λ∨

8

[
[2, 5 ⊇ 5] +

(
−Λ∨

8

[
[3, 5 ⊇ 3] +(

−Λ∨
8

[
[3, 5 ⊇ 5] + Λ∨

8 [3, 4, 5] +
(

−Λ∨
8

[
[1, 6 ⊇ 1] +

(
−Λ∨

8

[
[1, 6 ⊇ 6] +(

−Λ∨
8

[
[2, 6 ⊇ 2] +

(
−Λ∨

8

[
[2, 6 ⊇ 6] +

(
−Λ∨

8

[
[3, 6 ⊇ 3] +

(
−Λ∨

8

[
[3, 6 ⊇ 6] +(

−Λ∨
8

[
[4, 6 ⊇ 4]+

(
−Λ∨

8

[
[4, 6 ⊇ 6]+Λ∨

8 [4, 5, 6]+
(

−Λ∨
8

[
[1, 7 ⊇ 1]+

(
−Λ∨

8

[
[1, 7 ⊇ 7]+(

−Λ∨
8

[
[2, 7 ⊇ 2] +

(
−Λ∨

8

[
[2, 7 ⊇ 7] +

(
−Λ∨

8

[
[3, 7 ⊇ 3] +

(
−Λ∨

8

[
[3, 7 ⊇ 7] +(

−Λ∨
8

[
[4, 7 ⊇ 4]+

(
−Λ∨

8

[
[4, 7 ⊇ 7]+

(
−Λ∨

8

[
[5, 7 ⊇ 5]+

(
−Λ∨

8

[
[5, 7 ⊇ 7]+Λ∨

8 [5, 6, 7]+(
−Λ∨

7 + Λ∨
8

[
[1, 3, 8] +

(
Λ∨

7 − Λ∨
8

[
[1, 4, 8] +

(
Λ∨

7 − Λ∨
8

[
[2, 4, 8] +

(
Λ∨

7 − Λ∨
8

[
[1, 5, 8] +(

Λ∨
7 − Λ∨

8

[
[2, 5, 8] +

(
Λ∨

7 − Λ∨
8

[
[3, 5, 8] +

(
Λ∨

7 − Λ∨
8

[
[1, 6, 8] +

(
Λ∨

7 − Λ∨
8

[
[2, 6, 8] +(

Λ∨
7 − Λ∨

8

[
[3, 6, 8] +

(
Λ∨

7 − Λ∨
8

[
[4, 6, 8] +

(
2Λ∨

7 − 2Λ∨
8

[
[1, 7, 8] +

(
2Λ∨

7 − 2Λ∨
8

[
[2, 7, 8] +(

2Λ∨
7 − 2Λ∨

8

[
[3, 7, 8] +

(
2Λ∨

7 − 2Λ∨
8

[
[4, 7, 8] +

(
2Λ∨

7 − 2Λ∨
8

[
[5, 7, 8]

k hk(X∨) generating cocycles

0 1 Λ∨
8 []

1 3 Λ∨
8 [1] + Λ∨

8 [2] + Λ∨
8 [3] + Λ∨

8 [4] + Λ∨
8 [5] + Λ∨

8 [6] + Λ∨
8 [7]

Λ∨
7 [8]

Λ∨
8 [8]

2 8 Λ∨
8 [1 ⊇ 1] + Λ∨

8 [2 ⊇ 2] + Λ∨
8 [3 ⊇ 3] + Λ∨

8 [4 ⊇ 4] + Λ∨
8 [5 ⊇ 5] + Λ∨

8 [6 ⊇ 6] + Λ∨
8 [7 ⊇ 7]

Λ∨
8 [1, 3] + Λ∨

8 [1, 4] + Λ∨
8 [2, 4] + Λ∨

8 [1, 5] + Λ∨
8 [2, 5] + Λ∨

8 [3, 5] + Λ∨
8 [1, 6] + Λ∨

8 [2, 6] + Λ∨
8 [3, 6] +

Λ∨
8 [4, 6] + Λ∨

8 [1, 7] + Λ∨
8 [2, 7] + Λ∨

8 [3, 7] + Λ∨
8 [4, 7] + Λ∨

8 [5, 7]

Λ∨
7 [8 ⊇ 8]

Λ∨
8 [8 ⊇ 8]

Λ∨
7 [1, 8] + Λ∨

7 [2, 8] + Λ∨
7 [3, 8] + Λ∨

7 [4, 8] + Λ∨
7 [5, 8] + Λ∨

7 [6, 8]

Λ∨
8 [1, 8] + Λ∨

8 [2, 8] + Λ∨
8 [3, 8] + Λ∨

8 [4, 8] + Λ∨
8 [5, 8] + Λ∨

8 [6, 8]

Λ∨
6 [7, 8]

Λ∨
8 [7, 8]
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k hk(X∨) generating cocycles

3 20 Λ∨
8 [1 ⊇ 1 ⊇ 1] + Λ∨

8 [2 ⊇ 2 ⊇ 2] + Λ∨
8 [3 ⊇ 3 ⊇ 3] + Λ∨

8 [4 ⊇ 4 ⊇ 4] + Λ∨
8 [5 ⊇ 5 ⊇ 5] + Λ∨

8 [6 ⊇ 6 ⊇ 6] +
Λ∨

8 [7 ⊇ 7 ⊇ 7]

Λ∨
8 [1, 3 ⊇ 1] + Λ∨

8 [1, 3 ⊇ 3] + Λ∨
8 [1, 4 ⊇ 1] + Λ∨

8 [1, 4 ⊇ 4] + Λ∨
8 [2, 4 ⊇ 2] + Λ∨

8 [2, 4 ⊇ 4] +
Λ∨

8 [1, 5 ⊇ 1] + Λ∨
8 [1, 5 ⊇ 5] + Λ∨

8 [2, 5 ⊇ 2] + Λ∨
8 [2, 5 ⊇ 5] + Λ∨

8 [3, 5 ⊇ 3] + Λ∨
8 [3, 5 ⊇ 5] +

Λ∨
8 [1, 6 ⊇ 1] + Λ∨

8 [1, 6 ⊇ 6] + Λ∨
8 [2, 6 ⊇ 2] + Λ∨

8 [2, 6 ⊇ 6] + Λ∨
8 [3, 6 ⊇ 3] + Λ∨

8 [3, 6 ⊇ 6] +
Λ∨

8 [4, 6 ⊇ 4] + Λ∨
8 [4, 6 ⊇ 6] + Λ∨

8 [1, 7 ⊇ 1] + Λ∨
8 [1, 7 ⊇ 7] + Λ∨

8 [2, 7 ⊇ 2] + Λ∨
8 [2, 7 ⊇ 7] +

Λ∨
8 [3, 7 ⊇ 3] + Λ∨

8 [3, 7 ⊇ 7] + Λ∨
8 [4, 7 ⊇ 4] + Λ∨

8 [4, 7 ⊇ 7] + Λ∨
8 [5, 7 ⊇ 5] + Λ∨

8 [5, 7 ⊇ 7]

Λ∨
8 [1, 2, 3] + Λ∨

8 [2, 3, 4] + Λ∨
8 [3, 4, 5] + Λ∨

8 [4, 5, 6] + Λ∨
8 [5, 6, 7]

Λ∨
8 [1, 3, 5] + Λ∨

8 [1, 3, 6] + Λ∨
8 [1, 4, 6] + Λ∨

8 [2, 4, 6] + Λ∨
8 [1, 3, 7] + Λ∨

8 [1, 4, 7] + Λ∨
8 [2, 4, 7] + Λ∨

8 [1, 5, 7] +
Λ∨

8 [2, 5, 7] + Λ∨
8 [3, 5, 7]

Λ∨
7 [8 ⊇ 8 ⊇ 8]

Λ∨
8 [8 ⊇ 8 ⊇ 8]

Λ∨
7 [1, 8 ⊇ 1] + Λ∨

7 [2, 8 ⊇ 2] + Λ∨
7 [3, 8 ⊇ 3] + Λ∨

7 [4, 8 ⊇ 4] + Λ∨
7 [5, 8 ⊇ 5] + Λ∨

7 [6, 8 ⊇ 6]

Λ∨
8 [1, 8 ⊇ 1] + Λ∨

8 [2, 8 ⊇ 2] + Λ∨
8 [3, 8 ⊇ 3] + Λ∨

8 [4, 8 ⊇ 4] + Λ∨
8 [5, 8 ⊇ 5] + Λ∨

8 [6, 8 ⊇ 6]

Λ∨
7 [1, 8 ⊇ 8] + Λ∨

7 [2, 8 ⊇ 8] + Λ∨
7 [3, 8 ⊇ 8] + Λ∨

7 [4, 8 ⊇ 8] + Λ∨
7 [5, 8 ⊇ 8] + Λ∨

7 [6, 8 ⊇ 8]

Λ∨
8 [1, 8 ⊇ 8] + Λ∨

8 [2, 8 ⊇ 8] + Λ∨
8 [3, 8 ⊇ 8] + Λ∨

8 [4, 8 ⊇ 8] + Λ∨
8 [5, 8 ⊇ 8] + Λ∨

8 [6, 8 ⊇ 8]

Λ∨
7 [1, 3, 8] + Λ∨

7 [1, 4, 8] + Λ∨
7 [2, 4, 8] + Λ∨

7 [1, 5, 8] + Λ∨
7 [2, 5, 8] + Λ∨

7 [3, 5, 8] + Λ∨
7 [1, 6, 8] + Λ∨

7 [2, 6, 8] +
Λ∨

7 [3, 6, 8] + Λ∨
7 [4, 6, 8]

Λ∨
8 [1, 3, 8] + Λ∨

8 [1, 4, 8] + Λ∨
8 [2, 4, 8] + Λ∨

8 [1, 5, 8] + Λ∨
8 [2, 5, 8] + Λ∨

8 [3, 5, 8] + Λ∨
8 [1, 6, 8] + Λ∨

8 [2, 6, 8] +
Λ∨

8 [3, 6, 8] + Λ∨
8 [4, 6, 8]

Λ∨
6 [7, 8 ⊇ 7]

Λ∨
6 [7, 8 ⊇ 8]

Λ∨
7 [7, 8 ⊇ 8]

Λ∨
8 [7, 8 ⊇ 8]

Λ∨
6 [1, 7, 8] + Λ∨

6 [2, 7, 8] + Λ∨
6 [3, 7, 8] + Λ∨

6 [4, 7, 8] + Λ∨
6 [5, 7, 8]

Λ∨
8 [1, 7, 8] + Λ∨

8 [2, 7, 8] + Λ∨
8 [3, 7, 8] + Λ∨

8 [4, 7, 8] + Λ∨
8 [5, 7, 8]

Λ∨
5 [6, 7, 8]

Λ∨
8 [6, 7, 8]
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k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.16.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [8 ⊇ 8]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] +
(−1) [6 ⊇ 6] + (−1) [7 ⊇ 7]

3 Z/2Z⊕Z/2Z⊕Z/2Z [7, 8 ⊇ 7] + [7, 8 ⊇ 8]

[1, 8 ⊇ 1] + [1, 8 ⊇ 8] + (−1) [2, 8 ⊇ 2] + (−1) [2, 8 ⊇ 8] + (−1) [1, 2, 8] +
(−1) [3, 8 ⊇ 3] + (−1) [3, 8 ⊇ 8] + (−1) [4, 8 ⊇ 4] + (−1) [4, 8 ⊇ 8] + (−1) [5, 8 ⊇ 5] +
(−1) [5, 8 ⊇ 8] + (−1) [6, 8 ⊇ 6] + (−1) [6, 8 ⊇ 8]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6] + (−1) [1, 7 ⊇ 1] +
(−1) [1, 7 ⊇ 7] + (−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [3, 7 ⊇ 3] + (−1) [3, 7 ⊇ 7] +
(−1) [4, 7 ⊇ 4] + (−1) [4, 7 ⊇ 7] + (−1) [5, 7 ⊇ 5] + (−1) [5, 7 ⊇ 7] + [5, 6, 7]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3] + [4] + [5] + [6] + [7]

[8]
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k hk(F2) generating cocycles

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6] + [7 ⊇ 7]

[1, 3]+[1, 4]+[2, 4]+[1, 5]+[2, 5]+[3, 5]+[1, 6]+[2, 6]+[3, 6]+[4, 6]+[1, 7]+[2, 7]+[3, 7]+[4, 7]+[5, 7]

[8 ⊇ 8]

[1, 8] + [2, 8] + [3, 8] + [4, 8] + [5, 8] + [6, 8]

[7, 8]

3 12 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6] + [7 ⊇ 7 ⊇ 7]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6] + [1, 7 ⊇ 1] + [1, 7 ⊇ 7] + [2, 7 ⊇ 2] + [2, 7 ⊇ 7] +
[3, 7 ⊇ 3] + [3, 7 ⊇ 7] + [4, 7 ⊇ 4] + [4, 7 ⊇ 7] + [5, 7 ⊇ 5] + [5, 7 ⊇ 7]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [4, 5, 6] + [5, 6, 7]

[1, 3, 5] + [1, 3, 6] + [1, 4, 6] + [2, 4, 6] + [1, 3, 7] + [1, 4, 7] + [2, 4, 7] + [1, 5, 7] + [2, 5, 7] + [3, 5, 7]

[8 ⊇ 8 ⊇ 8]

[1, 8 ⊇ 1] + [2, 8 ⊇ 2] + [3, 8 ⊇ 3] + [4, 8 ⊇ 4] + [5, 8 ⊇ 5] + [6, 8 ⊇ 6]

[1, 8 ⊇ 8] + [2, 8 ⊇ 8] + [3, 8 ⊇ 8] + [4, 8 ⊇ 8] + [5, 8 ⊇ 8] + [6, 8 ⊇ 8]

[1, 3, 8] + [1, 4, 8] + [2, 4, 8] + [1, 5, 8] + [2, 5, 8] + [3, 5, 8] + [1, 6, 8] + [2, 6, 8] + [3, 6, 8] + [4, 6, 8]

[7, 8 ⊇ 7]

[7, 8 ⊇ 8]

[1, 7, 8] + [2, 7, 8] + [3, 7, 8] + [4, 7, 8] + [5, 7, 8]

[6, 7, 8]

A.17 Root system C2

Dynkin diagram 1 2

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
2 ∈ P∨ mod Q∨

A.17.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
1 − 2Λ∨

2

[
[2]

2 Z/2Z Λ∨
1 [2 ⊇ 2] +

(
−2Λ∨

1 + 2Λ∨
2

[
[1, 2]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z Λ∨
1 [1, 2 ⊇ 2]

(
Λ∨

1 − 2Λ∨
2

[
[2 ⊇ 2 ⊇ 2]

k hk(X∨) generating cocycles

0 1 2Λ∨
2 []

1 2 Λ∨
1 [2]

2Λ∨
2 [2]

2 3 Λ∨
1 [2 ⊇ 2]

2Λ∨
2 [2 ⊇ 2]

2Λ∨
2 [1, 2]

3 4 Λ∨
1 [2 ⊇ 2 ⊇ 2]

2Λ∨
2 [2 ⊇ 2 ⊇ 2]

Λ∨
1 [1, 2 ⊇ 2]

2Λ∨
2 [1, 2 ⊇ 2]

k 0 1 2 3

compk
([ ⎤

1
1

⎣ ⎛
⎝

1
0
1

∫
⎠

⎛
⎜⎜⎝

0 1
0 1
1 0
0 0

∫
ˆ̂
⎠

A.17.2 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
2 [2]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
1 − Λ∨

2

[
[1]

2 Z/2Z Λ∨
2 [1 ⊇ 1] +

(
−Λ∨

1 + 2Λ∨
2

[
[1, 2]

3 Z/2Z⊕Z/2Z Λ∨
2 [1, 2 ⊇ 1]

(
Λ∨

1 − Λ∨
2

[
[1 ⊇ 1 ⊇ 1]

k hk(X∨) generating cocycles

0 1 Λ∨
1 []
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k hk(X∨) generating cocycles

1 2 Λ∨
1 [1]

Λ∨
2 [1]

2 3 Λ∨
1 [1 ⊇ 1]

Λ∨
2 [1 ⊇ 1]

Λ∨
1 [1, 2]

3 4 Λ∨
1 [1 ⊇ 1 ⊇ 1]

Λ∨
2 [1 ⊇ 1 ⊇ 1]

Λ∨
1 [1, 2 ⊇ 1]

Λ∨
2 [1, 2 ⊇ 1]

k 0 1 2 3

compk
([ ⎤

1
1

⎣ ⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎝

0 1
0 1
0 0
1 0

∫
ˆ̂
⎠

A.17.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [2 ⊇ 2]

[1 ⊇ 1]

3 Z/2Z [1, 2 ⊇ 1] + [1, 2 ⊇ 2]

k hk(F2) generating cocycles

0 1 []

1 2 [1]

[2]

2 3 [1 ⊇ 1]

[2 ⊇ 2]

[1, 2]
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k hk(F2) generating cocycles

3 4 [1 ⊇ 1 ⊇ 1]

[2 ⊇ 2 ⊇ 2]

[1, 2 ⊇ 1]

[1, 2 ⊇ 2]

A.18 Root system C3

Dynkin diagram 1 2 3

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
3 ∈ P∨ mod Q∨

A.18.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 1, 1, 0, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
2 − 2Λ∨

3

[
[3]

2 Z/2Z⊕Z/2Z Λ∨
2 [3 ⊇ 3] +

(
Λ∨

1 − 2Λ∨
2 + 2Λ∨

3

[
[2, 3]

2Λ∨
3 [1 ⊇ 1] +

(
−2Λ∨

3

[
[2 ⊇ 2] + 2Λ∨

3 [1, 2] +
(

−Λ∨
2 + 2Λ∨

3

[
[1, 3] +

(
2Λ∨

2 − 4Λ∨
3

[
[2, 3]

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z

(
Λ∨

1 − Λ∨
2

[
[2, 3 ⊇ 3]

2Λ∨
3 [2, 3 ⊇ 2] + Λ∨

2 [2, 3 ⊇ 3] +
(

2Λ∨
1 − 2Λ∨

2 + 2Λ∨
3

[
[1, 2, 3]

2Λ∨
3 [1, 3 ⊇ 1] + Λ∨

2 [1, 3 ⊇ 3] +
(

2Λ∨
1 − 2Λ∨

2

[
[1, 2, 3]

(
Λ∨

2 − 2Λ∨
3

[
[3 ⊇ 3 ⊇ 3]

k hk(X∨) generating cocycles

0 1 2Λ∨
3 []

1 3 2Λ∨
3 [1] + 2Λ∨

3 [2]

Λ∨
2 [3]

2Λ∨
3 [3]
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k hk(X∨) generating cocycles

2 6 2Λ∨
3 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2]

Λ∨
2 [3 ⊇ 3]

2Λ∨
3 [3 ⊇ 3]

2Λ∨
3 [1, 3]

Λ∨
1 [2, 3]

2Λ∨
3 [2, 3]

3 10 2Λ∨
3 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2]

Λ∨
2 [3 ⊇ 3 ⊇ 3]

2Λ∨
3 [3 ⊇ 3 ⊇ 3]

2Λ∨
3 [1, 3 ⊇ 1]

2Λ∨
3 [1, 3 ⊇ 3]

Λ∨
1 [2, 3 ⊇ 2]

Λ∨
1 [2, 3 ⊇ 3]

Λ∨
2 [2, 3 ⊇ 3]

2Λ∨
3 [2, 3 ⊇ 3]

2Λ∨
3 [1, 2, 3]

k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
1 0
0 0
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 0 0
0 1 0 0
1 0 0 0
1 1 0 0
0 0 0 0
0 1 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.18.2 Cohomology of coweight lattice X∨ = P∨

[ϕu] = (0, 0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 Z/2Z Λ∨
3 [1 ⊇ 1] +

(
−Λ∨

3

[
[2 ⊇ 2] + Λ∨

3 [1, 2] +
(

−Λ∨
1

[
[3 ⊇ 3] +

(
Λ∨

1 − Λ∨
2 + Λ∨

3

[
[1, 3] +

(
Λ∨

2 − 2Λ∨
3

[
[2, 3]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z
(

Λ∨
1 − Λ∨

2

[
[2, 3 ⊇ 3]

Λ∨
3 [1, 3 ⊇ 1] +

(
−Λ∨

1 + Λ∨
2

[
[1, 3 ⊇ 3] +

(
Λ∨

1 − Λ∨
2

[
[1, 2, 3]

k hk(X∨) generating cocycles

0 0

1 1 Λ∨
3 [1] + Λ∨

3 [2] + Λ∨
1 [3]

2 3 Λ∨
3 [1 ⊇ 1] + Λ∨

3 [2 ⊇ 2] + Λ∨
1 [1, 3] + Λ∨

2 [2, 3]

Λ∨
1 [3 ⊇ 3] + Λ∨

3 [1, 3]

Λ∨
2 [3 ⊇ 3]

3 5 Λ∨
3 [1 ⊇ 1 ⊇ 1] + Λ∨

3 [2 ⊇ 2 ⊇ 2] + Λ∨
1 [1, 3 ⊇ 1] + Λ∨

2 [2, 3 ⊇ 2] +
(

Λ∨
1 + Λ∨

2

[
[1, 2, 3]

Λ∨
1 [3 ⊇ 3 ⊇ 3] + Λ∨

3 [1, 3 ⊇ 3]

Λ∨
2 [3 ⊇ 3 ⊇ 3]

Λ∨
3 [1, 3 ⊇ 1] + Λ∨

1 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2

[
[1, 2, 3]

Λ∨
3 [2, 3 ⊇ 2] +

(
Λ∨

1 + Λ∨
2

[
[1, 2, 3]

k 0 1 2 3

compk
([ ([

⎛
⎝

1
1
0

∫
⎠

⎛
⎜⎜⎜⎜⎝

0 0
0 0
1 0
0 1
0 0

∫
ˆ̂
ˆ̂
⎠

A.18.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [3 ⊇ 3]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2]

3 Z/2Z⊕Z/2Z [2, 3 ⊇ 2] + [2, 3 ⊇ 3]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3]

k hk(F2) generating cocycles

0 1 []
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k hk(F2) generating cocycles

1 2 [1] + [2]

[3]

2 4 [1 ⊇ 1] + [2 ⊇ 2]

[3 ⊇ 3]

[1, 3]

[2, 3]

3 7 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2]

[3 ⊇ 3 ⊇ 3]

[1, 3 ⊇ 1]

[1, 3 ⊇ 3]

[2, 3 ⊇ 2]

[2, 3 ⊇ 3]

[1, 2, 3]

A.19 Root system C4

Dynkin diagram 1 2 3 4

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
4 ∈ P∨ mod Q∨

A.19.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 1, 1, 0, 0, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
3 − 2Λ∨

4

[
[4]

2 Z/2Z⊕Z/2Z Λ∨
3 [4 ⊇ 4] +

(
Λ∨

2 − 2Λ∨
3 + 2Λ∨

4

[
[3, 4]

2Λ∨
4 [1 ⊇ 1] +

(
−2Λ∨

4

[
[2 ⊇ 2] + 2Λ∨

4 [1, 2] +
(

−2Λ∨
4

[
[3 ⊇ 3] +

(
−Λ∨

3 + 2Λ∨
4

[
[1, 4] +(

Λ∨
3 − 2Λ∨

4

[
[2, 4] +

(
2Λ∨

3 − 4Λ∨
4

[
[3, 4]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

2 − Λ∨
3

[
[3, 4 ⊇ 4]

2Λ∨
4 [3, 4 ⊇ 3] + Λ∨

3 [3, 4 ⊇ 4] +
(

−Λ∨
1 + 2Λ∨

2 − 2Λ∨
3 + 2Λ∨

4

[
[2, 3, 4]

2Λ∨
4 [1, 4 ⊇ 1] + Λ∨

3 [1, 4 ⊇ 4] +
(

−2Λ∨
4

[
[2, 4 ⊇ 2] +

(
−Λ∨

3

[
[2, 4 ⊇ 4] +(

−2Λ∨
4

[
[1, 2, 4] +

(
Λ∨

2 − 2Λ∨
3 + 2Λ∨

4

[
[1, 3, 4] +

(
−2Λ∨

2 + 2Λ∨
3

[
[2, 3, 4]

Λ∨
3 [1, 4 ⊇ 1] + Λ∨

3 [1, 4 ⊇ 4] +
(

−Λ∨
3

[
[2, 4 ⊇ 2] +

(
−Λ∨

3

[
[2, 4 ⊇ 4] +

(
−Λ∨

3

[
[1, 2, 4] +(

Λ∨
2 − 2Λ∨

3 + 2Λ∨
4

[
[1, 3, 4] +

(
−2Λ∨

2 + 2Λ∨
3

[
[2, 3, 4]

(
Λ∨

3 − 2Λ∨
4

[
[4 ⊇ 4 ⊇ 4]

k hk(X∨) generating cocycles

0 1 2Λ∨
4 []

1 3 2Λ∨
4 [1] + 2Λ∨

4 [2] + 2Λ∨
4 [3]

Λ∨
3 [4]

2Λ∨
4 [4]

2 7 2Λ∨
4 [1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2] + 2Λ∨
4 [3 ⊇ 3]

Λ∨
3 [4 ⊇ 4]

2Λ∨
4 [4 ⊇ 4]

Λ∨
3 [1, 4] + Λ∨

3 [2, 4]

2Λ∨
4 [1, 4] + 2Λ∨

4 [2, 4]

Λ∨
2 [3, 4]

2Λ∨
4 [3, 4]

3 14 2Λ∨
4 [1 ⊇ 1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2 ⊇ 2] + 2Λ∨
4 [3 ⊇ 3 ⊇ 3]

Λ∨
3 [4 ⊇ 4 ⊇ 4]

2Λ∨
4 [4 ⊇ 4 ⊇ 4]

Λ∨
3 [1, 4 ⊇ 1] + Λ∨

3 [2, 4 ⊇ 2]

2Λ∨
4 [1, 4 ⊇ 1] + 2Λ∨

4 [2, 4 ⊇ 2]

Λ∨
3 [1, 4 ⊇ 4] + Λ∨

3 [2, 4 ⊇ 4]

2Λ∨
4 [1, 4 ⊇ 4] + 2Λ∨

4 [2, 4 ⊇ 4]

Λ∨
2 [3, 4 ⊇ 3]

Λ∨
2 [3, 4 ⊇ 4]

Λ∨
3 [3, 4 ⊇ 4]

2Λ∨
4 [3, 4 ⊇ 4]

2Λ∨
4 [1, 3, 4]

Λ∨
1 [2, 3, 4]

2Λ∨
4 [2, 3, 4]
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k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.19.2 Cohomology of coweight lattice X∨ = P∨

[ϕu] = (0, 0, 0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 Z/2Z Λ∨
3 [1 ⊇ 1] +

(
−Λ∨

3

[
[2 ⊇ 2] + Λ∨

3 [1, 2] +
(

−Λ∨
1

[
[3 ⊇ 3] +

(
Λ∨

1 − Λ∨
2 + Λ∨

3 − Λ∨
4

[
[1, 3] +(

Λ∨
2 − Λ∨

3

[
[2, 3]

3 Z/2Z⊕Z/2Z⊕Z/2Z
(

Λ∨
2 − Λ∨

3

[
[3, 4 ⊇ 4]

Λ∨
3 [2, 3 ⊇ 2]+

(
−Λ∨

1 + 2Λ∨
2

[
[2, 3 ⊇ 3]+

(
−Λ∨

1 + Λ∨
3 − Λ∨

4

[
[1, 2, 3]+

(
2Λ∨

3 − 4Λ∨
4

[
[2, 3, 4]

Λ∨
4 [1, 3 ⊇ 1] + Λ∨

4 [1, 3 ⊇ 3] +
(

−Λ∨
4

[
[1, 2, 3] +

(
−Λ∨

3 + 2Λ∨
4

[
[1, 3, 4]

k hk(X∨) generating cocycles

0 0

1 1 Λ∨
3 [1] + Λ∨

3 [2] + Λ∨
1 [3]

2 4 Λ∨
3 [1 ⊇ 1] + Λ∨

3 [2 ⊇ 2] + Λ∨
1 [3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[1, 3] +

(
Λ∨

2 + Λ∨
3

[
[2, 3]

Λ∨
3 [1, 2]

Λ∨
4 [1, 3]

Λ∨
3 [4 ⊇ 4]
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k hk(X∨) generating cocycles

3 7 Λ∨
3 [1 ⊇ 1 ⊇ 1] + Λ∨

3 [2 ⊇ 2 ⊇ 2] + Λ∨
1 [3 ⊇ 3 ⊇ 3] + Λ∨

1 [1, 3 ⊇ 1] + Λ∨
3 [1, 3 ⊇ 3] + Λ∨

2 [2, 3 ⊇ 2] +(
Λ∨

1 + Λ∨
3

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + Λ∨
3 [1, 3, 4]

Λ∨
3 [1, 3 ⊇ 1] + Λ∨

1 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2, 3]

Λ∨
4 [1, 3 ⊇ 1] + Λ∨

4 [1, 3 ⊇ 3] + Λ∨
3 [1, 3, 4]

Λ∨
4 [1, 2, 3]

Λ∨
3 [4 ⊇ 4 ⊇ 4]

Λ∨
1 [3, 4 ⊇ 3] + Λ∨

3 [1, 3, 4]

Λ∨
2 [3, 4 ⊇ 4]

k 0 1 2 3

compk
([ ([

⎛
⎜⎜⎝

1
0
1
0

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 1
0 1 1
1 0 0
0 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.19.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [4 ⊇ 4]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3]

3 Z/2Z⊕Z/2Z⊕Z/2Z [3, 4 ⊇ 3] + [3, 4 ⊇ 4]

[1, 4 ⊇ 1] + [1, 4 ⊇ 4] + (−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + (−1) [1, 2, 4]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3]

[4]



A.20 Root system C5 209

k hk(F2) generating cocycles

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3]

[1, 3]

[4 ⊇ 4]

[1, 4] + [2, 4]

[3, 4]

3 10 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3]

[1, 2, 3]

[4 ⊇ 4 ⊇ 4]

[1, 4 ⊇ 1] + [2, 4 ⊇ 2]

[1, 4 ⊇ 4] + [2, 4 ⊇ 4]

[3, 4 ⊇ 3]

[3, 4 ⊇ 4]

[1, 3, 4]

[2, 3, 4]

A.20 Root system C5

Dynkin diagram 1 2 3 4 5

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
5 ∈ P∨ mod Q∨

A.20.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 0, 1, 1, 0, 0, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
4 − 2Λ∨

5

[
[5]

2 Z/2Z⊕Z/2Z Λ∨
4 [5 ⊇ 5] +

(
Λ∨

3 − 2Λ∨
4 + 2Λ∨

5

[
[4, 5]

2Λ∨
5 [1 ⊇ 1] +

(
−2Λ∨

5

[
[2 ⊇ 2] + 2Λ∨

5 [1, 2] +
(

−2Λ∨
5

[
[3 ⊇ 3] +

(
−2Λ∨

5

[
[4 ⊇ 4] +(

−Λ∨
4 + 2Λ∨

5

[
[1, 5] +

(
Λ∨

4 − 2Λ∨
5

[
[2, 5] +

(
Λ∨

4 − 2Λ∨
5

[
[3, 5] +

(
2Λ∨

4 − 4Λ∨
5

[
[4, 5]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

3 − Λ∨
4

[
[4, 5 ⊇ 5]

2Λ∨
5 [4, 5 ⊇ 4] + Λ∨

4 [4, 5 ⊇ 5] +
(

−Λ∨
2 + 2Λ∨

3 − 2Λ∨
4 + 2Λ∨

5

[
[3, 4, 5]

2Λ∨
5 [1, 5 ⊇ 1] + Λ∨

4 [1, 5 ⊇ 5] +
(

−2Λ∨
5

[
[2, 5 ⊇ 2] +

(
−Λ∨

4

[
[2, 5 ⊇ 5] +(

−2Λ∨
5

[
[1, 2, 5] +

(
−2Λ∨

5

[
[3, 5 ⊇ 3] +

(
−Λ∨

4

[
[3, 5 ⊇ 5] +

(
Λ∨

3 − 2Λ∨
4 + 2Λ∨

5

[
[1, 4, 5] +(

−Λ∨
3 + 2Λ∨

4 − 2Λ∨
5

[
[2, 4, 5] +

(
−2Λ∨

3 + 2Λ∨
4

[
[3, 4, 5]

Λ∨
4 [1, 5 ⊇ 1] + Λ∨

4 [1, 5 ⊇ 5] +
(

−Λ∨
4

[
[2, 5 ⊇ 2] +

(
−Λ∨

4

[
[2, 5 ⊇ 5] +

(
−Λ∨

4

[
[1, 2, 5] +(

−Λ∨
4

[
[3, 5 ⊇ 3] +

(
−Λ∨

4

[
[3, 5 ⊇ 5] +

(
Λ∨

3 − 2Λ∨
4 + 2Λ∨

5

[
[1, 4, 5] +(

−Λ∨
3 + 2Λ∨

4 − 2Λ∨
5

[
[2, 4, 5] +

(
−2Λ∨

3 + 2Λ∨
4

[
[3, 4, 5]

(
Λ∨

4 − 2Λ∨
5

[
[5 ⊇ 5 ⊇ 5]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

−2Λ∨
5

[
[1, 2, 3] +

(
−2Λ∨

5

[
[1, 4 ⊇ 1] +(

−2Λ∨
5

[
[1, 4 ⊇ 4] +

(
−2Λ∨

5

[
[2, 4 ⊇ 2] +

(
−2Λ∨

5

[
[2, 4 ⊇ 4] + 2Λ∨

5 [1, 3, 4] +

2Λ∨
5 [2, 3, 4] +

(
−Λ∨

4 + 2Λ∨
5

[
[1, 3, 5] +

(
2Λ∨

4 − 4Λ∨
5

[
[1, 4, 5] +

(
2Λ∨

4 − 4Λ∨
5

[
[2, 4, 5]

k hk(X∨) generating cocycles

0 1 2Λ∨
5 []

1 3 2Λ∨
5 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4]

Λ∨
4 [5]

2Λ∨
5 [5]

2 8 2Λ∨
5 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4]

2Λ∨
5 [1, 3] + 2Λ∨

5 [1, 4] + 2Λ∨
5 [2, 4]

Λ∨
4 [5 ⊇ 5]

2Λ∨
5 [5 ⊇ 5]

Λ∨
4 [1, 5] + Λ∨

4 [2, 5] + Λ∨
4 [3, 5]

2Λ∨
5 [1, 5] + 2Λ∨

5 [2, 5] + 2Λ∨
5 [3, 5]

Λ∨
3 [4, 5]

2Λ∨
5 [4, 5]
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k hk(X∨) generating cocycles

3 18 2Λ∨
5 [1 ⊇ 1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4 ⊇ 4]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] + 2Λ∨
5 [1, 4 ⊇ 1] + 2Λ∨

5 [1, 4 ⊇ 4] + 2Λ∨
5 [2, 4 ⊇ 2] + 2Λ∨

5 [2, 4 ⊇ 4]

2Λ∨
5 [1, 2, 3] + 2Λ∨

5 [2, 3, 4]

Λ∨
4 [5 ⊇ 5 ⊇ 5]

2Λ∨
5 [5 ⊇ 5 ⊇ 5]

Λ∨
4 [1, 5 ⊇ 1] + Λ∨

4 [2, 5 ⊇ 2] + Λ∨
4 [3, 5 ⊇ 3]

2Λ∨
5 [1, 5 ⊇ 1] + 2Λ∨

5 [2, 5 ⊇ 2] + 2Λ∨
5 [3, 5 ⊇ 3]

Λ∨
4 [1, 5 ⊇ 5] + Λ∨

4 [2, 5 ⊇ 5] + Λ∨
4 [3, 5 ⊇ 5]

2Λ∨
5 [1, 5 ⊇ 5] + 2Λ∨

5 [2, 5 ⊇ 5] + 2Λ∨
5 [3, 5 ⊇ 5]

2Λ∨
5 [1, 3, 5]

Λ∨
3 [4, 5 ⊇ 4]

Λ∨
3 [4, 5 ⊇ 5]

Λ∨
4 [4, 5 ⊇ 5]

2Λ∨
5 [4, 5 ⊇ 5]

Λ∨
3 [1, 4, 5] + Λ∨

3 [2, 4, 5]

2Λ∨
5 [1, 4, 5] + 2Λ∨

5 [2, 4, 5]

Λ∨
2 [3, 4, 5]

2Λ∨
5 [3, 4, 5]

k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.20.2 Cohomology of coweight lattice X∨ = P∨

[ϕu] = (0, 1)
does not lie in the image of comp2
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k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z⊕Z/2Z
(

Λ∨
3 − Λ∨

4

[
[4, 5 ⊇ 5]

Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] +
(

−Λ∨
5

[
[1, 2, 3] +

(
−Λ∨

5

[
[1, 4 ⊇ 1] +

(
−Λ∨

5

[
[1, 4 ⊇ 4] +(

−Λ∨
5

[
[2, 4 ⊇ 2] +

(
−Λ∨

5

[
[2, 4 ⊇ 4] + Λ∨

5 [1, 3, 4] + Λ∨
5 [2, 3, 4] +

(
−Λ∨

3

[
[1, 5 ⊇ 1] +(

−Λ∨
3

[
[1, 5 ⊇ 5] +

(
−Λ∨

3

[
[2, 5 ⊇ 2] +

(
−Λ∨

3

[
[2, 5 ⊇ 5] +

(
−Λ∨

1

[
[3, 5 ⊇ 3] +

(
−Λ∨

1

[
[3, 5 ⊇ 5] +(

−Λ∨
1 + Λ∨

3 − Λ∨
4 + Λ∨

5

[
[1, 3, 5]+

(
−Λ∨

2 + Λ∨
3

[
[2, 3, 5]+

(
Λ∨

4 − 2Λ∨
5

[
[1, 4, 5]+

(
Λ∨

4 − 2Λ∨
5

[
[2, 4, 5]

k hk(X∨) generating cocycles

0 0

1 0

2 2 Λ∨
5 [1, 3] + Λ∨

5 [1, 4] + Λ∨
5 [2, 4] + Λ∨

3 [1, 5] + Λ∨
3 [2, 5] + Λ∨

1 [3, 5]

Λ∨
4 [5 ⊇ 5]

3 6 Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] + Λ∨
5 [1, 4 ⊇ 1] + Λ∨

5 [1, 4 ⊇ 4] + Λ∨
5 [2, 4 ⊇ 2] + Λ∨

5 [2, 4 ⊇ 4] + Λ∨
3 [1, 5 ⊇ 1] +

Λ∨
3 [2, 5 ⊇ 2] + Λ∨

1 [3, 5 ⊇ 3] +
(

Λ∨
1 + Λ∨

3

[
[1, 3, 5] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3

[
[2, 3, 5] + Λ∨

4 [1, 4, 5] + Λ∨
4 [2, 4, 5]

Λ∨
5 [1, 2, 3] + Λ∨

5 [2, 3, 4] + Λ∨
1 [2, 3, 5]

Λ∨
4 [5 ⊇ 5 ⊇ 5]

Λ∨
3 [1, 5 ⊇ 5] + Λ∨

3 [2, 5 ⊇ 5] + Λ∨
1 [3, 5 ⊇ 5] + Λ∨

5 [1, 3, 5]

Λ∨
4 [1, 5 ⊇ 5] + Λ∨

5 [1, 2, 5] + Λ∨
3 [2, 4, 5]

Λ∨
3 [4, 5 ⊇ 5]

k 0 1 2 3

compk
([ ([ ([

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
0 1
1 0
0 1
0 0
0 0

∫
ˆ̂
ˆ̂
ˆ̂
⎠

A.20.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [5 ⊇ 5]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4]
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k Hk(W0,Z) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z [4, 5 ⊇ 4] + [4, 5 ⊇ 5]

[1, 5 ⊇ 1] + [1, 5 ⊇ 5] + (−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [1, 2, 5] +
(−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3] + [4]

[5]

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4]

[1, 3] + [1, 4] + [2, 4]

[5 ⊇ 5]

[1, 5] + [2, 5] + [3, 5]

[4, 5]

3 11 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4]

[1, 2, 3] + [2, 3, 4]

[5 ⊇ 5 ⊇ 5]

[1, 5 ⊇ 1] + [2, 5 ⊇ 2] + [3, 5 ⊇ 3]

[1, 5 ⊇ 5] + [2, 5 ⊇ 5] + [3, 5 ⊇ 5]

[1, 3, 5]

[4, 5 ⊇ 4]

[4, 5 ⊇ 5]

[1, 4, 5] + [2, 4, 5]

[3, 4, 5]

A.21 Root system C6

Dynkin diagram 1 2 3 4 5 6

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
6 ∈ P∨ mod Q∨
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A.21.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 0, 1, 1, 0, 0, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
5 − 2Λ∨

6

[
[6]

2 Z/2Z⊕Z/2Z Λ∨
5 [6 ⊇ 6] +

(
Λ∨

4 − 2Λ∨
5 + 2Λ∨

6

[
[5, 6]

2Λ∨
6 [1 ⊇ 1] +

(
−2Λ∨

6

[
[2 ⊇ 2] + 2Λ∨

6 [1, 2] +
(

−2Λ∨
6

[
[3 ⊇ 3] +

(
−2Λ∨

6

[
[4 ⊇ 4] +(

−2Λ∨
6

[
[5 ⊇ 5] +

(
−Λ∨

5 + 2Λ∨
6

[
[1, 6] +

(
Λ∨

5 − 2Λ∨
6

[
[2, 6] +

(
Λ∨

5 − 2Λ∨
6

[
[3, 6] +(

Λ∨
5 − 2Λ∨

6

[
[4, 6] +

(
2Λ∨

5 − 4Λ∨
6

[
[5, 6]

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

4 − Λ∨
5

[
[5, 6 ⊇ 6]

2Λ∨
6 [5, 6 ⊇ 5] + Λ∨

5 [5, 6 ⊇ 6] +
(

−Λ∨
3 + 2Λ∨

4 − 2Λ∨
5 + 2Λ∨

6

[
[4, 5, 6]

2Λ∨
6 [1, 6 ⊇ 1] + Λ∨

5 [1, 6 ⊇ 6] +
(

−2Λ∨
6

[
[2, 6 ⊇ 2] +

(
−Λ∨

5

[
[2, 6 ⊇ 6] +(

−2Λ∨
6

[
[1, 2, 6] +

(
−2Λ∨

6

[
[3, 6 ⊇ 3] +

(
−Λ∨

5

[
[3, 6 ⊇ 6] +

(
−2Λ∨

6

[
[4, 6 ⊇ 4] +(

−Λ∨
5

[
[4, 6 ⊇ 6] +

(
Λ∨

4 − 2Λ∨
5 + 2Λ∨

6

[
[1, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5 − 2Λ∨

6

[
[2, 5, 6] +(

−Λ∨
4 + 2Λ∨

5 − 2Λ∨
6

[
[3, 5, 6] +

(
−2Λ∨

4 + 2Λ∨
5

[
[4, 5, 6]

Λ∨
5 [1, 6 ⊇ 1] + Λ∨

5 [1, 6 ⊇ 6] +
(

−Λ∨
5

[
[2, 6 ⊇ 2] +

(
−Λ∨

5

[
[2, 6 ⊇ 6] +

(
−Λ∨

5

[
[1, 2, 6] +(

−Λ∨
5

[
[3, 6 ⊇ 3] +

(
−Λ∨

5

[
[3, 6 ⊇ 6] +

(
−Λ∨

5

[
[4, 6 ⊇ 4] +

(
−Λ∨

5

[
[4, 6 ⊇ 6] +(

Λ∨
4 − 2Λ∨

5 + 2Λ∨
6

[
[1, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5 − 2Λ∨

6

[
[2, 5, 6] +(

−Λ∨
4 + 2Λ∨

5 − 2Λ∨
6

[
[3, 5, 6] +

(
−2Λ∨

4 + 2Λ∨
5

[
[4, 5, 6]

(
Λ∨

5 − 2Λ∨
6

[
[6 ⊇ 6 ⊇ 6]

2Λ∨
6 [1, 3 ⊇ 1]+2Λ∨

6 [1, 3 ⊇ 3]+
(

−2Λ∨
6

[
[1, 2, 3]+

(
−2Λ∨

6

[
[1, 4 ⊇ 1]+

(
−2Λ∨

6

[
[1, 4 ⊇ 4]+(

−2Λ∨
6

[
[2, 4 ⊇ 2] +

(
−2Λ∨

6

[
[2, 4 ⊇ 4] + 2Λ∨

6 [1, 3, 4] + 2Λ∨
6 [2, 3, 4] +

(
−2Λ∨

6

[
[1, 5 ⊇ 1] +(

−2Λ∨
6

[
[1, 5 ⊇ 5] +

(
−2Λ∨

6

[
[2, 5 ⊇ 2] +

(
−2Λ∨

6

[
[2, 5 ⊇ 5] +

(
−2Λ∨

6

[
[3, 5 ⊇ 3] +(

−2Λ∨
6

[
[3, 5 ⊇ 5] + 2Λ∨

6 [3, 4, 5] +
(

−Λ∨
5 + 2Λ∨

6

[
[1, 3, 6] +

(
Λ∨

5 − 2Λ∨
6

[
[1, 4, 6] +(

Λ∨
5 − 2Λ∨

6

[
[2, 4, 6]+

(
2Λ∨

5 − 4Λ∨
6

[
[1, 5, 6]+

(
2Λ∨

5 − 4Λ∨
6

[
[2, 5, 6]+

(
2Λ∨

5 − 4Λ∨
6

[
[3, 5, 6]

k hk(X∨) generating cocycles

0 1 2Λ∨
6 []

1 3 2Λ∨
6 [1] + 2Λ∨

6 [2] + 2Λ∨
6 [3] + 2Λ∨

6 [4] + 2Λ∨
6 [5]

Λ∨
5 [6]

2Λ∨
6 [6]
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k hk(X∨) generating cocycles

2 8 2Λ∨
6 [1 ⊇ 1] + 2Λ∨

6 [2 ⊇ 2] + 2Λ∨
6 [3 ⊇ 3] + 2Λ∨

6 [4 ⊇ 4] + 2Λ∨
6 [5 ⊇ 5]

2Λ∨
6 [1, 3] + 2Λ∨

6 [1, 4] + 2Λ∨
6 [2, 4] + 2Λ∨

6 [1, 5] + 2Λ∨
6 [2, 5] + 2Λ∨

6 [3, 5]

Λ∨
5 [6 ⊇ 6]

2Λ∨
6 [6 ⊇ 6]

Λ∨
5 [1, 6] + Λ∨

5 [2, 6] + Λ∨
5 [3, 6] + Λ∨

5 [4, 6]

2Λ∨
6 [1, 6] + 2Λ∨

6 [2, 6] + 2Λ∨
6 [3, 6] + 2Λ∨

6 [4, 6]

Λ∨
4 [5, 6]

2Λ∨
6 [5, 6]

3 19 2Λ∨
6 [1 ⊇ 1 ⊇ 1] + 2Λ∨

6 [2 ⊇ 2 ⊇ 2] + 2Λ∨
6 [3 ⊇ 3 ⊇ 3] + 2Λ∨

6 [4 ⊇ 4 ⊇ 4] + 2Λ∨
6 [5 ⊇ 5 ⊇ 5]

2Λ∨
6 [1, 3 ⊇ 1] + 2Λ∨

6 [1, 3 ⊇ 3] + 2Λ∨
6 [1, 4 ⊇ 1] + 2Λ∨

6 [1, 4 ⊇ 4] + 2Λ∨
6 [2, 4 ⊇ 2] + 2Λ∨

6 [2, 4 ⊇ 4] +
2Λ∨

6 [1, 5 ⊇ 1] + 2Λ∨
6 [1, 5 ⊇ 5] + 2Λ∨

6 [2, 5 ⊇ 2] + 2Λ∨
6 [2, 5 ⊇ 5] + 2Λ∨

6 [3, 5 ⊇ 3] + 2Λ∨
6 [3, 5 ⊇ 5]

2Λ∨
6 [1, 2, 3] + 2Λ∨

6 [2, 3, 4] + 2Λ∨
6 [3, 4, 5]

Λ∨
5 [6 ⊇ 6 ⊇ 6]

2Λ∨
6 [6 ⊇ 6 ⊇ 6]

Λ∨
5 [1, 6 ⊇ 1] + Λ∨

5 [2, 6 ⊇ 2] + Λ∨
5 [3, 6 ⊇ 3] + Λ∨

5 [4, 6 ⊇ 4]

2Λ∨
6 [1, 6 ⊇ 1] + 2Λ∨

6 [2, 6 ⊇ 2] + 2Λ∨
6 [3, 6 ⊇ 3] + 2Λ∨

6 [4, 6 ⊇ 4]

Λ∨
5 [1, 6 ⊇ 6] + Λ∨

5 [2, 6 ⊇ 6] + Λ∨
5 [3, 6 ⊇ 6] + Λ∨

5 [4, 6 ⊇ 6]

2Λ∨
6 [1, 6 ⊇ 6] + 2Λ∨

6 [2, 6 ⊇ 6] + 2Λ∨
6 [3, 6 ⊇ 6] + 2Λ∨

6 [4, 6 ⊇ 6]

Λ∨
5 [1, 3, 6] + Λ∨

5 [1, 4, 6] + Λ∨
5 [2, 4, 6]

2Λ∨
6 [1, 3, 6] + 2Λ∨

6 [1, 4, 6] + 2Λ∨
6 [2, 4, 6]

Λ∨
4 [5, 6 ⊇ 5]

Λ∨
4 [5, 6 ⊇ 6]

Λ∨
5 [5, 6 ⊇ 6]

2Λ∨
6 [5, 6 ⊇ 6]

Λ∨
4 [1, 5, 6] + Λ∨

4 [2, 5, 6] + Λ∨
4 [3, 5, 6]

2Λ∨
6 [1, 5, 6] + 2Λ∨

6 [2, 5, 6] + 2Λ∨
6 [3, 5, 6]

Λ∨
3 [4, 5, 6]

2Λ∨
6 [4, 5, 6]
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k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.21.2 Cohomology of coweight lattice X∨ = P∨

[ϕu] = (0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z⊕Z/2Z
(

Λ∨
4 − Λ∨

5

[
[5, 6 ⊇ 6]

Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] +
(

−Λ∨
5

[
[1, 2, 3] +

(
−Λ∨

5

[
[1, 4 ⊇ 1] +

(
−Λ∨

5

[
[1, 4 ⊇ 4] +(

−Λ∨
5

[
[2, 4 ⊇ 2] +

(
−Λ∨

5

[
[2, 4 ⊇ 4] + Λ∨

5 [1, 3, 4] + Λ∨
5 [2, 3, 4] +

(
−Λ∨

3

[
[1, 5 ⊇ 1] +(

−Λ∨
3

[
[1, 5 ⊇ 5] +

(
−Λ∨

3

[
[2, 5 ⊇ 2] +

(
−Λ∨

3

[
[2, 5 ⊇ 5] +

(
−Λ∨

1

[
[3, 5 ⊇ 3] +

(
−Λ∨

1

[
[3, 5 ⊇ 5] +(

−Λ∨
1 + Λ∨

3 − Λ∨
4 + Λ∨

5 − Λ∨
6

[
[1, 3, 5] +

(
−Λ∨

2 + Λ∨
3

[
[2, 3, 5] +

(
Λ∨

4 − Λ∨
5

[
[1, 4, 5] +(

Λ∨
4 − Λ∨

5

[
[2, 4, 5] + Λ∨

1 [3, 4, 5]

k hk(X∨) generating cocycles

0 0

1 0

2 2 Λ∨
5 [1, 3] + Λ∨

5 [1, 4] + Λ∨
5 [2, 4] + Λ∨

3 [1, 5] + Λ∨
3 [2, 5] + Λ∨

1 [3, 5]

Λ∨
5 [6 ⊇ 6]
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k hk(X∨) generating cocycles

3 6 Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] + Λ∨
5 [1, 4 ⊇ 1] + Λ∨

5 [1, 4 ⊇ 4] + Λ∨
5 [2, 4 ⊇ 2] + Λ∨

5 [2, 4 ⊇ 4] + Λ∨
3 [1, 5 ⊇ 1] +

Λ∨
3 [1, 5 ⊇ 5] + Λ∨

3 [2, 5 ⊇ 2] + Λ∨
3 [2, 5 ⊇ 5] + Λ∨

1 [3, 5 ⊇ 3] + Λ∨
1 [3, 5 ⊇ 5] +

(
Λ∨

1 + Λ∨
3 + Λ∨

5

[
[1, 3, 5] +(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[1, 4, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[2, 4, 5]

Λ∨
5 [1, 2, 3] + Λ∨

5 [2, 3, 4] + Λ∨
1 [2, 3, 5] + Λ∨

3 [1, 4, 5] + Λ∨
3 [2, 4, 5] + Λ∨

1 [3, 4, 5]

Λ∨
6 [1, 3, 5]

Λ∨
5 [6 ⊇ 6 ⊇ 6]

Λ∨
5 [1, 6 ⊇ 6] + Λ∨

6 [1, 2, 6] + Λ∨
4 [2, 5, 6] + Λ∨

4 [3, 5, 6]

Λ∨
4 [5, 6 ⊇ 6]

k 0 1 2 3

compk
([ ([ ([

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
0 1
0 1
1 0
0 0
0 0

∫
ˆ̂
ˆ̂
ˆ̂
⎠

A.21.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [6 ⊇ 6]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5]

3 Z/2Z⊕Z/2Z⊕Z/2Z [5, 6 ⊇ 5] + [5, 6 ⊇ 6]

[1, 6 ⊇ 1] + [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [1, 2, 6] +
(−1) [3, 6 ⊇ 3] + (−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3] + [4] + [5]

[6]
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k hk(F2) generating cocycles

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5]

[6 ⊇ 6]

[1, 6] + [2, 6] + [3, 6] + [4, 6]

[5, 6]

3 12 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5]

[1, 3, 5]

[6 ⊇ 6 ⊇ 6]

[1, 6 ⊇ 1] + [2, 6 ⊇ 2] + [3, 6 ⊇ 3] + [4, 6 ⊇ 4]

[1, 6 ⊇ 6] + [2, 6 ⊇ 6] + [3, 6 ⊇ 6] + [4, 6 ⊇ 6]

[1, 3, 6] + [1, 4, 6] + [2, 4, 6]

[5, 6 ⊇ 5]

[5, 6 ⊇ 6]

[1, 5, 6] + [2, 5, 6] + [3, 5, 6]

[4, 5, 6]

A.22 Root system C7

Dynkin diagram 1 2 3 4 5 6 7

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
7 ∈ P∨ mod Q∨

A.22.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 0, 1, 1, 0, 0, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
6 − 2Λ∨

7

[
[7]

2 Z/2Z⊕Z/2Z Λ∨
6 [7 ⊇ 7] +

(
Λ∨

5 − 2Λ∨
6 + 2Λ∨

7

[
[6, 7]

2Λ∨
7 [1 ⊇ 1] +

(
−2Λ∨

7

[
[2 ⊇ 2] + 2Λ∨

7 [1, 2] +
(

−2Λ∨
7

[
[3 ⊇ 3] +

(
−2Λ∨

7

[
[4 ⊇ 4] +(

−2Λ∨
7

[
[5 ⊇ 5] +

(
−2Λ∨

7

[
[6 ⊇ 6] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 7] +(

Λ∨
6 − 2Λ∨

7

[
[3, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[4, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[5, 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[6, 7]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

5 − Λ∨
6

[
[6, 7 ⊇ 7]

2Λ∨
7 [6, 7 ⊇ 6] + Λ∨

6 [6, 7 ⊇ 7] +
(

−Λ∨
4 + 2Λ∨

5 − 2Λ∨
6 + 2Λ∨

7

[
[5, 6, 7]

2Λ∨
7 [1, 7 ⊇ 1] + Λ∨

6 [1, 7 ⊇ 7] +
(

−2Λ∨
7

[
[2, 7 ⊇ 2] +

(
−Λ∨

6

[
[2, 7 ⊇ 7] +(

−2Λ∨
7

[
[1, 2, 7] +

(
−2Λ∨

7

[
[3, 7 ⊇ 3] +

(
−Λ∨

6

[
[3, 7 ⊇ 7] +

(
−2Λ∨

7

[
[4, 7 ⊇ 4] +(

−Λ∨
6

[
[4, 7 ⊇ 7] +

(
−2Λ∨

7

[
[5, 7 ⊇ 5] +

(
−Λ∨

6

[
[5, 7 ⊇ 7] +

(
Λ∨

5 − 2Λ∨
6 + 2Λ∨

7

[
[1, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − 2Λ∨
7

[
[2, 6, 7] +

(
−Λ∨

5 + 2Λ∨
6 − 2Λ∨

7

[
[3, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − 2Λ∨
7

[
[4, 6, 7] +

(
−2Λ∨

5 + 2Λ∨
6

[
[5, 6, 7]

Λ∨
6 [1, 7 ⊇ 1] + Λ∨

6 [1, 7 ⊇ 7] +
(

−Λ∨
6

[
[2, 7 ⊇ 2] +

(
−Λ∨

6

[
[2, 7 ⊇ 7] +

(
−Λ∨

6

[
[1, 2, 7] +(

−Λ∨
6

[
[3, 7 ⊇ 3] +

(
−Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6

[
[4, 7 ⊇ 4] +

(
−Λ∨

6

[
[4, 7 ⊇ 7] +(

−Λ∨
6

[
[5, 7 ⊇ 5] +

(
−Λ∨

6

[
[5, 7 ⊇ 7] +

(
Λ∨

5 − 2Λ∨
6 + 2Λ∨

7

[
[1, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − 2Λ∨
7

[
[2, 6, 7] +

(
−Λ∨

5 + 2Λ∨
6 − 2Λ∨

7

[
[3, 6, 7] +(

−Λ∨
5 + 2Λ∨

6 − 2Λ∨
7

[
[4, 6, 7] +

(
−2Λ∨

5 + 2Λ∨
6

[
[5, 6, 7]

(
Λ∨

6 − 2Λ∨
7

[
[7 ⊇ 7 ⊇ 7]

2Λ∨
7 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] +
(

−2Λ∨
7

[
[1, 2, 3] +

(
−2Λ∨

7

[
[1, 4 ⊇ 1] +(

−2Λ∨
7

[
[1, 4 ⊇ 4] +

(
−2Λ∨

7

[
[2, 4 ⊇ 2] +

(
−2Λ∨

7

[
[2, 4 ⊇ 4] + 2Λ∨

7 [1, 3, 4] +

2Λ∨
7 [2, 3, 4] +

(
−2Λ∨

7

[
[1, 5 ⊇ 1] +

(
−2Λ∨

7

[
[1, 5 ⊇ 5] +

(
−2Λ∨

7

[
[2, 5 ⊇ 2] +(

−2Λ∨
7

[
[2, 5 ⊇ 5] +

(
−2Λ∨

7

[
[3, 5 ⊇ 3] +

(
−2Λ∨

7

[
[3, 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +(
−2Λ∨

7

[
[1, 6 ⊇ 1] +

(
−2Λ∨

7

[
[1, 6 ⊇ 6] +

(
−2Λ∨

7

[
[2, 6 ⊇ 2] +

(
−2Λ∨

7

[
[2, 6 ⊇ 6] +(

−2Λ∨
7

[
[3, 6 ⊇ 3] +

(
−2Λ∨

7

[
[3, 6 ⊇ 6] +

(
−2Λ∨

7

[
[4, 6 ⊇ 4] +

(
−2Λ∨

7

[
[4, 6 ⊇ 6] +

2Λ∨
7 [4, 5, 6] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 3, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 4, 7] +(

Λ∨
6 − 2Λ∨

7

[
[1, 5, 7]+

(
Λ∨

6 − 2Λ∨
7

[
[2, 5, 7]+

(
Λ∨

6 − 2Λ∨
7

[
[3, 5, 7]+

(
2Λ∨

6 − 4Λ∨
7

[
[1, 6, 7]+(

2Λ∨
6 − 4Λ∨

7

[
[2, 6, 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[3, 6, 7] +

(
2Λ∨

6 − 4Λ∨
7

[
[4, 6, 7]

k hk(X∨) generating cocycles

0 1 2Λ∨
7 []

1 3 2Λ∨
7 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6]

Λ∨
6 [7]

2Λ∨
7 [7]

2 8 2Λ∨
7 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5] + 2Λ∨

7 [6 ⊇ 6]

2Λ∨
7 [1, 3] + 2Λ∨

7 [1, 4] + 2Λ∨
7 [2, 4] + 2Λ∨

7 [1, 5] + 2Λ∨
7 [2, 5] + 2Λ∨

7 [3, 5] + 2Λ∨
7 [1, 6] + 2Λ∨

7 [2, 6] + 2Λ∨
7 [3, 6] +

2Λ∨
7 [4, 6]

Λ∨
6 [7 ⊇ 7]

2Λ∨
7 [7 ⊇ 7]

Λ∨
6 [1, 7] + Λ∨

6 [2, 7] + Λ∨
6 [3, 7] + Λ∨

6 [4, 7] + Λ∨
6 [5, 7]

2Λ∨
7 [1, 7] + 2Λ∨

7 [2, 7] + 2Λ∨
7 [3, 7] + 2Λ∨

7 [4, 7] + 2Λ∨
7 [5, 7]

Λ∨
5 [6, 7]

2Λ∨
7 [6, 7]
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k hk(X∨) generating cocycles

3 20 2Λ∨
7 [1 ⊇ 1 ⊇ 1]+2Λ∨

7 [2 ⊇ 2 ⊇ 2]+2Λ∨
7 [3 ⊇ 3 ⊇ 3]+2Λ∨

7 [4 ⊇ 4 ⊇ 4]+2Λ∨
7 [5 ⊇ 5 ⊇ 5]+2Λ∨

7 [6 ⊇ 6 ⊇ 6]

2Λ∨
7 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] + 2Λ∨
7 [1, 4 ⊇ 1] + 2Λ∨

7 [1, 4 ⊇ 4] + 2Λ∨
7 [2, 4 ⊇ 2] + 2Λ∨

7 [2, 4 ⊇ 4] +
2Λ∨

7 [1, 5 ⊇ 1] + 2Λ∨
7 [1, 5 ⊇ 5] + 2Λ∨

7 [2, 5 ⊇ 2] + 2Λ∨
7 [2, 5 ⊇ 5] + 2Λ∨

7 [3, 5 ⊇ 3] + 2Λ∨
7 [3, 5 ⊇ 5] +

2Λ∨
7 [1, 6 ⊇ 1] + 2Λ∨

7 [1, 6 ⊇ 6] + 2Λ∨
7 [2, 6 ⊇ 2] + 2Λ∨

7 [2, 6 ⊇ 6] + 2Λ∨
7 [3, 6 ⊇ 3] + 2Λ∨

7 [3, 6 ⊇ 6] +
2Λ∨

7 [4, 6 ⊇ 4] + 2Λ∨
7 [4, 6 ⊇ 6]

2Λ∨
7 [1, 2, 3] + 2Λ∨

7 [2, 3, 4] + 2Λ∨
7 [3, 4, 5] + 2Λ∨

7 [4, 5, 6]

2Λ∨
7 [1, 3, 5] + 2Λ∨

7 [1, 3, 6] + 2Λ∨
7 [1, 4, 6] + 2Λ∨

7 [2, 4, 6]

Λ∨
6 [7 ⊇ 7 ⊇ 7]

2Λ∨
7 [7 ⊇ 7 ⊇ 7]

Λ∨
6 [1, 7 ⊇ 1] + Λ∨

6 [2, 7 ⊇ 2] + Λ∨
6 [3, 7 ⊇ 3] + Λ∨

6 [4, 7 ⊇ 4] + Λ∨
6 [5, 7 ⊇ 5]

2Λ∨
7 [1, 7 ⊇ 1] + 2Λ∨

7 [2, 7 ⊇ 2] + 2Λ∨
7 [3, 7 ⊇ 3] + 2Λ∨

7 [4, 7 ⊇ 4] + 2Λ∨
7 [5, 7 ⊇ 5]

Λ∨
6 [1, 7 ⊇ 7] + Λ∨

6 [2, 7 ⊇ 7] + Λ∨
6 [3, 7 ⊇ 7] + Λ∨

6 [4, 7 ⊇ 7] + Λ∨
6 [5, 7 ⊇ 7]

2Λ∨
7 [1, 7 ⊇ 7] + 2Λ∨

7 [2, 7 ⊇ 7] + 2Λ∨
7 [3, 7 ⊇ 7] + 2Λ∨

7 [4, 7 ⊇ 7] + 2Λ∨
7 [5, 7 ⊇ 7]

Λ∨
6 [1, 3, 7] + Λ∨

6 [1, 4, 7] + Λ∨
6 [2, 4, 7] + Λ∨

6 [1, 5, 7] + Λ∨
6 [2, 5, 7] + Λ∨

6 [3, 5, 7]

2Λ∨
7 [1, 3, 7] + 2Λ∨

7 [1, 4, 7] + 2Λ∨
7 [2, 4, 7] + 2Λ∨

7 [1, 5, 7] + 2Λ∨
7 [2, 5, 7] + 2Λ∨

7 [3, 5, 7]

Λ∨
5 [6, 7 ⊇ 6]

Λ∨
5 [6, 7 ⊇ 7]

Λ∨
6 [6, 7 ⊇ 7]

2Λ∨
7 [6, 7 ⊇ 7]

Λ∨
5 [1, 6, 7] + Λ∨

5 [2, 6, 7] + Λ∨
5 [3, 6, 7] + Λ∨

5 [4, 6, 7]

2Λ∨
7 [1, 6, 7] + 2Λ∨

7 [2, 6, 7] + 2Λ∨
7 [3, 6, 7] + 2Λ∨

7 [4, 6, 7]

Λ∨
4 [5, 6, 7]

2Λ∨
7 [5, 6, 7]

k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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A.22.2 Cohomology of coweight lattice X∨ = P∨

[ϕu] = (1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z
(

Λ∨
5 − Λ∨

6

[
[6, 7 ⊇ 7]

k hk(X∨) generating cocycles

0 0

1 0

2 1 Λ∨
6 [7 ⊇ 7]

3 4 Λ∨
7 [1, 3, 5] + Λ∨

7 [1, 3, 6] + Λ∨
7 [1, 4, 6] + Λ∨

7 [2, 4, 6] + Λ∨
5 [1, 3, 7] + Λ∨

5 [1, 4, 7] + Λ∨
5 [2, 4, 7] + Λ∨

3 [1, 5, 7] +
Λ∨

3 [2, 5, 7] + Λ∨
1 [3, 5, 7]

Λ∨
6 [7 ⊇ 7 ⊇ 7]

Λ∨
6 [1, 7 ⊇ 7] + Λ∨

7 [1, 2, 7] + Λ∨
5 [2, 6, 7] + Λ∨

5 [3, 6, 7] + Λ∨
5 [4, 6, 7]

Λ∨
5 [6, 7 ⊇ 7]

k 0 1 2 3

compk
([ ([ ([

⎛
⎜⎜⎝

0
1
0
0

∫
ˆ̂
⎠

A.22.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [7 ⊇ 7]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] + (−1) [6 ⊇ 6]
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k Hk(W0,Z) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z [6, 7 ⊇ 6] + [6, 7 ⊇ 7]

[1, 7 ⊇ 1] + [1, 7 ⊇ 7] + (−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [1, 2, 7] + (−1) [3, 7 ⊇ 3] +
(−1) [3, 7 ⊇ 7] + (−1) [4, 7 ⊇ 4] + (−1) [4, 7 ⊇ 7] + (−1) [5, 7 ⊇ 5] + (−1) [5, 7 ⊇ 7]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3] + [4] + [5] + [6]

[7]

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5] + [1, 6] + [2, 6] + [3, 6] + [4, 6]

[7 ⊇ 7]

[1, 7] + [2, 7] + [3, 7] + [4, 7] + [5, 7]

[6, 7]

3 12 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [4, 5, 6]

[1, 3, 5] + [1, 3, 6] + [1, 4, 6] + [2, 4, 6]

[7 ⊇ 7 ⊇ 7]

[1, 7 ⊇ 1] + [2, 7 ⊇ 2] + [3, 7 ⊇ 3] + [4, 7 ⊇ 4] + [5, 7 ⊇ 5]

[1, 7 ⊇ 7] + [2, 7 ⊇ 7] + [3, 7 ⊇ 7] + [4, 7 ⊇ 7] + [5, 7 ⊇ 7]

[1, 3, 7] + [1, 4, 7] + [2, 4, 7] + [1, 5, 7] + [2, 5, 7] + [3, 5, 7]

[6, 7 ⊇ 6]

[6, 7 ⊇ 7]

[1, 6, 7] + [2, 6, 7] + [3, 6, 7] + [4, 6, 7]

[5, 6, 7]
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A.23 Root system C8

Dynkin diagram 1 2 3 4 5 6 7 8

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
8 ∈ P∨ mod Q∨

A.23.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 0, 1, 1, 0, 0, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
7 − 2Λ∨

8

[
[8]

2 Z/2Z⊕Z/2Z Λ∨
7 [8 ⊇ 8] +

(
Λ∨

6 − 2Λ∨
7 + 2Λ∨

8

[
[7, 8]

2Λ∨
8 [1 ⊇ 1] +

(
−2Λ∨

8

[
[2 ⊇ 2] + 2Λ∨

8 [1, 2] +
(

−2Λ∨
8

[
[3 ⊇ 3] +

(
−2Λ∨

8

[
[4 ⊇ 4] +(

−2Λ∨
8

[
[5 ⊇ 5] +

(
−2Λ∨

8

[
[6 ⊇ 6] +

(
−2Λ∨

8

[
[7 ⊇ 7] +

(
−Λ∨

7 + 2Λ∨
8

[
[1, 8] +(

Λ∨
7 − 2Λ∨

8

[
[2, 8] +

(
Λ∨

7 − 2Λ∨
8

[
[3, 8] +

(
Λ∨

7 − 2Λ∨
8

[
[4, 8] +

(
Λ∨

7 − 2Λ∨
8

[
[5, 8] +(

Λ∨
7 − 2Λ∨

8

[
[6, 8] +

(
2Λ∨

7 − 4Λ∨
8

[
[7, 8]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

6 − Λ∨
7

[
[7, 8 ⊇ 8]

2Λ∨
8 [7, 8 ⊇ 7] + Λ∨

7 [7, 8 ⊇ 8] +
(

−Λ∨
5 + 2Λ∨

6 − 2Λ∨
7 + 2Λ∨

8

[
[6, 7, 8]

2Λ∨
8 [1, 8 ⊇ 1] + Λ∨

7 [1, 8 ⊇ 8] +
(

−2Λ∨
8

[
[2, 8 ⊇ 2] +

(
−Λ∨

7

[
[2, 8 ⊇ 8] +(

−2Λ∨
8

[
[1, 2, 8] +

(
−2Λ∨

8

[
[3, 8 ⊇ 3] +

(
−Λ∨

7

[
[3, 8 ⊇ 8] +

(
−2Λ∨

8

[
[4, 8 ⊇ 4] +(

−Λ∨
7

[
[4, 8 ⊇ 8] +

(
−2Λ∨

8

[
[5, 8 ⊇ 5] +

(
−Λ∨

7

[
[5, 8 ⊇ 8] +

(
−2Λ∨

8

[
[6, 8 ⊇ 6] +(

−Λ∨
7

[
[6, 8 ⊇ 8] +

(
Λ∨

6 − 2Λ∨
7 + 2Λ∨

8

[
[1, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − 2Λ∨

8

[
[2, 7, 8] +(

−Λ∨
6 + 2Λ∨

7 − 2Λ∨
8

[
[3, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − 2Λ∨

8

[
[4, 7, 8] +(

−Λ∨
6 + 2Λ∨

7 − 2Λ∨
8

[
[5, 7, 8] +

(
−2Λ∨

6 + 2Λ∨
7

[
[6, 7, 8]

Λ∨
7 [1, 8 ⊇ 1] + Λ∨

7 [1, 8 ⊇ 8] +
(

−Λ∨
7

[
[2, 8 ⊇ 2] +

(
−Λ∨

7

[
[2, 8 ⊇ 8] +

(
−Λ∨

7

[
[1, 2, 8] +(

−Λ∨
7

[
[3, 8 ⊇ 3] +

(
−Λ∨

7

[
[3, 8 ⊇ 8] +

(
−Λ∨

7

[
[4, 8 ⊇ 4] +

(
−Λ∨

7

[
[4, 8 ⊇ 8] +(

−Λ∨
7

[
[5, 8 ⊇ 5] +

(
−Λ∨

7

[
[5, 8 ⊇ 8] +

(
−Λ∨

7

[
[6, 8 ⊇ 6] +

(
−Λ∨

7

[
[6, 8 ⊇ 8] +(

Λ∨
6 − 2Λ∨

7 + 2Λ∨
8

[
[1, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − 2Λ∨

8

[
[2, 7, 8] +(

−Λ∨
6 + 2Λ∨

7 − 2Λ∨
8

[
[3, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7 − 2Λ∨

8

[
[4, 7, 8] +(

−Λ∨
6 + 2Λ∨

7 − 2Λ∨
8

[
[5, 7, 8] +

(
−2Λ∨

6 + 2Λ∨
7

[
[6, 7, 8]

(
Λ∨

7 − 2Λ∨
8

[
[8 ⊇ 8 ⊇ 8]

2Λ∨
8 [1, 3 ⊇ 1] + 2Λ∨

8 [1, 3 ⊇ 3] +
(

−2Λ∨
8

[
[1, 2, 3] +

(
−2Λ∨

8

[
[1, 4 ⊇ 1] +(

−2Λ∨
8

[
[1, 4 ⊇ 4] +

(
−2Λ∨

8

[
[2, 4 ⊇ 2] +

(
−2Λ∨

8

[
[2, 4 ⊇ 4] + 2Λ∨

8 [1, 3, 4] + 2Λ∨
8 [2, 3, 4] +(

−2Λ∨
8

[
[1, 5 ⊇ 1] +

(
−2Λ∨

8

[
[1, 5 ⊇ 5] +

(
−2Λ∨

8

[
[2, 5 ⊇ 2] +

(
−2Λ∨

8

[
[2, 5 ⊇ 5] +(

−2Λ∨
8

[
[3, 5 ⊇ 3] +

(
−2Λ∨

8

[
[3, 5 ⊇ 5] + 2Λ∨

8 [3, 4, 5] +
(

−2Λ∨
8

[
[1, 6 ⊇ 1] +(

−2Λ∨
8

[
[1, 6 ⊇ 6] +

(
−2Λ∨

8

[
[2, 6 ⊇ 2] +

(
−2Λ∨

8

[
[2, 6 ⊇ 6] +

(
−2Λ∨

8

[
[3, 6 ⊇ 3] +(

−2Λ∨
8

[
[3, 6 ⊇ 6] +

(
−2Λ∨

8

[
[4, 6 ⊇ 4] +

(
−2Λ∨

8

[
[4, 6 ⊇ 6] + 2Λ∨

8 [4, 5, 6] +(
−2Λ∨

8

[
[1, 7 ⊇ 1] +

(
−2Λ∨

8

[
[1, 7 ⊇ 7] +

(
−2Λ∨

8

[
[2, 7 ⊇ 2] +

(
−2Λ∨

8

[
[2, 7 ⊇ 7] +(

−2Λ∨
8

[
[3, 7 ⊇ 3] +

(
−2Λ∨

8

[
[3, 7 ⊇ 7] +

(
−2Λ∨

8

[
[4, 7 ⊇ 4] +

(
−2Λ∨

8

[
[4, 7 ⊇ 7] +(

−2Λ∨
8

[
[5, 7 ⊇ 5] +

(
−2Λ∨

8

[
[5, 7 ⊇ 7] + 2Λ∨

8 [5, 6, 7] +
(

−Λ∨
7 + 2Λ∨

8

[
[1, 3, 8] +(

Λ∨
7 − 2Λ∨

8

[
[1, 4, 8] +

(
Λ∨

7 − 2Λ∨
8

[
[2, 4, 8] +

(
Λ∨

7 − 2Λ∨
8

[
[1, 5, 8] +

(
Λ∨

7 − 2Λ∨
8

[
[2, 5, 8] +(

Λ∨
7 − 2Λ∨

8

[
[3, 5, 8] +

(
Λ∨

7 − 2Λ∨
8

[
[1, 6, 8] +

(
Λ∨

7 − 2Λ∨
8

[
[2, 6, 8] +

(
Λ∨

7 − 2Λ∨
8

[
[3, 6, 8] +(

Λ∨
7 − 2Λ∨

8

[
[4, 6, 8] +

(
2Λ∨

7 − 4Λ∨
8

[
[1, 7, 8] +

(
2Λ∨

7 − 4Λ∨
8

[
[2, 7, 8] +(

2Λ∨
7 − 4Λ∨

8

[
[3, 7, 8] +

(
2Λ∨

7 − 4Λ∨
8

[
[4, 7, 8] +

(
2Λ∨

7 − 4Λ∨
8

[
[5, 7, 8]

k hk(X∨) generating cocycles

0 1 2Λ∨
8 []

1 3 2Λ∨
8 [1] + 2Λ∨

8 [2] + 2Λ∨
8 [3] + 2Λ∨

8 [4] + 2Λ∨
8 [5] + 2Λ∨

8 [6] + 2Λ∨
8 [7]

Λ∨
7 [8]

2Λ∨
8 [8]

2 8 2Λ∨
8 [1 ⊇ 1] + 2Λ∨

8 [2 ⊇ 2] + 2Λ∨
8 [3 ⊇ 3] + 2Λ∨

8 [4 ⊇ 4] + 2Λ∨
8 [5 ⊇ 5] + 2Λ∨

8 [6 ⊇ 6] + 2Λ∨
8 [7 ⊇ 7]

2Λ∨
8 [1, 3] + 2Λ∨

8 [1, 4] + 2Λ∨
8 [2, 4] + 2Λ∨

8 [1, 5] + 2Λ∨
8 [2, 5] + 2Λ∨

8 [3, 5] + 2Λ∨
8 [1, 6] + 2Λ∨

8 [2, 6] + 2Λ∨
8 [3, 6] +

2Λ∨
8 [4, 6] + 2Λ∨

8 [1, 7] + 2Λ∨
8 [2, 7] + 2Λ∨

8 [3, 7] + 2Λ∨
8 [4, 7] + 2Λ∨

8 [5, 7]

Λ∨
7 [8 ⊇ 8]

2Λ∨
8 [8 ⊇ 8]

Λ∨
7 [1, 8] + Λ∨

7 [2, 8] + Λ∨
7 [3, 8] + Λ∨

7 [4, 8] + Λ∨
7 [5, 8] + Λ∨

7 [6, 8]

2Λ∨
8 [1, 8] + 2Λ∨

8 [2, 8] + 2Λ∨
8 [3, 8] + 2Λ∨

8 [4, 8] + 2Λ∨
8 [5, 8] + 2Λ∨

8 [6, 8]

Λ∨
6 [7, 8]

2Λ∨
8 [7, 8]
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k hk(X∨) generating cocycles

3 20 2Λ∨
8 [1 ⊇ 1 ⊇ 1] + 2Λ∨

8 [2 ⊇ 2 ⊇ 2] + 2Λ∨
8 [3 ⊇ 3 ⊇ 3] + 2Λ∨

8 [4 ⊇ 4 ⊇ 4] + 2Λ∨
8 [5 ⊇ 5 ⊇ 5] +

2Λ∨
8 [6 ⊇ 6 ⊇ 6] + 2Λ∨

8 [7 ⊇ 7 ⊇ 7]

2Λ∨
8 [1, 3 ⊇ 1] + 2Λ∨

8 [1, 3 ⊇ 3] + 2Λ∨
8 [1, 4 ⊇ 1] + 2Λ∨

8 [1, 4 ⊇ 4] + 2Λ∨
8 [2, 4 ⊇ 2] + 2Λ∨

8 [2, 4 ⊇ 4] +
2Λ∨

8 [1, 5 ⊇ 1] + 2Λ∨
8 [1, 5 ⊇ 5] + 2Λ∨

8 [2, 5 ⊇ 2] + 2Λ∨
8 [2, 5 ⊇ 5] + 2Λ∨

8 [3, 5 ⊇ 3] + 2Λ∨
8 [3, 5 ⊇ 5] +

2Λ∨
8 [1, 6 ⊇ 1] + 2Λ∨

8 [1, 6 ⊇ 6] + 2Λ∨
8 [2, 6 ⊇ 2] + 2Λ∨

8 [2, 6 ⊇ 6] + 2Λ∨
8 [3, 6 ⊇ 3] + 2Λ∨

8 [3, 6 ⊇ 6] +
2Λ∨

8 [4, 6 ⊇ 4] + 2Λ∨
8 [4, 6 ⊇ 6] + 2Λ∨

8 [1, 7 ⊇ 1] + 2Λ∨
8 [1, 7 ⊇ 7] + 2Λ∨

8 [2, 7 ⊇ 2] + 2Λ∨
8 [2, 7 ⊇ 7] +

2Λ∨
8 [3, 7 ⊇ 3] + 2Λ∨

8 [3, 7 ⊇ 7] + 2Λ∨
8 [4, 7 ⊇ 4] + 2Λ∨

8 [4, 7 ⊇ 7] + 2Λ∨
8 [5, 7 ⊇ 5] + 2Λ∨

8 [5, 7 ⊇ 7]

2Λ∨
8 [1, 2, 3] + 2Λ∨

8 [2, 3, 4] + 2Λ∨
8 [3, 4, 5] + 2Λ∨

8 [4, 5, 6] + 2Λ∨
8 [5, 6, 7]

2Λ∨
8 [1, 3, 5] + 2Λ∨

8 [1, 3, 6] + 2Λ∨
8 [1, 4, 6] + 2Λ∨

8 [2, 4, 6] + 2Λ∨
8 [1, 3, 7] + 2Λ∨

8 [1, 4, 7] + 2Λ∨
8 [2, 4, 7] +

2Λ∨
8 [1, 5, 7] + 2Λ∨

8 [2, 5, 7] + 2Λ∨
8 [3, 5, 7]

Λ∨
7 [8 ⊇ 8 ⊇ 8]

2Λ∨
8 [8 ⊇ 8 ⊇ 8]

Λ∨
7 [1, 8 ⊇ 1] + Λ∨

7 [2, 8 ⊇ 2] + Λ∨
7 [3, 8 ⊇ 3] + Λ∨

7 [4, 8 ⊇ 4] + Λ∨
7 [5, 8 ⊇ 5] + Λ∨

7 [6, 8 ⊇ 6]

2Λ∨
8 [1, 8 ⊇ 1] + 2Λ∨

8 [2, 8 ⊇ 2] + 2Λ∨
8 [3, 8 ⊇ 3] + 2Λ∨

8 [4, 8 ⊇ 4] + 2Λ∨
8 [5, 8 ⊇ 5] + 2Λ∨

8 [6, 8 ⊇ 6]

Λ∨
7 [1, 8 ⊇ 8] + Λ∨

7 [2, 8 ⊇ 8] + Λ∨
7 [3, 8 ⊇ 8] + Λ∨

7 [4, 8 ⊇ 8] + Λ∨
7 [5, 8 ⊇ 8] + Λ∨

7 [6, 8 ⊇ 8]

2Λ∨
8 [1, 8 ⊇ 8] + 2Λ∨

8 [2, 8 ⊇ 8] + 2Λ∨
8 [3, 8 ⊇ 8] + 2Λ∨

8 [4, 8 ⊇ 8] + 2Λ∨
8 [5, 8 ⊇ 8] + 2Λ∨

8 [6, 8 ⊇ 8]

Λ∨
7 [1, 3, 8] + Λ∨

7 [1, 4, 8] + Λ∨
7 [2, 4, 8] + Λ∨

7 [1, 5, 8] + Λ∨
7 [2, 5, 8] + Λ∨

7 [3, 5, 8] + Λ∨
7 [1, 6, 8] + Λ∨

7 [2, 6, 8] +
Λ∨

7 [3, 6, 8] + Λ∨
7 [4, 6, 8]

2Λ∨
8 [1, 3, 8] + 2Λ∨

8 [1, 4, 8] + 2Λ∨
8 [2, 4, 8] + 2Λ∨

8 [1, 5, 8] + 2Λ∨
8 [2, 5, 8] + 2Λ∨

8 [3, 5, 8] + 2Λ∨
8 [1, 6, 8] +

2Λ∨
8 [2, 6, 8] + 2Λ∨

8 [3, 6, 8] + 2Λ∨
8 [4, 6, 8]

Λ∨
6 [7, 8 ⊇ 7]

Λ∨
6 [7, 8 ⊇ 8]

Λ∨
7 [7, 8 ⊇ 8]

2Λ∨
8 [7, 8 ⊇ 8]

Λ∨
6 [1, 7, 8] + Λ∨

6 [2, 7, 8] + Λ∨
6 [3, 7, 8] + Λ∨

6 [4, 7, 8] + Λ∨
6 [5, 7, 8]

2Λ∨
8 [1, 7, 8] + 2Λ∨

8 [2, 7, 8] + 2Λ∨
8 [3, 7, 8] + 2Λ∨

8 [4, 7, 8] + 2Λ∨
8 [5, 7, 8]

Λ∨
5 [6, 7, 8]

2Λ∨
8 [6, 7, 8]
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k 0 1 2 3

compk
([

⎛
⎝

0
1
1

∫
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
1 0
0 0
0 1
0 1
1 0
1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.23.2 Cohomology of coweight lattice X∨ = P∨

[ϕu] = (1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z
(

Λ∨
6 − Λ∨

7

[
[7, 8 ⊇ 8]

k hk(X∨) generating cocycles

0 0

1 0

2 1 Λ∨
7 [8 ⊇ 8]

3 4 Λ∨
7 [1, 3, 5] + Λ∨

7 [1, 3, 6] + Λ∨
7 [1, 4, 6] + Λ∨

7 [2, 4, 6] + Λ∨
5 [1, 3, 7] + Λ∨

5 [1, 4, 7] + Λ∨
5 [2, 4, 7] + Λ∨

3 [1, 5, 7] +
Λ∨

3 [2, 5, 7] + Λ∨
1 [3, 5, 7]

Λ∨
7 [8 ⊇ 8 ⊇ 8]

Λ∨
7 [1, 8 ⊇ 8] + Λ∨

8 [1, 2, 8] + Λ∨
6 [2, 7, 8] + Λ∨

6 [3, 7, 8] + Λ∨
6 [4, 7, 8] + Λ∨

6 [5, 7, 8]

Λ∨
6 [7, 8 ⊇ 8]
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k 0 1 2 3

compk
([ ([ ([

⎛
⎜⎜⎝

0
1
0
0

∫
ˆ̂
⎠

A.23.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [8 ⊇ 8]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] +
(−1) [6 ⊇ 6] + (−1) [7 ⊇ 7]

3 Z/2Z⊕Z/2Z⊕Z/2Z [7, 8 ⊇ 7] + [7, 8 ⊇ 8]

[1, 8 ⊇ 1] + [1, 8 ⊇ 8] + (−1) [2, 8 ⊇ 2] + (−1) [2, 8 ⊇ 8] + (−1) [1, 2, 8] +
(−1) [3, 8 ⊇ 3] + (−1) [3, 8 ⊇ 8] + (−1) [4, 8 ⊇ 4] + (−1) [4, 8 ⊇ 8] + (−1) [5, 8 ⊇ 5] +
(−1) [5, 8 ⊇ 8] + (−1) [6, 8 ⊇ 6] + (−1) [6, 8 ⊇ 8]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6] + (−1) [1, 7 ⊇ 1] +
(−1) [1, 7 ⊇ 7] + (−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [3, 7 ⊇ 3] + (−1) [3, 7 ⊇ 7] +
(−1) [4, 7 ⊇ 4] + (−1) [4, 7 ⊇ 7] + (−1) [5, 7 ⊇ 5] + (−1) [5, 7 ⊇ 7] + [5, 6, 7]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2] + [3] + [4] + [5] + [6] + [7]

[8]

2 5 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6] + [7 ⊇ 7]

[1, 3]+[1, 4]+[2, 4]+[1, 5]+[2, 5]+[3, 5]+[1, 6]+[2, 6]+[3, 6]+[4, 6]+[1, 7]+[2, 7]+[3, 7]+[4, 7]+[5, 7]

[8 ⊇ 8]

[1, 8] + [2, 8] + [3, 8] + [4, 8] + [5, 8] + [6, 8]

[7, 8]
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k hk(F2) generating cocycles

3 12 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6] + [7 ⊇ 7 ⊇ 7]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6] + [1, 7 ⊇ 1] + [1, 7 ⊇ 7] + [2, 7 ⊇ 2] + [2, 7 ⊇ 7] +
[3, 7 ⊇ 3] + [3, 7 ⊇ 7] + [4, 7 ⊇ 4] + [4, 7 ⊇ 7] + [5, 7 ⊇ 5] + [5, 7 ⊇ 7]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [4, 5, 6] + [5, 6, 7]

[1, 3, 5] + [1, 3, 6] + [1, 4, 6] + [2, 4, 6] + [1, 3, 7] + [1, 4, 7] + [2, 4, 7] + [1, 5, 7] + [2, 5, 7] + [3, 5, 7]

[8 ⊇ 8 ⊇ 8]

[1, 8 ⊇ 1] + [2, 8 ⊇ 2] + [3, 8 ⊇ 3] + [4, 8 ⊇ 4] + [5, 8 ⊇ 5] + [6, 8 ⊇ 6]

[1, 8 ⊇ 8] + [2, 8 ⊇ 8] + [3, 8 ⊇ 8] + [4, 8 ⊇ 8] + [5, 8 ⊇ 8] + [6, 8 ⊇ 8]

[1, 3, 8] + [1, 4, 8] + [2, 4, 8] + [1, 5, 8] + [2, 5, 8] + [3, 5, 8] + [1, 6, 8] + [2, 6, 8] + [3, 6, 8] + [4, 6, 8]

[7, 8 ⊇ 7]

[7, 8 ⊇ 8]

[1, 7, 8] + [2, 7, 8] + [3, 7, 8] + [4, 7, 8] + [5, 7, 8]

[6, 7, 8]

A.24 Root system D3

Dynkin diagram 1

3

2

Fundamental group
P∨/Q∨ ≃ Z/4Z

generated by Λ∨
3 ∈ P∨ mod Q∨

A.24.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/4Z
(

Λ∨
1 − 2Λ∨

3

[
[3]

2 Z/2Z 4Λ∨
3 [1 ⊇ 1] +

(
−4Λ∨

3

[
[2 ⊇ 2] + 4Λ∨

3 [1, 2] +
(

−4Λ∨
2

[
[3 ⊇ 3] +

(
−4Λ∨

1 + 4Λ∨
2 + 4Λ∨

3

[
[1, 3] +(

4Λ∨
2 − 4Λ∨

3

[
[2, 3]

3 Z/2Z 4Λ∨
3 [2, 3 ⊇ 2] + 4Λ∨

2 [2, 3 ⊇ 3] +
(

−4Λ∨
1 + 4Λ∨

2 + 4Λ∨
3

[
[1, 2, 3]

k hk(X∨) generating cocycles

0 1 4Λ∨
3 []
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k hk(X∨) generating cocycles

1 2
(

Λ∨
2 + Λ∨

3

[
[1] + 4Λ∨

3 [2] + 4Λ∨
3 [3]

(
Λ∨

1 + 2Λ∨
3

[
[2]

2 2
(

Λ∨
2 + Λ∨

3

[
[1 ⊇ 1] + 4Λ∨

3 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + 3Λ∨
3

[
[1, 2] + 4Λ∨

3 [3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + 3Λ∨
3

[
[1, 3]

(
Λ∨

1 + 2Λ∨
3

[
[2 ⊇ 2] +

(
Λ∨

1 + Λ∨
2 + 3Λ∨

3

[
[1, 2] +

(
Λ∨

1 + 2Λ∨
3

[
[2, 3]

3 3
(

Λ∨
2 + Λ∨

3

[
[1 ⊇ 1 ⊇ 1] + 4Λ∨

3 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + 2Λ∨

3

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + 5Λ∨
3

[
[1, 2 ⊇ 2] +

4Λ∨
3 [3 ⊇ 3 ⊇ 3] +

(
Λ∨

1 + 2Λ∨
3

[
[1, 3 ⊇ 1] +

(
Λ∨

2 + Λ∨
3

[
[1, 3 ⊇ 3]

(
Λ∨

1 + 2Λ∨
3

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + 2Λ∨
3

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + 5Λ∨
3

[
[1, 2 ⊇ 2] + 4Λ∨

3 [2, 3 ⊇ 3] +(
Λ∨

2 + Λ∨
3

[
[1, 2, 3]

(
Λ∨

1 + 6Λ∨
3

[
[3 ⊇ 3 ⊇ 3] +

(
Λ∨

1 + 2Λ∨
3

[
[1, 3 ⊇ 1] +

(
Λ∨

2 + Λ∨
3

[
[1, 3 ⊇ 3] + 4Λ∨

3 [2, 3 ⊇ 3] +(
Λ∨

2 + Λ∨
3

[
[1, 2, 3]

k 0 1 2 3

compk
([ ⎤

0
1

⎣ ⎤
1
0

⎣ ⎛
⎝

0
1
1

∫
⎠

A.24.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(2)⟩

ϕu = ∂τ with τ = (Λ∨
1 + 2Λ∨

3 ) [1] + (Λ∨
2 + Λ∨

3 ) [2] + (Λ∨
2 + Λ∨

3 ) [3]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
1 − 2Λ∨

3

[
[3]

2 Z/2Z 2Λ∨
3 [1 ⊇ 1] +

(
−2Λ∨

3

[
[2 ⊇ 2] + 2Λ∨

3 [1, 2] +
(

−2Λ∨
2

[
[3 ⊇ 3] +

(
−2Λ∨

1 + 2Λ∨
2 + 2Λ∨

3

[
[1, 3] +(

2Λ∨
2 − 2Λ∨

3

[
[2, 3]

3 Z/2Z⊕Z/2Z
(

Λ∨
1 − 2Λ∨

2

[
[2, 3 ⊇ 3] +

(
Λ∨

1 − Λ∨
2 − Λ∨

3

[
[1, 2, 3]

2Λ∨
3 [2, 3 ⊇ 2] + 2Λ∨

2 [2, 3 ⊇ 3] +
(

−2Λ∨
1 + 2Λ∨

2 + 2Λ∨
3

[
[1, 2, 3]

k hk(X∨) generating cocycles

0 1 2Λ∨
3 []

1 2 2Λ∨
3 [1] + 2Λ∨

3 [2] + 2Λ∨
3 [3]

(
Λ∨

1 + 2Λ∨
3

[
[2]
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k hk(X∨) generating cocycles

2 3 2Λ∨
3 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3]

(
Λ∨

1 + 2Λ∨
3

[
[2 ⊇ 2] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3

[
[1, 2]

Λ∨
1 [2, 3]

3 4 2Λ∨
3 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3 ⊇ 3]

(
Λ∨

1 + 2Λ∨
3

[
[2 ⊇ 2 ⊇ 2] + Λ∨

1 [1, 2 ⊇ 1] +
(

Λ∨
2 + 3Λ∨

3

[
[1, 2 ⊇ 2] +

(
Λ∨

2 + Λ∨
3

[
[1, 2, 3]

(
Λ∨

2 + Λ∨
3

[
[1, 2 ⊇ 1] + Λ∨

1 [1, 2, 3]

Λ∨
1 [2, 3 ⊇ 2] + 2Λ∨

3 [2, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2, 3]

k 0 1 2 3

compk
([ ⎤

0
1

⎣ ⎛
⎝

1
0
0

∫
⎠

⎛
⎜⎜⎝

0 0
1 1
1 1
0 1

∫
ˆ̂
⎠

A.24.3 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

2 ) [1] + Λ∨
2 [2] + Λ∨

3 [3]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 Z/2Z Λ∨
3 [1 ⊇ 1] +

(
−Λ∨

3

[
[2 ⊇ 2] + Λ∨

3 [1, 2] +
(

−Λ∨
2

[
[3 ⊇ 3] +

(
−Λ∨

1 + Λ∨
2 + Λ∨

3

[
[1, 3] +

(
Λ∨

2 − Λ∨
3

[
[2, 3]

3 Z/4Z Λ∨
3 [2, 3 ⊇ 2] + Λ∨

2 [2, 3 ⊇ 3] +
(

−Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2, 3]

k hk(X∨) generating cocycles

0 0

1 1 Λ∨
2 [1] + Λ∨

3 [2] + Λ∨
2 [3]

2 2 Λ∨
2 [1 ⊇ 1] + Λ∨

3 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2

[
[1, 2] + Λ∨

2 [3 ⊇ 3] +
(

Λ∨
2 + Λ∨

3

[
[2, 3]

Λ∨
3 [1, 2]

3 2 Λ∨
2 [1 ⊇ 1 ⊇ 1] + Λ∨

3 [2 ⊇ 2 ⊇ 2] + Λ∨
1 [1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3

[
[1, 2 ⊇ 2] + Λ∨

2 [3 ⊇ 3 ⊇ 3] + Λ∨
2 [2, 3 ⊇ 2] +

Λ∨
3 [2, 3 ⊇ 3] + Λ∨

1 [1, 2, 3]

Λ∨
3 [2, 3 ⊇ 2] + Λ∨

2 [2, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2, 3]
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k 0 1 2 3

compk
([ ([ ⎤

1
0

⎣ ⎤
0
1

⎣

A.24.4 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + [1, 3]

3 Z/2Z [2, 3 ⊇ 2] + [2, 3 ⊇ 3] + [1, 2, 3]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3]

[2, 3]

3 3 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3]

[2, 3 ⊇ 2] + [2, 3 ⊇ 3]

[1, 2, 3]

A.25 Root system D4

Dynkin diagram 1 2

4

3

Fundamental group
P∨/Q∨ ≃ Z/2Z⊕Z/2Z

generated by Λ∨
4 ,Λ

∨
3 ∈ P∨ mod Q∨

A.25.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 1, 1, 0, 0, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0



232 A COMPUTATIONAL RESULTS

k Hk(W0,X
∨) generating cocycles

1 Z/2Z⊕Z/2Z
(

Λ∨
2 − 2Λ∨

4

[
[4]

(
Λ∨

2 − 2Λ∨
3

[
[3]

2 Z/2Z⊕Z/2Z 2Λ∨
4 [1 ⊇ 1] +

(
−2Λ∨

4

[
[2 ⊇ 2] + 2Λ∨

4 [1, 2] +
(

−2Λ∨
4

[
[3 ⊇ 3] +

(
−Λ∨

2

[
[4 ⊇ 4] +(

−Λ∨
2 + 2Λ∨

4

[
[1, 4] +

(
−Λ∨

1 + 3Λ∨
2 − Λ∨

3 − 3Λ∨
4

[
[2, 4] +

(
Λ∨

2 − 2Λ∨
4

[
[3, 4]

2Λ∨
3 [1 ⊇ 1] +

(
−2Λ∨

3

[
[2 ⊇ 2] + 2Λ∨

3 [1, 2] +
(

−Λ∨
2

[
[3 ⊇ 3] +

(
−Λ∨

2 + 2Λ∨
3

[
[1, 3] +(

−Λ∨
1 + 3Λ∨

2 − 3Λ∨
3 − Λ∨

4

[
[2, 3] +

(
−2Λ∨

3

[
[4 ⊇ 4] +

(
−Λ∨

2 + 2Λ∨
3

[
[3, 4]

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

2Λ∨
4 [3, 4 ⊇ 3] +

(
−Λ∨

2 + 4Λ∨
3

[
[3, 4 ⊇ 4] +

(
Λ∨

1 − 3Λ∨
2 + 3Λ∨

3 + 3Λ∨
4

[
[2, 3, 4]

Λ∨
2 [3, 4 ⊇ 3] + 2Λ∨

3 [3, 4 ⊇ 4] +
(

Λ∨
1 − Λ∨

2 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

2Λ∨
4 [1, 4 ⊇ 1] + Λ∨

2 [1, 4 ⊇ 4] +
(

−Λ∨
1 + Λ∨

2 − Λ∨
3 − Λ∨

4

[
[1, 2, 4]

2Λ∨
3 [1, 4 ⊇ 1] + 2Λ∨

3 [1, 4 ⊇ 4] +
(

−2Λ∨
3

[
[1, 2, 4] +

(
Λ∨

2 − 2Λ∨
3

[
[1, 3, 4]

2Λ∨
4 [1, 3 ⊇ 1] + 2Λ∨

4 [1, 3 ⊇ 3] +
(

−2Λ∨
4

[
[1, 2, 3] +

(
−Λ∨

2 + 2Λ∨
4

[
[1, 3, 4]

2Λ∨
3 [1, 3 ⊇ 1] + Λ∨

2 [1, 3 ⊇ 3] +
(

−Λ∨
1 + Λ∨

2 − Λ∨
3 − Λ∨

4

[
[1, 2, 3]

k hk(X∨) generating cocycles

0 2 2Λ∨
3 []

2Λ∨
4 []

1 4 Λ∨
2 [1] +

(
2Λ∨

3 + 2Λ∨
4

[
[2] +

(
2Λ∨

3 + 2Λ∨
4

[
[3] +

(
2Λ∨

3 + 2Λ∨
4

[
[4]

2Λ∨
3 [1] + 2Λ∨

3 [2] + 2Λ∨
3 [3] + 2Λ∨

3 [4]

2Λ∨
4 [1] + 2Λ∨

4 [2] + 2Λ∨
4 [3] + 2Λ∨

4 [4]

(
Λ∨

2 + 2Λ∨
3

[
[3]

2 8 Λ∨
2 [1 ⊇ 1] +

(
2Λ∨

3 + 2Λ∨
4

[
[2 ⊇ 2] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + Λ∨
4

[
[1, 2] +

(
2Λ∨

3 + 2Λ∨
4

[
[3 ⊇ 3] + Λ∨

2 [1, 3] +(
2Λ∨

3 + 2Λ∨
4

[
[4 ⊇ 4] + Λ∨

2 [1, 4]

2Λ∨
3 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3] + 2Λ∨

3 [4 ⊇ 4]

2Λ∨
4 [1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2] + 2Λ∨
4 [3 ⊇ 3] + 2Λ∨

4 [4 ⊇ 4]

(
Λ∨

2 + 2Λ∨
3

[
[3 ⊇ 3] + Λ∨

2 [1, 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + Λ∨

4

[
[2, 3] + Λ∨

2 [3, 4]

2Λ∨
3 [1, 3]

2Λ∨
4 [1, 3]

(
Λ∨

2 + 2Λ∨
4

[
[4 ⊇ 4] + Λ∨

2 [1, 4] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + Λ∨

4

[
[2, 4] + Λ∨

2 [3, 4]

2Λ∨
3 [1, 4]
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k hk(X∨) generating cocycles

3 17 Λ∨
2 [1 ⊇ 1 ⊇ 1] +

(
2Λ∨

3 + 2Λ∨
4

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[1, 2 ⊇ 1] +(

Λ∨
2 + 2Λ∨

3 + 2Λ∨
4

[
[1, 2 ⊇ 2] +

(
2Λ∨

3 + 2Λ∨
4

[
[3 ⊇ 3 ⊇ 3] + 2Λ∨

4 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

3 + Λ∨
4

[
[1, 2, 3] +(

2Λ∨
3 + 2Λ∨

4

[
[4 ⊇ 4 ⊇ 4] + 2Λ∨

3 [1, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

3 + Λ∨
4

[
[1, 2, 4]

2Λ∨
3 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3 ⊇ 3] + 2Λ∨

3 [4 ⊇ 4 ⊇ 4]

2Λ∨
4 [1 ⊇ 1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2 ⊇ 2] + 2Λ∨
4 [3 ⊇ 3 ⊇ 3] + 2Λ∨

4 [4 ⊇ 4 ⊇ 4]

Λ∨
2 [1, 2 ⊇ 1] +

(
2Λ∨

3 + 2Λ∨
4

[
[1, 2 ⊇ 2] + Λ∨

2 [1, 2, 3] + Λ∨
2 [1, 2, 4]

(
Λ∨

2 + 2Λ∨
3

[
[3 ⊇ 3 ⊇ 3] + 2Λ∨

4 [1, 3 ⊇ 3] + Λ∨
2 [2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
3 + Λ∨

4

[
[2, 3 ⊇ 3] +(

Λ∨
1 + Λ∨

3 + Λ∨
4

[
[1, 2, 3] +

(
2Λ∨

3 + 2Λ∨
4

[
[3, 4 ⊇ 4] +

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

Λ∨
2 [1, 3 ⊇ 1] +

(
2Λ∨

3 + 2Λ∨
4

[
[1, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + Λ∨
4

[
[1, 2, 3]

2Λ∨
3 [1, 3 ⊇ 1] + 2Λ∨

3 [1, 3 ⊇ 3]

2Λ∨
4 [1, 3 ⊇ 1] + 2Λ∨

4 [1, 3 ⊇ 3]

(
Λ∨

2 + 2Λ∨
3

[
[1, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + Λ∨
4

[
[1, 2, 3]

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2, 3 ⊇ 2] + Λ∨

2 [1, 2, 3] + Λ∨
2 [2, 3, 4]

2Λ∨
3 [1, 2, 3]

(
Λ∨

2 + 2Λ∨
4

[
[4 ⊇ 4 ⊇ 4] + 2Λ∨

3 [1, 4 ⊇ 4] + Λ∨
2 [2, 4 ⊇ 2] +

(
Λ∨

1 + Λ∨
3 + 3Λ∨

4

[
[2, 4 ⊇ 4] +(

Λ∨
1 + Λ∨

3 + Λ∨
4

[
[1, 2, 4] +

(
2Λ∨

3 + 2Λ∨
4

[
[3, 4 ⊇ 4] +

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

Λ∨
2 [1, 4 ⊇ 1] +

(
2Λ∨

3 + 2Λ∨
4

[
[1, 4 ⊇ 4] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + Λ∨
4

[
[1, 2, 4]

2Λ∨
3 [1, 4 ⊇ 1] + 2Λ∨

3 [1, 4 ⊇ 4]

(
Λ∨

2 + 2Λ∨
4

[
[1, 4 ⊇ 4] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + Λ∨
4

[
[1, 2, 4]

Λ∨
2 [3, 4 ⊇ 3] + 2Λ∨

3 [3, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

2Λ∨
3 [3, 4 ⊇ 3] + 2Λ∨

3 [3, 4 ⊇ 4]

k 0 1 2 3

compk
([

⎛
⎜⎜⎝

1 0
1 0
1 0
1 1

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 0
0 1
1 1
0 0
1 0
1 1
0 1

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
1 0 1 1 0 0
1 0 0 0 0 0
0 0 1 1 1 0
0 0 1 1 1 1
0 0 0 0 0 0
1 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
0 0 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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A.25.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(0, 1)⟩

ϕu = ∂τ with τ =
(Λ∨

1 + Λ∨
4 ) [1] + (Λ∨

1 + Λ∨
2 + 3Λ∨

4 ) [2] + (Λ∨
3 + 2Λ∨

4 ) [3] + (Λ∨
1 + Λ∨

4 ) [4]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
2 − 2Λ∨

4

[
[4]

2 Z/2Z 2Λ∨
4 [1 ⊇ 1] +

(
−2Λ∨

4

[
[2 ⊇ 2] + 2Λ∨

4 [1, 2] +
(

−2Λ∨
4

[
[3 ⊇ 3] +

(
−Λ∨

2

[
[4 ⊇ 4] +(

−Λ∨
2 + 2Λ∨

4

[
[1, 4] +

(
−Λ∨

1 + 3Λ∨
2 − Λ∨

3 − 3Λ∨
4

[
[2, 4] +

(
Λ∨

2 − 2Λ∨
4

[
[3, 4]

3 Z/2Z⊕Z/2Z⊕Z/2Z 2Λ∨
4 [3, 4 ⊇ 3] +

(
−Λ∨

2 + 4Λ∨
3

[
[3, 4 ⊇ 4] +

(
Λ∨

1 − 3Λ∨
2 + 3Λ∨

3 + 3Λ∨
4

[
[2, 3, 4]

(
2Λ∨

1 − Λ∨
2

[
[1, 4 ⊇ 4] +

(
−Λ∨

1 + Λ∨
2 − Λ∨

4

[
[1, 2, 4]

2Λ∨
4 [1, 4 ⊇ 1] + Λ∨

2 [1, 4 ⊇ 4] +
(

−Λ∨
1 + Λ∨

2 − Λ∨
3 − Λ∨

4

[
[1, 2, 4]

k hk(X∨) generating cocycles

0 1 2Λ∨
4 []

1 2 Λ∨
2 [1] + 2Λ∨

4 [2] + 2Λ∨
4 [3] + 2Λ∨

4 [4]

2Λ∨
4 [1] + 2Λ∨

4 [2] + 2Λ∨
4 [3] + 2Λ∨

4 [4]

2 4 Λ∨
2 [1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
4

[
[1, 2] + 2Λ∨

4 [3 ⊇ 3] + 2Λ∨
4 [4 ⊇ 4]

2Λ∨
4 [1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2] + 2Λ∨
4 [3 ⊇ 3] + 2Λ∨

4 [4 ⊇ 4]

2Λ∨
4 [1, 3]

Λ∨
2 [1, 4]

3 7 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

4

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + 2Λ∨

4

[
[1, 2 ⊇ 2] +

2Λ∨
4 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
4 [4 ⊇ 4 ⊇ 4] +

(
Λ∨

1 + Λ∨
4

[
[1, 2, 4]

2Λ∨
4 [1 ⊇ 1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2 ⊇ 2] + 2Λ∨
4 [3 ⊇ 3 ⊇ 3] + 2Λ∨

4 [4 ⊇ 4 ⊇ 4]

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
4

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + 2Λ∨

4

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3

[
[2, 3 ⊇ 2] + Λ∨

3 [2, 3 ⊇ 3] + Λ∨
2 [1, 2, 3] + Λ∨

2 [2, 4 ⊇ 2] +
(

Λ∨
1 + Λ∨

3 + 3Λ∨
4

[
[2, 4 ⊇ 4] +

2Λ∨
4 [3, 4 ⊇ 4] +

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

Λ∨
2 [1, 2 ⊇ 1] + 2Λ∨

4 [1, 2 ⊇ 2] + Λ∨
2 [1, 2, 3] + Λ∨

2 [1, 2, 4]

2Λ∨
4 [1, 3 ⊇ 3] + Λ∨

3 [2, 3 ⊇ 2] +
(

Λ∨
1 + Λ∨

4

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[1, 2, 3] + 2Λ∨

4 [3, 4 ⊇ 4] +(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

Λ∨
2 [1, 4 ⊇ 1] + 2Λ∨

4 [1, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

2 + Λ∨
4

[
[1, 2, 4]

Λ∨
3 [1, 2, 4]
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k 0 1 2 3

compk
([ ⎤

1
1

⎣
⎛
⎜⎜⎝

0
1
1
0

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1 0
1 0 0
0 1 0
1 0 0
0 0 1
0 0 1

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.25.3 Cohomology of lattice X∨ corresponding to Ω = ⟨(1, 1)⟩

ϕu = ∂τ with τ =
(Λ∨

1 + 2Λ∨
4 ) [1] + (Λ∨

1 + Λ∨
2 + 2Λ∨

4 ) [2] + (Λ∨
3 + Λ∨

4 ) [3] + (Λ∨
3 + Λ∨

4 ) [4]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
2 − 2Λ∨

4

[
[4]

2 Z/2Z 2Λ∨
4 [1 ⊇ 1] +

(
−2Λ∨

4

[
[2 ⊇ 2] + 2Λ∨

4 [1, 2] +
(

−2Λ∨
4

[
[3 ⊇ 3] +

(
−2Λ∨

3

[
[4 ⊇ 4] +(

−Λ∨
2 + 2Λ∨

4

[
[1, 4] +

(
−Λ∨

1 + 2Λ∨
2 − 2Λ∨

4

[
[2, 4] +

(
2Λ∨

3 − 2Λ∨
4

[
[3, 4]

3 Z/2Z⊕Z/2Z⊕Z/2Z
(

Λ∨
2 − 2Λ∨

3

[
[3, 4 ⊇ 4] +

(
Λ∨

2 − Λ∨
3 − Λ∨

4

[
[2, 3, 4]

2Λ∨
4 [3, 4 ⊇ 3] + 2Λ∨

3 [3, 4 ⊇ 4] +
(

Λ∨
1 − 2Λ∨

2 + 2Λ∨
3 + 2Λ∨

4

[
[2, 3, 4]

2Λ∨
4 [1, 4 ⊇ 1] + Λ∨

2 [1, 4 ⊇ 4] +
(

−Λ∨
1 + Λ∨

2 − Λ∨
3 − Λ∨

4

[
[1, 2, 4]

k hk(X∨) generating cocycles

0 1 2Λ∨
4 []

1 2 2Λ∨
4 [1] + 2Λ∨

4 [2] + 2Λ∨
4 [3] + 2Λ∨

4 [4]

(
Λ∨

2 + 2Λ∨
4

[
[3]

2 4 2Λ∨
4 [1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2] + 2Λ∨
4 [3 ⊇ 3] + 2Λ∨

4 [4 ⊇ 4]

(
Λ∨

2 + 2Λ∨
4

[
[3 ⊇ 3] +

(
Λ∨

2 + Λ∨
3 + Λ∨

4

[
[2, 3]

2Λ∨
4 [1, 3]

Λ∨
2 [3, 4]
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k hk(X∨) generating cocycles

3 7 2Λ∨
4 [1 ⊇ 1 ⊇ 1] + 2Λ∨

4 [2 ⊇ 2 ⊇ 2] + 2Λ∨
4 [3 ⊇ 3 ⊇ 3] + 2Λ∨

4 [4 ⊇ 4 ⊇ 4]

(
Λ∨

2 + 2Λ∨
4

[
[3 ⊇ 3 ⊇ 3] +

(
Λ∨

2 + Λ∨
3 + Λ∨

4

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + 3Λ∨
4

[
[2, 3 ⊇ 3] +

(
Λ∨

2 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

2Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
4

[
[2, 3 ⊇ 2] + Λ∨

1 [2, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

3 + Λ∨
4

[
[1, 2, 3] + Λ∨

2 [2, 3, 4]

Λ∨
2 [1, 3 ⊇ 3] +

(
Λ∨

3 + Λ∨
4

[
[2, 3 ⊇ 2] + Λ∨

1 [2, 3 ⊇ 3] + Λ∨
2 [1, 2, 3] + Λ∨

2 [2, 3, 4]

2Λ∨
4 [1, 3 ⊇ 3] +

(
Λ∨

3 + Λ∨
4

[
[2, 3 ⊇ 2] + Λ∨

1 [2, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

3 + Λ∨
4

[
[1, 2, 3] + Λ∨

2 [2, 3, 4]

Λ∨
2 [3, 4 ⊇ 3] + 2Λ∨

4 [3, 4 ⊇ 4] +
(

Λ∨
2 + Λ∨

3 + Λ∨
4

[
[2, 3, 4]

Λ∨
1 [2, 3, 4]

k 0 1 2 3

compk
([ ⎤

0
1

⎣
⎛
⎜⎜⎝

1
0
1
0

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 1 0
0 0 1
0 0 1
0 0 0
0 1 0
0 1 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.25.4 Cohomology of lattice X∨ corresponding to Ω = ⟨(1, 0)⟩

ϕu = ∂τ with τ =
(Λ∨

1 + Λ∨
2 + Λ∨

3 ) [1] + (Λ∨
1 + Λ∨

2 + Λ∨
3 ) [2] + (Λ∨

1 + Λ∨
2 + Λ∨

3 ) [3] + Λ∨
4 [4]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
2 − 2Λ∨

3

[
[3]

2 Z/2Z 2Λ∨
3 [1 ⊇ 1] +

(
−2Λ∨

3

[
[2 ⊇ 2] + 2Λ∨

3 [1, 2] +
(

−Λ∨
2

[
[3 ⊇ 3] +

(
−Λ∨

2 + 2Λ∨
3

[
[1, 3] +(

−Λ∨
1 + 3Λ∨

2 − 3Λ∨
3 − Λ∨

4

[
[2, 3] +

(
−2Λ∨

3

[
[4 ⊇ 4] +

(
−Λ∨

2 + 2Λ∨
3

[
[3, 4]

3 Z/2Z⊕Z/2Z⊕Z/2Z Λ∨
2 [3, 4 ⊇ 3] + 2Λ∨

3 [3, 4 ⊇ 4] +
(

Λ∨
1 − Λ∨

2 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

(
2Λ∨

1 − Λ∨
2

[
[1, 3 ⊇ 3] +

(
−Λ∨

1 + Λ∨
2 − Λ∨

3

[
[1, 2, 3]

2Λ∨
3 [1, 3 ⊇ 1] + Λ∨

2 [1, 3 ⊇ 3] +
(

−Λ∨
1 + Λ∨

2 − Λ∨
3 − Λ∨

4

[
[1, 2, 3]

k hk(X∨) generating cocycles

0 1 2Λ∨
3 []

1 2 Λ∨
2 [1] + 2Λ∨

3 [2] + 2Λ∨
3 [3] + 2Λ∨

3 [4]

2Λ∨
3 [1] + 2Λ∨

3 [2] + 2Λ∨
3 [3] + 2Λ∨

3 [4]
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k hk(X∨) generating cocycles

2 4 Λ∨
2 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2] + 2Λ∨

3 [3 ⊇ 3] + 2Λ∨
3 [4 ⊇ 4]

2Λ∨
3 [1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3] + 2Λ∨

3 [4 ⊇ 4]

Λ∨
2 [1, 3]

2Λ∨
3 [1, 4]

3 7 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

3

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + 2Λ∨
3 + Λ∨

4

[
[1, 2 ⊇ 2] +

2Λ∨
3 [3 ⊇ 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[1, 2, 3] + 2Λ∨

3 [4 ⊇ 4 ⊇ 4] + Λ∨
2 [1, 2, 4]

2Λ∨
3 [1 ⊇ 1 ⊇ 1] + 2Λ∨

3 [2 ⊇ 2 ⊇ 2] + 2Λ∨
3 [3 ⊇ 3 ⊇ 3] + 2Λ∨

3 [4 ⊇ 4 ⊇ 4]

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
3

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + 2Λ∨
3 + Λ∨

4

[
[1, 2 ⊇ 2] + Λ∨

2 [2, 3 ⊇ 2] +(
Λ∨

1 + 3Λ∨
3 + Λ∨

4

[
[2, 3 ⊇ 3] +

(
Λ∨

2 + Λ∨
4

[
[2, 4 ⊇ 2] + Λ∨

4 [2, 4 ⊇ 4] + Λ∨
2 [1, 2, 4] + 2Λ∨

3 [3, 4 ⊇ 4] +(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

Λ∨
2 [1, 2 ⊇ 1] + 2Λ∨

3 [1, 2 ⊇ 2] + Λ∨
2 [1, 2, 3] + Λ∨

2 [1, 2, 4]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

3 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2, 3]

Λ∨
4 [1, 2, 3]

2Λ∨
3 [1, 4 ⊇ 1] + Λ∨

4 [2, 4 ⊇ 2] +
(

Λ∨
1 + Λ∨

3

[
[2, 4 ⊇ 4] +

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[1, 2, 4] + 2Λ∨

3 [3, 4 ⊇ 4] +(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2, 3, 4]

k 0 1 2 3

compk
([ ⎤

1
1

⎣
⎛
⎜⎜⎝

0
1
0
1

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.25.5 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = (Λ∨
1 + Λ∨

3 ) [1] + (Λ∨
1 + Λ∨

2 + Λ∨
3 ) [2] + (Λ∨

1 + Λ∨
3 ) [3] + Λ∨

4 [4]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 Z/2Z⊕Z/2Z Λ∨
4 [1 ⊇ 1] +

(
−Λ∨

4

[
[2 ⊇ 2] + Λ∨

4 [1, 2] +
(

−Λ∨
4

[
[3 ⊇ 3] +

(
−Λ∨

1 − Λ∨
3

[
[4 ⊇ 4] +(

Λ∨
1 − Λ∨

2 + Λ∨
4

[
[1, 4] +

(
Λ∨

2 − Λ∨
4

[
[2, 4] +

(
Λ∨

3 − Λ∨
4

[
[3, 4]

Λ∨
3 [1 ⊇ 1] +

(
−Λ∨

3

[
[2 ⊇ 2] + Λ∨

3 [1, 2] +
(

−Λ∨
1 − Λ∨

4

[
[3 ⊇ 3] +

(
Λ∨

1 − Λ∨
2 + Λ∨

3

[
[1, 3] +(

Λ∨
2 − Λ∨

3

[
[2, 3] +

(
−Λ∨

3

[
[4 ⊇ 4] +

(
Λ∨

3 − Λ∨
4

[
[3, 4]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

(
Λ∨

2 − 2Λ∨
3

[
[3, 4 ⊇ 4] +

(
Λ∨

2 − Λ∨
3 − Λ∨

4

[
[2, 3, 4]

Λ∨
4 [2, 4 ⊇ 2] +

(
−Λ∨

1 + 2Λ∨
2 − Λ∨

3

[
[2, 4 ⊇ 4] +

(
−Λ∨

1 + Λ∨
4

[
[1, 2, 4] +

(
Λ∨

3 − Λ∨
4

[
[2, 3, 4]

Λ∨
3 [1, 4 ⊇ 1] + Λ∨

3 [1, 4 ⊇ 4] +
(

−Λ∨
3

[
[1, 2, 4] +

(
−Λ∨

1

[
[3, 4 ⊇ 3] +

(
−Λ∨

1

[
[3, 4 ⊇ 4] +(

−Λ∨
1 + Λ∨

2 − Λ∨
3

[
[1, 3, 4] +

(
−Λ∨

1

[
[2, 3, 4]

Λ∨
3 [2, 3 ⊇ 2] +

(
−Λ∨

1 + 2Λ∨
2 − Λ∨

4

[
[2, 3 ⊇ 3] +

(
−Λ∨

1 + Λ∨
3

[
[1, 2, 3] +

(
Λ∨

3 − Λ∨
4

[
[2, 3, 4]

Λ∨
4 [1, 3 ⊇ 1] + Λ∨

4 [1, 3 ⊇ 3] +
(

−Λ∨
4

[
[1, 2, 3] +

(
−Λ∨

1

[
[3, 4 ⊇ 3] +

(
−Λ∨

1

[
[3, 4 ⊇ 4] +(

−Λ∨
1 + Λ∨

4

[
[1, 3, 4] +

(
−Λ∨

1

[
[2, 3, 4]

k hk(X∨) generating cocycles

0 0

1 2 Λ∨
3 [1] + Λ∨

3 [2] +
(

Λ∨
1 + Λ∨

4

[
[3] + Λ∨

3 [4]

Λ∨
4 [1] + Λ∨

4 [2] + Λ∨
4 [3] +

(
Λ∨

1 + Λ∨
3

[
[4]

2 7 Λ∨
3 [1 ⊇ 1] + Λ∨

3 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

4

[
[3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[1, 3] +

(
Λ∨

2 + Λ∨
3

[
[2, 3] + Λ∨

3 [4 ⊇ 4] +(
Λ∨

3 + Λ∨
4

[
[3, 4]

Λ∨
4 [1 ⊇ 1] + Λ∨

4 [2 ⊇ 2] + Λ∨
4 [3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[4 ⊇ 4] +

(
Λ∨

1 + Λ∨
4

[
[1, 4] +

(
Λ∨

2 + Λ∨
4

[
[2, 4] +(

Λ∨
3 + Λ∨

4

[
[3, 4]

Λ∨
3 [1, 2]

Λ∨
4 [1, 2]

Λ∨
4 [1, 3] + Λ∨

1 [3, 4]

Λ∨
4 [2, 3]

Λ∨
3 [1, 4] + Λ∨

1 [3, 4]

3 11 Λ∨
3 [1 ⊇ 1 ⊇ 1] + Λ∨

3 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

4

[
[3 ⊇ 3 ⊇ 3] + Λ∨

1 [1, 3 ⊇ 1] +
(

Λ∨
3 + Λ∨

4

[
[1, 3 ⊇ 3] +

Λ∨
2 [2, 3 ⊇ 2] +

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + Λ∨
3 [4 ⊇ 4 ⊇ 4] + Λ∨

3 [3, 4 ⊇ 3] +(
Λ∨

1 + Λ∨
4

[
[3, 4 ⊇ 4] +

(
Λ∨

3 + Λ∨
4

[
[1, 3, 4] + Λ∨

2 [2, 3, 4]

Λ∨
4 [1 ⊇ 1 ⊇ 1] + Λ∨

4 [2 ⊇ 2 ⊇ 2] + Λ∨
4 [3 ⊇ 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[4 ⊇ 4 ⊇ 4] + Λ∨

1 [1, 4 ⊇ 1] +(
Λ∨

3 + Λ∨
4

[
[1, 4 ⊇ 4] + Λ∨

2 [2, 4 ⊇ 2] +
(

Λ∨
1 + Λ∨

3 + Λ∨
4

[
[2, 4 ⊇ 4] + Λ∨

2 [1, 2, 4] + Λ∨
3 [3, 4 ⊇ 3] +(

Λ∨
1 + Λ∨

4

[
[3, 4 ⊇ 4] + Λ∨

2 [2, 3, 4]

(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2 ⊇ 2 ⊇ 2] + Λ∨

1 [1, 2 ⊇ 1] +
(

Λ∨
2 + Λ∨

3 + Λ∨
4

[
[1, 2 ⊇ 2] + Λ∨

2 [2, 3 ⊇ 2] +(
Λ∨

1 + Λ∨
3 + Λ∨

4

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3

[
[1, 2, 3] + Λ∨

2 [2, 4 ⊇ 2] +
(

Λ∨
1 + Λ∨

3 + Λ∨
4

[
[2, 4 ⊇ 4] +(

Λ∨
1 + Λ∨

2 + Λ∨
4

[
[1, 2, 4]

Λ∨
3 [1, 2 ⊇ 1] + Λ∨

3 [1, 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3

[
[1, 2, 3]

Λ∨
2 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [2, 3 ⊇ 2] +
(

Λ∨
1 + Λ∨

3 + Λ∨
4

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[1, 2, 3] +

(
Λ∨

3 + Λ∨
4

[
[2, 3, 4]

Λ∨
3 [1, 3 ⊇ 1] +

(
Λ∨

1 + Λ∨
4

[
[1, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3

[
[1, 2, 3] + Λ∨

3 [1, 3, 4]

Λ∨
4 [1, 3 ⊇ 1] + Λ∨

4 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

3

[
[1, 3, 4]

Λ∨
3 [1, 4 ⊇ 1] + Λ∨

3 [1, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

4

[
[1, 3, 4]

Λ∨
4 [1, 4 ⊇ 1] +

(
Λ∨

1 + Λ∨
3

[
[1, 4 ⊇ 4] +

(
Λ∨

1 + Λ∨
2 + Λ∨

4

[
[1, 2, 4] + Λ∨

4 [1, 3, 4]

Λ∨
1 [3, 4 ⊇ 3] + Λ∨

1 [3, 4 ⊇ 4] +
(

Λ∨
3 + Λ∨

4

[
[1, 3, 4]

Λ∨
4 [3, 4 ⊇ 3] +

(
Λ∨

1 + Λ∨
3

[
[3, 4 ⊇ 4] + Λ∨

4 [1, 3, 4] +
(

Λ∨
2 + Λ∨

3 + Λ∨
4

[
[2, 3, 4]
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k 0 1 2 3

compk
([ ([

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0
0 0
0 0
0 0
0 0
0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 1 1 0 0
1 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.25.6 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4]

3 Z/2Z⊕Z/2Z⊕Z/2Z [3, 4 ⊇ 3] + [3, 4 ⊇ 4] + [2, 3, 4]

[1, 4 ⊇ 1] + [1, 4 ⊇ 4] + (−1) [1, 2, 4]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4]

2 4 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4]

[1, 3]

[1, 4]

[3, 4]

3 8 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3]

[1, 2, 3]

[1, 4 ⊇ 1] + [1, 4 ⊇ 4]

[1, 2, 4]

[3, 4 ⊇ 3] + [3, 4 ⊇ 4]

[1, 3, 4]

[2, 3, 4]
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A.26 Root system D5

Dynkin diagram 1 2 3

5

4

Fundamental group
P∨/Q∨ ≃ Z/4Z

generated by Λ∨
5 ∈ P∨ mod Q∨

A.26.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 0, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/4Z
(

Λ∨
3 − 2Λ∨

5

[
[5]

2 Z/2Z 4Λ∨
5 [1 ⊇ 1] +

(
−4Λ∨

5

[
[2 ⊇ 2] + 4Λ∨

5 [1, 2] +
(

−4Λ∨
5

[
[3 ⊇ 3] +

(
−4Λ∨

5

[
[4 ⊇ 4] +(

−4Λ∨
4

[
[5 ⊇ 5] +

(
−2Λ∨

3 + 4Λ∨
5

[
[1, 5] +

(
2Λ∨

3 − 4Λ∨
5

[
[2, 5] +(

−2Λ∨
2 + 4Λ∨

3 − 4Λ∨
5

[
[3, 5] +

(
4Λ∨

4 − 4Λ∨
5

[
[4, 5]

3 Z/2Z⊕Z/2Z⊕Z/2Z 4Λ∨
5 [4, 5 ⊇ 4] + 4Λ∨

4 [4, 5 ⊇ 5] +
(

2Λ∨
2 − 4Λ∨

3 + 4Λ∨
4 + 4Λ∨

5

[
[3, 4, 5]

(
Λ∨

3 − 2Λ∨
5

[
[1, 5 ⊇ 1] +

(
−Λ∨

3 − 6Λ∨
5

[
[2, 5 ⊇ 2] +

(
−4Λ∨

3

[
[2, 5 ⊇ 5] +(

−Λ∨
3 − 2Λ∨

5

[
[1, 2, 5] +

(
−Λ∨

4 − Λ∨
5

[
[3, 5 ⊇ 3] +

(
−Λ∨

2 + Λ∨
3 − 2Λ∨

4

[
[3, 5 ⊇ 5] +(

Λ∨
1 + 2Λ∨

2 − 2Λ∨
3 + 4Λ∨

4 + 2Λ∨
5

[
[2, 3, 5] +

(
−2Λ∨

3 + 2Λ∨
4 + 2Λ∨

5

[
[3, 4, 5]

4Λ∨
5 [1, 3 ⊇ 1] + 4Λ∨

5 [1, 3 ⊇ 3] +
(

−4Λ∨
5

[
[1, 2, 3] +

(
−4Λ∨

5

[
[1, 4 ⊇ 1] +(

−4Λ∨
5

[
[1, 4 ⊇ 4] +

(
−4Λ∨

5

[
[2, 4 ⊇ 2] +

(
−4Λ∨

5

[
[2, 4 ⊇ 4] + 4Λ∨

5 [1, 3, 4] +

4Λ∨
5 [2, 3, 4] +

(
−4Λ∨

5

[
[1, 5 ⊇ 1] +

(
−2Λ∨

3

[
[1, 5 ⊇ 5] +

(
−4Λ∨

5

[
[2, 5 ⊇ 2] +(

−2Λ∨
3

[
[2, 5 ⊇ 5] +

(
2Λ∨

2 − 2Λ∨
3 + 2Λ∨

4 + 2Λ∨
5

[
[1, 3, 5] +(

2Λ∨
2 − 2Λ∨

3 + 2Λ∨
4 + 2Λ∨

5

[
[2, 3, 5] +

(
2Λ∨

3 − 4Λ∨
5

[
[1, 4, 5] +

(
2Λ∨

3 − 4Λ∨
5

[
[2, 4, 5]

k hk(X∨) generating cocycles

0 1 4Λ∨
5 []

1 2 Λ∨
2 [1] + 4Λ∨

5 [2] + 4Λ∨
5 [3] + 4Λ∨

5 [4] + 4Λ∨
5 [5]

(
Λ∨

3 + 2Λ∨
5

[
[4]

2 4 Λ∨
2 [1 ⊇ 1] + 4Λ∨

5 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + 2Λ∨
5

[
[1, 2] + 4Λ∨

5 [3 ⊇ 3] + 4Λ∨
5 [4 ⊇ 4] + 4Λ∨

5 [5 ⊇ 5]

Λ∨
2 [1, 3] +

(
Λ∨

1 + 2Λ∨
5

[
[2, 3] + 4Λ∨

5 [1, 4] + 4Λ∨
5 [2, 4] +

(
Λ∨

1 + 2Λ∨
5

[
[3, 4] + 4Λ∨

5 [1, 5] + 4Λ∨
5 [2, 5] +(

Λ∨
1 + 2Λ∨

5

[
[3, 5]

(
Λ∨

3 + 2Λ∨
5

[
[4 ⊇ 4] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[3, 4] +

(
Λ∨

3 + 2Λ∨
5

[
[4, 5]

(
Λ∨

3 + 2Λ∨
5

[
[1, 4] +

(
Λ∨

3 + 2Λ∨
5

[
[2, 4] + Λ∨

2 [3, 4]



A.26 Root system D5 241

k hk(X∨) generating cocycles

3 8 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 4Λ∨

5 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + 2Λ∨

5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + 2Λ∨

5

[
[1, 2 ⊇ 2] +

4Λ∨
5 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 4Λ∨
5 [4 ⊇ 4 ⊇ 4] + 4Λ∨

5 [2, 3, 4] + 4Λ∨
5 [5 ⊇ 5 ⊇ 5] + 4Λ∨

5 [2, 3, 5]

4Λ∨
5 [1 ⊇ 1 ⊇ 1] + 4Λ∨

5 [2 ⊇ 2 ⊇ 2] + 4Λ∨
5 [3 ⊇ 3 ⊇ 3] + 4Λ∨

5 [4 ⊇ 4 ⊇ 4] + 4Λ∨
5 [5 ⊇ 5 ⊇ 5]

Λ∨
2 [1, 3 ⊇ 1] + 4Λ∨

5 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 4Λ∨

5

[
[1, 2, 3] + 4Λ∨

5 [1, 4 ⊇ 1] + 4Λ∨
5 [1, 4 ⊇ 4] +

4Λ∨
5 [2, 4 ⊇ 2] + 4Λ∨

5 [2, 4 ⊇ 4] +
(

Λ∨
1 + 2Λ∨

5

[
[1, 3, 4] + 4Λ∨

5 [1, 5 ⊇ 1] + 4Λ∨
5 [1, 5 ⊇ 5] + 4Λ∨

5 [2, 5 ⊇ 2] +

4Λ∨
5 [2, 5 ⊇ 5] +

(
Λ∨

1 + 2Λ∨
5

[
[1, 3, 5]

(
Λ∨

3 + 2Λ∨
5

[
[4 ⊇ 4 ⊇ 4] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[3, 4 ⊇ 3] +

(
Λ∨

4 + Λ∨
5

[
[3, 4 ⊇ 4] + 4Λ∨

5 [4, 5 ⊇ 5] +(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[3, 4, 5]

(
Λ∨

3 + 2Λ∨
5

[
[1, 4 ⊇ 1] +

(
Λ∨

3 + 2Λ∨
5

[
[2, 4 ⊇ 2] +

(
Λ∨

4 + Λ∨
5

[
[3, 4 ⊇ 3] +

(
Λ∨

2 + 4Λ∨
5

[
[3, 4 ⊇ 4] +(

Λ∨
3 + 2Λ∨

5

[
[2, 3, 4] +

(
Λ∨

3 + 2Λ∨
5

[
[3, 4, 5]

(
Λ∨

3 + 2Λ∨
5

[
[1, 4 ⊇ 4]+

(
Λ∨

4 + Λ∨
5

[
[1, 2, 4]+

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[1, 3, 4]+

(
Λ∨

3 + 2Λ∨
5

[
[1, 4, 5]+4Λ∨

5 [2, 4, 5]

(
Λ∨

3 + 6Λ∨
5

[
[5 ⊇ 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[3, 5 ⊇ 3] +

(
Λ∨

4 + 5Λ∨
5

[
[3, 5 ⊇ 5] + 4Λ∨

5 [4, 5 ⊇ 5] +(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[3, 4, 5]

Λ∨
2 [3, 4, 5]

k 0 1 2 3

compk
([ ⎤

0
1

⎣
⎛
⎜⎜⎝

1
0
0
0

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 1
0 0 1
1 0 0
0 1 0
0 0 0
1 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.26.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(2)⟩

ϕu = ∂τ with τ = (Λ∨
1 + 2Λ∨

5 ) [1] + (Λ∨
1 + Λ∨

2 + 2Λ∨
5 ) [2] + (Λ∨

2 + Λ∨
3 + 2Λ∨

5 ) [3] +
(Λ∨

4 + Λ∨
5 ) [4] + (Λ∨

4 + Λ∨
5 ) [5]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
3 − 2Λ∨

5

[
[5]

2 Z/2Z 2Λ∨
5 [1 ⊇ 1] +

(
−2Λ∨

5

[
[2 ⊇ 2] + 2Λ∨

5 [1, 2] +
(

−2Λ∨
5

[
[3 ⊇ 3] +

(
−2Λ∨

5

[
[4 ⊇ 4] +(

−2Λ∨
4

[
[5 ⊇ 5] +

(
−Λ∨

3 + 2Λ∨
5

[
[1, 5] +

(
Λ∨

3 − 2Λ∨
5

[
[2, 5] +

(
−Λ∨

2 + 2Λ∨
3 − 2Λ∨

5

[
[3, 5] +(

2Λ∨
4 − 2Λ∨

5

[
[4, 5]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z

(
Λ∨

3 − 2Λ∨
4

[
[4, 5 ⊇ 5] +

(
Λ∨

3 − Λ∨
4 − Λ∨

5

[
[3, 4, 5]

2Λ∨
5 [4, 5 ⊇ 4] + 2Λ∨

4 [4, 5 ⊇ 5] +
(

Λ∨
2 − 2Λ∨

3 + 2Λ∨
4 + 2Λ∨

5

[
[3, 4, 5]

(
Λ∨

3 − 2Λ∨
5

[
[1, 5 ⊇ 1] +

(
−Λ∨

3 − 2Λ∨
5

[
[2, 5 ⊇ 2] +

(
−2Λ∨

3

[
[2, 5 ⊇ 5] +

(
−Λ∨

3

[
[1, 2, 5] +(

−Λ∨
4 − Λ∨

5

[
[3, 5 ⊇ 3] +

(
−Λ∨

2 + Λ∨
3 − 2Λ∨

4

[
[3, 5 ⊇ 5] +

(
Λ∨

1 + 2Λ∨
4

[
[2, 3, 5] +(

−2Λ∨
3 + 2Λ∨

4 + 2Λ∨
5

[
[3, 4, 5]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

−2Λ∨
5

[
[1, 2, 3] +

(
−2Λ∨

5

[
[1, 4 ⊇ 1] +(

−2Λ∨
5

[
[1, 4 ⊇ 4] +

(
−2Λ∨

5

[
[2, 4 ⊇ 2] +

(
−2Λ∨

5

[
[2, 4 ⊇ 4] + 2Λ∨

5 [1, 3, 4] +

2Λ∨
5 [2, 3, 4] +

(
−2Λ∨

5

[
[1, 5 ⊇ 1] +

(
−Λ∨

3

[
[1, 5 ⊇ 5] +

(
−2Λ∨

5

[
[2, 5 ⊇ 2] +(

−Λ∨
3

[
[2, 5 ⊇ 5] +

(
Λ∨

2 − Λ∨
3 + Λ∨

4 + Λ∨
5

[
[1, 3, 5] +

(
Λ∨

2 − Λ∨
3 + Λ∨

4 + Λ∨
5

[
[2, 3, 5] +(

Λ∨
3 − 2Λ∨

5

[
[1, 4, 5] +

(
Λ∨

3 − 2Λ∨
5

[
[2, 4, 5]

k hk(X∨) generating cocycles

0 1 2Λ∨
5 []

1 2 2Λ∨
5 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4] + 2Λ∨
5 [5]

(
Λ∨

3 + 2Λ∨
5

[
[4]

2 5 2Λ∨
5 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4] + 2Λ∨
5 [5 ⊇ 5]

2Λ∨
5 [1, 3] + 2Λ∨

5 [1, 4] + 2Λ∨
5 [2, 4] + 2Λ∨

5 [1, 5] + 2Λ∨
5 [2, 5]

(
Λ∨

3 + 2Λ∨
5

[
[4 ⊇ 4] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[3, 4]

(
Λ∨

3 + 2Λ∨
5

[
[1, 4] +

(
Λ∨

3 + 2Λ∨
5

[
[2, 4] + Λ∨

2 [3, 4]

Λ∨
3 [4, 5]

3 10 2Λ∨
5 [1 ⊇ 1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4 ⊇ 4] + 2Λ∨
5 [5 ⊇ 5 ⊇ 5]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] + 2Λ∨
5 [1, 4 ⊇ 1] + 2Λ∨

5 [1, 4 ⊇ 4] + 2Λ∨
5 [2, 4 ⊇ 2] + 2Λ∨

5 [2, 4 ⊇ 4] +
2Λ∨

5 [1, 5 ⊇ 1] + 2Λ∨
5 [1, 5 ⊇ 5] + 2Λ∨

5 [2, 5 ⊇ 2] + 2Λ∨
5 [2, 5 ⊇ 5]

2Λ∨
5 [1, 2, 3] + 2Λ∨

5 [2, 3, 4] + 2Λ∨
5 [2, 3, 5]

(
Λ∨

3 + 2Λ∨
5

[
[4 ⊇ 4 ⊇ 4] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[3, 4 ⊇ 3] +

(
Λ∨

4 + 3Λ∨
5

[
[3, 4 ⊇ 4] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[3, 4, 5]

(
Λ∨

3 + 2Λ∨
5

[
[1, 4 ⊇ 1] +

(
Λ∨

3 + 2Λ∨
5

[
[2, 4 ⊇ 2] +

(
Λ∨

4 + Λ∨
5

[
[3, 4 ⊇ 3] + Λ∨

2 [3, 4 ⊇ 4] +(
Λ∨

3 + 2Λ∨
5

[
[2, 3, 4] + Λ∨

3 [3, 4, 5]

(
Λ∨

3 + 2Λ∨
5

[
[1, 4 ⊇ 4] +

(
Λ∨

4 + Λ∨
5

[
[1, 2, 4] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[1, 3, 4] +

(
Λ∨

3 + 2Λ∨
5

[
[2, 4, 5]

(
Λ∨

1 + 2Λ∨
5

[
[2, 4 ⊇ 4] +

(
Λ∨

4 + Λ∨
5

[
[1, 2, 4] +

(
Λ∨

4 + Λ∨
5

[
[3, 4 ⊇ 3] + Λ∨

2 [3, 4 ⊇ 4] +(
Λ∨

2 + Λ∨
4 + Λ∨

5

[
[2, 3, 4] +

(
Λ∨

3 + 2Λ∨
5

[
[2, 4, 5] + Λ∨

3 [3, 4, 5]

Λ∨
3 [4, 5 ⊇ 4] + 2Λ∨

5 [4, 5 ⊇ 5] +
(

Λ∨
3 + Λ∨

4 + Λ∨
5

[
[3, 4, 5]

Λ∨
3 [1, 4, 5] + Λ∨

3 [2, 4, 5]

Λ∨
2 [3, 4, 5]
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k 0 1 2 3

compk
([ ⎤

0
1

⎣
⎛
⎜⎜⎜⎜⎝

1
0
0
1
0

∫
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
1 1 0 0
0 0 1 0
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0
0 1 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.26.3 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ =
Λ∨

1 [1] + (Λ∨
1 + Λ∨

2 ) [2] + (Λ∨
2 + Λ∨

3 ) [3] + (Λ∨
4 + Λ∨

5 ) [4] + (Λ∨
4 + Λ∨

5 ) [5]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z⊕Z/2Z
(

Λ∨
3 − 2Λ∨

4

[
[4, 5 ⊇ 5] +

(
Λ∨

3 − Λ∨
4 − Λ∨

5

[
[3, 4, 5]

Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] +
(

−Λ∨
5

[
[1, 2, 3] +

(
−Λ∨

5

[
[1, 4 ⊇ 1] +

(
−Λ∨

5

[
[1, 4 ⊇ 4] +(

−Λ∨
5

[
[2, 4 ⊇ 2] +

(
−Λ∨

5

[
[2, 4 ⊇ 4] + Λ∨

5 [1, 3, 4] + Λ∨
5 [2, 3, 4] +

(
−Λ∨

4

[
[1, 5 ⊇ 1] +(

−Λ∨
4

[
[1, 5 ⊇ 5] +

(
−Λ∨

4

[
[2, 5 ⊇ 2] +

(
−Λ∨

4

[
[2, 5 ⊇ 5] +

(
−Λ∨

1

[
[3, 5 ⊇ 3] +

(
−Λ∨

1

[
[3, 5 ⊇ 5] +(

−Λ∨
1 + Λ∨

2 − Λ∨
3 + Λ∨

4 + Λ∨
5

[
[1, 3, 5] + Λ∨

4 [2, 3, 5] +
(

Λ∨
4 − Λ∨

5

[
[1, 4, 5] +

(
Λ∨

4 − Λ∨
5

[
[2, 4, 5]

k hk(X∨) generating cocycles

0 0

1 0

2 2 Λ∨
4 [1, 3] + Λ∨

5 [1, 4] + Λ∨
5 [2, 4] + Λ∨

1 [3, 4] + Λ∨
4 [1, 5] + Λ∨

4 [2, 5]

Λ∨
5 [3, 4]

3 4 Λ∨
4 [1, 2 ⊇ 1] + Λ∨

4 [1, 2 ⊇ 2] + Λ∨
3 [2, 4 ⊇ 2] + Λ∨

4 [3, 4 ⊇ 3] +
(

Λ∨
2 + Λ∨

5

[
[3, 4 ⊇ 4] + Λ∨

3 [2, 3, 4] +(
Λ∨

4 + Λ∨
5

[
[3, 4, 5]

Λ∨
4 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] + Λ∨
3 [2, 3 ⊇ 2] + Λ∨

1 [2, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

3

[
[1, 2, 3] + Λ∨

5 [1, 4 ⊇ 1] +

Λ∨
5 [1, 4 ⊇ 4] + Λ∨

5 [2, 4 ⊇ 2] + Λ∨
5 [2, 4 ⊇ 4] + Λ∨

1 [1, 3, 4] + Λ∨
3 [2, 3, 4] + Λ∨

4 [1, 5 ⊇ 1] + Λ∨
4 [1, 5 ⊇ 5] +

Λ∨
4 [2, 5 ⊇ 2] + Λ∨

4 [2, 5 ⊇ 5] + Λ∨
1 [3, 5 ⊇ 3] + Λ∨

1 [3, 5 ⊇ 5] +
(

Λ∨
3 + Λ∨

5

[
[1, 3, 5] + Λ∨

3 [2, 3, 5] +(
Λ∨

4 + Λ∨
5

[
[1, 4, 5] +

(
Λ∨

4 + Λ∨
5

[
[2, 4, 5]

Λ∨
4 [1, 2, 3] + Λ∨

5 [2, 3, 4] + Λ∨
4 [2, 3, 5]

Λ∨
5 [1, 3, 4]
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k 0 1 2 3

compk
([ ([ ([

⎛
⎜⎜⎝

1 0
0 1
0 1
0 0

∫
ˆ̂
⎠

A.26.4 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5]

3 Z/2Z⊕Z/2Z [4, 5 ⊇ 4] + [4, 5 ⊇ 5] + [3, 4, 5]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + [1, 3, 5] + [2, 3, 5]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5]

2 3 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5]

[4, 5]

3 6 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5]

[1, 2, 3] + [2, 3, 4] + [2, 3, 5]

[4, 5 ⊇ 4] + [4, 5 ⊇ 5]

[1, 4, 5] + [2, 4, 5]

[3, 4, 5]
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A.27 Root system D6

Dynkin diagram 1 2 3 4

6

5

Fundamental group
P∨/Q∨ ≃ Z/2Z⊕Z/2Z

generated by Λ∨
6 ,Λ

∨
5 ∈ P∨ mod Q∨

A.27.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 1, 0, 0, 1, 0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z⊕Z/2Z
(

Λ∨
4 − 2Λ∨

6

[
[6]

(
Λ∨

4 − 2Λ∨
5

[
[5]

2 Z/2Z⊕Z/2Z 2Λ∨
6 [1 ⊇ 1] +

(
−2Λ∨

6

[
[2 ⊇ 2] + 2Λ∨

6 [1, 2] +
(

−2Λ∨
6

[
[3 ⊇ 3] +

(
−2Λ∨

6

[
[4 ⊇ 4] +(

−2Λ∨
6

[
[5 ⊇ 5] +

(
−Λ∨

4

[
[6 ⊇ 6] +

(
−Λ∨

4 + 2Λ∨
6

[
[1, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[2, 6] +(

Λ∨
4 − 2Λ∨

6

[
[3, 6] +

(
−Λ∨

3 + 3Λ∨
4 − Λ∨

5 − 3Λ∨
6

[
[4, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[5, 6]

2Λ∨
5 [1 ⊇ 1] +

(
−2Λ∨

5

[
[2 ⊇ 2] + 2Λ∨

5 [1, 2] +
(

−2Λ∨
5

[
[3 ⊇ 3] +

(
−2Λ∨

5

[
[4 ⊇ 4] +(

−Λ∨
4

[
[5 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5

[
[1, 5] +

(
Λ∨

4 − 2Λ∨
5

[
[2, 5] +

(
Λ∨

4 − 2Λ∨
5

[
[3, 5] +(

−Λ∨
3 + 3Λ∨

4 − 3Λ∨
5 − Λ∨

6

[
[4, 5] +

(
−2Λ∨

5

[
[6 ⊇ 6] +

(
−Λ∨

4 + 2Λ∨
5

[
[5, 6]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

2Λ∨
6 [5, 6 ⊇ 5] +

(
−Λ∨

4 + 4Λ∨
5

[
[5, 6 ⊇ 6] +

(
Λ∨

3 − 3Λ∨
4 + 3Λ∨

5 + 3Λ∨
6

[
[4, 5, 6]

Λ∨
4 [5, 6 ⊇ 5] + 2Λ∨

5 [5, 6 ⊇ 6] +
(

Λ∨
3 − Λ∨

4 + Λ∨
5 + Λ∨

6

[
[4, 5, 6]

(
Λ∨

4 − 2Λ∨
6

[
[1, 6 ⊇ 1] +

(
−Λ∨

4 − 2Λ∨
6

[
[2, 6 ⊇ 2] +

(
−2Λ∨

4

[
[2, 6 ⊇ 6] +

(
−Λ∨

4

[
[1, 2, 6] +(

−Λ∨
4 − 2Λ∨

6

[
[3, 6 ⊇ 3] +

(
−Λ∨

2 + 2Λ∨
3 − 3Λ∨

4

[
[3, 6 ⊇ 6] +

(
2Λ∨

4 − 2Λ∨
6

[
[2, 4, 6] +(

Λ∨
2 + 2Λ∨

5

[
[3, 4, 6]

(
Λ∨

4 − 2Λ∨
5

[
[1, 5 ⊇ 1] +

(
−Λ∨

4 − 2Λ∨
5

[
[2, 5 ⊇ 2] +

(
−2Λ∨

4

[
[2, 5 ⊇ 5] +

(
−Λ∨

4

[
[1, 2, 5] +(

−Λ∨
4 − 2Λ∨

5

[
[3, 5 ⊇ 3] +

(
−Λ∨

2 + 2Λ∨
3 − 3Λ∨

4

[
[3, 5 ⊇ 5] +

(
2Λ∨

4 − 2Λ∨
5

[
[2, 4, 5] +(

Λ∨
2 + 2Λ∨

6

[
[3, 4, 5]

2Λ∨
6 [1, 3 ⊇ 1] + 2Λ∨

6 [1, 3 ⊇ 3] +
(

−2Λ∨
6

[
[1, 2, 3] +

(
−2Λ∨

6

[
[1, 4 ⊇ 1] +(

−2Λ∨
6

[
[1, 4 ⊇ 4] +

(
−2Λ∨

6

[
[2, 4 ⊇ 2] +

(
−2Λ∨

6

[
[2, 4 ⊇ 4] + 2Λ∨

6 [1, 3, 4] + 2Λ∨
6 [2, 3, 4] +(

−2Λ∨
6

[
[1, 5 ⊇ 1] +

(
−2Λ∨

6

[
[1, 5 ⊇ 5] +

(
−2Λ∨

6

[
[2, 5 ⊇ 2] +

(
−2Λ∨

6

[
[2, 5 ⊇ 5] +(

−2Λ∨
6

[
[3, 5 ⊇ 3] +

(
−2Λ∨

6

[
[3, 5 ⊇ 5] + 2Λ∨

6 [3, 4, 5] +
(

−2Λ∨
6

[
[1, 6 ⊇ 1] +(

−Λ∨
4

[
[1, 6 ⊇ 6] +

(
−2Λ∨

6

[
[2, 6 ⊇ 2] +

(
−Λ∨

4

[
[2, 6 ⊇ 6] +

(
−2Λ∨

6

[
[3, 6 ⊇ 3] +(

−Λ∨
4

[
[3, 6 ⊇ 6] +

(
−Λ∨

4 + 2Λ∨
6

[
[1, 3, 6] +

(
−Λ∨

3 + 3Λ∨
4 − Λ∨

5 − 3Λ∨
6

[
[1, 4, 6] +(

−Λ∨
3 + 3Λ∨

4 − Λ∨
5 − 3Λ∨

6

[
[2, 4, 6] +

(
Λ∨

3 − Λ∨
4 + Λ∨

5 + Λ∨
6

[
[3, 4, 6] +(

Λ∨
4 − 2Λ∨

6

[
[1, 5, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[2, 5, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[3, 5, 6]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

−2Λ∨
5

[
[1, 2, 3] +

(
−2Λ∨

5

[
[1, 4 ⊇ 1] +(

−2Λ∨
5

[
[1, 4 ⊇ 4] +

(
−2Λ∨

5

[
[2, 4 ⊇ 2] +

(
−2Λ∨

5

[
[2, 4 ⊇ 4] + 2Λ∨

5 [1, 3, 4] +

2Λ∨
5 [2, 3, 4] +

(
−2Λ∨

5

[
[1, 5 ⊇ 1] +

(
−Λ∨

4

[
[1, 5 ⊇ 5] +

(
−2Λ∨

5

[
[2, 5 ⊇ 2] +(

−Λ∨
4

[
[2, 5 ⊇ 5] +

(
−2Λ∨

5

[
[3, 5 ⊇ 3] +

(
−Λ∨

4

[
[3, 5 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5

[
[1, 3, 5] +(

−Λ∨
3 + 3Λ∨

4 − 3Λ∨
5 − Λ∨

6

[
[1, 4, 5] +

(
−Λ∨

3 + 3Λ∨
4 − 3Λ∨

5 − Λ∨
6

[
[2, 4, 5] +(

Λ∨
3 − Λ∨

4 + Λ∨
5 + Λ∨

6

[
[3, 4, 5] +

(
−2Λ∨

5

[
[1, 6 ⊇ 1] +

(
−2Λ∨

5

[
[1, 6 ⊇ 6] +(

−2Λ∨
5

[
[2, 6 ⊇ 2] +

(
−2Λ∨

5

[
[2, 6 ⊇ 6] +

(
−2Λ∨

5

[
[3, 6 ⊇ 3] +

(
−2Λ∨

5

[
[3, 6 ⊇ 6] +

2Λ∨
5 [3, 4, 6] +

(
−Λ∨

4 + 2Λ∨
5

[
[1, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5

[
[2, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5

[
[3, 5, 6]

k hk(X∨) generating cocycles

0 2 2Λ∨
5 []

2Λ∨
6 []

1 4 Λ∨
2 [1] +

(
2Λ∨

5 + 2Λ∨
6

[
[2] +

(
2Λ∨

5 + 2Λ∨
6

[
[3] +

(
2Λ∨

5 + 2Λ∨
6

[
[4] +

(
2Λ∨

5 + 2Λ∨
6

[
[5] +

(
2Λ∨

5 + 2Λ∨
6

[
[6]

2Λ∨
5 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4] + 2Λ∨
5 [5] + 2Λ∨

5 [6]

2Λ∨
6 [1] + 2Λ∨

6 [2] + 2Λ∨
6 [3] + 2Λ∨

6 [4] + 2Λ∨
6 [5] + 2Λ∨

6 [6]

(
Λ∨

4 + 2Λ∨
5

[
[5]
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k hk(X∨) generating cocycles

2 8 Λ∨
2 [1 ⊇ 1] +

(
2Λ∨

5 + 2Λ∨
6

[
[2 ⊇ 2] +

(
Λ∨

1 + Λ∨
2 + Λ∨

5 + Λ∨
6

[
[1, 2] +

(
2Λ∨

5 + 2Λ∨
6

[
[3 ⊇ 3] +(

2Λ∨
5 + 2Λ∨

6

[
[4 ⊇ 4] +

(
2Λ∨

5 + 2Λ∨
6

[
[5 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
5

[
[2, 5] +

(
Λ∨

2 + 2Λ∨
6

[
[3, 5] +(

2Λ∨
5 + 2Λ∨

6

[
[6 ⊇ 6] +

(
Λ∨

4 + 2Λ∨
6

[
[2, 6] +

(
Λ∨

2 + 2Λ∨
5

[
[3, 6]

2Λ∨
5 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4] + 2Λ∨
5 [5 ⊇ 5] + 2Λ∨

5 [6 ⊇ 6]

2Λ∨
6 [1 ⊇ 1] + 2Λ∨

6 [2 ⊇ 2] + 2Λ∨
6 [3 ⊇ 3] + 2Λ∨

6 [4 ⊇ 4] + 2Λ∨
6 [5 ⊇ 5] + 2Λ∨

6 [6 ⊇ 6]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
5 + Λ∨

6

[
[2, 3] +

(
2Λ∨

5 + 2Λ∨
6

[
[1, 4] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 4] +

(
Λ∨

1 + Λ∨
5 + Λ∨

6

[
[3, 4] +(

2Λ∨
5 + 2Λ∨

6

[
[1, 5] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 5] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 5] +

(
2Λ∨

5 + 2Λ∨
6

[
[1, 6] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 6] +(

Λ∨
4 + 2Λ∨

5

[
[3, 6]

2Λ∨
5 [1, 3] + 2Λ∨

5 [1, 4] + 2Λ∨
5 [2, 4] + 2Λ∨

5 [1, 5] + 2Λ∨
5 [2, 5] + 2Λ∨

5 [3, 5] + 2Λ∨
5 [1, 6] + 2Λ∨

5 [2, 6] + 2Λ∨
5 [3, 6]

(
Λ∨

4 + 2Λ∨
5

[
[5 ⊇ 5] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

5 + 2Λ∨
6

[
[3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5 + Λ∨
6

[
[4, 5] + Λ∨

4 [5, 6]

(
Λ∨

4 + 2Λ∨
5

[
[1, 5] +

(
Λ∨

4 + 2Λ∨
5

[
[2, 5] +

(
Λ∨

2 + 2Λ∨
6

[
[3, 5]

(
Λ∨

4 + 2Λ∨
6

[
[6 ⊇ 6] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

5 + 2Λ∨
6

[
[3, 6] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5 + Λ∨
6

[
[4, 6] + Λ∨

4 [5, 6]
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k hk(X∨) generating cocycles

3 19 Λ∨
2 [1 ⊇ 1 ⊇ 1] +

(
2Λ∨

5 + 2Λ∨
6

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
5 + Λ∨

6

[
[1, 2 ⊇ 1] +(

Λ∨
2 + Λ∨

3 + Λ∨
5 + Λ∨

6

[
[1, 2 ⊇ 2] +

(
2Λ∨

5 + 2Λ∨
6

[
[3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] +
(

2Λ∨
5 + 2Λ∨

6

[
[4 ⊇ 4 ⊇ 4] +(

2Λ∨
5 + 2Λ∨

6

[
[2, 3, 4] +

(
2Λ∨

5 + 2Λ∨
6

[
[5 ⊇ 5 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
5

[
[2, 5 ⊇ 2] +

(
Λ∨

4 + 2Λ∨
5

[
[3, 5 ⊇ 3] +(

Λ∨
2 + 2Λ∨

6

[
[3, 5 ⊇ 5] + Λ∨

2 [1, 3, 5] +
(

Λ∨
1 + Λ∨

5 + Λ∨
6

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5 + 3Λ∨
6

[
[3, 4, 5] +(

2Λ∨
5 + 2Λ∨

6

[
[6 ⊇ 6 ⊇ 6] +

(
Λ∨

4 + 2Λ∨
6

[
[2, 6 ⊇ 2] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 6 ⊇ 3] +

(
Λ∨

2 + 2Λ∨
5

[
[3, 6 ⊇ 6] +

Λ∨
2 [1, 3, 6] +

(
Λ∨

1 + Λ∨
5 + Λ∨

6

[
[2, 3, 6] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5 + Λ∨
6

[
[3, 4, 6] +

(
2Λ∨

5 + 2Λ∨
6

[
[3, 5, 6]

2Λ∨
5 [1 ⊇ 1 ⊇ 1]+2Λ∨

5 [2 ⊇ 2 ⊇ 2]+2Λ∨
5 [3 ⊇ 3 ⊇ 3]+2Λ∨

5 [4 ⊇ 4 ⊇ 4]+2Λ∨
5 [5 ⊇ 5 ⊇ 5]+2Λ∨

5 [6 ⊇ 6 ⊇ 6]

2Λ∨
6 [1 ⊇ 1 ⊇ 1]+2Λ∨

6 [2 ⊇ 2 ⊇ 2]+2Λ∨
6 [3 ⊇ 3 ⊇ 3]+2Λ∨

6 [4 ⊇ 4 ⊇ 4]+2Λ∨
6 [5 ⊇ 5 ⊇ 5]+2Λ∨

6 [6 ⊇ 6 ⊇ 6]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

5 + 4Λ∨
6

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
5 + Λ∨

6

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

5 + Λ∨
6

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
5 + Λ∨

6

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5 + 3Λ∨
6

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] +(
2Λ∨

5 + 2Λ∨
6

[
[2, 3, 4] +

(
Λ∨

4 + 2Λ∨
5

[
[2, 5 ⊇ 2] +

(
2Λ∨

5 + 2Λ∨
6

[
[3, 4, 5] +

(
Λ∨

4 + 2Λ∨
6

[
[2, 6 ⊇ 2] +(

2Λ∨
5 + 2Λ∨

6

[
[3, 4, 6]

Λ∨
2 [1, 3 ⊇ 1] +

(
2Λ∨

5 + 2Λ∨
6

[
[1, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + 2Λ∨
5 + 2Λ∨

6

[
[1, 2, 3] +(

2Λ∨
5 + 2Λ∨

6

[
[1, 4 ⊇ 1] +

(
2Λ∨

5 + 2Λ∨
6

[
[1, 4 ⊇ 4] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 4 ⊇ 2] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 4 ⊇ 4] +(

Λ∨
1 + Λ∨

5 + Λ∨
6

[
[1, 3, 4] +

(
2Λ∨

5 + 2Λ∨
6

[
[1, 5 ⊇ 1] +

(
2Λ∨

5 + 2Λ∨
6

[
[1, 5 ⊇ 5] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 5 ⊇ 2] +(

2Λ∨
5 + 2Λ∨

6

[
[2, 5 ⊇ 5] +

(
2Λ∨

5 + 2Λ∨
6

[
[3, 5 ⊇ 3] +

(
2Λ∨

5 + 2Λ∨
6

[
[3, 5 ⊇ 5] + Λ∨

4 [1, 3, 5] +(
2Λ∨

5 + 2Λ∨
6

[
[1, 6 ⊇ 1] +

(
2Λ∨

5 + 2Λ∨
6

[
[1, 6 ⊇ 6] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 6 ⊇ 2] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 6 ⊇ 6] +(

2Λ∨
5 + 2Λ∨

6

[
[3, 6 ⊇ 3] +

(
2Λ∨

5 + 2Λ∨
6

[
[3, 6 ⊇ 6] + Λ∨

4 [1, 3, 6]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
5 + Λ∨

6

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
5 + 3Λ∨

6

[
[2, 3 ⊇ 3] +(

Λ∨
1 + Λ∨

3 + 2Λ∨
5 + 2Λ∨

6

[
[1, 2, 3] +

(
Λ∨

1 + Λ∨
5 + Λ∨

6

[
[1, 3, 4] +

(
Λ∨

3 + 3Λ∨
5 + 3Λ∨

6

[
[2, 3, 4] +(

Λ∨
4 + 2Λ∨

5

[
[3, 5 ⊇ 3] +

(
Λ∨

2 + 2Λ∨
6

[
[3, 5 ⊇ 5] +

(
Λ∨

2 + Λ∨
4

[
[1, 3, 5] +

(
Λ∨

1 + Λ∨
5 + Λ∨

6

[
[2, 3, 5] +(

Λ∨
3 + Λ∨

4 + Λ∨
5 + 3Λ∨

6

[
[3, 4, 5] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 6 ⊇ 3] +

(
Λ∨

2 + 2Λ∨
5

[
[3, 6 ⊇ 6] +

(
Λ∨

2 + Λ∨
4

[
[1, 3, 6] +(

Λ∨
1 + Λ∨

5 + Λ∨
6

[
[2, 3, 6] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5 + Λ∨
6

[
[3, 4, 6] +

(
2Λ∨

5 + 2Λ∨
6

[
[3, 5, 6]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] + 2Λ∨
5 [1, 4 ⊇ 1] + 2Λ∨

5 [1, 4 ⊇ 4] + 2Λ∨
5 [2, 4 ⊇ 2] + 2Λ∨

5 [2, 4 ⊇ 4] +
2Λ∨

5 [1, 5 ⊇ 1] + 2Λ∨
5 [1, 5 ⊇ 5] + 2Λ∨

5 [2, 5 ⊇ 2] + 2Λ∨
5 [2, 5 ⊇ 5] + 2Λ∨

5 [3, 5 ⊇ 3] + 2Λ∨
5 [3, 5 ⊇ 5] +

2Λ∨
5 [1, 6 ⊇ 1] + 2Λ∨

5 [1, 6 ⊇ 6] + 2Λ∨
5 [2, 6 ⊇ 2] + 2Λ∨

5 [2, 6 ⊇ 6] + 2Λ∨
5 [3, 6 ⊇ 3] + 2Λ∨

5 [3, 6 ⊇ 6]

2Λ∨
5 [1, 2, 3] + 2Λ∨

5 [2, 3, 4] + 2Λ∨
5 [3, 4, 5] + 2Λ∨

5 [3, 4, 6]

(
Λ∨

4 + 2Λ∨
5

[
[5 ⊇ 5 ⊇ 5] +

(
Λ∨

2 + 2Λ∨
6

[
[3, 5 ⊇ 5] + Λ∨

2 [1, 3, 5] +
(

Λ∨
1 + Λ∨

5 + Λ∨
6

[
[2, 3, 5] +

Λ∨
4 [4, 5 ⊇ 4] +

(
Λ∨

3 + 3Λ∨
5 + Λ∨

6

[
[4, 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
5 + Λ∨

6

[
[3, 4, 5] +

(
2Λ∨

5 + 2Λ∨
6

[
[5, 6 ⊇ 6] +(

Λ∨
4 + 2Λ∨

6

[
[3, 5, 6] +

(
Λ∨

3 + Λ∨
5 + Λ∨

6

[
[4, 5, 6]

(
Λ∨

2 + 2Λ∨
5 + 2Λ∨

6

[
[1, 5 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + 2Λ∨
5 + 2Λ∨

6

[
[1, 2, 5] +

(
Λ∨

2 + Λ∨
4

[
[1, 3, 5] +(

Λ∨
1 + Λ∨

3 + 2Λ∨
5 + 2Λ∨

6

[
[1, 4, 5] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 4, 5]

(
Λ∨

4 + 2Λ∨
5

[
[1, 5 ⊇ 1] +

(
Λ∨

4 + 2Λ∨
5

[
[2, 5 ⊇ 2] +

(
Λ∨

4 + 2Λ∨
5

[
[3, 5 ⊇ 3] +

(
Λ∨

2 + 2Λ∨
6

[
[3, 5 ⊇ 5] +

Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + Λ∨
5 + Λ∨

6

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5 + Λ∨
6

[
[3, 4, 5] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 5, 6]

(
Λ∨

2 + 2Λ∨
5 + 2Λ∨

6

[
[1, 5 ⊇ 5] +

(
Λ∨

2 + 2Λ∨
6

[
[3, 5 ⊇ 5] + Λ∨

2 [1, 3, 5] +
(

Λ∨
1 + Λ∨

5 + Λ∨
6

[
[2, 3, 5] +(

Λ∨
1 + Λ∨

5 + Λ∨
6

[
[4, 5 ⊇ 4] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

5 + 2Λ∨
6

[
[4, 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
5 + Λ∨

6

[
[3, 4, 5] +(

Λ∨
4 + 2Λ∨

6

[
[3, 5, 6] + Λ∨

4 [4, 5, 6]

(
Λ∨

4 + 2Λ∨
5

[
[1, 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
5 + Λ∨

6

[
[1, 2, 5] +

(
Λ∨

2 + Λ∨
4

[
[1, 3, 5] +(

Λ∨
3 + Λ∨

4 + Λ∨
5 + Λ∨

6

[
[1, 4, 5] + 2Λ∨

5 [2, 4, 5] + Λ∨
4 [1, 5, 6] + 2Λ∨

6 [2, 5, 6] + 2Λ∨
6 [3, 5, 6]

2Λ∨
5 [1, 3, 5]

(
Λ∨

4 + 2Λ∨
6

[
[6 ⊇ 6 ⊇ 6] +

(
Λ∨

2 + 2Λ∨
5

[
[3, 6 ⊇ 6] + Λ∨

2 [1, 3, 6] +
(

Λ∨
1 + Λ∨

5 + Λ∨
6

[
[2, 3, 6] +

Λ∨
4 [4, 6 ⊇ 4] +

(
Λ∨

3 + Λ∨
5 + 3Λ∨

6

[
[4, 6 ⊇ 6] +

(
Λ∨

3 + Λ∨
5 + Λ∨

6

[
[3, 4, 6] +

(
2Λ∨

5 + 2Λ∨
6

[
[5, 6 ⊇ 6] +(

Λ∨
4 + 2Λ∨

5

[
[3, 5, 6] +

(
Λ∨

3 + Λ∨
5 + Λ∨

6

[
[4, 5, 6]

(
Λ∨

2 + 2Λ∨
5 + 2Λ∨

6

[
[1, 6 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + 2Λ∨
5 + 2Λ∨

6

[
[1, 2, 6] +

(
Λ∨

2 + Λ∨
4

[
[1, 3, 6] +(

Λ∨
1 + Λ∨

3 + 2Λ∨
5 + 2Λ∨

6

[
[1, 4, 6] +

(
2Λ∨

5 + 2Λ∨
6

[
[2, 4, 6]

(
Λ∨

4 + 2Λ∨
6

[
[1, 6 ⊇ 6] +

(
Λ∨

3 + Λ∨
5 + Λ∨

6

[
[1, 2, 6] +

(
Λ∨

2 + Λ∨
4

[
[1, 3, 6] +(

Λ∨
3 + Λ∨

4 + Λ∨
5 + Λ∨

6

[
[1, 4, 6] + 2Λ∨

6 [2, 4, 6] + Λ∨
4 [1, 5, 6] + 2Λ∨

5 [2, 5, 6] + 2Λ∨
5 [3, 5, 6]

Λ∨
4 [5, 6 ⊇ 5] + 2Λ∨

5 [5, 6 ⊇ 6] +
(

Λ∨
3 + Λ∨

4 + Λ∨
5 + Λ∨

6

[
[4, 5, 6]

2Λ∨
5 [5, 6 ⊇ 5] + 2Λ∨

5 [5, 6 ⊇ 6]
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k hk(X∨) generating cocycles

k 0 1 2 3

compk
([

⎛
⎜⎜⎝

1 0
1 0
1 0
1 1

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 1
0 0
0 0
0 0
1 1
1 1
1 1

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1
1 0 0 0 0 0
1 0 0 1 1 1
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1
1 0 0 0 0 0
1 0 1 0 1 1
0 0 0 0 1 1
1 1 0 0 0 0
0 0 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.27.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(0, 1)⟩

[ϕu] = (1, 1, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
4 − 2Λ∨

6

[
[6]

2 Z/2Z 2Λ∨
6 [1 ⊇ 1] +

(
−2Λ∨

6

[
[2 ⊇ 2] + 2Λ∨

6 [1, 2] +
(

−2Λ∨
6

[
[3 ⊇ 3] +

(
−2Λ∨

6

[
[4 ⊇ 4] +(

−2Λ∨
6

[
[5 ⊇ 5] +

(
−Λ∨

4

[
[6 ⊇ 6] +

(
−Λ∨

4 + 2Λ∨
6

[
[1, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[2, 6] +(

Λ∨
4 − 2Λ∨

6

[
[3, 6] +

(
−Λ∨

3 + 3Λ∨
4 − Λ∨

5 − 3Λ∨
6

[
[4, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[5, 6]

3 Z/2Z⊕Z/2Z⊕Z/2Z 2Λ∨
6 [5, 6 ⊇ 5] +

(
−Λ∨

4 + 4Λ∨
5

[
[5, 6 ⊇ 6] +

(
Λ∨

3 − 3Λ∨
4 + 3Λ∨

5 + 3Λ∨
6

[
[4, 5, 6]

(
Λ∨

4 − 2Λ∨
6

[
[1, 6 ⊇ 1] +

(
−Λ∨

4 − 2Λ∨
6

[
[2, 6 ⊇ 2] +

(
−2Λ∨

4

[
[2, 6 ⊇ 6] +

(
−Λ∨

4

[
[1, 2, 6] +(

−Λ∨
4 − 2Λ∨

6

[
[3, 6 ⊇ 3] +

(
−Λ∨

2 + 2Λ∨
3 − 3Λ∨

4

[
[3, 6 ⊇ 6] +

(
2Λ∨

4 − 2Λ∨
6

[
[2, 4, 6] +(

Λ∨
2 + 2Λ∨

5

[
[3, 4, 6]

2Λ∨
6 [1, 3 ⊇ 1] + 2Λ∨

6 [1, 3 ⊇ 3] +
(

−2Λ∨
6

[
[1, 2, 3] +

(
−2Λ∨

6

[
[1, 4 ⊇ 1] +(

−2Λ∨
6

[
[1, 4 ⊇ 4] +

(
−2Λ∨

6

[
[2, 4 ⊇ 2] +

(
−2Λ∨

6

[
[2, 4 ⊇ 4] + 2Λ∨

6 [1, 3, 4] + 2Λ∨
6 [2, 3, 4] +(

−2Λ∨
6

[
[1, 5 ⊇ 1] +

(
−2Λ∨

6

[
[1, 5 ⊇ 5] +

(
−2Λ∨

6

[
[2, 5 ⊇ 2] +

(
−2Λ∨

6

[
[2, 5 ⊇ 5] +(

−2Λ∨
6

[
[3, 5 ⊇ 3] +

(
−2Λ∨

6

[
[3, 5 ⊇ 5] + 2Λ∨

6 [3, 4, 5] +
(

−2Λ∨
6

[
[1, 6 ⊇ 1] +(

−Λ∨
4

[
[1, 6 ⊇ 6] +

(
−2Λ∨

6

[
[2, 6 ⊇ 2] +

(
−Λ∨

4

[
[2, 6 ⊇ 6] +

(
−2Λ∨

6

[
[3, 6 ⊇ 3] +(

−Λ∨
4

[
[3, 6 ⊇ 6] +

(
−Λ∨

4 + 2Λ∨
6

[
[1, 3, 6] +

(
−Λ∨

3 + 3Λ∨
4 − Λ∨

5 − 3Λ∨
6

[
[1, 4, 6] +(

−Λ∨
3 + 3Λ∨

4 − Λ∨
5 − 3Λ∨

6

[
[2, 4, 6] +

(
Λ∨

3 − Λ∨
4 + Λ∨

5 + Λ∨
6

[
[3, 4, 6] +(

Λ∨
4 − 2Λ∨

6

[
[1, 5, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[2, 5, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[3, 5, 6]
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k hk(X∨) generating cocycles

0 1 2Λ∨
6 []

1 2 Λ∨
2 [1] + 2Λ∨

6 [2] + 2Λ∨
6 [3] + 2Λ∨

6 [4] + 2Λ∨
6 [5] + 2Λ∨

6 [6]

2Λ∨
6 [1] + 2Λ∨

6 [2] + 2Λ∨
6 [3] + 2Λ∨

6 [4] + 2Λ∨
6 [5] + 2Λ∨

6 [6]

2 4 Λ∨
2 [1 ⊇ 1] + 2Λ∨

6 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
6

[
[1, 2] + 2Λ∨

6 [3 ⊇ 3] + 2Λ∨
6 [4 ⊇ 4] + 2Λ∨

6 [5 ⊇ 5] +

2Λ∨
6 [6 ⊇ 6] +

(
Λ∨

4 + 2Λ∨
6

[
[2, 6] + Λ∨

2 [3, 6]

2Λ∨
6 [1 ⊇ 1] + 2Λ∨

6 [2 ⊇ 2] + 2Λ∨
6 [3 ⊇ 3] + 2Λ∨

6 [4 ⊇ 4] + 2Λ∨
6 [5 ⊇ 5] + 2Λ∨

6 [6 ⊇ 6]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
6

[
[2, 3] + 2Λ∨

6 [1, 4] + 2Λ∨
6 [2, 4] +

(
Λ∨

1 + Λ∨
6

[
[3, 4] + 2Λ∨

6 [1, 5] + 2Λ∨
6 [2, 5] +

2Λ∨
6 [3, 5] + 2Λ∨

6 [1, 6] + 2Λ∨
6 [2, 6] + Λ∨

4 [3, 6]

(
Λ∨

2 + 2Λ∨
6

[
[1, 5] +

(
Λ∨

1 + Λ∨
6

[
[4, 5] + Λ∨

4 [5, 6]

3 9 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

6 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

6

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

6

[
[1, 2 ⊇ 2] +

2Λ∨
6 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
6 [4 ⊇ 4 ⊇ 4] + 2Λ∨

6 [2, 3, 4] + 2Λ∨
6 [5 ⊇ 5 ⊇ 5] + 2Λ∨

6 [3, 4, 5] +

2Λ∨
6 [6 ⊇ 6 ⊇ 6] +

(
Λ∨

4 + 2Λ∨
6

[
[2, 6 ⊇ 2] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 6 ⊇ 3] + Λ∨

2 [3, 6 ⊇ 6] + Λ∨
2 [1, 3, 6] +(

Λ∨
1 + Λ∨

6

[
[2, 3, 6] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5 + Λ∨
6

[
[3, 4, 6]

2Λ∨
6 [1 ⊇ 1 ⊇ 1]+2Λ∨

6 [2 ⊇ 2 ⊇ 2]+2Λ∨
6 [3 ⊇ 3 ⊇ 3]+2Λ∨

6 [4 ⊇ 4 ⊇ 4]+2Λ∨
6 [5 ⊇ 5 ⊇ 5]+2Λ∨

6 [6 ⊇ 6 ⊇ 6]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

6

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
6

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

6

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
6

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

6

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
6 [2, 3, 4] + 2Λ∨

6 [3, 4, 5] +(
Λ∨

4 + 2Λ∨
6

[
[2, 6 ⊇ 2] + 2Λ∨

6 [3, 4, 6]

Λ∨
5 [1, 2 ⊇ 1] + Λ∨

5 [1, 2 ⊇ 2] + Λ∨
4 [2, 5 ⊇ 2] + Λ∨

4 [3, 5 ⊇ 3] + Λ∨
5 [4, 5 ⊇ 4] +

(
Λ∨

3 + Λ∨
6

[
[4, 5 ⊇ 5] +

Λ∨
4 [3, 4, 5] + 2Λ∨

6 [5, 6 ⊇ 6] +
(

Λ∨
3 + Λ∨

5 + Λ∨
6

[
[4, 5, 6]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

6 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

6

[
[1, 2, 3] + 2Λ∨

6 [1, 4 ⊇ 1] + 2Λ∨
6 [1, 4 ⊇ 4] +

2Λ∨
6 [2, 4 ⊇ 2] + 2Λ∨

6 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

6

[
[1, 3, 4] + 2Λ∨

6 [1, 5 ⊇ 1] + 2Λ∨
6 [1, 5 ⊇ 5] + 2Λ∨

6 [2, 5 ⊇ 2] +

2Λ∨
6 [2, 5 ⊇ 5] + 2Λ∨

6 [3, 5 ⊇ 3] + 2Λ∨
6 [3, 5 ⊇ 5] + 2Λ∨

6 [1, 6 ⊇ 1] + 2Λ∨
6 [1, 6 ⊇ 6] + 2Λ∨

6 [2, 6 ⊇ 2] +
2Λ∨

6 [2, 6 ⊇ 6] + 2Λ∨
6 [3, 6 ⊇ 3] + 2Λ∨

6 [3, 6 ⊇ 6] + Λ∨
4 [1, 3, 6]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
6

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
6

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

6

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

6

[
[1, 3, 4] +

(
Λ∨

3 + Λ∨
5 + 3Λ∨

6

[
[2, 3, 4] + 2Λ∨

6 [3, 4, 5] +
(

Λ∨
4 + 2Λ∨

6

[
[3, 6 ⊇ 3] + Λ∨

2 [3, 6 ⊇ 6] +(
Λ∨

2 + Λ∨
4

[
[1, 3, 6] +

(
Λ∨

1 + Λ∨
6

[
[2, 3, 6] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5 + Λ∨
6

[
[3, 4, 6]

Λ∨
5 [1, 2, 3] + Λ∨

5 [2, 3, 4] +
(

Λ∨
1 + Λ∨

6

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
6

[
[1, 4, 5] +

(
Λ∨

3 + Λ∨
6

[
[2, 4, 5] +(

Λ∨
1 + 3Λ∨

6

[
[3, 4, 5] + Λ∨

5 [3, 4, 6] + Λ∨
4 [1, 5, 6] + Λ∨

4 [2, 5, 6] + 2Λ∨
6 [3, 5, 6]

(
Λ∨

2 + 2Λ∨
6

[
[1, 5 ⊇ 5] +

(
Λ∨

1 + Λ∨
6

[
[4, 5 ⊇ 4] +

(
Λ∨

1 + Λ∨
6

[
[4, 5 ⊇ 5] + 2Λ∨

6 [5, 6 ⊇ 6] +(
Λ∨

3 + Λ∨
4 + Λ∨

5 + Λ∨
6

[
[4, 5, 6]

Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + Λ∨
6

[
[2, 3, 5] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 5, 6]

k 0 1 2 3

compk
([ ⎤

1
1

⎣
⎛
⎜⎜⎝

1
0
0
1

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 1 1
1 0 0
0 0 1
0 1 0
0 0 0
1 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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A.27.3 Cohomology of lattice X∨ corresponding to Ω = ⟨(1, 1)⟩

ϕu = ∂τ with τ = (Λ∨
1 + 2Λ∨

6 ) [1] + (Λ∨
1 + Λ∨

2 + 2Λ∨
6 ) [2] + (Λ∨

2 + Λ∨
3 + 2Λ∨

6 ) [3] +
(Λ∨

3 + Λ∨
4 + 2Λ∨

6 ) [4] + (Λ∨
5 + Λ∨

6 ) [5] + (Λ∨
5 + Λ∨

6 ) [6]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
4 − 2Λ∨

6

[
[6]

2 Z/2Z 2Λ∨
6 [1 ⊇ 1] +

(
−2Λ∨

6

[
[2 ⊇ 2] + 2Λ∨

6 [1, 2] +
(

−2Λ∨
6

[
[3 ⊇ 3] +

(
−2Λ∨

6

[
[4 ⊇ 4] +(

−2Λ∨
6

[
[5 ⊇ 5] +

(
−2Λ∨

5

[
[6 ⊇ 6] +

(
−Λ∨

4 + 2Λ∨
6

[
[1, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[2, 6] +(

Λ∨
4 − 2Λ∨

6

[
[3, 6] +

(
−Λ∨

3 + 2Λ∨
4 − 2Λ∨

6

[
[4, 6] +

(
2Λ∨

5 − 2Λ∨
6

[
[5, 6]

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z

(
Λ∨

4 − 2Λ∨
5

[
[5, 6 ⊇ 6] +

(
Λ∨

4 − Λ∨
5 − Λ∨

6

[
[4, 5, 6]

2Λ∨
6 [5, 6 ⊇ 5] + 2Λ∨

5 [5, 6 ⊇ 6] +
(

Λ∨
3 − 2Λ∨

4 + 2Λ∨
5 + 2Λ∨

6

[
[4, 5, 6]

(
Λ∨

4 − 2Λ∨
6

[
[1, 6 ⊇ 1] +

(
−Λ∨

4 − 2Λ∨
6

[
[2, 6 ⊇ 2] +

(
−2Λ∨

4

[
[2, 6 ⊇ 6] +

(
−Λ∨

4

[
[1, 2, 6] +(

−Λ∨
4 − 2Λ∨

6

[
[3, 6 ⊇ 3] +

(
−2Λ∨

4

[
[3, 6 ⊇ 6] +

(
−Λ∨

5 − Λ∨
6

[
[4, 6 ⊇ 4] +(

−Λ∨
3 + Λ∨

4 − 2Λ∨
5

[
[4, 6 ⊇ 6] +

(
2Λ∨

4 − 2Λ∨
6

[
[2, 4, 6] +

(
Λ∨

2 + 2Λ∨
5

[
[3, 4, 6] +(

−2Λ∨
4 + 2Λ∨

5 + 2Λ∨
6

[
[4, 5, 6]

2Λ∨
6 [1, 3 ⊇ 1] + 2Λ∨

6 [1, 3 ⊇ 3] +
(

−2Λ∨
6

[
[1, 2, 3] +

(
−2Λ∨

6

[
[1, 4 ⊇ 1] +(

−2Λ∨
6

[
[1, 4 ⊇ 4] +

(
−2Λ∨

6

[
[2, 4 ⊇ 2] +

(
−2Λ∨

6

[
[2, 4 ⊇ 4] + 2Λ∨

6 [1, 3, 4] + 2Λ∨
6 [2, 3, 4] +(

−2Λ∨
6

[
[1, 5 ⊇ 1] +

(
−2Λ∨

6

[
[1, 5 ⊇ 5] +

(
−2Λ∨

6

[
[2, 5 ⊇ 2] +

(
−2Λ∨

6

[
[2, 5 ⊇ 5] +(

−2Λ∨
6

[
[3, 5 ⊇ 3] +

(
−2Λ∨

6

[
[3, 5 ⊇ 5] + 2Λ∨

6 [3, 4, 5] +
(

−2Λ∨
6

[
[1, 6 ⊇ 1] +(

−Λ∨
4

[
[1, 6 ⊇ 6] +

(
−2Λ∨

6

[
[2, 6 ⊇ 2] +

(
−Λ∨

4

[
[2, 6 ⊇ 6] +

(
−2Λ∨

6

[
[3, 6 ⊇ 3] +(

−Λ∨
4

[
[3, 6 ⊇ 6] +

(
−Λ∨

4 + 2Λ∨
6

[
[1, 3, 6] +

(
−Λ∨

3 + 3Λ∨
4 − Λ∨

5 − 3Λ∨
6

[
[1, 4, 6] +(

−Λ∨
3 + 3Λ∨

4 − Λ∨
5 − 3Λ∨

6

[
[2, 4, 6] +

(
Λ∨

3 − Λ∨
4 + Λ∨

5 + Λ∨
6

[
[3, 4, 6] +(

Λ∨
4 − 2Λ∨

6

[
[1, 5, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[2, 5, 6] +

(
Λ∨

4 − 2Λ∨
6

[
[3, 5, 6]

k hk(X∨) generating cocycles

0 1 2Λ∨
6 []

1 2 2Λ∨
6 [1] + 2Λ∨

6 [2] + 2Λ∨
6 [3] + 2Λ∨

6 [4] + 2Λ∨
6 [5] + 2Λ∨

6 [6]

(
Λ∨

4 + 2Λ∨
6

[
[5]

2 5 2Λ∨
6 [1 ⊇ 1] + 2Λ∨

6 [2 ⊇ 2] + 2Λ∨
6 [3 ⊇ 3] + 2Λ∨

6 [4 ⊇ 4] + 2Λ∨
6 [5 ⊇ 5] + 2Λ∨

6 [6 ⊇ 6]

2Λ∨
6 [1, 3] + 2Λ∨

6 [1, 4] + 2Λ∨
6 [2, 4] + 2Λ∨

6 [1, 5] + 2Λ∨
6 [2, 5] + 2Λ∨

6 [3, 5] + 2Λ∨
6 [1, 6] + 2Λ∨

6 [2, 6] + 2Λ∨
6 [3, 6]

(
Λ∨

4 + 2Λ∨
6

[
[5 ⊇ 5] +

(
Λ∨

4 + Λ∨
5 + Λ∨

6

[
[4, 5]

(
Λ∨

4 + 2Λ∨
6

[
[1, 5] +

(
Λ∨

4 + 2Λ∨
6

[
[2, 5] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 5] + Λ∨

3 [4, 5]

Λ∨
4 [5, 6]
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k hk(X∨) generating cocycles

3 11 2Λ∨
6 [1 ⊇ 1 ⊇ 1]+2Λ∨

6 [2 ⊇ 2 ⊇ 2]+2Λ∨
6 [3 ⊇ 3 ⊇ 3]+2Λ∨

6 [4 ⊇ 4 ⊇ 4]+2Λ∨
6 [5 ⊇ 5 ⊇ 5]+2Λ∨

6 [6 ⊇ 6 ⊇ 6]

2Λ∨
6 [1, 3 ⊇ 1] + 2Λ∨

6 [1, 3 ⊇ 3] + 2Λ∨
6 [1, 4 ⊇ 1] + 2Λ∨

6 [1, 4 ⊇ 4] + 2Λ∨
6 [2, 4 ⊇ 2] + 2Λ∨

6 [2, 4 ⊇ 4] +
2Λ∨

6 [1, 5 ⊇ 1] + 2Λ∨
6 [1, 5 ⊇ 5] + 2Λ∨

6 [2, 5 ⊇ 2] + 2Λ∨
6 [2, 5 ⊇ 5] + 2Λ∨

6 [3, 5 ⊇ 3] + 2Λ∨
6 [3, 5 ⊇ 5] +

2Λ∨
6 [1, 6 ⊇ 1] + 2Λ∨

6 [1, 6 ⊇ 6] + 2Λ∨
6 [2, 6 ⊇ 2] + 2Λ∨

6 [2, 6 ⊇ 6] + 2Λ∨
6 [3, 6 ⊇ 3] + 2Λ∨

6 [3, 6 ⊇ 6]

2Λ∨
6 [1, 2, 3] + 2Λ∨

6 [2, 3, 4] + 2Λ∨
6 [3, 4, 5] + 2Λ∨

6 [3, 4, 6]

(
Λ∨

4 + 2Λ∨
6

[
[5 ⊇ 5 ⊇ 5] +

(
Λ∨

4 + Λ∨
5 + Λ∨

6

[
[4, 5 ⊇ 4] +

(
Λ∨

5 + 3Λ∨
6

[
[4, 5 ⊇ 5] +

(
Λ∨

4 + Λ∨
5 + Λ∨

6

[
[4, 5, 6]

(
Λ∨

4 + 2Λ∨
6

[
[1, 5 ⊇ 1] +

(
Λ∨

4 + 2Λ∨
6

[
[2, 5 ⊇ 2] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 5 ⊇ 3] +

(
Λ∨

5 + Λ∨
6

[
[4, 5 ⊇ 4] +

Λ∨
3 [4, 5 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 4, 5] + Λ∨

4 [4, 5, 6]

(
Λ∨

4 + 2Λ∨
6

[
[1, 5 ⊇ 5] +

(
Λ∨

5 + Λ∨
6

[
[1, 2, 5] +

(
Λ∨

4 + Λ∨
5 + Λ∨

6

[
[1, 4, 5] + 2Λ∨

6 [2, 4, 5] +(
Λ∨

4 + 2Λ∨
6

[
[2, 5, 6] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 5, 6]

(
Λ∨

2 + 2Λ∨
6

[
[3, 5 ⊇ 5] +

(
Λ∨

5 + Λ∨
6

[
[2, 3, 5] +

(
Λ∨

5 + Λ∨
6

[
[4, 5 ⊇ 4] + Λ∨

3 [4, 5 ⊇ 5] +(
Λ∨

3 + Λ∨
5 + Λ∨

6

[
[3, 4, 5] +

(
Λ∨

4 + 2Λ∨
6

[
[3, 5, 6] + Λ∨

4 [4, 5, 6]

2Λ∨
6 [1, 3, 5]

Λ∨
4 [5, 6 ⊇ 5] + 2Λ∨

6 [5, 6 ⊇ 6] +
(

Λ∨
4 + Λ∨

5 + Λ∨
6

[
[4, 5, 6]

Λ∨
4 [1, 5, 6] + Λ∨

4 [2, 5, 6] + Λ∨
4 [3, 5, 6]

Λ∨
3 [4, 5, 6]

k 0 1 2 3

compk
([ ⎤

0
1

⎣
⎛
⎜⎜⎜⎜⎝

1
0
0
1
0

∫
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
1 1 0 0
0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0
0 1 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.27.4 Cohomology of lattice X∨ corresponding to Ω = ⟨(1, 0)⟩

[ϕu] = (1, 1, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
4 − 2Λ∨

5

[
[5]

2 Z/2Z 2Λ∨
5 [1 ⊇ 1] +

(
−2Λ∨

5

[
[2 ⊇ 2] + 2Λ∨

5 [1, 2] +
(

−2Λ∨
5

[
[3 ⊇ 3] +

(
−2Λ∨

5

[
[4 ⊇ 4] +(

−Λ∨
4

[
[5 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5

[
[1, 5] +

(
Λ∨

4 − 2Λ∨
5

[
[2, 5] +

(
Λ∨

4 − 2Λ∨
5

[
[3, 5] +(

−Λ∨
3 + 3Λ∨

4 − 3Λ∨
5 − Λ∨

6

[
[4, 5] +

(
−2Λ∨

5

[
[6 ⊇ 6] +

(
−Λ∨

4 + 2Λ∨
5

[
[5, 6]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z Λ∨
4 [5, 6 ⊇ 5] + 2Λ∨

5 [5, 6 ⊇ 6] +
(

Λ∨
3 − Λ∨

4 + Λ∨
5 + Λ∨

6

[
[4, 5, 6]

(
Λ∨

4 − 2Λ∨
5

[
[1, 5 ⊇ 1] +

(
−Λ∨

4 − 2Λ∨
5

[
[2, 5 ⊇ 2] +

(
−2Λ∨

4

[
[2, 5 ⊇ 5] +

(
−Λ∨

4

[
[1, 2, 5] +(

−Λ∨
4 − 2Λ∨

5

[
[3, 5 ⊇ 3] +

(
−Λ∨

2 + 2Λ∨
3 − 3Λ∨

4

[
[3, 5 ⊇ 5] +

(
2Λ∨

4 − 2Λ∨
5

[
[2, 4, 5] +(

Λ∨
2 + 2Λ∨

6

[
[3, 4, 5]

2Λ∨
5 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

−2Λ∨
5

[
[1, 2, 3] +

(
−2Λ∨

5

[
[1, 4 ⊇ 1] +(

−2Λ∨
5

[
[1, 4 ⊇ 4] +

(
−2Λ∨

5

[
[2, 4 ⊇ 2] +

(
−2Λ∨

5

[
[2, 4 ⊇ 4] + 2Λ∨

5 [1, 3, 4] +

2Λ∨
5 [2, 3, 4] +

(
−2Λ∨

5

[
[1, 5 ⊇ 1] +

(
−Λ∨

4

[
[1, 5 ⊇ 5] +

(
−2Λ∨

5

[
[2, 5 ⊇ 2] +(

−Λ∨
4

[
[2, 5 ⊇ 5] +

(
−2Λ∨

5

[
[3, 5 ⊇ 3] +

(
−Λ∨

4

[
[3, 5 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5

[
[1, 3, 5] +(

−Λ∨
3 + 3Λ∨

4 − 3Λ∨
5 − Λ∨

6

[
[1, 4, 5] +

(
−Λ∨

3 + 3Λ∨
4 − 3Λ∨

5 − Λ∨
6

[
[2, 4, 5] +(

Λ∨
3 − Λ∨

4 + Λ∨
5 + Λ∨

6

[
[3, 4, 5] +

(
−2Λ∨

5

[
[1, 6 ⊇ 1] +

(
−2Λ∨

5

[
[1, 6 ⊇ 6] +(

−2Λ∨
5

[
[2, 6 ⊇ 2] +

(
−2Λ∨

5

[
[2, 6 ⊇ 6] +

(
−2Λ∨

5

[
[3, 6 ⊇ 3] +

(
−2Λ∨

5

[
[3, 6 ⊇ 6] +

2Λ∨
5 [3, 4, 6] +

(
−Λ∨

4 + 2Λ∨
5

[
[1, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5

[
[2, 5, 6] +

(
−Λ∨

4 + 2Λ∨
5

[
[3, 5, 6]

k hk(X∨) generating cocycles

0 1 2Λ∨
5 []

1 2 Λ∨
2 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4] + 2Λ∨
5 [5] + 2Λ∨

5 [6]

2Λ∨
5 [1] + 2Λ∨

5 [2] + 2Λ∨
5 [3] + 2Λ∨

5 [4] + 2Λ∨
5 [5] + 2Λ∨

5 [6]

2 4 Λ∨
2 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
5

[
[1, 2] + 2Λ∨

5 [3 ⊇ 3] + 2Λ∨
5 [4 ⊇ 4] + 2Λ∨

5 [5 ⊇ 5] +(
Λ∨

4 + 2Λ∨
5

[
[2, 5] + Λ∨

2 [3, 5] + 2Λ∨
5 [6 ⊇ 6]

2Λ∨
5 [1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2] + 2Λ∨
5 [3 ⊇ 3] + 2Λ∨

5 [4 ⊇ 4] + 2Λ∨
5 [5 ⊇ 5] + 2Λ∨

5 [6 ⊇ 6]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
5

[
[2, 3] + 2Λ∨

5 [1, 4] + 2Λ∨
5 [2, 4] +

(
Λ∨

1 + Λ∨
5

[
[3, 4] + 2Λ∨

5 [1, 5] + 2Λ∨
5 [2, 5] +

Λ∨
4 [3, 5] + 2Λ∨

5 [1, 6] + 2Λ∨
5 [2, 6] + 2Λ∨

5 [3, 6]

(
Λ∨

2 + 2Λ∨
5

[
[1, 6] +

(
Λ∨

1 + Λ∨
5

[
[4, 6] + Λ∨

4 [5, 6]
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k hk(X∨) generating cocycles

3 9 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

5 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

5

[
[1, 2 ⊇ 2] +

2Λ∨
5 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
5 [4 ⊇ 4 ⊇ 4] + 2Λ∨

5 [2, 3, 4] + 2Λ∨
5 [5 ⊇ 5 ⊇ 5] +(

Λ∨
4 + 2Λ∨

5

[
[2, 5 ⊇ 2] +

(
Λ∨

4 + 2Λ∨
5

[
[3, 5 ⊇ 3] + Λ∨

2 [3, 5 ⊇ 5] + Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + Λ∨
5

[
[2, 3, 5] +(

Λ∨
3 + Λ∨

4 + Λ∨
5 + Λ∨

6

[
[3, 4, 5] + 2Λ∨

5 [6 ⊇ 6 ⊇ 6] + 2Λ∨
5 [3, 4, 6]

2Λ∨
5 [1 ⊇ 1 ⊇ 1]+2Λ∨

5 [2 ⊇ 2 ⊇ 2]+2Λ∨
5 [3 ⊇ 3 ⊇ 3]+2Λ∨

5 [4 ⊇ 4 ⊇ 4]+2Λ∨
5 [5 ⊇ 5 ⊇ 5]+2Λ∨

5 [6 ⊇ 6 ⊇ 6]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

5

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
5

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

5

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
5

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

5

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
5 [2, 3, 4] +(

Λ∨
4 + 2Λ∨

5

[
[2, 5 ⊇ 2] + 2Λ∨

5 [3, 4, 5] + 2Λ∨
5 [3, 4, 6]

Λ∨
6 [1, 2 ⊇ 1] + Λ∨

6 [1, 2 ⊇ 2] + Λ∨
4 [2, 6 ⊇ 2] + Λ∨

4 [3, 6 ⊇ 3] + Λ∨
6 [4, 6 ⊇ 4] +

(
Λ∨

3 + Λ∨
5

[
[4, 6 ⊇ 6] +

Λ∨
4 [3, 4, 6] + 2Λ∨

5 [5, 6 ⊇ 6] +
(

Λ∨
3 + Λ∨

5 + Λ∨
6

[
[4, 5, 6]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

5 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

5

[
[1, 2, 3] + 2Λ∨

5 [1, 4 ⊇ 1] + 2Λ∨
5 [1, 4 ⊇ 4] +

2Λ∨
5 [2, 4 ⊇ 2] + 2Λ∨

5 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

5

[
[1, 3, 4] + 2Λ∨

5 [1, 5 ⊇ 1] + 2Λ∨
5 [1, 5 ⊇ 5] + 2Λ∨

5 [2, 5 ⊇ 2] +

2Λ∨
5 [2, 5 ⊇ 5] + 2Λ∨

5 [3, 5 ⊇ 3] + 2Λ∨
5 [3, 5 ⊇ 5] + Λ∨

4 [1, 3, 5] + 2Λ∨
5 [1, 6 ⊇ 1] + 2Λ∨

5 [1, 6 ⊇ 6] +
2Λ∨

5 [2, 6 ⊇ 2] + 2Λ∨
5 [2, 6 ⊇ 6] + 2Λ∨

5 [3, 6 ⊇ 3] + 2Λ∨
5 [3, 6 ⊇ 6]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
5

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
5

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

5

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

5

[
[1, 3, 4] +

(
Λ∨

3 + 3Λ∨
5 + Λ∨

6

[
[2, 3, 4] +

(
Λ∨

4 + 2Λ∨
5

[
[3, 5 ⊇ 3] + Λ∨

2 [3, 5 ⊇ 5] +(
Λ∨

2 + Λ∨
4

[
[1, 3, 5] +

(
Λ∨

1 + Λ∨
5

[
[2, 3, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5 + Λ∨
6

[
[3, 4, 5] + 2Λ∨

5 [3, 4, 6]

Λ∨
6 [1, 2, 3] + Λ∨

6 [2, 3, 4] + Λ∨
6 [3, 4, 5] +

(
Λ∨

1 + Λ∨
5

[
[2, 3, 6] +

(
Λ∨

3 + Λ∨
5

[
[1, 4, 6] +

(
Λ∨

3 + Λ∨
5

[
[2, 4, 6] +(

Λ∨
1 + 3Λ∨

5

[
[3, 4, 6] + Λ∨

4 [1, 5, 6] + Λ∨
4 [2, 5, 6] + 2Λ∨

5 [3, 5, 6]

Λ∨
2 [1, 3, 6] +

(
Λ∨

1 + Λ∨
5

[
[2, 3, 6] +

(
Λ∨

4 + 2Λ∨
5

[
[3, 5, 6]

2Λ∨
5 [5, 6 ⊇ 5] + 2Λ∨

5 [5, 6 ⊇ 6]

k 0 1 2 3

compk
([ ⎤

1
1

⎣
⎛
⎜⎜⎝

1
0
0
1

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 1 1
1 0 0
0 0 1
0 1 0
0 0 0
0 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.27.5 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1] + (Λ∨

1 + Λ∨
2 ) [2] + (Λ∨

2 + Λ∨
3 ) [3] + (Λ∨

3 + Λ∨
4 ) [4] +

(Λ∨
5 + Λ∨

6 ) [5] + (Λ∨
5 + Λ∨

6 ) [6]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z
(

Λ∨
4 − 2Λ∨

5

[
[5, 6 ⊇ 6] +

(
Λ∨

4 − Λ∨
5 − Λ∨

6

[
[4, 5, 6]

Λ∨
6 [1, 3 ⊇ 1] + Λ∨

6 [1, 3 ⊇ 3] +
(

−Λ∨
6

[
[1, 2, 3] +

(
−Λ∨

6

[
[1, 4 ⊇ 1] +

(
−Λ∨

6

[
[1, 4 ⊇ 4] +(

−Λ∨
6

[
[2, 4 ⊇ 2] +

(
−Λ∨

6

[
[2, 4 ⊇ 4] + Λ∨

6 [1, 3, 4] + Λ∨
6 [2, 3, 4] +

(
−Λ∨

6

[
[1, 5 ⊇ 1] +(

−Λ∨
6

[
[1, 5 ⊇ 5] +

(
−Λ∨

6

[
[2, 5 ⊇ 2] +

(
−Λ∨

6

[
[2, 5 ⊇ 5] +

(
−Λ∨

6

[
[3, 5 ⊇ 3] +(

−Λ∨
6

[
[3, 5 ⊇ 5] + Λ∨

6 [3, 4, 5] +
(

−Λ∨
3 − Λ∨

5

[
[1, 6 ⊇ 1] +

(
−Λ∨

3 − Λ∨
5

[
[1, 6 ⊇ 6] +(

−Λ∨
3 − Λ∨

5

[
[2, 6 ⊇ 2] +

(
−Λ∨

3 − Λ∨
5

[
[2, 6 ⊇ 6] +

(
−Λ∨

1 − Λ∨
5

[
[3, 6 ⊇ 3] +(

−Λ∨
1 − Λ∨

5

[
[3, 6 ⊇ 6] +

(
−Λ∨

1 + Λ∨
3 − Λ∨

4 + Λ∨
6

[
[1, 3, 6] +

(
−Λ∨

2 + Λ∨
3

[
[2, 3, 6] +(

Λ∨
4 − Λ∨

6

[
[1, 4, 6] +

(
Λ∨

4 − Λ∨
6

[
[2, 4, 6] +

(
Λ∨

1 + Λ∨
5

[
[3, 4, 6] +

(
Λ∨

5 − Λ∨
6

[
[1, 5, 6] +(

Λ∨
5 − Λ∨

6

[
[2, 5, 6] +

(
Λ∨

5 − Λ∨
6

[
[3, 5, 6]

Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] +
(

−Λ∨
5

[
[1, 2, 3] +

(
−Λ∨

5

[
[1, 4 ⊇ 1] +

(
−Λ∨

5

[
[1, 4 ⊇ 4] +(

−Λ∨
5

[
[2, 4 ⊇ 2] +

(
−Λ∨

5

[
[2, 4 ⊇ 4] + Λ∨

5 [1, 3, 4] + Λ∨
5 [2, 3, 4] +(

−Λ∨
3 − Λ∨

6

[
[1, 5 ⊇ 1] +

(
−Λ∨

3 − Λ∨
6

[
[1, 5 ⊇ 5] +

(
−Λ∨

3 − Λ∨
6

[
[2, 5 ⊇ 2] +(

−Λ∨
3 − Λ∨

6

[
[2, 5 ⊇ 5] +

(
−Λ∨

1 − Λ∨
6

[
[3, 5 ⊇ 3] +

(
−Λ∨

1 − Λ∨
6

[
[3, 5 ⊇ 5] +(

−Λ∨
1 + Λ∨

3 − Λ∨
4 + Λ∨

5

[
[1, 3, 5] +

(
−Λ∨

2 + Λ∨
3

[
[2, 3, 5] +

(
Λ∨

4 − Λ∨
5

[
[1, 4, 5] +(

Λ∨
4 − Λ∨

5

[
[2, 4, 5] +

(
Λ∨

1 + Λ∨
6

[
[3, 4, 5] +

(
−Λ∨

5

[
[1, 6 ⊇ 1] +

(
−Λ∨

5

[
[1, 6 ⊇ 6] +(

−Λ∨
5

[
[2, 6 ⊇ 2] +

(
−Λ∨

5

[
[2, 6 ⊇ 6] +

(
−Λ∨

5

[
[3, 6 ⊇ 3] +

(
−Λ∨

5

[
[3, 6 ⊇ 6] +

Λ∨
5 [3, 4, 6] +

(
Λ∨

5 − Λ∨
6

[
[1, 5, 6] +

(
Λ∨

5 − Λ∨
6

[
[2, 5, 6] +

(
Λ∨

5 − Λ∨
6

[
[3, 5, 6]

k hk(X∨) generating cocycles

0 0

1 0

2 3 Λ∨
5 [1, 3] + Λ∨

5 [1, 4] + Λ∨
5 [2, 4] +

(
Λ∨

3 + Λ∨
6

[
[1, 5] +

(
Λ∨

3 + Λ∨
6

[
[2, 5] +

(
Λ∨

1 + Λ∨
6

[
[3, 5] + Λ∨

5 [1, 6] +

Λ∨
5 [2, 6] + Λ∨

5 [3, 6]

Λ∨
6 [1, 3] + Λ∨

6 [1, 4] + Λ∨
6 [2, 4] + Λ∨

6 [1, 5] + Λ∨
6 [2, 5] + Λ∨

6 [3, 5] +
(

Λ∨
3 + Λ∨

5

[
[1, 6] +

(
Λ∨

3 + Λ∨
5

[
[2, 6] +(

Λ∨
1 + Λ∨

5

[
[3, 6]

Λ∨
6 [4, 5]

3 8 Λ∨
5 [1, 2 ⊇ 1] + Λ∨

5 [1, 2 ⊇ 2] + Λ∨
4 [2, 5 ⊇ 2] + Λ∨

4 [3, 5 ⊇ 3] + Λ∨
5 [4, 5 ⊇ 4] +

(
Λ∨

3 + Λ∨
6

[
[4, 5 ⊇ 5] +

Λ∨
4 [3, 4, 5] +

(
Λ∨

5 + Λ∨
6

[
[4, 5, 6]

Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] + Λ∨
5 [1, 4 ⊇ 1] + Λ∨

5 [1, 4 ⊇ 4] + Λ∨
5 [2, 4 ⊇ 2] + Λ∨

5 [2, 4 ⊇ 4] +(
Λ∨

3 + Λ∨
6

[
[1, 5 ⊇ 1] +

(
Λ∨

3 + Λ∨
6

[
[1, 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
6

[
[2, 5 ⊇ 2] +

(
Λ∨

3 + Λ∨
6

[
[2, 5 ⊇ 5] +(

Λ∨
1 + Λ∨

6

[
[3, 5 ⊇ 3] +

(
Λ∨

1 + Λ∨
6

[
[3, 5 ⊇ 5] +

(
Λ∨

1 + Λ∨
3 + Λ∨

5

[
[1, 3, 5] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3

[
[2, 3, 5] +(

Λ∨
3 + Λ∨

4 + Λ∨
5

[
[1, 4, 5] +

(
Λ∨

3 + Λ∨
4 + Λ∨

5

[
[2, 4, 5] + Λ∨

5 [1, 6 ⊇ 1] + Λ∨
5 [1, 6 ⊇ 6] + Λ∨

5 [2, 6 ⊇ 2] +

Λ∨
5 [2, 6 ⊇ 6]+Λ∨

5 [3, 6 ⊇ 3]+Λ∨
5 [3, 6 ⊇ 6]+

(
Λ∨

5 + Λ∨
6

[
[1, 5, 6]+

(
Λ∨

5 + Λ∨
6

[
[2, 5, 6]+

(
Λ∨

5 + Λ∨
6

[
[3, 5, 6]

Λ∨
6 [1, 3 ⊇ 1] + Λ∨

6 [1, 3 ⊇ 3] + Λ∨
6 [1, 4 ⊇ 1] + Λ∨

6 [1, 4 ⊇ 4] + Λ∨
6 [2, 4 ⊇ 2] + Λ∨

6 [2, 4 ⊇ 4] + Λ∨
6 [1, 5 ⊇ 1] +

Λ∨
6 [1, 5 ⊇ 5] + Λ∨

6 [2, 5 ⊇ 2] + Λ∨
6 [2, 5 ⊇ 5] + Λ∨

6 [3, 5 ⊇ 3] + Λ∨
6 [3, 5 ⊇ 5] +

(
Λ∨

3 + Λ∨
5

[
[1, 6 ⊇ 1] +(

Λ∨
3 + Λ∨

5

[
[1, 6 ⊇ 6] +

(
Λ∨

3 + Λ∨
5

[
[2, 6 ⊇ 2] +

(
Λ∨

3 + Λ∨
5

[
[2, 6 ⊇ 6] +

(
Λ∨

1 + Λ∨
5

[
[3, 6 ⊇ 3] +(

Λ∨
1 + Λ∨

5

[
[3, 6 ⊇ 6] +

(
Λ∨

1 + Λ∨
3 + Λ∨

6

[
[1, 3, 6] +

(
Λ∨

1 + Λ∨
2 + Λ∨

3

[
[2, 3, 6] +

(
Λ∨

3 + Λ∨
4 + Λ∨

6

[
[1, 4, 6] +(

Λ∨
3 + Λ∨

4 + Λ∨
6

[
[2, 4, 6] +

(
Λ∨

5 + Λ∨
6

[
[1, 5, 6] +

(
Λ∨

5 + Λ∨
6

[
[2, 5, 6] +

(
Λ∨

5 + Λ∨
6

[
[3, 5, 6]

Λ∨
5 [1, 2, 3] + Λ∨

5 [2, 3, 4] + Λ∨
1 [2, 3, 5] + Λ∨

3 [1, 4, 5] + Λ∨
3 [2, 4, 5] +

(
Λ∨

1 + Λ∨
6

[
[3, 4, 5] + Λ∨

5 [3, 4, 6]

Λ∨
6 [1, 2, 3] + Λ∨

6 [2, 3, 4] + Λ∨
6 [3, 4, 5] + Λ∨

1 [2, 3, 6] + Λ∨
3 [1, 4, 6] + Λ∨

3 [2, 4, 6] +
(

Λ∨
1 + Λ∨

5

[
[3, 4, 6]

Λ∨
6 [1, 3, 5] + Λ∨

3 [1, 5, 6] + Λ∨
3 [2, 5, 6] + Λ∨

1 [3, 5, 6]

Λ∨
6 [1, 4, 5] + Λ∨

6 [2, 4, 5]

Λ∨
5 [1, 3, 6] + Λ∨

3 [1, 5, 6] + Λ∨
3 [2, 5, 6] + Λ∨

1 [3, 5, 6]
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k 0 1 2 3

compk
([ ([ ([

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 1
0 1 0
0 0 1
0 1 0
0 0 0
0 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.27.6 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] + (−1) [6 ⊇ 6]

3 Z/2Z⊕Z/2Z [5, 6 ⊇ 5] + [5, 6 ⊇ 6] + [4, 5, 6]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] + (−1) [2, 4 ⊇ 2] +
(−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] + (−1) [2, 5 ⊇ 2] +
(−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] + (−1) [1, 6 ⊇ 1] +
(−1) [1, 6 ⊇ 6]+(−1) [2, 6 ⊇ 2]+(−1) [2, 6 ⊇ 6]+(−1) [3, 6 ⊇ 3]+(−1) [3, 6 ⊇ 6]+[3, 4, 6]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5] + [6]

2 3 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5] + [1, 6] + [2, 6] + [3, 6]

[5, 6]

3 8 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6]

[1, 3 ⊇ 1]+[1, 3 ⊇ 3]+[1, 4 ⊇ 1]+[1, 4 ⊇ 4]+[2, 4 ⊇ 2]+[2, 4 ⊇ 4]+[1, 5 ⊇ 1]+[1, 5 ⊇ 5]+[2, 5 ⊇ 2]+
[2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] + [3, 6 ⊇ 3] + [3, 6 ⊇ 6]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [3, 4, 6]

[1, 3, 5]

[1, 3, 6]

[5, 6 ⊇ 5] + [5, 6 ⊇ 6]

[1, 5, 6] + [2, 5, 6] + [3, 5, 6]

[4, 5, 6]
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A.28 Root system D7

Dynkin diagram 1 2 3 4 5

7

6

Fundamental group
P∨/Q∨ ≃ Z/4Z

generated by Λ∨
7 ∈ P∨ mod Q∨

A.28.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 0, 1, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/4Z
(

Λ∨
5 − 2Λ∨

7

[
[7]

2 Z/2Z 4Λ∨
7 [1 ⊇ 1] +

(
−4Λ∨

7

[
[2 ⊇ 2] + 4Λ∨

7 [1, 2] +
(

−4Λ∨
7

[
[3 ⊇ 3] +

(
−4Λ∨

7

[
[4 ⊇ 4] +(

−4Λ∨
7

[
[5 ⊇ 5] +

(
−4Λ∨

7

[
[6 ⊇ 6] +

(
−4Λ∨

6

[
[7 ⊇ 7] +

(
−2Λ∨

5 + 4Λ∨
7

[
[1, 7] +(

2Λ∨
5 − 4Λ∨

7

[
[2, 7] +

(
2Λ∨

5 − 4Λ∨
7

[
[3, 7] +

(
2Λ∨

5 − 4Λ∨
7

[
[4, 7] +(

−2Λ∨
4 + 4Λ∨

5 − 4Λ∨
7

[
[5, 7] +

(
4Λ∨

6 − 4Λ∨
7

[
[6, 7]

3 Z/2Z⊕Z/2Z⊕Z/2Z 4Λ∨
7 [6, 7 ⊇ 6] + 4Λ∨

6 [6, 7 ⊇ 7] +
(

2Λ∨
4 − 4Λ∨

5 + 4Λ∨
6 + 4Λ∨

7

[
[5, 6, 7]

(
Λ∨

5 − 2Λ∨
7

[
[1, 7 ⊇ 1] +

(
−Λ∨

5 − 6Λ∨
7

[
[2, 7 ⊇ 2] +

(
−4Λ∨

5

[
[2, 7 ⊇ 7] +(

−Λ∨
5 − 2Λ∨

7

[
[1, 2, 7] +

(
−Λ∨

5 − 6Λ∨
7

[
[3, 7 ⊇ 3] +

(
−4Λ∨

5

[
[3, 7 ⊇ 7] +(

−Λ∨
5 − 6Λ∨

7

[
[4, 7 ⊇ 4] +

(
−4Λ∨

5

[
[4, 7 ⊇ 7] +

(
−Λ∨

6 − Λ∨
7

[
[5, 7 ⊇ 5] +(

−Λ∨
4 + Λ∨

5 − 2Λ∨
6

[
[5, 7 ⊇ 7] +

(
4Λ∨

5 − 4Λ∨
7

[
[2, 5, 7] +

(
4Λ∨

5 − 4Λ∨
7

[
[3, 5, 7] +(

Λ∨
3 + 2Λ∨

4 − 2Λ∨
5 + 4Λ∨

6 + 2Λ∨
7

[
[4, 5, 7] +

(
−2Λ∨

5 + 2Λ∨
6 + 2Λ∨

7

[
[5, 6, 7]

4Λ∨
7 [1, 3 ⊇ 1]+4Λ∨

7 [1, 3 ⊇ 3]+
(

−4Λ∨
7

[
[1, 2, 3]+

(
−4Λ∨

7

[
[1, 4 ⊇ 1]+

(
−4Λ∨

7

[
[1, 4 ⊇ 4]+(

−4Λ∨
7

[
[2, 4 ⊇ 2] +

(
−4Λ∨

7

[
[2, 4 ⊇ 4] + 4Λ∨

7 [1, 3, 4] + 4Λ∨
7 [2, 3, 4] +

(
−4Λ∨

7

[
[1, 5 ⊇ 1] +(

−4Λ∨
7

[
[1, 5 ⊇ 5] +

(
−4Λ∨

7

[
[2, 5 ⊇ 2] +

(
−4Λ∨

7

[
[2, 5 ⊇ 5] +

(
−4Λ∨

7

[
[3, 5 ⊇ 3] +(

−4Λ∨
7

[
[3, 5 ⊇ 5] + 4Λ∨

7 [3, 4, 5] +
(

−4Λ∨
7

[
[1, 6 ⊇ 1] +

(
−4Λ∨

7

[
[1, 6 ⊇ 6] +(

−4Λ∨
7

[
[2, 6 ⊇ 2] +

(
−4Λ∨

7

[
[2, 6 ⊇ 6] +

(
−4Λ∨

7

[
[3, 6 ⊇ 3] +

(
−4Λ∨

7

[
[3, 6 ⊇ 6] +(

−4Λ∨
7

[
[4, 6 ⊇ 4] +

(
−4Λ∨

7

[
[4, 6 ⊇ 6] + 4Λ∨

7 [4, 5, 6] +
(

−4Λ∨
7

[
[1, 7 ⊇ 1] +(

−2Λ∨
5

[
[1, 7 ⊇ 7] +

(
−4Λ∨

7

[
[2, 7 ⊇ 2] +

(
−2Λ∨

5

[
[2, 7 ⊇ 7] +

(
−4Λ∨

7

[
[3, 7 ⊇ 3] +(

−2Λ∨
5

[
[3, 7 ⊇ 7] +

(
−2Λ∨

5 + 4Λ∨
7

[
[1, 3, 7] +

(
−4Λ∨

7

[
[4, 7 ⊇ 4] +

(
−2Λ∨

5

[
[4, 7 ⊇ 7] +(

2Λ∨
5 − 4Λ∨

7

[
[1, 4, 7] +

(
2Λ∨

5 − 4Λ∨
7

[
[2, 4, 7] +

(
−2Λ∨

4 + 6Λ∨
5 − 2Λ∨

6 − 6Λ∨
7

[
[1, 5, 7] +(

−2Λ∨
4 + 6Λ∨

5 − 2Λ∨
6 − 6Λ∨

7

[
[2, 5, 7] +

(
−2Λ∨

4 + 6Λ∨
5 − 2Λ∨

6 − 6Λ∨
7

[
[3, 5, 7] +(

2Λ∨
4 − 2Λ∨

5 + 2Λ∨
6 + 2Λ∨

7

[
[4, 5, 7] +

(
2Λ∨

5 − 4Λ∨
7

[
[1, 6, 7] +

(
2Λ∨

5 − 4Λ∨
7

[
[2, 6, 7] +(

2Λ∨
5 − 4Λ∨

7

[
[3, 6, 7] +

(
2Λ∨

5 − 4Λ∨
7

[
[4, 6, 7]

k hk(X∨) generating cocycles

0 1 4Λ∨
7 []

1 2 Λ∨
2 [1] + 4Λ∨

7 [2] + 4Λ∨
7 [3] + 4Λ∨

7 [4] + 4Λ∨
7 [5] + 4Λ∨

7 [6] + 4Λ∨
7 [7]

(
Λ∨

5 + 2Λ∨
7

[
[6]
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k hk(X∨) generating cocycles

2 4 Λ∨
2 [1 ⊇ 1] + 4Λ∨

7 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + 2Λ∨
7

[
[1, 2] + 4Λ∨

7 [3 ⊇ 3] + 4Λ∨
7 [4 ⊇ 4] + 4Λ∨

7 [5 ⊇ 5] +

4Λ∨
7 [6 ⊇ 6] + 4Λ∨

7 [7 ⊇ 7]

Λ∨
2 [1, 3] +

(
Λ∨

1 + 2Λ∨
7

[
[2, 3] + 4Λ∨

7 [1, 4] + 4Λ∨
7 [2, 4] +

(
Λ∨

1 + 2Λ∨
7

[
[3, 4] + 4Λ∨

7 [1, 5] + 4Λ∨
7 [2, 5] +

4Λ∨
7 [3, 5] + 4Λ∨

7 [1, 6] + 4Λ∨
7 [2, 6] + 4Λ∨

7 [3, 6] + 4Λ∨
7 [4, 6] + 4Λ∨

7 [1, 7] + 4Λ∨
7 [2, 7] + 4Λ∨

7 [3, 7] + 4Λ∨
7 [4, 7]

(
Λ∨

5 + 2Λ∨
7

[
[6 ⊇ 6] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[5, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[6, 7]

(
Λ∨

5 + 2Λ∨
7

[
[1, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[2, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[3, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[4, 6] + Λ∨

4 [5, 6]

3 10 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 4Λ∨

7 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + 2Λ∨

7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + 2Λ∨

7

[
[1, 2 ⊇ 2] +

4Λ∨
7 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 4Λ∨
7 [4 ⊇ 4 ⊇ 4] + 4Λ∨

7 [2, 3, 4] + 4Λ∨
7 [5 ⊇ 5 ⊇ 5] + 4Λ∨

7 [3, 4, 5] +
4Λ∨

7 [6 ⊇ 6 ⊇ 6] + 4Λ∨
7 [4, 5, 6] + 4Λ∨

7 [7 ⊇ 7 ⊇ 7] + 4Λ∨
7 [4, 5, 7]

4Λ∨
7 [1 ⊇ 1 ⊇ 1] + 4Λ∨

7 [2 ⊇ 2 ⊇ 2] + 4Λ∨
7 [3 ⊇ 3 ⊇ 3] + 4Λ∨

7 [4 ⊇ 4 ⊇ 4] + 4Λ∨
7 [5 ⊇ 5 ⊇ 5] +

4Λ∨
7 [6 ⊇ 6 ⊇ 6] + 4Λ∨

7 [7 ⊇ 7 ⊇ 7]

Λ∨
2 [1, 3 ⊇ 1] + 4Λ∨

7 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 4Λ∨

7

[
[1, 2, 3] + 4Λ∨

7 [1, 4 ⊇ 1] + 4Λ∨
7 [1, 4 ⊇ 4] +

4Λ∨
7 [2, 4 ⊇ 2] + 4Λ∨

7 [2, 4 ⊇ 4] +
(

Λ∨
1 + 2Λ∨

7

[
[1, 3, 4] + 4Λ∨

7 [1, 5 ⊇ 1] + 4Λ∨
7 [1, 5 ⊇ 5] + 4Λ∨

7 [2, 5 ⊇ 2] +

4Λ∨
7 [2, 5 ⊇ 5] + 4Λ∨

7 [3, 5 ⊇ 3] + 4Λ∨
7 [3, 5 ⊇ 5] + 4Λ∨

7 [1, 6 ⊇ 1] + 4Λ∨
7 [1, 6 ⊇ 6] + 4Λ∨

7 [2, 6 ⊇ 2] +
4Λ∨

7 [2, 6 ⊇ 6] + 4Λ∨
7 [3, 6 ⊇ 3] + 4Λ∨

7 [3, 6 ⊇ 6] + 4Λ∨
7 [4, 6 ⊇ 4] + 4Λ∨

7 [4, 6 ⊇ 6] + 4Λ∨
7 [1, 7 ⊇ 1] +

4Λ∨
7 [1, 7 ⊇ 7] + 4Λ∨

7 [2, 7 ⊇ 2] + 4Λ∨
7 [2, 7 ⊇ 7] + 4Λ∨

7 [3, 7 ⊇ 3] + 4Λ∨
7 [3, 7 ⊇ 7] + 4Λ∨

7 [4, 7 ⊇ 4] +
4Λ∨

7 [4, 7 ⊇ 7]

Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + 2Λ∨
7

[
[2, 3, 5] + 4Λ∨

7 [1, 3, 6] + 4Λ∨
7 [1, 4, 6] + 4Λ∨

7 [2, 4, 6] +
(

Λ∨
1 + 2Λ∨

7

[
[3, 5, 6] +

4Λ∨
7 [1, 3, 7] + 4Λ∨

7 [1, 4, 7] + 4Λ∨
7 [2, 4, 7] +

(
Λ∨

1 + 2Λ∨
7

[
[3, 5, 7]

(
Λ∨

5 + 2Λ∨
7

[
[6 ⊇ 6 ⊇ 6] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[5, 6 ⊇ 5] +

(
Λ∨

6 + Λ∨
7

[
[5, 6 ⊇ 6] + 4Λ∨

7 [6, 7 ⊇ 7] +(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[5, 6, 7]

(
Λ∨

5 + 2Λ∨
7

[
[1, 6 ⊇ 1] +

(
Λ∨

5 + 2Λ∨
7

[
[2, 6 ⊇ 2] +

(
Λ∨

5 + 2Λ∨
7

[
[3, 6 ⊇ 3] +

(
Λ∨

5 + 2Λ∨
7

[
[4, 6 ⊇ 4] +(

Λ∨
6 + Λ∨

7

[
[5, 6 ⊇ 5] +

(
Λ∨

4 + 4Λ∨
7

[
[5, 6 ⊇ 6] +

(
Λ∨

5 + 2Λ∨
7

[
[4, 5, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[5, 6, 7]

(
Λ∨

5 + 2Λ∨
7

[
[1, 6 ⊇ 6] +

(
Λ∨

6 + Λ∨
7

[
[1, 2, 6] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[1, 5, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[1, 6, 7] +

4Λ∨
7 [2, 6, 7] + 4Λ∨

7 [3, 6, 7] + 4Λ∨
7 [4, 6, 7]

(
Λ∨

5 + 2Λ∨
7

[
[1, 3, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[1, 4, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[2, 4, 6] + Λ∨

4 [1, 5, 6] + Λ∨
4 [2, 5, 6] + Λ∨

4 [3, 5, 6]

(
Λ∨

5 + 6Λ∨
7

[
[7 ⊇ 7 ⊇ 7] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[5, 7 ⊇ 5] +

(
Λ∨

6 + 5Λ∨
7

[
[5, 7 ⊇ 7] + 4Λ∨

7 [6, 7 ⊇ 7] +(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[5, 6, 7]

Λ∨
4 [5, 6, 7]

k 0 1 2 3

compk
([ ⎤

0
1

⎣
⎛
⎜⎜⎝

1
0
0
0

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 1
0 0 1
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
1 0 0
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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A.28.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(2)⟩

ϕu = ∂τ with τ = (Λ∨
1 + 2Λ∨

7 ) [1] + (Λ∨
1 + Λ∨

2 + 2Λ∨
7 ) [2] + (Λ∨

2 + Λ∨
3 + 2Λ∨

7 ) [3] +
(Λ∨

3 + Λ∨
4 + 2Λ∨

7 ) [4] + (Λ∨
4 + Λ∨

5 + 2Λ∨
7 ) [5] + (Λ∨

6 + Λ∨
7 ) [6] + (Λ∨

6 + Λ∨
7 ) [7]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
5 − 2Λ∨

7

[
[7]

2 Z/2Z 2Λ∨
7 [1 ⊇ 1] +

(
−2Λ∨

7

[
[2 ⊇ 2] + 2Λ∨

7 [1, 2] +
(

−2Λ∨
7

[
[3 ⊇ 3] +

(
−2Λ∨

7

[
[4 ⊇ 4] +(

−2Λ∨
7

[
[5 ⊇ 5] +

(
−2Λ∨

7

[
[6 ⊇ 6] +

(
−2Λ∨

6

[
[7 ⊇ 7] +

(
−Λ∨

5 + 2Λ∨
7

[
[1, 7] +(

Λ∨
5 − 2Λ∨

7

[
[2, 7] +

(
Λ∨

5 − 2Λ∨
7

[
[3, 7] +

(
Λ∨

5 − 2Λ∨
7

[
[4, 7] +

(
−Λ∨

4 + 2Λ∨
5 − 2Λ∨

7

[
[5, 7] +(

2Λ∨
6 − 2Λ∨

7

[
[6, 7]

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z

(
Λ∨

5 − 2Λ∨
6

[
[6, 7 ⊇ 7] +

(
Λ∨

5 − Λ∨
6 − Λ∨

7

[
[5, 6, 7]

2Λ∨
7 [6, 7 ⊇ 6] + 2Λ∨

6 [6, 7 ⊇ 7] +
(

Λ∨
4 − 2Λ∨

5 + 2Λ∨
6 + 2Λ∨

7

[
[5, 6, 7]

(
Λ∨

5 − 2Λ∨
7

[
[1, 7 ⊇ 1] +

(
−Λ∨

5 − 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
−2Λ∨

5

[
[2, 7 ⊇ 7] +

(
−Λ∨

5

[
[1, 2, 7] +(

−Λ∨
5 − 2Λ∨

7

[
[3, 7 ⊇ 3] +

(
−2Λ∨

5

[
[3, 7 ⊇ 7] +

(
−Λ∨

5 − 2Λ∨
7

[
[4, 7 ⊇ 4] +(

−2Λ∨
5

[
[4, 7 ⊇ 7] +

(
−Λ∨

6 − Λ∨
7

[
[5, 7 ⊇ 5] +

(
−Λ∨

4 + Λ∨
5 − 2Λ∨

6

[
[5, 7 ⊇ 7] +(

2Λ∨
5 − 2Λ∨

7

[
[2, 5, 7] +

(
2Λ∨

5 − 2Λ∨
7

[
[3, 5, 7] +

(
Λ∨

3 + 2Λ∨
6

[
[4, 5, 7] +(

−2Λ∨
5 + 2Λ∨

6 + 2Λ∨
7

[
[5, 6, 7]

2Λ∨
7 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] +
(

−2Λ∨
7

[
[1, 2, 3] +

(
−2Λ∨

7

[
[1, 4 ⊇ 1] +(

−2Λ∨
7

[
[1, 4 ⊇ 4] +

(
−2Λ∨

7

[
[2, 4 ⊇ 2] +

(
−2Λ∨

7

[
[2, 4 ⊇ 4] + 2Λ∨

7 [1, 3, 4] +

2Λ∨
7 [2, 3, 4] +

(
−2Λ∨

7

[
[1, 5 ⊇ 1] +

(
−2Λ∨

7

[
[1, 5 ⊇ 5] +

(
−2Λ∨

7

[
[2, 5 ⊇ 2] +(

−2Λ∨
7

[
[2, 5 ⊇ 5] +

(
−2Λ∨

7

[
[3, 5 ⊇ 3] +

(
−2Λ∨

7

[
[3, 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +(
−2Λ∨

7

[
[1, 6 ⊇ 1] +

(
−2Λ∨

7

[
[1, 6 ⊇ 6] +

(
−2Λ∨

7

[
[2, 6 ⊇ 2] +

(
−2Λ∨

7

[
[2, 6 ⊇ 6] +(

−2Λ∨
7

[
[3, 6 ⊇ 3] +

(
−2Λ∨

7

[
[3, 6 ⊇ 6] +

(
−2Λ∨

7

[
[4, 6 ⊇ 4] +

(
−2Λ∨

7

[
[4, 6 ⊇ 6] +

2Λ∨
7 [4, 5, 6] +

(
−2Λ∨

7

[
[1, 7 ⊇ 1] +

(
−Λ∨

5

[
[1, 7 ⊇ 7] +

(
−2Λ∨

7

[
[2, 7 ⊇ 2] +(

−Λ∨
5

[
[2, 7 ⊇ 7] +

(
−2Λ∨

7

[
[3, 7 ⊇ 3] +

(
−Λ∨

5

[
[3, 7 ⊇ 7] +

(
−Λ∨

5 + 2Λ∨
7

[
[1, 3, 7] +(

−2Λ∨
7

[
[4, 7 ⊇ 4] +

(
−Λ∨

5

[
[4, 7 ⊇ 7] +

(
Λ∨

5 − 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

5 − 2Λ∨
7

[
[2, 4, 7] +(

−Λ∨
4 + 3Λ∨

5 − Λ∨
6 − 3Λ∨

7

[
[1, 5, 7] +

(
−Λ∨

4 + 3Λ∨
5 − Λ∨

6 − 3Λ∨
7

[
[2, 5, 7] +(

−Λ∨
4 + 3Λ∨

5 − Λ∨
6 − 3Λ∨

7

[
[3, 5, 7] +

(
Λ∨

4 − Λ∨
5 + Λ∨

6 + Λ∨
7

[
[4, 5, 7] +(

Λ∨
5 − 2Λ∨

7

[
[1, 6, 7] +

(
Λ∨

5 − 2Λ∨
7

[
[2, 6, 7] +

(
Λ∨

5 − 2Λ∨
7

[
[3, 6, 7] +

(
Λ∨

5 − 2Λ∨
7

[
[4, 6, 7]

k hk(X∨) generating cocycles

0 1 2Λ∨
7 []

1 2 2Λ∨
7 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6] + 2Λ∨
7 [7]

(
Λ∨

5 + 2Λ∨
7

[
[6]

2 5 2Λ∨
7 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5] + 2Λ∨

7 [6 ⊇ 6] + 2Λ∨
7 [7 ⊇ 7]

2Λ∨
7 [1, 3] + 2Λ∨

7 [1, 4] + 2Λ∨
7 [2, 4] + 2Λ∨

7 [1, 5] + 2Λ∨
7 [2, 5] + 2Λ∨

7 [3, 5] + 2Λ∨
7 [1, 6] + 2Λ∨

7 [2, 6] + 2Λ∨
7 [3, 6] +

2Λ∨
7 [4, 6] + 2Λ∨

7 [1, 7] + 2Λ∨
7 [2, 7] + 2Λ∨

7 [3, 7] + 2Λ∨
7 [4, 7]

(
Λ∨

5 + 2Λ∨
7

[
[6 ⊇ 6] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7

[
[5, 6]

(
Λ∨

5 + 2Λ∨
7

[
[1, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[2, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[3, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[4, 6] + Λ∨

4 [5, 6]

Λ∨
5 [6, 7]
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k hk(X∨) generating cocycles

3 12 2Λ∨
7 [1 ⊇ 1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5 ⊇ 5] +

2Λ∨
7 [6 ⊇ 6 ⊇ 6] + 2Λ∨

7 [7 ⊇ 7 ⊇ 7]

2Λ∨
7 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] + 2Λ∨
7 [1, 4 ⊇ 1] + 2Λ∨

7 [1, 4 ⊇ 4] + 2Λ∨
7 [2, 4 ⊇ 2] + 2Λ∨

7 [2, 4 ⊇ 4] +
2Λ∨

7 [1, 5 ⊇ 1] + 2Λ∨
7 [1, 5 ⊇ 5] + 2Λ∨

7 [2, 5 ⊇ 2] + 2Λ∨
7 [2, 5 ⊇ 5] + 2Λ∨

7 [3, 5 ⊇ 3] + 2Λ∨
7 [3, 5 ⊇ 5] +

2Λ∨
7 [1, 6 ⊇ 1] + 2Λ∨

7 [1, 6 ⊇ 6] + 2Λ∨
7 [2, 6 ⊇ 2] + 2Λ∨

7 [2, 6 ⊇ 6] + 2Λ∨
7 [3, 6 ⊇ 3] + 2Λ∨

7 [3, 6 ⊇ 6] +
2Λ∨

7 [4, 6 ⊇ 4] + 2Λ∨
7 [4, 6 ⊇ 6] + 2Λ∨

7 [1, 7 ⊇ 1] + 2Λ∨
7 [1, 7 ⊇ 7] + 2Λ∨

7 [2, 7 ⊇ 2] + 2Λ∨
7 [2, 7 ⊇ 7] +

2Λ∨
7 [3, 7 ⊇ 3] + 2Λ∨

7 [3, 7 ⊇ 7] + 2Λ∨
7 [4, 7 ⊇ 4] + 2Λ∨

7 [4, 7 ⊇ 7]

2Λ∨
7 [1, 2, 3] + 2Λ∨

7 [2, 3, 4] + 2Λ∨
7 [3, 4, 5] + 2Λ∨

7 [4, 5, 6] + 2Λ∨
7 [4, 5, 7]

2Λ∨
7 [1, 3, 5] + 2Λ∨

7 [1, 3, 6] + 2Λ∨
7 [1, 4, 6] + 2Λ∨

7 [2, 4, 6] + 2Λ∨
7 [1, 3, 7] + 2Λ∨

7 [1, 4, 7] + 2Λ∨
7 [2, 4, 7]

(
Λ∨

5 + 2Λ∨
7

[
[6 ⊇ 6 ⊇ 6] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7

[
[5, 6 ⊇ 5] +

(
Λ∨

6 + 3Λ∨
7

[
[5, 6 ⊇ 6] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7

[
[5, 6, 7]

(
Λ∨

5 + 2Λ∨
7

[
[1, 6 ⊇ 1] +

(
Λ∨

5 + 2Λ∨
7

[
[2, 6 ⊇ 2] +

(
Λ∨

5 + 2Λ∨
7

[
[3, 6 ⊇ 3] +

(
Λ∨

5 + 2Λ∨
7

[
[4, 6 ⊇ 4] +(

Λ∨
6 + Λ∨

7

[
[5, 6 ⊇ 5] + Λ∨

4 [5, 6 ⊇ 6] +
(

Λ∨
5 + 2Λ∨

7

[
[4, 5, 6] + Λ∨

5 [5, 6, 7]

(
Λ∨

5 + 2Λ∨
7

[
[1, 6 ⊇ 6] +

(
Λ∨

6 + Λ∨
7

[
[1, 2, 6] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7

[
[1, 5, 6] + 2Λ∨

7 [2, 5, 6] + 2Λ∨
7 [3, 5, 6] +(

Λ∨
5 + 2Λ∨

7

[
[2, 6, 7] +

(
Λ∨

5 + 2Λ∨
7

[
[3, 6, 7] +

(
Λ∨

5 + 2Λ∨
7

[
[4, 6, 7]

(
Λ∨

5 + 2Λ∨
7

[
[1, 3, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[1, 4, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[2, 4, 6] + Λ∨

4 [1, 5, 6] + Λ∨
4 [2, 5, 6] + Λ∨

4 [3, 5, 6]

(
Λ∨

3 + 2Λ∨
7

[
[4, 6 ⊇ 6] +

(
Λ∨

6 + Λ∨
7

[
[3, 4, 6] +

(
Λ∨

6 + Λ∨
7

[
[5, 6 ⊇ 5] + Λ∨

4 [5, 6 ⊇ 6] +(
Λ∨

4 + Λ∨
6 + Λ∨

7

[
[4, 5, 6] +

(
Λ∨

5 + 2Λ∨
7

[
[4, 6, 7] + Λ∨

5 [5, 6, 7]

Λ∨
5 [6, 7 ⊇ 6] + 2Λ∨

7 [6, 7 ⊇ 7] +
(

Λ∨
5 + Λ∨

6 + Λ∨
7

[
[5, 6, 7]

Λ∨
5 [1, 6, 7] + Λ∨

5 [2, 6, 7] + Λ∨
5 [3, 6, 7] + Λ∨

5 [4, 6, 7]

Λ∨
4 [5, 6, 7]

k 0 1 2 3

compk
([ ⎤

0
1

⎣
⎛
⎜⎜⎜⎜⎝

1
0
0
1
0

∫
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0
1 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 0
0 1 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.28.3 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1] + (Λ∨

1 + Λ∨
2 ) [2] + (Λ∨

2 + Λ∨
3 ) [3] + (Λ∨

3 + Λ∨
4 ) [4] +

(Λ∨
4 + Λ∨

5 ) [5] + (Λ∨
6 + Λ∨

7 ) [6] + (Λ∨
6 + Λ∨

7 ) [7]

k Hk(W0,X
∨) generating cocycles

0 0

1 0
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k Hk(W0,X
∨) generating cocycles

2 0

3 Z/2Z
(

Λ∨
5 − 2Λ∨

6

[
[6, 7 ⊇ 7] +

(
Λ∨

5 − Λ∨
6 − Λ∨

7

[
[5, 6, 7]

k hk(X∨) generating cocycles

0 0

1 0

2 1 Λ∨
7 [5, 6]

3 3 Λ∨
6 [1, 2 ⊇ 1] + Λ∨

6 [1, 2 ⊇ 2] + Λ∨
5 [2, 6 ⊇ 2] + Λ∨

5 [3, 6 ⊇ 3] + Λ∨
5 [4, 6 ⊇ 4] + Λ∨

6 [5, 6 ⊇ 5] +(
Λ∨

4 + Λ∨
7

[
[5, 6 ⊇ 6] + Λ∨

5 [4, 5, 6] +
(

Λ∨
6 + Λ∨

7

[
[5, 6, 7]

Λ∨
6 [1, 3, 5] + Λ∨

7 [1, 3, 6] + Λ∨
7 [1, 4, 6] + Λ∨

7 [2, 4, 6] + Λ∨
3 [1, 5, 6] + Λ∨

3 [2, 5, 6] + Λ∨
1 [3, 5, 6] + Λ∨

6 [1, 3, 7] +
Λ∨

6 [1, 4, 7] + Λ∨
6 [2, 4, 7]

Λ∨
7 [1, 5, 6] + Λ∨

7 [2, 5, 6] + Λ∨
7 [3, 5, 6]

k 0 1 2 3

compk
([ ([ ([

⎛
⎝

1
0
0

∫
⎠

A.28.4 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] +
(−1) [6 ⊇ 6] + (−1) [7 ⊇ 7]

3 Z/2Z⊕Z/2Z [6, 7 ⊇ 6] + [6, 7 ⊇ 7] + [5, 6, 7]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] +
(−1) [2, 4 ⊇ 2] + (−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6] + (−1) [1, 7 ⊇ 1] +
(−1) [1, 7 ⊇ 7] + (−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [3, 7 ⊇ 3] + (−1) [3, 7 ⊇ 7] +
(−1) [4, 7 ⊇ 4] + (−1) [4, 7 ⊇ 7] + [4, 5, 7]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5] + [6] + [7]
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k hk(F2) generating cocycles

2 3 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6] + [7 ⊇ 7]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5] + [1, 6] + [2, 6] + [3, 6] + [4, 6] + [1, 7] + [2, 7] + [3, 7] + [4, 7]

[6, 7]

3 7 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6] + [7 ⊇ 7 ⊇ 7]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6] + [1, 7 ⊇ 1] + [1, 7 ⊇ 7] + [2, 7 ⊇ 2] + [2, 7 ⊇ 7] +
[3, 7 ⊇ 3] + [3, 7 ⊇ 7] + [4, 7 ⊇ 4] + [4, 7 ⊇ 7]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [4, 5, 6] + [4, 5, 7]

[1, 3, 5] + [1, 3, 6] + [1, 4, 6] + [2, 4, 6] + [1, 3, 7] + [1, 4, 7] + [2, 4, 7]

[6, 7 ⊇ 6] + [6, 7 ⊇ 7]

[1, 6, 7] + [2, 6, 7] + [3, 6, 7] + [4, 6, 7]

[5, 6, 7]

A.29 Root system D8

Dynkin diagram 1 2 3 4 5 6

8

7

Fundamental group
P∨/Q∨ ≃ Z/2Z⊕Z/2Z

generated by Λ∨
8 ,Λ

∨
7 ∈ P∨ mod Q∨

A.29.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1, 1, 1, 0, 0, 1, 0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z⊕Z/2Z
(

Λ∨
6 − 2Λ∨

8

[
[8]

(
Λ∨

6 − 2Λ∨
7

[
[7]

2 Z/2Z⊕Z/2Z 2Λ∨
8 [1 ⊇ 1] +

(
−2Λ∨

8

[
[2 ⊇ 2] + 2Λ∨

8 [1, 2] +
(

−2Λ∨
8

[
[3 ⊇ 3] +

(
−2Λ∨

8

[
[4 ⊇ 4] +(

−2Λ∨
8

[
[5 ⊇ 5] +

(
−2Λ∨

8

[
[6 ⊇ 6] +

(
−2Λ∨

8

[
[7 ⊇ 7] +

(
−Λ∨

6

[
[8 ⊇ 8] +(

−Λ∨
6 + 2Λ∨

8

[
[1, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[3, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[4, 8] +(

Λ∨
6 − 2Λ∨

8

[
[5, 8] +

(
−Λ∨

5 + 3Λ∨
6 − Λ∨

7 − 3Λ∨
8

[
[6, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[7, 8]

2Λ∨
7 [1 ⊇ 1] +

(
−2Λ∨

7

[
[2 ⊇ 2] + 2Λ∨

7 [1, 2] +
(

−2Λ∨
7

[
[3 ⊇ 3] +

(
−2Λ∨

7

[
[4 ⊇ 4] +(

−2Λ∨
7

[
[5 ⊇ 5] +

(
−2Λ∨

7

[
[6 ⊇ 6] +

(
−Λ∨

6

[
[7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 7] +(

Λ∨
6 − 2Λ∨

7

[
[2, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[3, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[4, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[5, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7 − Λ∨

8

[
[6, 7] +

(
−2Λ∨

7

[
[8 ⊇ 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[7, 8]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z⊕Z/2Z

2Λ∨
8 [7, 8 ⊇ 7] +

(
−Λ∨

6 + 4Λ∨
7

[
[7, 8 ⊇ 8] +

(
Λ∨

5 − 3Λ∨
6 + 3Λ∨

7 + 3Λ∨
8

[
[6, 7, 8]

Λ∨
6 [7, 8 ⊇ 7] + 2Λ∨

7 [7, 8 ⊇ 8] +
(

Λ∨
5 − Λ∨

6 + Λ∨
7 + Λ∨

8

[
[6, 7, 8]

(
Λ∨

6 − 2Λ∨
8

[
[1, 8 ⊇ 1] +

(
−Λ∨

6 − 2Λ∨
8

[
[2, 8 ⊇ 2] +

(
−2Λ∨

6

[
[2, 8 ⊇ 8] +

(
−Λ∨

6

[
[1, 2, 8] +(

−Λ∨
6 − 2Λ∨

8

[
[3, 8 ⊇ 3] +

(
−2Λ∨

6

[
[3, 8 ⊇ 8] +

(
−Λ∨

6 − 2Λ∨
8

[
[4, 8 ⊇ 4] +(

−2Λ∨
6

[
[4, 8 ⊇ 8] +

(
−Λ∨

6 − 2Λ∨
8

[
[5, 8 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − 3Λ∨

6

[
[5, 8 ⊇ 8] +(

2Λ∨
6 − 2Λ∨

8

[
[2, 6, 8]+

(
2Λ∨

6 − 2Λ∨
8

[
[3, 6, 8]+

(
2Λ∨

6 − 2Λ∨
8

[
[4, 6, 8]+

(
Λ∨

4 + 2Λ∨
7

[
[5, 6, 8]

(
Λ∨

6 − 2Λ∨
7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6 − 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
−2Λ∨

6

[
[2, 7 ⊇ 7] +

(
−Λ∨

6

[
[1, 2, 7] +(

−Λ∨
6 − 2Λ∨

7

[
[3, 7 ⊇ 3] +

(
−2Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 − 2Λ∨
7

[
[4, 7 ⊇ 4] +(

−2Λ∨
6

[
[4, 7 ⊇ 7] +

(
−Λ∨

6 − 2Λ∨
7

[
[5, 7 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − 3Λ∨

6

[
[5, 7 ⊇ 7] +(

2Λ∨
6 − 2Λ∨

7

[
[2, 6, 7]+

(
2Λ∨

6 − 2Λ∨
7

[
[3, 6, 7]+

(
2Λ∨

6 − 2Λ∨
7

[
[4, 6, 7]+

(
Λ∨

4 + 2Λ∨
8

[
[5, 6, 7]

2Λ∨
8 [1, 3 ⊇ 1] + 2Λ∨

8 [1, 3 ⊇ 3] +
(

−2Λ∨
8

[
[1, 2, 3] +

(
−2Λ∨

8

[
[1, 4 ⊇ 1] +(

−2Λ∨
8

[
[1, 4 ⊇ 4] +

(
−2Λ∨

8

[
[2, 4 ⊇ 2] +

(
−2Λ∨

8

[
[2, 4 ⊇ 4] + 2Λ∨

8 [1, 3, 4] +

2Λ∨
8 [2, 3, 4] +

(
−2Λ∨

8

[
[1, 5 ⊇ 1] +

(
−2Λ∨

8

[
[1, 5 ⊇ 5] +

(
−2Λ∨

8

[
[2, 5 ⊇ 2] +(

−2Λ∨
8

[
[2, 5 ⊇ 5] +

(
−2Λ∨

8

[
[3, 5 ⊇ 3] +

(
−2Λ∨

8

[
[3, 5 ⊇ 5] + 2Λ∨

8 [3, 4, 5] +(
−2Λ∨

8

[
[1, 6 ⊇ 1] +

(
−2Λ∨

8

[
[1, 6 ⊇ 6] +

(
−2Λ∨

8

[
[2, 6 ⊇ 2] +

(
−2Λ∨

8

[
[2, 6 ⊇ 6] +(

−2Λ∨
8

[
[3, 6 ⊇ 3] +

(
−2Λ∨

8

[
[3, 6 ⊇ 6] +

(
−2Λ∨

8

[
[4, 6 ⊇ 4] +

(
−2Λ∨

8

[
[4, 6 ⊇ 6] +

2Λ∨
8 [4, 5, 6] +

(
−2Λ∨

8

[
[1, 7 ⊇ 1] +

(
−2Λ∨

8

[
[1, 7 ⊇ 7] +

(
−2Λ∨

8

[
[2, 7 ⊇ 2] +(

−2Λ∨
8

[
[2, 7 ⊇ 7] +

(
−2Λ∨

8

[
[3, 7 ⊇ 3] +

(
−2Λ∨

8

[
[3, 7 ⊇ 7] +

(
−2Λ∨

8

[
[4, 7 ⊇ 4] +(

−2Λ∨
8

[
[4, 7 ⊇ 7] +

(
−2Λ∨

8

[
[5, 7 ⊇ 5] +

(
−2Λ∨

8

[
[5, 7 ⊇ 7] + 2Λ∨

8 [5, 6, 7] +(
−2Λ∨

8

[
[1, 8 ⊇ 1] +

(
−Λ∨

6

[
[1, 8 ⊇ 8] +

(
−2Λ∨

8

[
[2, 8 ⊇ 2] +

(
−Λ∨

6

[
[2, 8 ⊇ 8] +(

−2Λ∨
8

[
[3, 8 ⊇ 3] +

(
−Λ∨

6

[
[3, 8 ⊇ 8] +

(
−Λ∨

6 + 2Λ∨
8

[
[1, 3, 8] +

(
−2Λ∨

8

[
[4, 8 ⊇ 4] +(

−Λ∨
6

[
[4, 8 ⊇ 8] +

(
Λ∨

6 − 2Λ∨
8

[
[1, 4, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 4, 8] +

(
−2Λ∨

8

[
[5, 8 ⊇ 5] +(

−Λ∨
6

[
[5, 8 ⊇ 8] +

(
Λ∨

6 − 2Λ∨
8

[
[1, 5, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 5, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[3, 5, 8] +(

−Λ∨
5 + 3Λ∨

6 − Λ∨
7 − 3Λ∨

8

[
[1, 6, 8] +

(
−Λ∨

5 + 3Λ∨
6 − Λ∨

7 − 3Λ∨
8

[
[2, 6, 8] +(

−Λ∨
5 + 3Λ∨

6 − Λ∨
7 − 3Λ∨

8

[
[3, 6, 8] +

(
−Λ∨

5 + 3Λ∨
6 − Λ∨

7 − 3Λ∨
8

[
[4, 6, 8] +(

Λ∨
5 − Λ∨

6 + Λ∨
7 + Λ∨

8

[
[5, 6, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[1, 7, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 7, 8] +(

Λ∨
6 − 2Λ∨

8

[
[3, 7, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[4, 7, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[5, 7, 8]

2Λ∨
7 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] +
(

−2Λ∨
7

[
[1, 2, 3] +

(
−2Λ∨

7

[
[1, 4 ⊇ 1] +(

−2Λ∨
7

[
[1, 4 ⊇ 4] +

(
−2Λ∨

7

[
[2, 4 ⊇ 2] +

(
−2Λ∨

7

[
[2, 4 ⊇ 4] + 2Λ∨

7 [1, 3, 4] + 2Λ∨
7 [2, 3, 4] +(

−2Λ∨
7

[
[1, 5 ⊇ 1] +

(
−2Λ∨

7

[
[1, 5 ⊇ 5] +

(
−2Λ∨

7

[
[2, 5 ⊇ 2] +

(
−2Λ∨

7

[
[2, 5 ⊇ 5] +(

−2Λ∨
7

[
[3, 5 ⊇ 3] +

(
−2Λ∨

7

[
[3, 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +
(

−2Λ∨
7

[
[1, 6 ⊇ 1] +(

−2Λ∨
7

[
[1, 6 ⊇ 6] +

(
−2Λ∨

7

[
[2, 6 ⊇ 2] +

(
−2Λ∨

7

[
[2, 6 ⊇ 6] +

(
−2Λ∨

7

[
[3, 6 ⊇ 3] +(

−2Λ∨
7

[
[3, 6 ⊇ 6] +

(
−2Λ∨

7

[
[4, 6 ⊇ 4] +

(
−2Λ∨

7

[
[4, 6 ⊇ 6] + 2Λ∨

7 [4, 5, 6] +(
−2Λ∨

7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6

[
[1, 7 ⊇ 7] +

(
−2Λ∨

7

[
[2, 7 ⊇ 2] +

(
−Λ∨

6

[
[2, 7 ⊇ 7] +(

−2Λ∨
7

[
[3, 7 ⊇ 3] +

(
−Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 3, 7] +

(
−2Λ∨

7

[
[4, 7 ⊇ 4] +(

−Λ∨
6

[
[4, 7 ⊇ 7] +

(
Λ∨

6 − 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 4, 7] +

(
−2Λ∨

7

[
[5, 7 ⊇ 5] +(

−Λ∨
6

[
[5, 7 ⊇ 7] +

(
Λ∨

6 − 2Λ∨
7

[
[1, 5, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 5, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[3, 5, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7 − Λ∨

8

[
[1, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7 − Λ∨
8

[
[2, 6, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7 − Λ∨

8

[
[3, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7 − Λ∨
8

[
[4, 6, 7] +(

Λ∨
5 − Λ∨

6 + Λ∨
7 + Λ∨

8

[
[5, 6, 7] +

(
−2Λ∨

7

[
[1, 8 ⊇ 1] +

(
−2Λ∨

7

[
[1, 8 ⊇ 8] +(

−2Λ∨
7

[
[2, 8 ⊇ 2] +

(
−2Λ∨

7

[
[2, 8 ⊇ 8] +

(
−2Λ∨

7

[
[3, 8 ⊇ 3] +

(
−2Λ∨

7

[
[3, 8 ⊇ 8] +(

−2Λ∨
7

[
[4, 8 ⊇ 4] +

(
−2Λ∨

7

[
[4, 8 ⊇ 8] +

(
−2Λ∨

7

[
[5, 8 ⊇ 5] +

(
−2Λ∨

7

[
[5, 8 ⊇ 8] +

2Λ∨
7 [5, 6, 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[2, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[3, 7, 8] +(

−Λ∨
6 + 2Λ∨

7

[
[4, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[5, 7, 8]

k hk(X∨) generating cocycles

0 2 2Λ∨
7 []

2Λ∨
8 []
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k hk(X∨) generating cocycles

1 4 Λ∨
2 [1] +

(
2Λ∨

7 + 2Λ∨
8

[
[2] +

(
2Λ∨

7 + 2Λ∨
8

[
[3] +

(
2Λ∨

7 + 2Λ∨
8

[
[4] +

(
2Λ∨

7 + 2Λ∨
8

[
[5] +

(
2Λ∨

7 + 2Λ∨
8

[
[6] +(

2Λ∨
7 + 2Λ∨

8

[
[7] +

(
2Λ∨

7 + 2Λ∨
8

[
[8]

2Λ∨
7 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6] + 2Λ∨
7 [7] + 2Λ∨

7 [8]

2Λ∨
8 [1] + 2Λ∨

8 [2] + 2Λ∨
8 [3] + 2Λ∨

8 [4] + 2Λ∨
8 [5] + 2Λ∨

8 [6] + 2Λ∨
8 [7] + 2Λ∨

8 [8]

(
Λ∨

6 + 2Λ∨
7

[
[7]

2 8 Λ∨
2 [1 ⊇ 1] +

(
2Λ∨

7 + 2Λ∨
8

[
[2 ⊇ 2] +

(
Λ∨

1 + Λ∨
2 + Λ∨

7 + Λ∨
8

[
[1, 2] +

(
2Λ∨

7 + 2Λ∨
8

[
[3 ⊇ 3] +(

2Λ∨
7 + 2Λ∨

8

[
[4 ⊇ 4] +

(
2Λ∨

7 + 2Λ∨
8

[
[5 ⊇ 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[6 ⊇ 6] +

(
2Λ∨

7 + 2Λ∨
8

[
[7 ⊇ 7] +(

Λ∨
6 + 2Λ∨

7

[
[2, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[4, 7] +

(
Λ∨

4 + 2Λ∨
8

[
[5, 7] +

(
2Λ∨

7 + 2Λ∨
8

[
[8 ⊇ 8] +(

Λ∨
6 + 2Λ∨

8

[
[2, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[4, 8] +

(
Λ∨

4 + 2Λ∨
7

[
[5, 8]

2Λ∨
7 [1 ⊇ 1]+2Λ∨

7 [2 ⊇ 2]+2Λ∨
7 [3 ⊇ 3]+2Λ∨

7 [4 ⊇ 4]+2Λ∨
7 [5 ⊇ 5]+2Λ∨

7 [6 ⊇ 6]+2Λ∨
7 [7 ⊇ 7]+2Λ∨

7 [8 ⊇ 8]

2Λ∨
8 [1 ⊇ 1]+2Λ∨

8 [2 ⊇ 2]+2Λ∨
8 [3 ⊇ 3]+2Λ∨

8 [4 ⊇ 4]+2Λ∨
8 [5 ⊇ 5]+2Λ∨

8 [6 ⊇ 6]+2Λ∨
8 [7 ⊇ 7]+2Λ∨

8 [8 ⊇ 8]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
7 + Λ∨

8

[
[2, 3] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 4] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 4] +

(
Λ∨

1 + Λ∨
7 + Λ∨

8

[
[3, 4] +(

2Λ∨
7 + 2Λ∨

8

[
[1, 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 6] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 6] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 6] +

(
2Λ∨

7 + 2Λ∨
8

[
[4, 6] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 7] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 7] +

(
2Λ∨

7 + 2Λ∨
8

[
[4, 7] +

(
2Λ∨

7 + 2Λ∨
8

[
[5, 7] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 8] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 8] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[4, 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[5, 8]

2Λ∨
7 [1, 3] + 2Λ∨

7 [1, 4] + 2Λ∨
7 [2, 4] + 2Λ∨

7 [1, 5] + 2Λ∨
7 [2, 5] + 2Λ∨

7 [3, 5] + 2Λ∨
7 [1, 6] + 2Λ∨

7 [2, 6] + 2Λ∨
7 [3, 6] +

2Λ∨
7 [4, 6] + 2Λ∨

7 [1, 7] + 2Λ∨
7 [2, 7] + 2Λ∨

7 [3, 7] + 2Λ∨
7 [4, 7] + 2Λ∨

7 [5, 7] + 2Λ∨
7 [1, 8] + 2Λ∨

7 [2, 8] + 2Λ∨
7 [3, 8] +

2Λ∨
7 [4, 8] + 2Λ∨

7 [5, 8]

(
Λ∨

6 + 2Λ∨
7

[
[7 ⊇ 7] +

(
Λ∨

4 + Λ∨
6 + 2Λ∨

7 + 2Λ∨
8

[
[5, 7] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7 + Λ∨
8

[
[6, 7] + Λ∨

6 [7, 8]

(
Λ∨

6 + 2Λ∨
7

[
[1, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[4, 7] +

(
Λ∨

4 + 2Λ∨
8

[
[5, 7]

(
Λ∨

6 + 2Λ∨
8

[
[8 ⊇ 8] +

(
Λ∨

4 + Λ∨
6 + 2Λ∨

7 + 2Λ∨
8

[
[5, 8] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7 + Λ∨
8

[
[6, 8] + Λ∨

6 [7, 8]
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k hk(X∨) generating cocycles

3 19 Λ∨
2 [1 ⊇ 1 ⊇ 1] +

(
2Λ∨

7 + 2Λ∨
8

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
7 + Λ∨

8

[
[1, 2 ⊇ 1] +(

Λ∨
2 + Λ∨

3 + Λ∨
7 + Λ∨

8

[
[1, 2 ⊇ 2] +

(
2Λ∨

7 + 2Λ∨
8

[
[3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] +
(

2Λ∨
7 + 2Λ∨

8

[
[4 ⊇ 4 ⊇ 4] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 3, 4] +

(
2Λ∨

7 + 2Λ∨
8

[
[5 ⊇ 5 ⊇ 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 4, 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[6 ⊇ 6 ⊇ 6] +(

2Λ∨
7 + 2Λ∨

8

[
[4, 5, 6] +

(
2Λ∨

7 + 2Λ∨
8

[
[7 ⊇ 7 ⊇ 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7 ⊇ 3] +(

Λ∨
6 + 2Λ∨

7

[
[4, 7 ⊇ 4] +

(
Λ∨

6 + 2Λ∨
7

[
[5, 7 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
8

[
[5, 7 ⊇ 7] +(

Λ∨
2 + Λ∨

4 + 2Λ∨
7 + 2Λ∨

8

[
[3, 5, 7] +

(
Λ∨

3 + Λ∨
7 + Λ∨

8

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7 + 3Λ∨
8

[
[5, 6, 7] +(

2Λ∨
7 + 2Λ∨

8

[
[8 ⊇ 8 ⊇ 8] +

(
Λ∨

6 + 2Λ∨
8

[
[2, 8 ⊇ 2] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 8 ⊇ 3] +

(
Λ∨

6 + 2Λ∨
8

[
[4, 8 ⊇ 4] +(

Λ∨
6 + 2Λ∨

8

[
[5, 8 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
7

[
[5, 8 ⊇ 8] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

7 + 2Λ∨
8

[
[3, 5, 8] +(

Λ∨
3 + Λ∨

7 + Λ∨
8

[
[4, 5, 8] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7 + Λ∨
8

[
[5, 6, 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[5, 7, 8]

2Λ∨
7 [1 ⊇ 1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5 ⊇ 5] +

2Λ∨
7 [6 ⊇ 6 ⊇ 6] + 2Λ∨

7 [7 ⊇ 7 ⊇ 7] + 2Λ∨
7 [8 ⊇ 8 ⊇ 8]

2Λ∨
8 [1 ⊇ 1 ⊇ 1] + 2Λ∨

8 [2 ⊇ 2 ⊇ 2] + 2Λ∨
8 [3 ⊇ 3 ⊇ 3] + 2Λ∨

8 [4 ⊇ 4 ⊇ 4] + 2Λ∨
8 [5 ⊇ 5 ⊇ 5] +

2Λ∨
8 [6 ⊇ 6 ⊇ 6] + 2Λ∨

8 [7 ⊇ 7 ⊇ 7] + 2Λ∨
8 [8 ⊇ 8 ⊇ 8]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

7 + 4Λ∨
8

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
7 + Λ∨

8

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

7 + Λ∨
8

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
7 + Λ∨

8

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

7 + 3Λ∨
8

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] +(
2Λ∨

7 + 2Λ∨
8

[
[2, 3, 4] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 4, 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[4, 5, 6] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7 ⊇ 2] +(

2Λ∨
7 + 2Λ∨

8

[
[5, 6, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[2, 8 ⊇ 2] +

(
2Λ∨

7 + 2Λ∨
8

[
[5, 6, 8]

Λ∨
2 [1, 3 ⊇ 1]+

(
2Λ∨

7 + 2Λ∨
8

[
[1, 3 ⊇ 3]+

(
Λ∨

1 + Λ∨
2 + Λ∨

3 + 2Λ∨
7 + 2Λ∨

8

[
[1, 2, 3]+

(
2Λ∨

7 + 2Λ∨
8

[
[1, 4 ⊇ 1]+(

2Λ∨
7 + 2Λ∨

8

[
[1, 4 ⊇ 4] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 4 ⊇ 2] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 4 ⊇ 4] +

(
Λ∨

1 + Λ∨
7 + Λ∨

8

[
[1, 3, 4] +(

2Λ∨
7 + 2Λ∨

8

[
[1, 5 ⊇ 1] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 5 ⊇ 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 5 ⊇ 2] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 5 ⊇ 5] +(

2Λ∨
7 + 2Λ∨

8

[
[3, 5 ⊇ 3] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 5 ⊇ 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 6 ⊇ 1] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 6 ⊇ 6] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 6 ⊇ 2] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 6 ⊇ 6] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 6 ⊇ 3] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 6 ⊇ 6] +(

2Λ∨
7 + 2Λ∨

8

[
[4, 6 ⊇ 4] +

(
2Λ∨

7 + 2Λ∨
8

[
[4, 6 ⊇ 6] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 7 ⊇ 1] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 7 ⊇ 7] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 7 ⊇ 2] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 7 ⊇ 7] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 7 ⊇ 3] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 7 ⊇ 7] +(

2Λ∨
7 + 2Λ∨

8

[
[4, 7 ⊇ 4] +

(
2Λ∨

7 + 2Λ∨
8

[
[4, 7 ⊇ 7] +

(
Λ∨

6 + 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 4, 7] +(

2Λ∨
7 + 2Λ∨

8

[
[5, 7 ⊇ 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[5, 7 ⊇ 7] +

(
Λ∨

4 + 2Λ∨
8

[
[1, 5, 7] +

(
Λ∨

4 + 2Λ∨
8

[
[2, 5, 7] +(

Λ∨
2 + 2Λ∨

7

[
[3, 5, 7] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 8 ⊇ 1] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 8 ⊇ 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 8 ⊇ 2] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 8 ⊇ 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 8 ⊇ 3] +

(
2Λ∨

7 + 2Λ∨
8

[
[3, 8 ⊇ 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[4, 8 ⊇ 4] +(

2Λ∨
7 + 2Λ∨

8

[
[4, 8 ⊇ 8] +

(
Λ∨

6 + 2Λ∨
8

[
[1, 4, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[2, 4, 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[5, 8 ⊇ 5] +(

2Λ∨
7 + 2Λ∨

8

[
[5, 8 ⊇ 8] +

(
Λ∨

4 + 2Λ∨
7

[
[1, 5, 8] +

(
Λ∨

4 + 2Λ∨
7

[
[2, 5, 8] +

(
Λ∨

2 + 2Λ∨
8

[
[3, 5, 8]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
7 + Λ∨

8

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
7 + 3Λ∨

8

[
[2, 3 ⊇ 3] +(

Λ∨
1 + Λ∨

3 + 2Λ∨
7 + 2Λ∨

8

[
[1, 2, 3] +

(
Λ∨

1 + Λ∨
7 + Λ∨

8

[
[1, 3, 4] +

(
Λ∨

3 + Λ∨
5 + 2Λ∨

7 + 2Λ∨
8

[
[2, 3, 4] +(

2Λ∨
7 + 2Λ∨

8

[
[3, 4, 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[4, 5, 6] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7 ⊇ 3] +

(
Λ∨

6 + 2Λ∨
7

[
[4, 7 ⊇ 4] +(

Λ∨
6 + 2Λ∨

7

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[5, 7 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
8

[
[5, 7 ⊇ 7] +(

Λ∨
4 + 2Λ∨

8

[
[1, 5, 7] +

(
Λ∨

4 + 2Λ∨
8

[
[2, 5, 7] +

(
Λ∨

4 + 2Λ∨
8

[
[3, 5, 7] +

(
Λ∨

3 + Λ∨
7 + Λ∨

8

[
[4, 5, 7] +(

Λ∨
5 + Λ∨

6 + Λ∨
7 + 3Λ∨

8

[
[5, 6, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 8 ⊇ 3] +

(
Λ∨

6 + 2Λ∨
8

[
[4, 8 ⊇ 4] +(

Λ∨
6 + 2Λ∨

8

[
[1, 4, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[2, 4, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[5, 8 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
7

[
[5, 8 ⊇ 8] +(

Λ∨
4 + 2Λ∨

7

[
[1, 5, 8] +

(
Λ∨

4 + 2Λ∨
7

[
[2, 5, 8] +

(
Λ∨

4 + 2Λ∨
7

[
[3, 5, 8] +

(
Λ∨

3 + Λ∨
7 + Λ∨

8

[
[4, 5, 8] +(

Λ∨
5 + Λ∨

6 + 3Λ∨
7 + Λ∨

8

[
[5, 6, 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[5, 7, 8]

2Λ∨
7 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] + 2Λ∨
7 [1, 4 ⊇ 1] + 2Λ∨

7 [1, 4 ⊇ 4] + 2Λ∨
7 [2, 4 ⊇ 2] + 2Λ∨

7 [2, 4 ⊇ 4] +
2Λ∨

7 [1, 5 ⊇ 1] + 2Λ∨
7 [1, 5 ⊇ 5] + 2Λ∨

7 [2, 5 ⊇ 2] + 2Λ∨
7 [2, 5 ⊇ 5] + 2Λ∨

7 [3, 5 ⊇ 3] + 2Λ∨
7 [3, 5 ⊇ 5] +

2Λ∨
7 [1, 6 ⊇ 1] + 2Λ∨

7 [1, 6 ⊇ 6] + 2Λ∨
7 [2, 6 ⊇ 2] + 2Λ∨

7 [2, 6 ⊇ 6] + 2Λ∨
7 [3, 6 ⊇ 3] + 2Λ∨

7 [3, 6 ⊇ 6] +
2Λ∨

7 [4, 6 ⊇ 4] + 2Λ∨
7 [4, 6 ⊇ 6] + 2Λ∨

7 [1, 7 ⊇ 1] + 2Λ∨
7 [1, 7 ⊇ 7] + 2Λ∨

7 [2, 7 ⊇ 2] + 2Λ∨
7 [2, 7 ⊇ 7] +

2Λ∨
7 [3, 7 ⊇ 3] + 2Λ∨

7 [3, 7 ⊇ 7] + 2Λ∨
7 [4, 7 ⊇ 4] + 2Λ∨

7 [4, 7 ⊇ 7] + 2Λ∨
7 [5, 7 ⊇ 5] + 2Λ∨

7 [5, 7 ⊇ 7] +
2Λ∨

7 [1, 8 ⊇ 1] + 2Λ∨
7 [1, 8 ⊇ 8] + 2Λ∨

7 [2, 8 ⊇ 2] + 2Λ∨
7 [2, 8 ⊇ 8] + 2Λ∨

7 [3, 8 ⊇ 3] + 2Λ∨
7 [3, 8 ⊇ 8] +

2Λ∨
7 [4, 8 ⊇ 4] + 2Λ∨

7 [4, 8 ⊇ 8] + 2Λ∨
7 [5, 8 ⊇ 5] + 2Λ∨

7 [5, 8 ⊇ 8]

2Λ∨
7 [1, 2, 3] + 2Λ∨

7 [2, 3, 4] + 2Λ∨
7 [3, 4, 5] + 2Λ∨

7 [4, 5, 6] + 2Λ∨
7 [5, 6, 7] + 2Λ∨

7 [5, 6, 8]
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k hk(X∨) generating cocycles

Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + Λ∨
7 + Λ∨

8

[
[2, 3, 5] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 3, 6] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 4, 6] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 4, 6] +

(
Λ∨

1 + Λ∨
7 + Λ∨

8

[
[3, 5, 6] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 3, 7] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 4, 7] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 4, 7] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 5, 7] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 5, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 5, 7] +(

2Λ∨
7 + 2Λ∨

8

[
[1, 3, 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 4, 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[2, 4, 8] +

(
2Λ∨

7 + 2Λ∨
8

[
[1, 5, 8] +(

2Λ∨
7 + 2Λ∨

8

[
[2, 5, 8] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 5, 8]

2Λ∨
7 [1, 3, 5] + 2Λ∨

7 [1, 3, 6] + 2Λ∨
7 [1, 4, 6] + 2Λ∨

7 [2, 4, 6] + 2Λ∨
7 [1, 3, 7] + 2Λ∨

7 [1, 4, 7] + 2Λ∨
7 [2, 4, 7] +

2Λ∨
7 [1, 5, 7] + 2Λ∨

7 [2, 5, 7] + 2Λ∨
7 [3, 5, 7] + 2Λ∨

7 [1, 3, 8] + 2Λ∨
7 [1, 4, 8] + 2Λ∨

7 [2, 4, 8] + 2Λ∨
7 [1, 5, 8] +

2Λ∨
7 [2, 5, 8] + 2Λ∨

7 [3, 5, 8]

(
Λ∨

6 + 2Λ∨
7

[
[7 ⊇ 7 ⊇ 7] +

(
Λ∨

4 + 2Λ∨
8

[
[5, 7 ⊇ 7] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

7 + 2Λ∨
8

[
[3, 5, 7] +(

Λ∨
3 + Λ∨

7 + Λ∨
8

[
[4, 5, 7] + Λ∨

6 [6, 7 ⊇ 6] +
(

Λ∨
5 + 3Λ∨

7 + Λ∨
8

[
[6, 7 ⊇ 7] +

(
Λ∨

5 + Λ∨
7 + Λ∨

8

[
[5, 6, 7] +(

2Λ∨
7 + 2Λ∨

8

[
[7, 8 ⊇ 8] +

(
Λ∨

6 + 2Λ∨
8

[
[5, 7, 8] +

(
Λ∨

5 + Λ∨
7 + Λ∨

8

[
[6, 7, 8]

(
Λ∨

6 + 2Λ∨
7

[
[1, 7 ⊇ 1] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7 ⊇ 3] +

(
Λ∨

6 + 2Λ∨
7

[
[4, 7 ⊇ 4] +(

Λ∨
6 + 2Λ∨

7

[
[5, 7 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
8

[
[5, 7 ⊇ 7] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

7 + 2Λ∨
8

[
[3, 5, 7] +(

Λ∨
3 + Λ∨

7 + Λ∨
8

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7 + Λ∨
8

[
[5, 6, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[5, 7, 8]

(
Λ∨

2 + 2Λ∨
7 + 2Λ∨

8

[
[1, 7 ⊇ 7] +

(
Λ∨

4 + 2Λ∨
8

[
[5, 7 ⊇ 7] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

7 + 2Λ∨
8

[
[3, 5, 7] +(

Λ∨
3 + Λ∨

7 + Λ∨
8

[
[4, 5, 7] +

(
Λ∨

1 + Λ∨
7 + Λ∨

8

[
[6, 7 ⊇ 6] +

(
Λ∨

1 + Λ∨
5 + 2Λ∨

7 + 2Λ∨
8

[
[6, 7 ⊇ 7] +(

Λ∨
5 + Λ∨

7 + Λ∨
8

[
[5, 6, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[5, 7, 8] + Λ∨

6 [6, 7, 8]

(
Λ∨

6 + 2Λ∨
7

[
[1, 7 ⊇ 7] +

(
Λ∨

5 + Λ∨
7 + Λ∨

8

[
[1, 2, 7] +

(
Λ∨

4 + Λ∨
6 + 2Λ∨

7 + 2Λ∨
8

[
[1, 5, 7] +(

Λ∨
5 + Λ∨

6 + Λ∨
7 + Λ∨

8

[
[1, 6, 7] + 2Λ∨

7 [2, 6, 7] + 2Λ∨
7 [3, 6, 7] + 2Λ∨

7 [4, 6, 7] + Λ∨
6 [1, 7, 8] + 2Λ∨

8 [2, 7, 8] +

2Λ∨
8 [3, 7, 8] + 2Λ∨

8 [4, 7, 8] + 2Λ∨
8 [5, 7, 8]

(
Λ∨

6 + 2Λ∨
7

[
[1, 3, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 4, 7] +

(
Λ∨

4 + 2Λ∨
8

[
[1, 5, 7] +(

Λ∨
4 + 2Λ∨

8

[
[2, 5, 7] +

(
Λ∨

2 + 2Λ∨
7

[
[3, 5, 7]

(
Λ∨

6 + 2Λ∨
8

[
[8 ⊇ 8 ⊇ 8] +

(
Λ∨

4 + 2Λ∨
7

[
[5, 8 ⊇ 8] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

7 + 2Λ∨
8

[
[3, 5, 8] +(

Λ∨
3 + Λ∨

7 + Λ∨
8

[
[4, 5, 8] + Λ∨

6 [6, 8 ⊇ 6] +
(

Λ∨
5 + Λ∨

7 + 3Λ∨
8

[
[6, 8 ⊇ 8] +

(
Λ∨

5 + Λ∨
7 + Λ∨

8

[
[5, 6, 8] +(

2Λ∨
7 + 2Λ∨

8

[
[7, 8 ⊇ 8] +

(
Λ∨

6 + 2Λ∨
7

[
[5, 7, 8] +

(
Λ∨

5 + Λ∨
7 + Λ∨

8

[
[6, 7, 8]

(
Λ∨

6 + 2Λ∨
8

[
[1, 8 ⊇ 8] +

(
Λ∨

5 + Λ∨
7 + Λ∨

8

[
[1, 2, 8] +

(
Λ∨

4 + Λ∨
6 + 2Λ∨

7 + 2Λ∨
8

[
[1, 5, 8] +(

Λ∨
5 + Λ∨

6 + Λ∨
7 + Λ∨

8

[
[1, 6, 8] + 2Λ∨

8 [2, 6, 8] + 2Λ∨
8 [3, 6, 8] + 2Λ∨

8 [4, 6, 8] + Λ∨
6 [1, 7, 8] + 2Λ∨

7 [2, 7, 8] +

2Λ∨
7 [3, 7, 8] + 2Λ∨

7 [4, 7, 8] + 2Λ∨
7 [5, 7, 8]

Λ∨
6 [7, 8 ⊇ 7] + 2Λ∨

7 [7, 8 ⊇ 8] +
(

Λ∨
5 + Λ∨

6 + Λ∨
7 + Λ∨

8

[
[6, 7, 8]

2Λ∨
7 [7, 8 ⊇ 7] + 2Λ∨

7 [7, 8 ⊇ 8]
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k 0 1 2 3

compk
([

⎛
⎜⎜⎝

1 0
1 0
1 0
1 1

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 1
0 0
0 0
0 0
1 1
1 1
1 1

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1
1 0 0 0 0 0
0 0 0 0 1 1
1 1 0 0 0 0
0 0 0 0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.29.2 Cohomology of lattice X∨ corresponding to Ω = ⟨(0, 1)⟩

[ϕu] = (1, 1, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
6 − 2Λ∨

8

[
[8]

2 Z/2Z 2Λ∨
8 [1 ⊇ 1] +

(
−2Λ∨

8

[
[2 ⊇ 2] + 2Λ∨

8 [1, 2] +
(

−2Λ∨
8

[
[3 ⊇ 3] +

(
−2Λ∨

8

[
[4 ⊇ 4] +(

−2Λ∨
8

[
[5 ⊇ 5] +

(
−2Λ∨

8

[
[6 ⊇ 6] +

(
−2Λ∨

8

[
[7 ⊇ 7] +

(
−Λ∨

6

[
[8 ⊇ 8] +(

−Λ∨
6 + 2Λ∨

8

[
[1, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[3, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[4, 8] +(

Λ∨
6 − 2Λ∨

8

[
[5, 8] +

(
−Λ∨

5 + 3Λ∨
6 − Λ∨

7 − 3Λ∨
8

[
[6, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[7, 8]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z 2Λ∨
8 [7, 8 ⊇ 7] +

(
−Λ∨

6 + 4Λ∨
7

[
[7, 8 ⊇ 8] +

(
Λ∨

5 − 3Λ∨
6 + 3Λ∨

7 + 3Λ∨
8

[
[6, 7, 8]

(
Λ∨

6 − 2Λ∨
8

[
[1, 8 ⊇ 1] +

(
−Λ∨

6 − 2Λ∨
8

[
[2, 8 ⊇ 2] +

(
−2Λ∨

6

[
[2, 8 ⊇ 8] +

(
−Λ∨

6

[
[1, 2, 8] +(

−Λ∨
6 − 2Λ∨

8

[
[3, 8 ⊇ 3] +

(
−2Λ∨

6

[
[3, 8 ⊇ 8] +

(
−Λ∨

6 − 2Λ∨
8

[
[4, 8 ⊇ 4] +(

−2Λ∨
6

[
[4, 8 ⊇ 8] +

(
−Λ∨

6 − 2Λ∨
8

[
[5, 8 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − 3Λ∨

6

[
[5, 8 ⊇ 8] +(

2Λ∨
6 − 2Λ∨

8

[
[2, 6, 8]+

(
2Λ∨

6 − 2Λ∨
8

[
[3, 6, 8]+

(
2Λ∨

6 − 2Λ∨
8

[
[4, 6, 8]+

(
Λ∨

4 + 2Λ∨
7

[
[5, 6, 8]

2Λ∨
8 [1, 3 ⊇ 1] + 2Λ∨

8 [1, 3 ⊇ 3] +
(

−2Λ∨
8

[
[1, 2, 3] +

(
−2Λ∨

8

[
[1, 4 ⊇ 1] +(

−2Λ∨
8

[
[1, 4 ⊇ 4] +

(
−2Λ∨

8

[
[2, 4 ⊇ 2] +

(
−2Λ∨

8

[
[2, 4 ⊇ 4] + 2Λ∨

8 [1, 3, 4] +

2Λ∨
8 [2, 3, 4] +

(
−2Λ∨

8

[
[1, 5 ⊇ 1] +

(
−2Λ∨

8

[
[1, 5 ⊇ 5] +

(
−2Λ∨

8

[
[2, 5 ⊇ 2] +(

−2Λ∨
8

[
[2, 5 ⊇ 5] +

(
−2Λ∨

8

[
[3, 5 ⊇ 3] +

(
−2Λ∨

8

[
[3, 5 ⊇ 5] + 2Λ∨

8 [3, 4, 5] +(
−2Λ∨

8

[
[1, 6 ⊇ 1] +

(
−2Λ∨

8

[
[1, 6 ⊇ 6] +

(
−2Λ∨

8

[
[2, 6 ⊇ 2] +

(
−2Λ∨

8

[
[2, 6 ⊇ 6] +(

−2Λ∨
8

[
[3, 6 ⊇ 3] +

(
−2Λ∨

8

[
[3, 6 ⊇ 6] +

(
−2Λ∨

8

[
[4, 6 ⊇ 4] +

(
−2Λ∨

8

[
[4, 6 ⊇ 6] +

2Λ∨
8 [4, 5, 6] +

(
−2Λ∨

8

[
[1, 7 ⊇ 1] +

(
−2Λ∨

8

[
[1, 7 ⊇ 7] +

(
−2Λ∨

8

[
[2, 7 ⊇ 2] +(

−2Λ∨
8

[
[2, 7 ⊇ 7] +

(
−2Λ∨

8

[
[3, 7 ⊇ 3] +

(
−2Λ∨

8

[
[3, 7 ⊇ 7] +

(
−2Λ∨

8

[
[4, 7 ⊇ 4] +(

−2Λ∨
8

[
[4, 7 ⊇ 7] +

(
−2Λ∨

8

[
[5, 7 ⊇ 5] +

(
−2Λ∨

8

[
[5, 7 ⊇ 7] + 2Λ∨

8 [5, 6, 7] +(
−2Λ∨

8

[
[1, 8 ⊇ 1] +

(
−Λ∨

6

[
[1, 8 ⊇ 8] +

(
−2Λ∨

8

[
[2, 8 ⊇ 2] +

(
−Λ∨

6

[
[2, 8 ⊇ 8] +(

−2Λ∨
8

[
[3, 8 ⊇ 3] +

(
−Λ∨

6

[
[3, 8 ⊇ 8] +

(
−Λ∨

6 + 2Λ∨
8

[
[1, 3, 8] +

(
−2Λ∨

8

[
[4, 8 ⊇ 4] +(

−Λ∨
6

[
[4, 8 ⊇ 8] +

(
Λ∨

6 − 2Λ∨
8

[
[1, 4, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 4, 8] +

(
−2Λ∨

8

[
[5, 8 ⊇ 5] +(

−Λ∨
6

[
[5, 8 ⊇ 8] +

(
Λ∨

6 − 2Λ∨
8

[
[1, 5, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 5, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[3, 5, 8] +(

−Λ∨
5 + 3Λ∨

6 − Λ∨
7 − 3Λ∨

8

[
[1, 6, 8] +

(
−Λ∨

5 + 3Λ∨
6 − Λ∨

7 − 3Λ∨
8

[
[2, 6, 8] +(

−Λ∨
5 + 3Λ∨

6 − Λ∨
7 − 3Λ∨

8

[
[3, 6, 8] +

(
−Λ∨

5 + 3Λ∨
6 − Λ∨

7 − 3Λ∨
8

[
[4, 6, 8] +(

Λ∨
5 − Λ∨

6 + Λ∨
7 + Λ∨

8

[
[5, 6, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[1, 7, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 7, 8] +(

Λ∨
6 − 2Λ∨

8

[
[3, 7, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[4, 7, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[5, 7, 8]

k hk(X∨) generating cocycles

0 1 2Λ∨
8 []

1 2 Λ∨
2 [1] + 2Λ∨

8 [2] + 2Λ∨
8 [3] + 2Λ∨

8 [4] + 2Λ∨
8 [5] + 2Λ∨

8 [6] + 2Λ∨
8 [7] + 2Λ∨

8 [8]

2Λ∨
8 [1] + 2Λ∨

8 [2] + 2Λ∨
8 [3] + 2Λ∨

8 [4] + 2Λ∨
8 [5] + 2Λ∨

8 [6] + 2Λ∨
8 [7] + 2Λ∨

8 [8]

2 4 Λ∨
2 [1 ⊇ 1] + 2Λ∨

8 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
8

[
[1, 2] + 2Λ∨

8 [3 ⊇ 3] + 2Λ∨
8 [4 ⊇ 4] + 2Λ∨

8 [5 ⊇ 5] + 2Λ∨
8 [6 ⊇ 6] +

2Λ∨
8 [7 ⊇ 7] + 2Λ∨

8 [8 ⊇ 8] +
(

Λ∨
6 + 2Λ∨

8

[
[2, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[4, 8] + Λ∨

4 [5, 8]

2Λ∨
8 [1 ⊇ 1]+2Λ∨

8 [2 ⊇ 2]+2Λ∨
8 [3 ⊇ 3]+2Λ∨

8 [4 ⊇ 4]+2Λ∨
8 [5 ⊇ 5]+2Λ∨

8 [6 ⊇ 6]+2Λ∨
8 [7 ⊇ 7]+2Λ∨

8 [8 ⊇ 8]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
8

[
[2, 3] + 2Λ∨

8 [1, 4] + 2Λ∨
8 [2, 4] +

(
Λ∨

1 + Λ∨
8

[
[3, 4] + 2Λ∨

8 [1, 5] + 2Λ∨
8 [2, 5] +

2Λ∨
8 [3, 5] + 2Λ∨

8 [1, 6] + 2Λ∨
8 [2, 6] + 2Λ∨

8 [3, 6] + 2Λ∨
8 [4, 6] + 2Λ∨

8 [1, 7] + 2Λ∨
8 [2, 7] + 2Λ∨

8 [3, 7] + 2Λ∨
8 [4, 7] +

2Λ∨
8 [5, 7] + 2Λ∨

8 [1, 8] + 2Λ∨
8 [2, 8] + Λ∨

6 [3, 8] + 2Λ∨
8 [4, 8] + 2Λ∨

8 [5, 8]

(
Λ∨

2 + 2Λ∨
8

[
[1, 7] +

(
Λ∨

1 + Λ∨
8

[
[6, 7] + Λ∨

6 [7, 8]
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k hk(X∨) generating cocycles

3 9 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

8 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

8

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

8

[
[1, 2 ⊇ 2] +

2Λ∨
8 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
8 [4 ⊇ 4 ⊇ 4] + 2Λ∨

8 [2, 3, 4] + 2Λ∨
8 [5 ⊇ 5 ⊇ 5] + 2Λ∨

8 [3, 4, 5] +
2Λ∨

8 [6 ⊇ 6 ⊇ 6] + 2Λ∨
8 [4, 5, 6] + 2Λ∨

8 [7 ⊇ 7 ⊇ 7] + 2Λ∨
8 [5, 6, 7] + 2Λ∨

8 [8 ⊇ 8 ⊇ 8] +(
Λ∨

6 + 2Λ∨
8

[
[2, 8 ⊇ 2] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 8 ⊇ 3] +

(
Λ∨

6 + 2Λ∨
8

[
[4, 8 ⊇ 4] +

(
Λ∨

6 + 2Λ∨
8

[
[5, 8 ⊇ 5] +

Λ∨
4 [5, 8 ⊇ 8] +

(
Λ∨

2 + Λ∨
4 + 2Λ∨

8

[
[3, 5, 8] +

(
Λ∨

3 + Λ∨
8

[
[4, 5, 8] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7 + Λ∨
8

[
[5, 6, 8]

2Λ∨
8 [1 ⊇ 1 ⊇ 1] + 2Λ∨

8 [2 ⊇ 2 ⊇ 2] + 2Λ∨
8 [3 ⊇ 3 ⊇ 3] + 2Λ∨

8 [4 ⊇ 4 ⊇ 4] + 2Λ∨
8 [5 ⊇ 5 ⊇ 5] +

2Λ∨
8 [6 ⊇ 6 ⊇ 6] + 2Λ∨

8 [7 ⊇ 7 ⊇ 7] + 2Λ∨
8 [8 ⊇ 8 ⊇ 8]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

8

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
8

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

8

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
8

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

8

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
8 [2, 3, 4] + 2Λ∨

8 [3, 4, 5] +

2Λ∨
8 [4, 5, 6] + 2Λ∨

8 [5, 6, 7] +
(

Λ∨
6 + 2Λ∨

8

[
[2, 8 ⊇ 2] + 2Λ∨

8 [5, 6, 8]

Λ∨
7 [1, 2 ⊇ 1] + Λ∨

7 [1, 2 ⊇ 2] + Λ∨
6 [2, 7 ⊇ 2] + Λ∨

6 [3, 7 ⊇ 3] + Λ∨
6 [4, 7 ⊇ 4] + Λ∨

6 [5, 7 ⊇ 5] +

Λ∨
7 [6, 7 ⊇ 6] +

(
Λ∨

5 + Λ∨
8

[
[6, 7 ⊇ 7] + Λ∨

6 [5, 6, 7] + 2Λ∨
8 [7, 8 ⊇ 8] +

(
Λ∨

5 + Λ∨
7 + Λ∨

8

[
[6, 7, 8]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

8 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

8

[
[1, 2, 3] + 2Λ∨

8 [1, 4 ⊇ 1] + 2Λ∨
8 [1, 4 ⊇ 4] +

2Λ∨
8 [2, 4 ⊇ 2] + 2Λ∨

8 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

8

[
[1, 3, 4] + 2Λ∨

8 [1, 5 ⊇ 1] + 2Λ∨
8 [1, 5 ⊇ 5] + 2Λ∨

8 [2, 5 ⊇ 2] +

2Λ∨
8 [2, 5 ⊇ 5] + 2Λ∨

8 [3, 5 ⊇ 3] + 2Λ∨
8 [3, 5 ⊇ 5] + 2Λ∨

8 [1, 6 ⊇ 1] + 2Λ∨
8 [1, 6 ⊇ 6] + 2Λ∨

8 [2, 6 ⊇ 2] +
2Λ∨

8 [2, 6 ⊇ 6] + 2Λ∨
8 [3, 6 ⊇ 3] + 2Λ∨

8 [3, 6 ⊇ 6] + 2Λ∨
8 [4, 6 ⊇ 4] + 2Λ∨

8 [4, 6 ⊇ 6] + 2Λ∨
8 [1, 7 ⊇ 1] +

2Λ∨
8 [1, 7 ⊇ 7] + 2Λ∨

8 [2, 7 ⊇ 2] + 2Λ∨
8 [2, 7 ⊇ 7] + 2Λ∨

8 [3, 7 ⊇ 3] + 2Λ∨
8 [3, 7 ⊇ 7] + 2Λ∨

8 [4, 7 ⊇ 4] +
2Λ∨

8 [4, 7 ⊇ 7] + 2Λ∨
8 [5, 7 ⊇ 5] + 2Λ∨

8 [5, 7 ⊇ 7] + 2Λ∨
8 [1, 8 ⊇ 1] + 2Λ∨

8 [1, 8 ⊇ 8] + 2Λ∨
8 [2, 8 ⊇ 2] +

2Λ∨
8 [2, 8 ⊇ 8] + 2Λ∨

8 [3, 8 ⊇ 3] + 2Λ∨
8 [3, 8 ⊇ 8] + 2Λ∨

8 [4, 8 ⊇ 4] + 2Λ∨
8 [4, 8 ⊇ 8] +

(
Λ∨

6 + 2Λ∨
8

[
[1, 4, 8] +(

Λ∨
6 + 2Λ∨

8

[
[2, 4, 8] + 2Λ∨

8 [5, 8 ⊇ 5] + 2Λ∨
8 [5, 8 ⊇ 8] + Λ∨

4 [1, 5, 8] + Λ∨
4 [2, 5, 8] +

(
Λ∨

2 + 2Λ∨
8

[
[3, 5, 8]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
8

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
8

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

8

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

8

[
[1, 3, 4] +

(
Λ∨

3 + Λ∨
5 + 2Λ∨

8

[
[2, 3, 4] + 2Λ∨

8 [3, 4, 5] + 2Λ∨
8 [4, 5, 6] + 2Λ∨

8 [5, 6, 7] +(
Λ∨

6 + 2Λ∨
8

[
[3, 8 ⊇ 3] +

(
Λ∨

6 + 2Λ∨
8

[
[4, 8 ⊇ 4] +

(
Λ∨

6 + 2Λ∨
8

[
[1, 4, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[2, 4, 8] +(

Λ∨
6 + 2Λ∨

8

[
[5, 8 ⊇ 5] + Λ∨

4 [5, 8 ⊇ 8] + Λ∨
4 [1, 5, 8] + Λ∨

4 [2, 5, 8] + Λ∨
4 [3, 5, 8] +

(
Λ∨

3 + Λ∨
8

[
[4, 5, 8] +(

Λ∨
5 + Λ∨

6 + Λ∨
7 + Λ∨

8

[
[5, 6, 8]

Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + Λ∨
8

[
[2, 3, 5] + 2Λ∨

8 [1, 3, 6] + 2Λ∨
8 [1, 4, 6] + 2Λ∨

8 [2, 4, 6] +
(

Λ∨
1 + Λ∨

8

[
[3, 5, 6] +

2Λ∨
8 [1, 3, 7] + 2Λ∨

8 [1, 4, 7] + 2Λ∨
8 [2, 4, 7] + 2Λ∨

8 [1, 5, 7] + 2Λ∨
8 [2, 5, 7] + 2Λ∨

8 [3, 5, 7] + 2Λ∨
8 [1, 3, 8] +

2Λ∨
8 [1, 4, 8] + 2Λ∨

8 [2, 4, 8] + 2Λ∨
8 [1, 5, 8] + 2Λ∨

8 [2, 5, 8] + Λ∨
6 [3, 5, 8]

(
Λ∨

2 + 2Λ∨
8

[
[1, 7 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + Λ∨

8

[
[1, 2, 7] +

(
Λ∨

1 + Λ∨
8

[
[1, 6, 7] + 2Λ∨

8 [2, 6, 7] + 2Λ∨
8 [3, 6, 7] +

2Λ∨
8 [4, 6, 7] + Λ∨

6 [1, 7, 8] + 2Λ∨
8 [2, 7, 8] + 2Λ∨

8 [3, 7, 8] + 2Λ∨
8 [4, 7, 8] + 2Λ∨

8 [5, 7, 8]

(
Λ∨

2 + 2Λ∨
8

[
[1, 7 ⊇ 7] +

(
Λ∨

1 + Λ∨
8

[
[6, 7 ⊇ 6] +

(
Λ∨

1 + Λ∨
8

[
[6, 7 ⊇ 7] + 2Λ∨

8 [7, 8 ⊇ 8] +(
Λ∨

5 + Λ∨
6 + Λ∨

7 + Λ∨
8

[
[6, 7, 8]

k 0 1 2 3

compk
([ ⎤

1
1

⎣
⎛
⎜⎜⎝

1
0
0
1

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1 0
0 1 1
1 0 0
0 0 1
0 0 0
0 0 0
0 0 1
1 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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A.29.3 Cohomology of lattice X∨ corresponding to Ω = ⟨(1, 1)⟩

ϕu = ∂τ with τ = (Λ∨
1 + 2Λ∨

8 ) [1] + (Λ∨
1 + Λ∨

2 + 2Λ∨
8 ) [2] + (Λ∨

2 + Λ∨
3 + 2Λ∨

8 ) [3] +
(Λ∨

3 + Λ∨
4 + 2Λ∨

8 ) [4] + (Λ∨
4 + Λ∨

5 + 2Λ∨
8 ) [5] + (Λ∨

5 + Λ∨
6 + 2Λ∨

8 ) [6] +
(Λ∨

7 + Λ∨
8 ) [7] + (Λ∨

7 + Λ∨
8 ) [8]

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
6 − 2Λ∨

8

[
[8]

2 Z/2Z 2Λ∨
8 [1 ⊇ 1] +

(
−2Λ∨

8

[
[2 ⊇ 2] + 2Λ∨

8 [1, 2] +
(

−2Λ∨
8

[
[3 ⊇ 3] +

(
−2Λ∨

8

[
[4 ⊇ 4] +(

−2Λ∨
8

[
[5 ⊇ 5] +

(
−2Λ∨

8

[
[6 ⊇ 6] +

(
−2Λ∨

8

[
[7 ⊇ 7] +

(
−2Λ∨

7

[
[8 ⊇ 8] +(

−Λ∨
6 + 2Λ∨

8

[
[1, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[3, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[4, 8] +(

Λ∨
6 − 2Λ∨

8

[
[5, 8] +

(
−Λ∨

5 + 2Λ∨
6 − 2Λ∨

8

[
[6, 8] +

(
2Λ∨

7 − 2Λ∨
8

[
[7, 8]

3 Z/2Z⊕Z/2Z⊕
Z/2Z⊕Z/2Z

(
Λ∨

6 − 2Λ∨
7

[
[7, 8 ⊇ 8] +

(
Λ∨

6 − Λ∨
7 − Λ∨

8

[
[6, 7, 8]

2Λ∨
8 [7, 8 ⊇ 7] + 2Λ∨

7 [7, 8 ⊇ 8] +
(

Λ∨
5 − 2Λ∨

6 + 2Λ∨
7 + 2Λ∨

8

[
[6, 7, 8]

(
Λ∨

6 − 2Λ∨
8

[
[1, 8 ⊇ 1] +

(
−Λ∨

6 − 2Λ∨
8

[
[2, 8 ⊇ 2] +

(
−2Λ∨

6

[
[2, 8 ⊇ 8] +

(
−Λ∨

6

[
[1, 2, 8] +(

−Λ∨
6 − 2Λ∨

8

[
[3, 8 ⊇ 3] +

(
−2Λ∨

6

[
[3, 8 ⊇ 8] +

(
−Λ∨

6 − 2Λ∨
8

[
[4, 8 ⊇ 4] +(

−2Λ∨
6

[
[4, 8 ⊇ 8] +

(
−Λ∨

6 − 2Λ∨
8

[
[5, 8 ⊇ 5] +

(
−2Λ∨

6

[
[5, 8 ⊇ 8] +(

−Λ∨
7 − Λ∨

8

[
[6, 8 ⊇ 6] +

(
−Λ∨

5 + Λ∨
6 − 2Λ∨

7

[
[6, 8 ⊇ 8] +

(
2Λ∨

6 − 2Λ∨
8

[
[2, 6, 8] +(

2Λ∨
6 − 2Λ∨

8

[
[3, 6, 8] +

(
2Λ∨

6 − 2Λ∨
8

[
[4, 6, 8] +

(
Λ∨

4 + 2Λ∨
7

[
[5, 6, 8] +(

−2Λ∨
6 + 2Λ∨

7 + 2Λ∨
8

[
[6, 7, 8]

2Λ∨
8 [1, 3 ⊇ 1] + 2Λ∨

8 [1, 3 ⊇ 3] +
(

−2Λ∨
8

[
[1, 2, 3] +

(
−2Λ∨

8

[
[1, 4 ⊇ 1] +(

−2Λ∨
8

[
[1, 4 ⊇ 4] +

(
−2Λ∨

8

[
[2, 4 ⊇ 2] +

(
−2Λ∨

8

[
[2, 4 ⊇ 4] + 2Λ∨

8 [1, 3, 4] +

2Λ∨
8 [2, 3, 4] +

(
−2Λ∨

8

[
[1, 5 ⊇ 1] +

(
−2Λ∨

8

[
[1, 5 ⊇ 5] +

(
−2Λ∨

8

[
[2, 5 ⊇ 2] +(

−2Λ∨
8

[
[2, 5 ⊇ 5] +

(
−2Λ∨

8

[
[3, 5 ⊇ 3] +

(
−2Λ∨

8

[
[3, 5 ⊇ 5] + 2Λ∨

8 [3, 4, 5] +(
−2Λ∨

8

[
[1, 6 ⊇ 1] +

(
−2Λ∨

8

[
[1, 6 ⊇ 6] +

(
−2Λ∨

8

[
[2, 6 ⊇ 2] +

(
−2Λ∨

8

[
[2, 6 ⊇ 6] +(

−2Λ∨
8

[
[3, 6 ⊇ 3] +

(
−2Λ∨

8

[
[3, 6 ⊇ 6] +

(
−2Λ∨

8

[
[4, 6 ⊇ 4] +

(
−2Λ∨

8

[
[4, 6 ⊇ 6] +

2Λ∨
8 [4, 5, 6] +

(
−2Λ∨

8

[
[1, 7 ⊇ 1] +

(
−2Λ∨

8

[
[1, 7 ⊇ 7] +

(
−2Λ∨

8

[
[2, 7 ⊇ 2] +(

−2Λ∨
8

[
[2, 7 ⊇ 7] +

(
−2Λ∨

8

[
[3, 7 ⊇ 3] +

(
−2Λ∨

8

[
[3, 7 ⊇ 7] +

(
−2Λ∨

8

[
[4, 7 ⊇ 4] +(

−2Λ∨
8

[
[4, 7 ⊇ 7] +

(
−2Λ∨

8

[
[5, 7 ⊇ 5] +

(
−2Λ∨

8

[
[5, 7 ⊇ 7] + 2Λ∨

8 [5, 6, 7] +(
−2Λ∨

8

[
[1, 8 ⊇ 1] +

(
−Λ∨

6

[
[1, 8 ⊇ 8] +

(
−2Λ∨

8

[
[2, 8 ⊇ 2] +

(
−Λ∨

6

[
[2, 8 ⊇ 8] +(

−2Λ∨
8

[
[3, 8 ⊇ 3] +

(
−Λ∨

6

[
[3, 8 ⊇ 8] +

(
−Λ∨

6 + 2Λ∨
8

[
[1, 3, 8] +

(
−2Λ∨

8

[
[4, 8 ⊇ 4] +(

−Λ∨
6

[
[4, 8 ⊇ 8] +

(
Λ∨

6 − 2Λ∨
8

[
[1, 4, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 4, 8] +

(
−2Λ∨

8

[
[5, 8 ⊇ 5] +(

−Λ∨
6

[
[5, 8 ⊇ 8] +

(
Λ∨

6 − 2Λ∨
8

[
[1, 5, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 5, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[3, 5, 8] +(

−Λ∨
5 + 3Λ∨

6 − Λ∨
7 − 3Λ∨

8

[
[1, 6, 8] +

(
−Λ∨

5 + 3Λ∨
6 − Λ∨

7 − 3Λ∨
8

[
[2, 6, 8] +(

−Λ∨
5 + 3Λ∨

6 − Λ∨
7 − 3Λ∨

8

[
[3, 6, 8] +

(
−Λ∨

5 + 3Λ∨
6 − Λ∨

7 − 3Λ∨
8

[
[4, 6, 8] +(

Λ∨
5 − Λ∨

6 + Λ∨
7 + Λ∨

8

[
[5, 6, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[1, 7, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[2, 7, 8] +(

Λ∨
6 − 2Λ∨

8

[
[3, 7, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[4, 7, 8] +

(
Λ∨

6 − 2Λ∨
8

[
[5, 7, 8]

k hk(X∨) generating cocycles

0 1 2Λ∨
8 []

1 2 2Λ∨
8 [1] + 2Λ∨

8 [2] + 2Λ∨
8 [3] + 2Λ∨

8 [4] + 2Λ∨
8 [5] + 2Λ∨

8 [6] + 2Λ∨
8 [7] + 2Λ∨

8 [8]

(
Λ∨

6 + 2Λ∨
8

[
[7]
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k hk(X∨) generating cocycles

2 5 2Λ∨
8 [1 ⊇ 1]+2Λ∨

8 [2 ⊇ 2]+2Λ∨
8 [3 ⊇ 3]+2Λ∨

8 [4 ⊇ 4]+2Λ∨
8 [5 ⊇ 5]+2Λ∨

8 [6 ⊇ 6]+2Λ∨
8 [7 ⊇ 7]+2Λ∨

8 [8 ⊇ 8]

2Λ∨
8 [1, 3] + 2Λ∨

8 [1, 4] + 2Λ∨
8 [2, 4] + 2Λ∨

8 [1, 5] + 2Λ∨
8 [2, 5] + 2Λ∨

8 [3, 5] + 2Λ∨
8 [1, 6] + 2Λ∨

8 [2, 6] + 2Λ∨
8 [3, 6] +

2Λ∨
8 [4, 6] + 2Λ∨

8 [1, 7] + 2Λ∨
8 [2, 7] + 2Λ∨

8 [3, 7] + 2Λ∨
8 [4, 7] + 2Λ∨

8 [5, 7] + 2Λ∨
8 [1, 8] + 2Λ∨

8 [2, 8] + 2Λ∨
8 [3, 8] +

2Λ∨
8 [4, 8] + 2Λ∨

8 [5, 8]

(
Λ∨

6 + 2Λ∨
8

[
[7 ⊇ 7] +

(
Λ∨

6 + Λ∨
7 + Λ∨

8

[
[6, 7]

(
Λ∨

6 + 2Λ∨
8

[
[1, 7]+

(
Λ∨

6 + 2Λ∨
8

[
[2, 7]+

(
Λ∨

6 + 2Λ∨
8

[
[3, 7]+

(
Λ∨

6 + 2Λ∨
8

[
[4, 7]+

(
Λ∨

6 + 2Λ∨
8

[
[5, 7]+Λ∨

5 [6, 7]

Λ∨
6 [7, 8]

3 12 2Λ∨
8 [1 ⊇ 1 ⊇ 1] + 2Λ∨

8 [2 ⊇ 2 ⊇ 2] + 2Λ∨
8 [3 ⊇ 3 ⊇ 3] + 2Λ∨

8 [4 ⊇ 4 ⊇ 4] + 2Λ∨
8 [5 ⊇ 5 ⊇ 5] +

2Λ∨
8 [6 ⊇ 6 ⊇ 6] + 2Λ∨

8 [7 ⊇ 7 ⊇ 7] + 2Λ∨
8 [8 ⊇ 8 ⊇ 8]

2Λ∨
8 [1, 3 ⊇ 1] + 2Λ∨

8 [1, 3 ⊇ 3] + 2Λ∨
8 [1, 4 ⊇ 1] + 2Λ∨

8 [1, 4 ⊇ 4] + 2Λ∨
8 [2, 4 ⊇ 2] + 2Λ∨

8 [2, 4 ⊇ 4] +
2Λ∨

8 [1, 5 ⊇ 1] + 2Λ∨
8 [1, 5 ⊇ 5] + 2Λ∨

8 [2, 5 ⊇ 2] + 2Λ∨
8 [2, 5 ⊇ 5] + 2Λ∨

8 [3, 5 ⊇ 3] + 2Λ∨
8 [3, 5 ⊇ 5] +

2Λ∨
8 [1, 6 ⊇ 1] + 2Λ∨

8 [1, 6 ⊇ 6] + 2Λ∨
8 [2, 6 ⊇ 2] + 2Λ∨

8 [2, 6 ⊇ 6] + 2Λ∨
8 [3, 6 ⊇ 3] + 2Λ∨

8 [3, 6 ⊇ 6] +
2Λ∨

8 [4, 6 ⊇ 4] + 2Λ∨
8 [4, 6 ⊇ 6] + 2Λ∨

8 [1, 7 ⊇ 1] + 2Λ∨
8 [1, 7 ⊇ 7] + 2Λ∨

8 [2, 7 ⊇ 2] + 2Λ∨
8 [2, 7 ⊇ 7] +

2Λ∨
8 [3, 7 ⊇ 3] + 2Λ∨

8 [3, 7 ⊇ 7] + 2Λ∨
8 [4, 7 ⊇ 4] + 2Λ∨

8 [4, 7 ⊇ 7] + 2Λ∨
8 [5, 7 ⊇ 5] + 2Λ∨

8 [5, 7 ⊇ 7] +
2Λ∨

8 [1, 8 ⊇ 1] + 2Λ∨
8 [1, 8 ⊇ 8] + 2Λ∨

8 [2, 8 ⊇ 2] + 2Λ∨
8 [2, 8 ⊇ 8] + 2Λ∨

8 [3, 8 ⊇ 3] + 2Λ∨
8 [3, 8 ⊇ 8] +

2Λ∨
8 [4, 8 ⊇ 4] + 2Λ∨

8 [4, 8 ⊇ 8] + 2Λ∨
8 [5, 8 ⊇ 5] + 2Λ∨

8 [5, 8 ⊇ 8]

2Λ∨
8 [1, 2, 3] + 2Λ∨

8 [2, 3, 4] + 2Λ∨
8 [3, 4, 5] + 2Λ∨

8 [4, 5, 6] + 2Λ∨
8 [5, 6, 7] + 2Λ∨

8 [5, 6, 8]

2Λ∨
8 [1, 3, 5] + 2Λ∨

8 [1, 3, 6] + 2Λ∨
8 [1, 4, 6] + 2Λ∨

8 [2, 4, 6] + 2Λ∨
8 [1, 3, 7] + 2Λ∨

8 [1, 4, 7] + 2Λ∨
8 [2, 4, 7] +

2Λ∨
8 [1, 5, 7] + 2Λ∨

8 [2, 5, 7] + 2Λ∨
8 [3, 5, 7] + 2Λ∨

8 [1, 3, 8] + 2Λ∨
8 [1, 4, 8] + 2Λ∨

8 [2, 4, 8] + 2Λ∨
8 [1, 5, 8] +

2Λ∨
8 [2, 5, 8] + 2Λ∨

8 [3, 5, 8]

(
Λ∨

6 + 2Λ∨
8

[
[7 ⊇ 7 ⊇ 7] +

(
Λ∨

6 + Λ∨
7 + Λ∨

8

[
[6, 7 ⊇ 6] +

(
Λ∨

7 + 3Λ∨
8

[
[6, 7 ⊇ 7] +

(
Λ∨

6 + Λ∨
7 + Λ∨

8

[
[6, 7, 8]

(
Λ∨

6 + 2Λ∨
8

[
[1, 7 ⊇ 1] +

(
Λ∨

6 + 2Λ∨
8

[
[2, 7 ⊇ 2] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 7 ⊇ 3] +

(
Λ∨

6 + 2Λ∨
8

[
[4, 7 ⊇ 4] +(

Λ∨
6 + 2Λ∨

8

[
[5, 7 ⊇ 5] +

(
Λ∨

7 + Λ∨
8

[
[6, 7 ⊇ 6] + Λ∨

5 [6, 7 ⊇ 7] +
(

Λ∨
6 + 2Λ∨

8

[
[5, 6, 7] + Λ∨

6 [6, 7, 8]

(
Λ∨

6 + 2Λ∨
8

[
[1, 7 ⊇ 7] +

(
Λ∨

7 + Λ∨
8

[
[1, 2, 7] +

(
Λ∨

6 + Λ∨
7 + Λ∨

8

[
[1, 6, 7] + 2Λ∨

8 [2, 6, 7] + 2Λ∨
8 [3, 6, 7] +

2Λ∨
8 [4, 6, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[2, 7, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 7, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[4, 7, 8] +

(
Λ∨

6 + 2Λ∨
8

[
[5, 7, 8]

(
Λ∨

6 + 2Λ∨
8

[
[1, 3, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[2, 4, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[1, 5, 7] +(

Λ∨
6 + 2Λ∨

8

[
[2, 5, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[3, 5, 7] + Λ∨

5 [1, 6, 7] + Λ∨
5 [2, 6, 7] + Λ∨

5 [3, 6, 7] + Λ∨
5 [4, 6, 7]

(
Λ∨

4 + 2Λ∨
8

[
[5, 7 ⊇ 7] +

(
Λ∨

7 + Λ∨
8

[
[4, 5, 7] +

(
Λ∨

7 + Λ∨
8

[
[6, 7 ⊇ 6] + Λ∨

5 [6, 7 ⊇ 7] +(
Λ∨

5 + Λ∨
7 + Λ∨

8

[
[5, 6, 7] +

(
Λ∨

6 + 2Λ∨
8

[
[5, 7, 8] + Λ∨

6 [6, 7, 8]

Λ∨
6 [7, 8 ⊇ 7] + 2Λ∨

8 [7, 8 ⊇ 8] +
(

Λ∨
6 + Λ∨

7 + Λ∨
8

[
[6, 7, 8]

Λ∨
6 [1, 7, 8] + Λ∨

6 [2, 7, 8] + Λ∨
6 [3, 7, 8] + Λ∨

6 [4, 7, 8] + Λ∨
6 [5, 7, 8]

Λ∨
5 [6, 7, 8]

k 0 1 2 3

compk
([ ⎤

0
1

⎣
⎛
⎜⎜⎜⎜⎝

1
0
0
1
0

∫
ˆ̂
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0
1 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 0
0 1 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠
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A.29.4 Cohomology of lattice X∨ corresponding to Ω = ⟨(1, 0)⟩

[ϕu] = (1, 1, 0, 0)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
6 − 2Λ∨

7

[
[7]

2 Z/2Z 2Λ∨
7 [1 ⊇ 1] +

(
−2Λ∨

7

[
[2 ⊇ 2] + 2Λ∨

7 [1, 2] +
(

−2Λ∨
7

[
[3 ⊇ 3] +

(
−2Λ∨

7

[
[4 ⊇ 4] +(

−2Λ∨
7

[
[5 ⊇ 5] +

(
−2Λ∨

7

[
[6 ⊇ 6] +

(
−Λ∨

6

[
[7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 7] +(

Λ∨
6 − 2Λ∨

7

[
[2, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[3, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[4, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[5, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7 − Λ∨

8

[
[6, 7] +

(
−2Λ∨

7

[
[8 ⊇ 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[7, 8]

3 Z/2Z⊕Z/2Z⊕Z/2Z Λ∨
6 [7, 8 ⊇ 7] + 2Λ∨

7 [7, 8 ⊇ 8] +
(

Λ∨
5 − Λ∨

6 + Λ∨
7 + Λ∨

8

[
[6, 7, 8]

(
Λ∨

6 − 2Λ∨
7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6 − 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
−2Λ∨

6

[
[2, 7 ⊇ 7] +

(
−Λ∨

6

[
[1, 2, 7] +(

−Λ∨
6 − 2Λ∨

7

[
[3, 7 ⊇ 3] +

(
−2Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 − 2Λ∨
7

[
[4, 7 ⊇ 4] +(

−2Λ∨
6

[
[4, 7 ⊇ 7] +

(
−Λ∨

6 − 2Λ∨
7

[
[5, 7 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − 3Λ∨

6

[
[5, 7 ⊇ 7] +(

2Λ∨
6 − 2Λ∨

7

[
[2, 6, 7]+

(
2Λ∨

6 − 2Λ∨
7

[
[3, 6, 7]+

(
2Λ∨

6 − 2Λ∨
7

[
[4, 6, 7]+

(
Λ∨

4 + 2Λ∨
8

[
[5, 6, 7]

2Λ∨
7 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] +
(

−2Λ∨
7

[
[1, 2, 3] +

(
−2Λ∨

7

[
[1, 4 ⊇ 1] +(

−2Λ∨
7

[
[1, 4 ⊇ 4] +

(
−2Λ∨

7

[
[2, 4 ⊇ 2] +

(
−2Λ∨

7

[
[2, 4 ⊇ 4] + 2Λ∨

7 [1, 3, 4] + 2Λ∨
7 [2, 3, 4] +(

−2Λ∨
7

[
[1, 5 ⊇ 1] +

(
−2Λ∨

7

[
[1, 5 ⊇ 5] +

(
−2Λ∨

7

[
[2, 5 ⊇ 2] +

(
−2Λ∨

7

[
[2, 5 ⊇ 5] +(

−2Λ∨
7

[
[3, 5 ⊇ 3] +

(
−2Λ∨

7

[
[3, 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +
(

−2Λ∨
7

[
[1, 6 ⊇ 1] +(

−2Λ∨
7

[
[1, 6 ⊇ 6] +

(
−2Λ∨

7

[
[2, 6 ⊇ 2] +

(
−2Λ∨

7

[
[2, 6 ⊇ 6] +

(
−2Λ∨

7

[
[3, 6 ⊇ 3] +(

−2Λ∨
7

[
[3, 6 ⊇ 6] +

(
−2Λ∨

7

[
[4, 6 ⊇ 4] +

(
−2Λ∨

7

[
[4, 6 ⊇ 6] + 2Λ∨

7 [4, 5, 6] +(
−2Λ∨

7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6

[
[1, 7 ⊇ 7] +

(
−2Λ∨

7

[
[2, 7 ⊇ 2] +

(
−Λ∨

6

[
[2, 7 ⊇ 7] +(

−2Λ∨
7

[
[3, 7 ⊇ 3] +

(
−Λ∨

6

[
[3, 7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 3, 7] +

(
−2Λ∨

7

[
[4, 7 ⊇ 4] +(

−Λ∨
6

[
[4, 7 ⊇ 7] +

(
Λ∨

6 − 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 4, 7] +

(
−2Λ∨

7

[
[5, 7 ⊇ 5] +(

−Λ∨
6

[
[5, 7 ⊇ 7] +

(
Λ∨

6 − 2Λ∨
7

[
[1, 5, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 5, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[3, 5, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7 − Λ∨

8

[
[1, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7 − Λ∨
8

[
[2, 6, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7 − Λ∨

8

[
[3, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7 − Λ∨
8

[
[4, 6, 7] +(

Λ∨
5 − Λ∨

6 + Λ∨
7 + Λ∨

8

[
[5, 6, 7] +

(
−2Λ∨

7

[
[1, 8 ⊇ 1] +

(
−2Λ∨

7

[
[1, 8 ⊇ 8] +(

−2Λ∨
7

[
[2, 8 ⊇ 2] +

(
−2Λ∨

7

[
[2, 8 ⊇ 8] +

(
−2Λ∨

7

[
[3, 8 ⊇ 3] +

(
−2Λ∨

7

[
[3, 8 ⊇ 8] +(

−2Λ∨
7

[
[4, 8 ⊇ 4] +

(
−2Λ∨

7

[
[4, 8 ⊇ 8] +

(
−2Λ∨

7

[
[5, 8 ⊇ 5] +

(
−2Λ∨

7

[
[5, 8 ⊇ 8] +

2Λ∨
7 [5, 6, 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[2, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[3, 7, 8] +(

−Λ∨
6 + 2Λ∨

7

[
[4, 7, 8] +

(
−Λ∨

6 + 2Λ∨
7

[
[5, 7, 8]

k hk(X∨) generating cocycles

0 1 2Λ∨
7 []

1 2 Λ∨
2 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6] + 2Λ∨
7 [7] + 2Λ∨

7 [8]

2Λ∨
7 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6] + 2Λ∨
7 [7] + 2Λ∨

7 [8]
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k hk(X∨) generating cocycles

2 4 Λ∨
2 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] +
(

Λ∨
1 + Λ∨

2 + Λ∨
7

[
[1, 2] + 2Λ∨

7 [3 ⊇ 3] + 2Λ∨
7 [4 ⊇ 4] + 2Λ∨

7 [5 ⊇ 5] + 2Λ∨
7 [6 ⊇ 6] +

2Λ∨
7 [7 ⊇ 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[4, 7] + Λ∨

4 [5, 7] + 2Λ∨
7 [8 ⊇ 8]

2Λ∨
7 [1 ⊇ 1]+2Λ∨

7 [2 ⊇ 2]+2Λ∨
7 [3 ⊇ 3]+2Λ∨

7 [4 ⊇ 4]+2Λ∨
7 [5 ⊇ 5]+2Λ∨

7 [6 ⊇ 6]+2Λ∨
7 [7 ⊇ 7]+2Λ∨

7 [8 ⊇ 8]

Λ∨
2 [1, 3] +

(
Λ∨

1 + Λ∨
7

[
[2, 3] + 2Λ∨

7 [1, 4] + 2Λ∨
7 [2, 4] +

(
Λ∨

1 + Λ∨
7

[
[3, 4] + 2Λ∨

7 [1, 5] + 2Λ∨
7 [2, 5] +

2Λ∨
7 [3, 5] + 2Λ∨

7 [1, 6] + 2Λ∨
7 [2, 6] + 2Λ∨

7 [3, 6] + 2Λ∨
7 [4, 6] + 2Λ∨

7 [1, 7] + 2Λ∨
7 [2, 7] + Λ∨

6 [3, 7] + 2Λ∨
7 [4, 7] +

2Λ∨
7 [5, 7] + 2Λ∨

7 [1, 8] + 2Λ∨
7 [2, 8] + 2Λ∨

7 [3, 8] + 2Λ∨
7 [4, 8] + 2Λ∨

7 [5, 8]

(
Λ∨

2 + 2Λ∨
7

[
[1, 8] +

(
Λ∨

1 + Λ∨
7

[
[6, 8] + Λ∨

6 [7, 8]

3 9 Λ∨
2 [1 ⊇ 1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2 ⊇ 2] +
(

Λ∨
1 + Λ∨

7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

7

[
[1, 2 ⊇ 2] +

2Λ∨
7 [3 ⊇ 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
7 [4 ⊇ 4 ⊇ 4] + 2Λ∨

7 [2, 3, 4] + 2Λ∨
7 [5 ⊇ 5 ⊇ 5] + 2Λ∨

7 [3, 4, 5] +

2Λ∨
7 [6 ⊇ 6 ⊇ 6] + 2Λ∨

7 [4, 5, 6] + 2Λ∨
7 [7 ⊇ 7 ⊇ 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7 ⊇ 3] +(

Λ∨
6 + 2Λ∨

7

[
[4, 7 ⊇ 4] +

(
Λ∨

6 + 2Λ∨
7

[
[5, 7 ⊇ 5] + Λ∨

4 [5, 7 ⊇ 7] +
(

Λ∨
2 + Λ∨

4 + 2Λ∨
7

[
[3, 5, 7] +(

Λ∨
3 + Λ∨

7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + Λ∨

7 + Λ∨
8

[
[5, 6, 7] + 2Λ∨

7 [8 ⊇ 8 ⊇ 8] + 2Λ∨
7 [5, 6, 8]

2Λ∨
7 [1 ⊇ 1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5 ⊇ 5] +

2Λ∨
7 [6 ⊇ 6 ⊇ 6] + 2Λ∨

7 [7 ⊇ 7 ⊇ 7] + 2Λ∨
7 [8 ⊇ 8 ⊇ 8]

(
Λ∨

1 + Λ∨
3 + 4Λ∨

7

[
[2 ⊇ 2 ⊇ 2] +

(
Λ∨

1 + Λ∨
7

[
[1, 2 ⊇ 1] +

(
Λ∨

2 + Λ∨
3 + Λ∨

7

[
[1, 2 ⊇ 2] +(

Λ∨
2 + Λ∨

3 + Λ∨
7

[
[2, 3 ⊇ 2] +

(
Λ∨

3 + Λ∨
4 + 3Λ∨

7

[
[2, 3 ⊇ 3] + Λ∨

2 [1, 2, 3] + 2Λ∨
7 [2, 3, 4] + 2Λ∨

7 [3, 4, 5] +

2Λ∨
7 [4, 5, 6] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7 ⊇ 2] + 2Λ∨

7 [5, 6, 7] + 2Λ∨
7 [5, 6, 8]

Λ∨
8 [1, 2 ⊇ 1] + Λ∨

8 [1, 2 ⊇ 2] + Λ∨
6 [2, 8 ⊇ 2] + Λ∨

6 [3, 8 ⊇ 3] + Λ∨
6 [4, 8 ⊇ 4] + Λ∨

6 [5, 8 ⊇ 5] +

Λ∨
8 [6, 8 ⊇ 6] +

(
Λ∨

5 + Λ∨
7

[
[6, 8 ⊇ 8] + Λ∨

6 [5, 6, 8] + 2Λ∨
7 [7, 8 ⊇ 8] +

(
Λ∨

5 + Λ∨
7 + Λ∨

8

[
[6, 7, 8]

Λ∨
2 [1, 3 ⊇ 1] + 2Λ∨

7 [1, 3 ⊇ 3] +
(

Λ∨
1 + Λ∨

2 + Λ∨
3 + 2Λ∨

7

[
[1, 2, 3] + 2Λ∨

7 [1, 4 ⊇ 1] + 2Λ∨
7 [1, 4 ⊇ 4] +

2Λ∨
7 [2, 4 ⊇ 2] + 2Λ∨

7 [2, 4 ⊇ 4] +
(

Λ∨
1 + Λ∨

7

[
[1, 3, 4] + 2Λ∨

7 [1, 5 ⊇ 1] + 2Λ∨
7 [1, 5 ⊇ 5] + 2Λ∨

7 [2, 5 ⊇ 2] +

2Λ∨
7 [2, 5 ⊇ 5] + 2Λ∨

7 [3, 5 ⊇ 3] + 2Λ∨
7 [3, 5 ⊇ 5] + 2Λ∨

7 [1, 6 ⊇ 1] + 2Λ∨
7 [1, 6 ⊇ 6] + 2Λ∨

7 [2, 6 ⊇ 2] +
2Λ∨

7 [2, 6 ⊇ 6] + 2Λ∨
7 [3, 6 ⊇ 3] + 2Λ∨

7 [3, 6 ⊇ 6] + 2Λ∨
7 [4, 6 ⊇ 4] + 2Λ∨

7 [4, 6 ⊇ 6] + 2Λ∨
7 [1, 7 ⊇ 1] +

2Λ∨
7 [1, 7 ⊇ 7] + 2Λ∨

7 [2, 7 ⊇ 2] + 2Λ∨
7 [2, 7 ⊇ 7] + 2Λ∨

7 [3, 7 ⊇ 3] + 2Λ∨
7 [3, 7 ⊇ 7] + 2Λ∨

7 [4, 7 ⊇ 4] +

2Λ∨
7 [4, 7 ⊇ 7] +

(
Λ∨

6 + 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 4, 7] + 2Λ∨

7 [5, 7 ⊇ 5] + 2Λ∨
7 [5, 7 ⊇ 7] + Λ∨

4 [1, 5, 7] +

Λ∨
4 [2, 5, 7] +

(
Λ∨

2 + 2Λ∨
7

[
[3, 5, 7] + 2Λ∨

7 [1, 8 ⊇ 1] + 2Λ∨
7 [1, 8 ⊇ 8] + 2Λ∨

7 [2, 8 ⊇ 2] + 2Λ∨
7 [2, 8 ⊇ 8] +

2Λ∨
7 [3, 8 ⊇ 3] + 2Λ∨

7 [3, 8 ⊇ 8] + 2Λ∨
7 [4, 8 ⊇ 4] + 2Λ∨

7 [4, 8 ⊇ 8] + 2Λ∨
7 [5, 8 ⊇ 5] + 2Λ∨

7 [5, 8 ⊇ 8]

Λ∨
4 [1, 3 ⊇ 1] +

(
Λ∨

3 + Λ∨
7

[
[2, 3 ⊇ 2] +

(
Λ∨

1 + 3Λ∨
7

[
[2, 3 ⊇ 3] +

(
Λ∨

1 + Λ∨
3 + 2Λ∨

7

[
[1, 2, 3] +(

Λ∨
1 + Λ∨

7

[
[1, 3, 4] +

(
Λ∨

3 + Λ∨
5 + 2Λ∨

7

[
[2, 3, 4] + 2Λ∨

7 [3, 4, 5] + 2Λ∨
7 [4, 5, 6] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7 ⊇ 3] +(

Λ∨
6 + 2Λ∨

7

[
[4, 7 ⊇ 4] +

(
Λ∨

6 + 2Λ∨
7

[
[1, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 4, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[5, 7 ⊇ 5] +

Λ∨
4 [5, 7 ⊇ 7] + Λ∨

4 [1, 5, 7] + Λ∨
4 [2, 5, 7] + Λ∨

4 [3, 5, 7] +
(

Λ∨
3 + Λ∨

7

[
[4, 5, 7] +(

Λ∨
5 + Λ∨

6 + Λ∨
7 + Λ∨

8

[
[5, 6, 7] + 2Λ∨

7 [5, 6, 8]

Λ∨
2 [1, 3, 5] +

(
Λ∨

1 + Λ∨
7

[
[2, 3, 5] + 2Λ∨

7 [1, 3, 6] + 2Λ∨
7 [1, 4, 6] + 2Λ∨

7 [2, 4, 6] +
(

Λ∨
1 + Λ∨

7

[
[3, 5, 6] +

2Λ∨
7 [1, 3, 7] + 2Λ∨

7 [1, 4, 7] + 2Λ∨
7 [2, 4, 7] + 2Λ∨

7 [1, 5, 7] + 2Λ∨
7 [2, 5, 7] + Λ∨

6 [3, 5, 7] + 2Λ∨
7 [1, 3, 8] +

2Λ∨
7 [1, 4, 8] + 2Λ∨

7 [2, 4, 8] + 2Λ∨
7 [1, 5, 8] + 2Λ∨

7 [2, 5, 8] + 2Λ∨
7 [3, 5, 8]

(
Λ∨

2 + 2Λ∨
7

[
[1, 8 ⊇ 1] +

(
Λ∨

1 + Λ∨
2 + Λ∨

7

[
[1, 2, 8] +

(
Λ∨

1 + Λ∨
7

[
[1, 6, 8] + 2Λ∨

7 [2, 6, 8] + 2Λ∨
7 [3, 6, 8] +

2Λ∨
7 [4, 6, 8] + Λ∨

6 [1, 7, 8] + 2Λ∨
7 [2, 7, 8] + 2Λ∨

7 [3, 7, 8] + 2Λ∨
7 [4, 7, 8] + 2Λ∨

7 [5, 7, 8]

2Λ∨
7 [7, 8 ⊇ 7] + 2Λ∨

7 [7, 8 ⊇ 8]
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k 0 1 2 3

compk
([ ⎤

1
1

⎣
⎛
⎜⎜⎝

1
0
0
1

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1 0
0 1 1
1 0 0
0 0 1
0 0 0
0 0 0
0 0 1
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.29.5 Cohomology of coweight lattice X∨ = P∨

ϕu = ∂τ with τ = Λ∨
1 [1] + (Λ∨

1 + Λ∨
2 ) [2] + (Λ∨

2 + Λ∨
3 ) [3] + (Λ∨

3 + Λ∨
4 ) [4] +

(Λ∨
4 + Λ∨

5 ) [5] + (Λ∨
5 + Λ∨

6 ) [6] + (Λ∨
7 + Λ∨

8 ) [7] + (Λ∨
7 + Λ∨

8 ) [8]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z
(

Λ∨
6 − 2Λ∨

7

[
[7, 8 ⊇ 8] +

(
Λ∨

6 − Λ∨
7 − Λ∨

8

[
[6, 7, 8]

k hk(X∨) generating cocycles

0 0

1 0

2 1 Λ∨
8 [6, 7]

3 4 Λ∨
7 [1, 2 ⊇ 1] + Λ∨

7 [1, 2 ⊇ 2] + Λ∨
6 [2, 7 ⊇ 2] + Λ∨

6 [3, 7 ⊇ 3] + Λ∨
6 [4, 7 ⊇ 4] + Λ∨

6 [5, 7 ⊇ 5] +

Λ∨
7 [6, 7 ⊇ 6] +

(
Λ∨

5 + Λ∨
8

[
[6, 7 ⊇ 7] + Λ∨

6 [5, 6, 7] +
(

Λ∨
7 + Λ∨

8

[
[6, 7, 8]

Λ∨
7 [1, 3, 5] + Λ∨

7 [1, 3, 6] + Λ∨
7 [1, 4, 6] + Λ∨

7 [2, 4, 6] +
(

Λ∨
5 + Λ∨

8

[
[1, 3, 7] +

(
Λ∨

5 + Λ∨
8

[
[1, 4, 7] +(

Λ∨
5 + Λ∨

8

[
[2, 4, 7] +

(
Λ∨

3 + Λ∨
8

[
[1, 5, 7] +

(
Λ∨

3 + Λ∨
8

[
[2, 5, 7] +

(
Λ∨

1 + Λ∨
8

[
[3, 5, 7] + Λ∨

7 [1, 3, 8] +

Λ∨
7 [1, 4, 8] + Λ∨

7 [2, 4, 8] + Λ∨
7 [1, 5, 8] + Λ∨

7 [2, 5, 8] + Λ∨
7 [3, 5, 8]

Λ∨
8 [1, 3, 5] + Λ∨

8 [1, 3, 6] + Λ∨
8 [1, 4, 6] + Λ∨

8 [2, 4, 6] + Λ∨
8 [1, 3, 7] + Λ∨

8 [1, 4, 7] + Λ∨
8 [2, 4, 7] + Λ∨

8 [1, 5, 7] +

Λ∨
8 [2, 5, 7] + Λ∨

8 [3, 5, 7] +
(

Λ∨
5 + Λ∨

7

[
[1, 3, 8] +

(
Λ∨

5 + Λ∨
7

[
[1, 4, 8] +

(
Λ∨

5 + Λ∨
7

[
[2, 4, 8] +(

Λ∨
3 + Λ∨

7

[
[1, 5, 8] +

(
Λ∨

3 + Λ∨
7

[
[2, 5, 8] +

(
Λ∨

1 + Λ∨
7

[
[3, 5, 8]

Λ∨
8 [1, 6, 7] + Λ∨

8 [2, 6, 7] + Λ∨
8 [3, 6, 7] + Λ∨

8 [4, 6, 7]



A.29 Root system D8 275

k 0 1 2 3

compk
([ ([ ([

⎛
⎜⎜⎝

1
0
0
0

∫
ˆ̂
⎠

A.29.6 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2] + (−1) [3 ⊇ 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] +
(−1) [6 ⊇ 6] + (−1) [7 ⊇ 7] + (−1) [8 ⊇ 8]

3 Z/2Z⊕Z/2Z [7, 8 ⊇ 7] + [7, 8 ⊇ 8] + [6, 7, 8]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 2, 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] + (−1) [2, 4 ⊇ 2] +
(−1) [2, 4 ⊇ 4] + [1, 3, 4] + [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] + (−1) [2, 5 ⊇ 2] +
(−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [3, 4, 5] + (−1) [1, 6 ⊇ 1] +
(−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] + (−1) [3, 6 ⊇ 6] +
(−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6] + (−1) [1, 7 ⊇ 1] + (−1) [1, 7 ⊇ 7] +
(−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [3, 7 ⊇ 3] + (−1) [3, 7 ⊇ 7] + (−1) [4, 7 ⊇ 4] +
(−1) [4, 7 ⊇ 7] + (−1) [5, 7 ⊇ 5] + (−1) [5, 7 ⊇ 7] + [5, 6, 7] + (−1) [1, 8 ⊇ 1] +
(−1) [1, 8 ⊇ 8] + (−1) [2, 8 ⊇ 2] + (−1) [2, 8 ⊇ 8] + (−1) [3, 8 ⊇ 3] + (−1) [3, 8 ⊇ 8] +
(−1) [4, 8 ⊇ 4] + (−1) [4, 8 ⊇ 8] + (−1) [5, 8 ⊇ 5] + (−1) [5, 8 ⊇ 8] + [5, 6, 8]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5] + [6] + [7] + [8]

2 3 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6] + [7 ⊇ 7] + [8 ⊇ 8]

[1, 3] + [1, 4] + [2, 4] + [1, 5] + [2, 5] + [3, 5] + [1, 6] + [2, 6] + [3, 6] + [4, 6] + [1, 7] + [2, 7] + [3, 7] +
[4, 7] + [5, 7] + [1, 8] + [2, 8] + [3, 8] + [4, 8] + [5, 8]

[7, 8]

3 7 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6] + [7 ⊇ 7 ⊇ 7] +
[8 ⊇ 8 ⊇ 8]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [2, 4 ⊇ 2] + [2, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6] + [1, 7 ⊇ 1] + [1, 7 ⊇ 7] + [2, 7 ⊇ 2] + [2, 7 ⊇ 7] +
[3, 7 ⊇ 3] + [3, 7 ⊇ 7] + [4, 7 ⊇ 4] + [4, 7 ⊇ 7] + [5, 7 ⊇ 5] + [5, 7 ⊇ 7] + [1, 8 ⊇ 1] + [1, 8 ⊇ 8] +
[2, 8 ⊇ 2] + [2, 8 ⊇ 8] + [3, 8 ⊇ 3] + [3, 8 ⊇ 8] + [4, 8 ⊇ 4] + [4, 8 ⊇ 8] + [5, 8 ⊇ 5] + [5, 8 ⊇ 8]

[1, 2, 3] + [2, 3, 4] + [3, 4, 5] + [4, 5, 6] + [5, 6, 7] + [5, 6, 8]

[1, 3, 5] + [1, 3, 6] + [1, 4, 6] + [2, 4, 6] + [1, 3, 7] + [1, 4, 7] + [2, 4, 7] + [1, 5, 7] + [2, 5, 7] + [3, 5, 7] +
[1, 3, 8] + [1, 4, 8] + [2, 4, 8] + [1, 5, 8] + [2, 5, 8] + [3, 5, 8]

[7, 8 ⊇ 7] + [7, 8 ⊇ 8]

[1, 7, 8] + [2, 7, 8] + [3, 7, 8] + [4, 7, 8] + [5, 7, 8]

[6, 7, 8]



276 A COMPUTATIONAL RESULTS

A.30 Root system E6

Dynkin diagram 1 3 4 5 6

2

Fundamental group
P∨/Q∨ ≃ Z/3Z

generated by Λ∨
6 ∈ P∨ mod Q∨

A.30.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/3Z
(

Λ∨
5 − 2Λ∨

6

[
[6]

2 0

3 Z/2Z 3Λ∨
6 [2, 5 ⊇ 2] + 3Λ∨

6 [2, 5 ⊇ 5] +
(

−3Λ∨
6

[
[2, 4, 5] +

(
−Λ∨

2

[
[5, 6 ⊇ 5] +

(
−Λ∨

2

[
[5, 6 ⊇ 6] +(

−Λ∨
2 + 2Λ∨

4 − 3Λ∨
5 + 3Λ∨

6

[
[2, 5, 6]

k hk(X∨) generating cocycles

0 0

1 0

2 1
(

Λ∨
5 + Λ∨

6

[
[1, 3] +

(
Λ∨

4 + 3Λ∨
6

[
[3, 5] +

(
Λ∨

3 + 2Λ∨
6

[
[4, 5] +

(
Λ∨

5 + 4Λ∨
6

[
[2, 6] +

(
Λ∨

5 + 4Λ∨
6

[
[3, 6] +(

Λ∨
5 + 4Λ∨

6

[
[4, 6] + Λ∨

4 [5, 6]

3 2
(

Λ∨
5 + Λ∨

6

[
[1, 3 ⊇ 1] +

(
Λ∨

5 + Λ∨
6

[
[1, 3 ⊇ 3] +

(
Λ∨

4 + 3Λ∨
6

[
[3, 5 ⊇ 3] +

(
Λ∨

3 + 2Λ∨
6

[
[4, 5 ⊇ 4] +(

Λ∨
3 + 2Λ∨

6

[
[4, 5 ⊇ 5] +

(
Λ∨

5 + 4Λ∨
6

[
[2, 6 ⊇ 2] +

(
Λ∨

5 + 4Λ∨
6

[
[3, 6 ⊇ 3] +

(
Λ∨

5 + 4Λ∨
6

[
[4, 6 ⊇ 4] +

3Λ∨
6 [5, 6 ⊇ 5] + Λ∨

4 [5, 6 ⊇ 6] +
(

Λ∨
5 + 4Λ∨

6

[
[4, 5, 6]

Λ∨
2 [1, 3, 4] +

(
Λ∨

5 + 4Λ∨
6

[
[2, 3, 4] +

(
Λ∨

3 + 2Λ∨
6

[
[2, 4, 5] + Λ∨

2 [3, 4, 5] +
(

Λ∨
3 + 2Λ∨

6

[
[4, 5, 6]

k 0 1 2 3

compk
([ ([ ([ ⎤

1
0

⎣
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A.30.2 Cohomology of coweight lattice X∨ = P∨

[ϕu] = (1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z Λ∨
6 [2, 5 ⊇ 2] + Λ∨

6 [2, 5 ⊇ 5] +
(

−Λ∨
6

[
[2, 4, 5] +

(
−Λ∨

2

[
[5, 6 ⊇ 5] +

(
−Λ∨

2

[
[5, 6 ⊇ 6] +(

−Λ∨
2 + Λ∨

4 − Λ∨
5 + Λ∨

6

[
[2, 5, 6]

k hk(X∨) generating cocycles

0 0

1 0

2 1 Λ∨
5 [1, 3] +

(
Λ∨

4 + Λ∨
6

[
[3, 5] + Λ∨

3 [4, 5]

3 2 Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] +
(

Λ∨
4 + Λ∨

6

[
[3, 5 ⊇ 3] + Λ∨

3 [4, 5 ⊇ 4] + Λ∨
3 [4, 5 ⊇ 5]

Λ∨
2 [1, 3, 4] + Λ∨

5 [2, 3, 4] + Λ∨
3 [2, 4, 5] + Λ∨

2 [3, 4, 5] + Λ∨
3 [4, 5, 6]

k 0 1 2 3

compk
([ ([ ([ ⎤

1
0

⎣

A.30.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + (−1) [3 ⊇ 3] + [1, 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] + (−1) [6 ⊇ 6]

3 Z/2Z [1, 2 ⊇ 1] + [1, 2 ⊇ 2] + (−1) [2, 3 ⊇ 2] + (−1) [2, 3 ⊇ 3] + (−1) [1, 4 ⊇ 1] +
(−1) [1, 4 ⊇ 4] + [1, 2, 4] + [1, 3, 4] + (−1) [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [2, 4, 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6]
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k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5] + [6]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6]

[1, 2] + [2, 3] + [1, 4] + [1, 5] + [2, 5] + [3, 5] + [1, 6] + [2, 6] + [3, 6] + [4, 6]

3 4 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6]

[1, 2 ⊇ 1] + [1, 2 ⊇ 2] + [2, 3 ⊇ 2] + [2, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6]

[1, 3, 4] + [2, 3, 4] + [2, 4, 5] + [3, 4, 5] + [4, 5, 6]

[1, 2, 5] + [2, 3, 5] + [1, 2, 6] + [2, 3, 6] + [1, 4, 6]

A.31 Root system E7

Dynkin diagram 1 3 4 5 6 7

2

Fundamental group
P∨/Q∨ ≃ Z/2Z

generated by Λ∨
7 ∈ P∨ mod Q∨

A.31.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (0, 0, 0, 1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 Z/2Z
(

Λ∨
6 − 2Λ∨

7

[
[7]

2 Z/2Z 2Λ∨
7 [1 ⊇ 1] +

(
−2Λ∨

7

[
[2 ⊇ 2] +

(
−2Λ∨

7

[
[3 ⊇ 3] + 2Λ∨

7 [1, 3] +
(

−2Λ∨
7

[
[4 ⊇ 4] +(

−2Λ∨
7

[
[5 ⊇ 5] +

(
−2Λ∨

7

[
[6 ⊇ 6] +

(
−Λ∨

6

[
[7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 7] +(

Λ∨
6 − 2Λ∨

7

[
[2, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[3, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[4, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[5, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7

[
[6, 7]
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k Hk(W0,X
∨) generating cocycles

3 Z/2Z⊕Z/2Z⊕Z/2Z
(

Λ∨
6 − 2Λ∨

7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6 − 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
−2Λ∨

6

[
[2, 7 ⊇ 7] +(

−Λ∨
6 − 2Λ∨

7

[
[3, 7 ⊇ 3]+

(
−2Λ∨

6

[
[3, 7 ⊇ 7]+

(
−Λ∨

6

[
[1, 3, 7]+

(
−Λ∨

6 − 2Λ∨
7

[
[4, 7 ⊇ 4]+(

−2Λ∨
6

[
[4, 7 ⊇ 7] +

(
−Λ∨

6 − 2Λ∨
7

[
[5, 7 ⊇ 5] +

(
−Λ∨

4 + 2Λ∨
5 − 3Λ∨

6

[
[5, 7 ⊇ 7] +(

2Λ∨
6 − 2Λ∨

7

[
[2, 6, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[3, 6, 7] +

(
2Λ∨

6 − 2Λ∨
7

[
[4, 6, 7] + Λ∨

4 [5, 6, 7]

Λ∨
6 [2, 5 ⊇ 2] + Λ∨

6 [2, 5 ⊇ 5] +
(

−Λ∨
6

[
[2, 4, 5] +

(
−Λ∨

2 − Λ∨
7

[
[5, 6 ⊇ 5] +(

−Λ∨
2 − Λ∨

7

[
[5, 6 ⊇ 6] +

(
−Λ∨

2 + Λ∨
4 − Λ∨

5 + Λ∨
6

[
[2, 5, 6] +(

−Λ∨
4 + 2Λ∨

5 − Λ∨
6

[
[5, 7 ⊇ 7] +

(
Λ∨

4 − 2Λ∨
5 + 2Λ∨

6 − 2Λ∨
7

[
[5, 6, 7]

2Λ∨
7 [1, 2 ⊇ 1] + 2Λ∨

7 [1, 2 ⊇ 2] +
(

−2Λ∨
7

[
[2, 3 ⊇ 2] +

(
−2Λ∨

7

[
[2, 3 ⊇ 3] +(

−2Λ∨
7

[
[1, 4 ⊇ 1] +

(
−2Λ∨

7

[
[1, 4 ⊇ 4] + 2Λ∨

7 [1, 2, 4] + 2Λ∨
7 [1, 3, 4] +

(
−2Λ∨

7

[
[2, 3, 4] +(

−2Λ∨
7

[
[1, 5 ⊇ 1] +

(
−2Λ∨

7

[
[1, 5 ⊇ 5] +

(
−2Λ∨

7

[
[2, 5 ⊇ 2] +

(
−2Λ∨

7

[
[2, 5 ⊇ 5] +(

−2Λ∨
7

[
[3, 5 ⊇ 3] +

(
−2Λ∨

7

[
[3, 5 ⊇ 5] + 2Λ∨

7 [2, 4, 5] + 2Λ∨
7 [3, 4, 5] +(

−2Λ∨
7

[
[1, 6 ⊇ 1] +

(
−2Λ∨

7

[
[1, 6 ⊇ 6] +

(
−2Λ∨

7

[
[2, 6 ⊇ 2] +

(
−2Λ∨

7

[
[2, 6 ⊇ 6] +(

−2Λ∨
7

[
[3, 6 ⊇ 3] +

(
−2Λ∨

7

[
[3, 6 ⊇ 6] +

(
−2Λ∨

7

[
[4, 6 ⊇ 4] +

(
−2Λ∨

7

[
[4, 6 ⊇ 6] +

2Λ∨
7 [4, 5, 6] +

(
−2Λ∨

7

[
[1, 7 ⊇ 1] +

(
−Λ∨

6

[
[1, 7 ⊇ 7] +

(
−2Λ∨

7

[
[2, 7 ⊇ 2] +(

−Λ∨
6

[
[2, 7 ⊇ 7] +

(
−Λ∨

6 + 2Λ∨
7

[
[1, 2, 7] +

(
−2Λ∨

7

[
[3, 7 ⊇ 3] +

(
−Λ∨

6

[
[3, 7 ⊇ 7] +(

Λ∨
6 − 2Λ∨

7

[
[2, 3, 7] +

(
−2Λ∨

7

[
[4, 7 ⊇ 4] +

(
−Λ∨

6

[
[4, 7 ⊇ 7] +

(
Λ∨

6 − 2Λ∨
7

[
[1, 4, 7] +(

−2Λ∨
7

[
[5, 7 ⊇ 5] +

(
−Λ∨

6

[
[5, 7 ⊇ 7] +

(
Λ∨

6 − 2Λ∨
7

[
[1, 5, 7] +

(
Λ∨

6 − 2Λ∨
7

[
[2, 5, 7] +(

Λ∨
6 − 2Λ∨

7

[
[3, 5, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7

[
[1, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7

[
[2, 6, 7] +(

−Λ∨
5 + 3Λ∨

6 − 3Λ∨
7

[
[3, 6, 7] +

(
−Λ∨

5 + 3Λ∨
6 − 3Λ∨

7

[
[4, 6, 7] +

(
Λ∨

5 − Λ∨
6 + Λ∨

7

[
[5, 6, 7]

k hk(X∨) generating cocycles

0 1 2Λ∨
7 []

1 2 2Λ∨
7 [1] + 2Λ∨

7 [2] + 2Λ∨
7 [3] + 2Λ∨

7 [4] + 2Λ∨
7 [5] + 2Λ∨

7 [6] + 2Λ∨
7 [7]

(
Λ∨

4 + 2Λ∨
7

[
[2]

2 4 2Λ∨
7 [1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5] + 2Λ∨

7 [6 ⊇ 6] + 2Λ∨
7 [7 ⊇ 7]

Λ∨
4 [1, 2] + Λ∨

4 [2, 3] + 2Λ∨
7 [1, 4] +

(
Λ∨

2 + Λ∨
7

[
[3, 4] + 2Λ∨

7 [1, 5] + 2Λ∨
7 [2, 5] + 2Λ∨

7 [3, 5] + 2Λ∨
7 [1, 6] +

2Λ∨
7 [2, 6] + 2Λ∨

7 [3, 6] + 2Λ∨
7 [4, 6] + 2Λ∨

7 [1, 7] + Λ∨
6 [2, 7] + 2Λ∨

7 [3, 7] + Λ∨
6 [4, 7] +

(
Λ∨

4 + 2Λ∨
7

[
[5, 7]

2Λ∨
7 [1, 2] + 2Λ∨

7 [2, 3] + 2Λ∨
7 [1, 4] + 2Λ∨

7 [1, 5] + 2Λ∨
7 [2, 5] + 2Λ∨

7 [3, 5] + 2Λ∨
7 [1, 6] + 2Λ∨

7 [2, 6] + 2Λ∨
7 [3, 6] +

2Λ∨
7 [4, 6] + 2Λ∨

7 [1, 7] + 2Λ∨
7 [2, 7] + 2Λ∨

7 [3, 7] + 2Λ∨
7 [4, 7] + 2Λ∨

7 [5, 7]

(
Λ∨

5 + Λ∨
7

[
[1, 3] +

(
Λ∨

4 + Λ∨
6 + 2Λ∨

7

[
[3, 5] + Λ∨

3 [4, 5] +
(

Λ∨
6 + 2Λ∨

7

[
[2, 7] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7] +(

Λ∨
6 + 2Λ∨

7

[
[4, 7] + Λ∨

4 [5, 7]
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k hk(X∨) generating cocycles

3 8 2Λ∨
7 [1 ⊇ 1 ⊇ 1] + 2Λ∨

7 [2 ⊇ 2 ⊇ 2] + 2Λ∨
7 [3 ⊇ 3 ⊇ 3] + 2Λ∨

7 [4 ⊇ 4 ⊇ 4] + 2Λ∨
7 [5 ⊇ 5 ⊇ 5] +

2Λ∨
7 [6 ⊇ 6 ⊇ 6] + 2Λ∨

7 [7 ⊇ 7 ⊇ 7]

Λ∨
4 [1, 2 ⊇ 1] + 2Λ∨

7 [1, 2 ⊇ 2] + 2Λ∨
7 [2, 3 ⊇ 2] + Λ∨

4 [2, 3 ⊇ 3] + 2Λ∨
7 [1, 4 ⊇ 1] + 2Λ∨

7 [1, 4 ⊇ 4] +(
Λ∨

2 + Λ∨
7

[
[3, 4 ⊇ 3] +

(
Λ∨

3 + Λ∨
5 + 3Λ∨

7

[
[3, 4 ⊇ 4] + Λ∨

3 [1, 3, 4] +
(

Λ∨
4 + 2Λ∨

7

[
[2, 3, 4] +

2Λ∨
7 [1, 5 ⊇ 1] + 2Λ∨

7 [1, 5 ⊇ 5] + 2Λ∨
7 [2, 5 ⊇ 2] + 2Λ∨

7 [2, 5 ⊇ 5] + 2Λ∨
7 [3, 5 ⊇ 3] + 2Λ∨

7 [3, 5 ⊇ 5] +(
Λ∨

4 + Λ∨
6 + 2Λ∨

7

[
[3, 4, 5] + 2Λ∨

7 [1, 6 ⊇ 1] + 2Λ∨
7 [1, 6 ⊇ 6] + 2Λ∨

7 [2, 6 ⊇ 2] + 2Λ∨
7 [2, 6 ⊇ 6] +

2Λ∨
7 [3, 6 ⊇ 3] + 2Λ∨

7 [3, 6 ⊇ 6] + 2Λ∨
7 [4, 6 ⊇ 4] + 2Λ∨

7 [4, 6 ⊇ 6] + 2Λ∨
7 [1, 7 ⊇ 1] + 2Λ∨

7 [1, 7 ⊇ 7] +
Λ∨

6 [2, 7 ⊇ 2] + 2Λ∨
7 [2, 7 ⊇ 7] + 2Λ∨

7 [3, 7 ⊇ 3] + 2Λ∨
7 [3, 7 ⊇ 7] + Λ∨

6 [4, 7 ⊇ 4] + 2Λ∨
7 [4, 7 ⊇ 7] +

Λ∨
6 [5, 7 ⊇ 5] +

(
Λ∨

4 + 2Λ∨
7

[
[5, 7 ⊇ 7] + Λ∨

4 [2, 5, 7] +
(

Λ∨
2 + Λ∨

7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[5, 6, 7]

2Λ∨
7 [1, 2 ⊇ 1] + 2Λ∨

7 [1, 2 ⊇ 2] + 2Λ∨
7 [2, 3 ⊇ 2] + 2Λ∨

7 [2, 3 ⊇ 3] + 2Λ∨
7 [1, 4 ⊇ 1] + 2Λ∨

7 [1, 4 ⊇ 4] +
2Λ∨

7 [1, 5 ⊇ 1] + 2Λ∨
7 [1, 5 ⊇ 5] + 2Λ∨

7 [2, 5 ⊇ 2] + 2Λ∨
7 [2, 5 ⊇ 5] + 2Λ∨

7 [3, 5 ⊇ 3] + 2Λ∨
7 [3, 5 ⊇ 5] +

2Λ∨
7 [1, 6 ⊇ 1] + 2Λ∨

7 [1, 6 ⊇ 6] + 2Λ∨
7 [2, 6 ⊇ 2] + 2Λ∨

7 [2, 6 ⊇ 6] + 2Λ∨
7 [3, 6 ⊇ 3] + 2Λ∨

7 [3, 6 ⊇ 6] +
2Λ∨

7 [4, 6 ⊇ 4] + 2Λ∨
7 [4, 6 ⊇ 6] + 2Λ∨

7 [1, 7 ⊇ 1] + 2Λ∨
7 [1, 7 ⊇ 7] + 2Λ∨

7 [2, 7 ⊇ 2] + 2Λ∨
7 [2, 7 ⊇ 7] +

2Λ∨
7 [3, 7 ⊇ 3] + 2Λ∨

7 [3, 7 ⊇ 7] + 2Λ∨
7 [4, 7 ⊇ 4] + 2Λ∨

7 [4, 7 ⊇ 7] + 2Λ∨
7 [5, 7 ⊇ 5] + 2Λ∨

7 [5, 7 ⊇ 7]

(
Λ∨

4 + 2Λ∨
7

[
[1, 2 ⊇ 2] +

(
Λ∨

2 + Λ∨
7

[
[1, 2, 3] +

(
Λ∨

2 + Λ∨
4 + Λ∨

7

[
[1, 2, 4] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 3, 7] +(

Λ∨
6 + 2Λ∨

7

[
[1, 4, 7] + Λ∨

4 [1, 5, 7] + Λ∨
4 [3, 5, 7] + Λ∨

3 [4, 5, 7]

(
Λ∨

5 + Λ∨
7

[
[1, 3 ⊇ 1] +

(
Λ∨

5 + Λ∨
7

[
[1, 3 ⊇ 3] +

(
Λ∨

4 + Λ∨
6 + 2Λ∨

7

[
[3, 5 ⊇ 3] + Λ∨

3 [4, 5 ⊇ 4] +

Λ∨
3 [4, 5 ⊇ 5] +

(
Λ∨

6 + 2Λ∨
7

[
[2, 7 ⊇ 2] +

(
Λ∨

6 + 2Λ∨
7

[
[3, 7 ⊇ 3] +

(
Λ∨

6 + 2Λ∨
7

[
[4, 7 ⊇ 4] +(

Λ∨
6 + 2Λ∨

7

[
[5, 7 ⊇ 5] + Λ∨

4 [5, 7 ⊇ 7] + Λ∨
4 [2, 5, 7] +

(
Λ∨

2 + Λ∨
7

[
[4, 5, 7] +

(
Λ∨

5 + Λ∨
6 + 3Λ∨

7

[
[5, 6, 7]

(
Λ∨

2 + Λ∨
5 + 2Λ∨

7

[
[1, 3, 4] + 2Λ∨

7 [2, 3, 4] + 2Λ∨
7 [2, 4, 5] + 2Λ∨

7 [3, 4, 5] + 2Λ∨
7 [4, 5, 6] + 2Λ∨

7 [5, 6, 7]

(
Λ∨

4 + 2Λ∨
7

[
[2, 5 ⊇ 2] +

(
Λ∨

2 + Λ∨
3 + Λ∨

4 + Λ∨
5 + 2Λ∨

7

[
[2, 4, 5] +

(
Λ∨

2 + Λ∨
7

[
[2, 5, 6] + Λ∨

6 [2, 5, 7]

Λ∨
4 [1, 2, 5] + Λ∨

4 [2, 3, 5] +
(

Λ∨
2 + Λ∨

7

[
[1, 4, 5] + 2Λ∨

7 [1, 2, 6] + 2Λ∨
7 [2, 3, 6] + 2Λ∨

7 [1, 4, 6] +(
Λ∨

2 + Λ∨
7

[
[1, 5, 6]+

(
Λ∨

2 + Λ∨
7

[
[3, 5, 6]+2Λ∨

7 [1, 2, 7]+2Λ∨
7 [2, 3, 7]+2Λ∨

7 [1, 4, 7]+Λ∨
6 [1, 5, 7]+Λ∨

6 [3, 5, 7]

k 0 1 2 3

compk
([ ⎤

0
1

⎣
⎛
⎜⎜⎝

1
1
1
0

∫
ˆ̂
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
0 0 1
1 1 1
0 0 0

∫
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
⎠

A.31.2 Cohomology of coweight lattice X∨ = P∨

[ϕu] = (1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z Λ∨
6 [2, 5 ⊇ 2] + Λ∨

6 [2, 5 ⊇ 5] +
(

−Λ∨
6

[
[2, 4, 5] +

(
−Λ∨

2

[
[5, 6 ⊇ 5] +

(
−Λ∨

2

[
[5, 6 ⊇ 6] +(

−Λ∨
2 + Λ∨

4 − Λ∨
5 + Λ∨

6

[
[2, 5, 6]
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k hk(X∨) generating cocycles

0 0

1 0

2 1 Λ∨
5 [1, 3] +

(
Λ∨

4 + Λ∨
6

[
[3, 5] + Λ∨

3 [4, 5]

3 3 Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] +
(

Λ∨
4 + Λ∨

6

[
[3, 5 ⊇ 3] + Λ∨

3 [4, 5 ⊇ 4] + Λ∨
3 [4, 5 ⊇ 5]

Λ∨
2 [1, 3, 4] + Λ∨

5 [2, 3, 4] +
(

Λ∨
3 + Λ∨

7

[
[2, 4, 5] + Λ∨

2 [3, 4, 5] +
(

Λ∨
3 + Λ∨

7

[
[4, 5, 6] + Λ∨

6 [2, 5, 7] +

Λ∨
2 [4, 5, 7] + Λ∨

2 [5, 6, 7]

Λ∨
7 [1, 2, 5] + Λ∨

7 [2, 3, 5] + Λ∨
7 [1, 2, 6] + Λ∨

7 [2, 3, 6] + Λ∨
7 [1, 4, 6] + Λ∨

5 [1, 2, 7] + Λ∨
5 [2, 3, 7] + Λ∨

5 [1, 4, 7] +
Λ∨

2 [1, 5, 7] + Λ∨
2 [3, 5, 7] + Λ∨

1 [4, 5, 7]

k 0 1 2 3

compk
([ ([ ([

⎛
⎝

1
0
0

∫
⎠

A.31.3 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + (−1) [3 ⊇ 3] + [1, 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] +
(−1) [6 ⊇ 6] + (−1) [7 ⊇ 7]

3 Z/2Z [1, 2 ⊇ 1] + [1, 2 ⊇ 2] + (−1) [2, 3 ⊇ 2] + (−1) [2, 3 ⊇ 3] + (−1) [1, 4 ⊇ 1] +
(−1) [1, 4 ⊇ 4] + [1, 2, 4] + [1, 3, 4] + (−1) [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [2, 4, 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6] + (−1) [1, 7 ⊇ 1] +
(−1) [1, 7 ⊇ 7] + (−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [3, 7 ⊇ 3] + (−1) [3, 7 ⊇ 7] +
(−1) [4, 7 ⊇ 4] + (−1) [4, 7 ⊇ 7] + (−1) [5, 7 ⊇ 5] + (−1) [5, 7 ⊇ 7] + [5, 6, 7]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5] + [6] + [7]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6] + [7 ⊇ 7]

[1, 2]+[2, 3]+[1, 4]+[1, 5]+[2, 5]+[3, 5]+[1, 6]+[2, 6]+[3, 6]+[4, 6]+[1, 7]+[2, 7]+[3, 7]+[4, 7]+[5, 7]
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k hk(F2) generating cocycles

3 5 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6] + [7 ⊇ 7 ⊇ 7]

[1, 2 ⊇ 1] + [1, 2 ⊇ 2] + [2, 3 ⊇ 2] + [2, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6] + [1, 7 ⊇ 1] + [1, 7 ⊇ 7] + [2, 7 ⊇ 2] + [2, 7 ⊇ 7] +
[3, 7 ⊇ 3] + [3, 7 ⊇ 7] + [4, 7 ⊇ 4] + [4, 7 ⊇ 7] + [5, 7 ⊇ 5] + [5, 7 ⊇ 7]

[1, 3, 4] + [2, 3, 4] + [2, 4, 5] + [3, 4, 5] + [4, 5, 6] + [5, 6, 7]

[1, 2, 5] + [2, 3, 5] + [1, 2, 6] + [2, 3, 6] + [1, 4, 6] + [1, 2, 7] + [2, 3, 7] + [1, 4, 7] + [1, 5, 7] + [3, 5, 7]

[2, 5, 7]

A.32 Root system E8

Dynkin diagram 1 3 4 5 6 7 8

2

Fundamental group P∨/Q∨ ≃ 0

A.32.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z Λ∨
6 [2, 5 ⊇ 2] + Λ∨

6 [2, 5 ⊇ 5] +
(

−Λ∨
6

[
[2, 4, 5] +

(
−Λ∨

2

[
[5, 6 ⊇ 5] +

(
−Λ∨

2

[
[5, 6 ⊇ 6] +(

−Λ∨
2 + Λ∨

4 − Λ∨
5 + Λ∨

6

[
[2, 5, 6]

k hk(X∨) generating cocycles

0 0

1 0

2 1 Λ∨
5 [1, 3] +

(
Λ∨

4 + Λ∨
6

[
[3, 5] + Λ∨

3 [4, 5]

3 2 Λ∨
5 [1, 3 ⊇ 1] + Λ∨

5 [1, 3 ⊇ 3] +
(

Λ∨
4 + Λ∨

6

[
[3, 5 ⊇ 3] + Λ∨

3 [4, 5 ⊇ 4] + Λ∨
3 [4, 5 ⊇ 5]

Λ∨
7 [1, 2, 4] +

(
Λ∨

6 + Λ∨
8

[
[1, 4, 7] +

(
Λ∨

6 + Λ∨
8

[
[1, 5, 7] + Λ∨

6 [2, 5, 7] +
(

Λ∨
6 + Λ∨

8

[
[3, 5, 7] + Λ∨

5 [1, 6, 7] +

Λ∨
5 [2, 6, 7] + Λ∨

5 [3, 6, 7] + Λ∨
5 [4, 6, 7] + Λ∨

6 [2, 5, 8] + Λ∨
2 [5, 6, 8]
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k 0 1 2 3

compk
([ ([ ([ ⎤

1
0

⎣

A.32.2 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z [1 ⊇ 1] + (−1) [2 ⊇ 2] + (−1) [3 ⊇ 3] + [1, 3] + (−1) [4 ⊇ 4] + (−1) [5 ⊇ 5] +
(−1) [6 ⊇ 6] + (−1) [7 ⊇ 7] + (−1) [8 ⊇ 8]

3 Z/2Z [1, 2 ⊇ 1] + [1, 2 ⊇ 2] + (−1) [2, 3 ⊇ 2] + (−1) [2, 3 ⊇ 3] + (−1) [1, 4 ⊇ 1] +
(−1) [1, 4 ⊇ 4] + [1, 2, 4] + [1, 3, 4] + (−1) [2, 3, 4] + (−1) [1, 5 ⊇ 1] + (−1) [1, 5 ⊇ 5] +
(−1) [2, 5 ⊇ 2] + (−1) [2, 5 ⊇ 5] + (−1) [3, 5 ⊇ 3] + (−1) [3, 5 ⊇ 5] + [2, 4, 5] + [3, 4, 5] +
(−1) [1, 6 ⊇ 1] + (−1) [1, 6 ⊇ 6] + (−1) [2, 6 ⊇ 2] + (−1) [2, 6 ⊇ 6] + (−1) [3, 6 ⊇ 3] +
(−1) [3, 6 ⊇ 6] + (−1) [4, 6 ⊇ 4] + (−1) [4, 6 ⊇ 6] + [4, 5, 6] + (−1) [1, 7 ⊇ 1] +
(−1) [1, 7 ⊇ 7] + (−1) [2, 7 ⊇ 2] + (−1) [2, 7 ⊇ 7] + (−1) [3, 7 ⊇ 3] + (−1) [3, 7 ⊇ 7] +
(−1) [4, 7 ⊇ 4] + (−1) [4, 7 ⊇ 7] + (−1) [5, 7 ⊇ 5] + (−1) [5, 7 ⊇ 7] + [5, 6, 7] +
(−1) [1, 8 ⊇ 1] + (−1) [1, 8 ⊇ 8] + (−1) [2, 8 ⊇ 2] + (−1) [2, 8 ⊇ 8] + (−1) [3, 8 ⊇ 3] +
(−1) [3, 8 ⊇ 8] + (−1) [4, 8 ⊇ 4] + (−1) [4, 8 ⊇ 8] + (−1) [5, 8 ⊇ 5] + (−1) [5, 8 ⊇ 8] +
(−1) [6, 8 ⊇ 6] + (−1) [6, 8 ⊇ 8] + [6, 7, 8]

k hk(F2) generating cocycles

0 1 []

1 1 [1] + [2] + [3] + [4] + [5] + [6] + [7] + [8]

2 2 [1 ⊇ 1] + [2 ⊇ 2] + [3 ⊇ 3] + [4 ⊇ 4] + [5 ⊇ 5] + [6 ⊇ 6] + [7 ⊇ 7] + [8 ⊇ 8]

[1, 2] + [2, 3] + [1, 4] + [1, 5] + [2, 5] + [3, 5] + [1, 6] + [2, 6] + [3, 6] + [4, 6] + [1, 7] + [2, 7] + [3, 7] +
[4, 7] + [5, 7] + [1, 8] + [2, 8] + [3, 8] + [4, 8] + [5, 8] + [6, 8]

3 4 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2] + [3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4] + [5 ⊇ 5 ⊇ 5] + [6 ⊇ 6 ⊇ 6] + [7 ⊇ 7 ⊇ 7] +
[8 ⊇ 8 ⊇ 8]

[1, 2 ⊇ 1] + [1, 2 ⊇ 2] + [2, 3 ⊇ 2] + [2, 3 ⊇ 3] + [1, 4 ⊇ 1] + [1, 4 ⊇ 4] + [1, 5 ⊇ 1] + [1, 5 ⊇ 5] +
[2, 5 ⊇ 2] + [2, 5 ⊇ 5] + [3, 5 ⊇ 3] + [3, 5 ⊇ 5] + [1, 6 ⊇ 1] + [1, 6 ⊇ 6] + [2, 6 ⊇ 2] + [2, 6 ⊇ 6] +
[3, 6 ⊇ 3] + [3, 6 ⊇ 6] + [4, 6 ⊇ 4] + [4, 6 ⊇ 6] + [1, 7 ⊇ 1] + [1, 7 ⊇ 7] + [2, 7 ⊇ 2] + [2, 7 ⊇ 7] +
[3, 7 ⊇ 3]+[3, 7 ⊇ 7]+[4, 7 ⊇ 4]+[4, 7 ⊇ 7]+[5, 7 ⊇ 5]+[5, 7 ⊇ 7]+[1, 8 ⊇ 1]+[1, 8 ⊇ 8]+[2, 8 ⊇ 2]+
[2, 8 ⊇ 8] + [3, 8 ⊇ 3] + [3, 8 ⊇ 8] + [4, 8 ⊇ 4] + [4, 8 ⊇ 8] + [5, 8 ⊇ 5] + [5, 8 ⊇ 8] + [6, 8 ⊇ 6] + [6, 8 ⊇ 8]

[1, 3, 4] + [2, 3, 4] + [2, 4, 5] + [3, 4, 5] + [4, 5, 6] + [5, 6, 7] + [6, 7, 8]

[1, 2, 5] + [2, 3, 5] + [1, 2, 6] + [2, 3, 6] + [1, 4, 6] + [1, 2, 7] + [2, 3, 7] + [1, 4, 7] + [1, 5, 7] + [2, 5, 7] +
[3, 5, 7] + [1, 2, 8] + [2, 3, 8] + [1, 4, 8] + [1, 5, 8] + [2, 5, 8] + [3, 5, 8] + [1, 6, 8] + [2, 6, 8] + [3, 6, 8] + [4, 6, 8]
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A.33 Root system F4

Dynkin diagram 1 2 3 4

Fundamental group P∨/Q∨ ≃ 0

A.33.1 Cohomology of coroot lattice X∨ = Q∨

[ϕu] = (1)
does not lie in the image of comp2

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0

3 Z/2Z Λ∨
4 [2, 3 ⊇ 2] + Λ∨

4 [2, 3 ⊇ 3] +
(

−Λ∨
1 + 2Λ∨

2 − 2Λ∨
3 + 2Λ∨

4

[
[2, 3, 4]

k hk(X∨) generating cocycles

0 0

1 0

2 1
(

Λ∨
1 + Λ∨

3

[
[2 ⊇ 2] +

(
Λ∨

1 + Λ∨
2

[
[1, 2]

3 3
(

Λ∨
1 + Λ∨

3

[
[2 ⊇ 2 ⊇ 2] + Λ∨

1 [1, 2 ⊇ 1] +
(

Λ∨
2 + Λ∨

3

[
[1, 2 ⊇ 2]

(
Λ∨

1 + Λ∨
3

[
[2, 3 ⊇ 2]

Λ∨
1 [2, 3 ⊇ 3]

k 0 1 2 3

compk
([ ([ ([

⎛
⎝

1
0
0

∫
⎠

A.33.2 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [3 ⊇ 3] + (−1) [4 ⊇ 4] + [3, 4]

[1 ⊇ 1] + (−1) [2 ⊇ 2] + [1, 2]
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k Hk(W0,Z) generating cocycles

3 Z/2Z⊕Z/2Z [2, 3 ⊇ 2] + [2, 3 ⊇ 3]

[1, 3 ⊇ 1] + [1, 3 ⊇ 3] + (−1) [1, 4 ⊇ 1] + (−1) [1, 4 ⊇ 4] + (−1) [2, 4 ⊇ 2] +
(−1) [2, 4 ⊇ 4] + [1, 3, 4]

k hk(F2) generating cocycles

0 1 []

1 2 [1] + [2]

[3] + [4]

2 4 [1 ⊇ 1] + [2 ⊇ 2]

[3 ⊇ 3] + [4 ⊇ 4]

[1, 3] + [1, 4] + [2, 4]

[2, 3]

3 8 [1 ⊇ 1 ⊇ 1] + [2 ⊇ 2 ⊇ 2]

[3 ⊇ 3 ⊇ 3] + [4 ⊇ 4 ⊇ 4]

[1, 3 ⊇ 1] + [1, 4 ⊇ 1] + [2, 4 ⊇ 2]

[1, 3 ⊇ 3] + [1, 4 ⊇ 4] + [2, 4 ⊇ 4]

[2, 3 ⊇ 2]

[2, 3 ⊇ 3]

[1, 2, 3]

[2, 3, 4]

A.34 Root system G2

Dynkin diagram 1 2

Fundamental group P∨/Q∨ ≃ 0

A.34.1 Cohomology of coroot lattice X∨ = Q∨

ϕu = ∂τ with τ = Λ∨
1 [1] + Λ∨

2 [2]

k Hk(W0,X
∨) generating cocycles

0 0

1 0

2 0



286 A COMPUTATIONAL RESULTS

k Hk(W0,X
∨) generating cocycles

3 0

k hk(X∨) generating cocycles

0 0

1 0

2 0

3 0

k 0 1 2 3

compk
([ ([ ([ ([

A.34.2 Cohomology with trivial coefficients

k Hk(W0,Z) generating cocycles

0 Z []

1 0

2 Z/2Z⊕Z/2Z [2 ⊇ 2]

[1 ⊇ 1]

3 Z/2Z [1, 2 ⊇ 1] + [1, 2 ⊇ 2]

k hk(F2) generating cocycles

0 1 []

1 2 [1]

[2]

2 3 [1 ⊇ 1]

[2 ⊇ 2]

[1, 2]

3 4 [1 ⊇ 1 ⊇ 1]

[2 ⊇ 2 ⊇ 2]

[1, 2 ⊇ 1]

[1, 2 ⊇ 2]
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B Program listings

B.1 DeConciniSalvetti.py

1 from itertools import chain

2 from sage.all import ZZ

3 from sage.combinat.free_module import CombinatorialFreeModule

4

5 def subsets_of_cardinality_atmost(S,k):

6 """Returns an iterable of all the subsets of cardinality <= k of the (finite) set S."""

7 assert k >= 0

8 if k > 0 and len(S) > 0:

9 for SS in subsets_of_cardinality_atmost(S[1:], k):

10 yield SS

11 if len(SS) < k:

12 yield (S[0],)+SS

13 else:

14 yield ()

15

16 # TODO: Return only those flags with \Gamma_1 generating a finite subgroup, i.e. such that

17 # order(st) < \infty for all s,t \in S, in order to support finitely generated infinite Coxeter ⏎

� groups.

18 def flags_of_cardinality(S,k):

19 """Returns an iterable over all the flags of cardinality k over the (finite) set S.

20

21 Returns an iterable over all tuples (Gamma_1, Gamma_2, ...) s.t. S \supseteq Gamma_1 \ ⏎

� supseteq Gamma_2

22 and \sum_{i \geq 1} \# Gamma_i = k

23 """

24 assert k >= 0

25 if k == 0:

26 yield ()

27 elif len(S) > 0:

28 for Gamma_1 in subsets_of_cardinality_atmost(S,k):

29 m = len(Gamma_1)

30 for flag in flags_of_cardinality(Gamma_1, k-m):

31 yield (Gamma_1,) + flag

32

33 def minimal_coset_representatives(W, TT, T):

34 """Returns the representatives of the left <TT>-cosets in <T>.

35

36 Given a Coxeter group W and subsets TT \subseteq T of the set S of distinguished generators ⏎

� of W,

37 returns the representatives of the left <TT>-cosets in the subgroups <T> of W.

38 """

39 reps = [W.one()]

40 yield W.one()

41 n = 0

42 while len(reps) > 0:

43 n = n+1

44 longer_reps = []

45 for g in reps:

46 for s in T:

47 gg = s*g

48 l = gg.length()

49 if l == n and not gg in longer_reps and all( (gg*t).length() > l for t in TT ):

50 yield gg

51 longer_reps.append(gg)

52 reps = longer_reps

53

54 def mu(Gamma, tau):

55 """Returns \# { \gamma \in \Gamma : \gamma \leq \tau \}.

56

57 Given a set Gamma of integers and an integer tau in Gamma, returns the

58 number of elements of Gamma that are smaller or equal to tau.

59 """

60 return sum(1 for x in Gamma if x <= tau)

61

62 def number_of_inversions(f, X):

63 return sum(chain.from_iterable((1 for y in X if x < y and f[x] > f[y]) for x in X))

64

65 def alpha(W, Gamma, i, tau, beta, conj_map):

66 return i*beta.length() + sum(len(Gamma_j) for Gamma_j in Gamma[:i-1]) + mu(Gamma[i-1], tau) ⏎
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� + sum(number_of_inversions(conj_map, Gamma_j) for Gamma_j in Gamma[i:])

67

68 def compute_conj_map(W, beta, X, Y):

69 """Returns the dictionary describing the mapping Gamma_i_plus_one -> Gamma_i_minus_tau, x ⏎

� |-> \beta.inverse() * x * beta if well-defined, otherwise None.

70

71 Given a Coxeter group W and an element beta of W, and sequences X, Y of elements of W. ⏎

� simple_reflections().keys(),

72 returns a dictionary f such that

73 f[x] = beta.inverse() * x * beta

74 for all x in X, if the right hand side is an element of Y for all x, otherwise returns None ⏎

� .

75 """

76 beta_inv = beta.inverse()

77 conj_map = {}

78 for x in X:

79 gg = beta_inv * W.simple_reflections()[x] * beta

80 for y in W.simple_reflections().keys():

81 if W.simple_reflections()[y] == gg:

82 if y in Y:

83 conj_map[x] = y

84 break

85 else:

86 return None

87 if not x in conj_map: # beta^(-1) * x * beta isn’t even a simple reflection

88 return None

89 return conj_map

90

91 class DeConciniSalvettiResolution:

92 """Class representing the free resolution of the trivial R[W]-module R as constructed by ⏎

� DeConcini-Salvetti"""

93 def __init__(self, W, R=ZZ):

94 """Constructs the DeConcini-Salvetti resolution of W.

95

96 Given a finite Coxeter group W (actually, W can be finitely or even countably generated ⏎

� , but that’s not implemented right now),

97 returns the DeConcini-Salvetti resolution of the trivial R[W]-module R.

98 """

99 self.W = W

100 self.R = R

101 self._modules = {}

102 self._flags = {}

103 self._morphisms = {}

104

105 def S(self, k):

106 """Returns the canonical basis of C(k), given by the set of flags of cardinality k."""

107 assert k >= 0

108 if not k in self._flags:

109 self._flags[k] = list(flags_of_cardinality(self.W.simple_reflections().keys(), k)) ⏎

� # TODO: I’m using the keys instead of the generators themselves; is this ⏎

� necessary?

110 return self._flags[k]

111

112 def C(self, k):

113 """The k-dimensional piece of the deConcini-Salvetti complex (C(k) = 0 for k < 0)."""

114 if not k in self._modules:

115 if k >= 0:

116 self._modules[k] = CombinatorialFreeModule(self.W.algebra(self.R), self.S(k))

117 else:

118 self._modules[k] = CombinatorialFreeModule(self.W.algebra(self.R), [])

119 return self._modules[k]

120

121 def delta(self, k):

122 """The differential delta(k): C(k) -> C(k-1).

123

124 Given an integer k, returns the differential delta(k): C(k) -> C(k-1) in degree k.

125 """

126 Ck_minus_1_basis = self.C(k-1).basis()

127 def index_to_reflection(k):

128 return self.W.simple_reflections()[k]

129 def delta_terms(Gamma):

130 for i in [ i for i in range(len(Gamma)) if len(Gamma[i]) > (len(Gamma[i+1]) if i+1 ⏎

� < len(Gamma) else 0) ]:

131 Gamma_i_plus_one = Gamma[i+1] if i+1 < len(Gamma) else ()
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132 for tau in Gamma[i]:

133 Gamma_i_minus_tau = tuple( x for x in Gamma[i] if not x == tau )

134 for beta in minimal_coset_representatives(self.W, map(index_to_reflection, ⏎

� Gamma_i_minus_tau), map(index_to_reflection, Gamma[i])):

135 beta_inv = beta.inverse()

136 conj_map = compute_conj_map(self.W, beta, Gamma_i_plus_one, ⏎

� Gamma_i_minus_tau)

137 if conj_map == None: # x |-> beta^{-1} * x * beta does not define a map ⏎

� from Gamma_i_plus_one to Gamma_i_minus_tau

138 continue

139 if len(Gamma_i_minus_tau) > 0:

140 Gamma_prime = Gamma[:i] + (Gamma_i_minus_tau,) + tuple(tuple(sorted ⏎

� (conj_map[x] for x in Gamma_j)) for Gamma_j in Gamma[i+1:])

141 else:

142 Gamma_prime = Gamma[:i]

143 yield (-1)**alpha(self.W, Gamma, i+1, tau, beta, conj_map) * (beta * ⏎

� Ck_minus_1_basis[Gamma_prime])

144

145 def delta(Gamma):

146 return sum(delta_terms(Gamma))

147 if not k in self._morphisms:

148 if k >= 1:

149 self._morphisms[k] = self.C(k).module_morphism(on_basis=delta, codomain=self.C( ⏎

� k-1))

150 else:

151 self._morphisms[k] = self.C(k).module_morphism(on_basis=lambda x: self.C(k). ⏎

� zero(), codomain=self.C(k-1))

152 return self._morphisms[k]

B.2 CoxeterCohomology.py

1 import itertools

2 from itertools import chain

3 from sage.modules.free_module_morphism import FreeModuleMorphism

4 from sage.modules.free_module import FreeModule, FreeModule_generic

5 from sage.groups.abelian_gps.abelian_group import AbelianGroup

6 from sage.all import vector, matrix, divisors, GF, Hom, ZZ, QQ

7 from DeConciniSalvetti import *

8

9 def finite_direct_sum_of_constant_family(I, R, M):

10 ’’’Given a finite set I, and a FreeModule M over a ring R, returns the copower M^{(I)} = \ ⏎

� bigoplus_{i \in I} M.

11

12 More precisely, returns a triple (N, components, from_components), where

13 N - instance of FreeModule

14 components - function that given an element n of N, returns a dict { i: i-th component ⏎

� of m }

15 from_components - function that given a dict { i: n[i] }, returns an element n of N such ⏎

� that n[i] is the i-th component of N

16 ’’’

17 assert isinstance(M, FreeModule_generic)

18 m = len(M.gens())

19 assert m == M.rank()

20 index_to_I = list(I)

21 len_I = len(index_to_I)

22 N = FreeModule(R, len_I*m)

23 I_to_index = {}

24 for k in range(len_I):

25 I_to_index[index_to_I[k]] = k

26 def components(x):

27 return { i : M.linear_combination_of_basis(x[m*I_to_index[i]:m*(I_to_index[i]+1)]) for ⏎

� i in I }

28 def from_components(comp):

29 return N.linear_combination_of_basis(list(chain.from_iterable(( M.coordinate_vector( ⏎

� comp[i]) if i in comp.keys() else M.zero_vector() for i in I))))

30 return (N, components, from_components)

31

32 # M should be a free (combinatorial ?) R[G]-module and N should be a FreeModule over a PID R ( ⏎

� must be = ZZ) at the moment

33 # and action is a function of two variables that given (g, x) as input, where g is an element ⏎

� of G

34 # and x in an element of N, returns another element of N.

35 # More precisely: x in an element of N.V(), and given any two elements x,x’ of N.V() that ⏎

� define the same element of N,
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36 # i.e. such that x-x’ lies in N.W(), the elements action(g,x) and action(g,x’) should define ⏎

� the same element of N

37 def hom_module(M, N, action):

38 M_gens = M.gens()

39 M_basis = M.basis()

40 M_basis_keys = M_basis.keys()

41 hom_M_N, components, from_components = finite_direct_sum_of_constant_family(M_basis_keys, N ⏎

� .base_ring(), N)

42 def new_action(g, x):

43 comp = components(x)

44 return from_components({ i: action(g,comp[i]) for i in M_basis_keys })

45 return (hom_M_N, M_basis, M_basis_keys, components, from_components, new_action)

46

47 def sum_in_module(M, iterable):

48 x = M.zero()

49 for val in iterable:

50 x = x+val

51 return x

52

53 # Given an action of a monoid on a module,

54 # this computes the linearly extended action

55 def linearly_extended_action(M, action, a, x):

56 return sum_in_module(M, map(lambda g: a[g]*action(g, x), a.support()))

57

58 # Given f: M’ --> M, computes the induced homomorphism

59 # f^\ast: Hom(M, N) ---> Hom(M’, N)

60 # not very elegant to make this function take hom_M_prime_N_data and hom_M_N_data as additional ⏎

� arguments

61 # , but I want to avoid unnecessary computations and the problem of nonunique representations, ⏎

� i.e. we shouldn’t rely

62 # on hom_module returning the same objects given the same input.

63 def hom_module_induced_morphism(f, N, action, hom_M_prime_N_data, hom_M_N_data):

64 M_prime = f.domain()

65 M = f.codomain()

66 hom_M_prime_N, M_prime_basis, M_prime_basis_keys, prime_components, prime_from_components, ⏎

� prime_hom_action = hom_M_prime_N_data

67 hom_M_N, M_basis, M_basis_keys, components, from_components, hom_action = hom_M_N_data

68 f_values = {}

69 for i_prime in M_prime_basis_keys:

70 f_values[i_prime] = f(M_prime_basis[i_prime])

71 def f_star_components(x):

72 c_x = components(x)

73 c = {}

74 for i_prime in M_prime_basis_keys:

75 a = f_values[i_prime]

76 for c in N.coordinates(sum_in_module(N, [ linearly_extended_action(N, action, a[i], ⏎

� c_x[i]) for i in a.support() ])):

77 yield c

78 matrix_representing_f_star = matrix([tuple(f_star_components(x)) for x in hom_M_N.basis()], ⏎

� ncols=hom_M_prime_N.rank())

79 return FreeModuleMorphism(Hom(hom_M_N, hom_M_prime_N), matrix_representing_f_star)

80

81 def coroot_lattice_as_fg_Z_W_module(cartan_type):

82 R = RootSystem(cartan_type)

83 L = R.coroot_lattice()

84 basis = L.basis()

85 basis_keys = basis.keys()

86 M = FreeModule(ZZ, len(basis_keys)) # Instances of CombinatorialFreeModule aren’t instances ⏎

� of FreeModule: WTF?!?

87 W = L.weyl_group()

88 def M_to_L(x):

89 d = x.dict()

90 return sum_in_module(L, [ d[i]*basis[basis_keys[i]] for i in d.keys() ])

91 def L_to_M(x): # this is slows a hell!

92 return vector(list([ x[k] for k in basis_keys ]))

93 def new_action(g, x): # TODO this is slow, *really*, *really* slow. Fix this!

94 return L_to_M(g.action(M_to_L(x)))

95 return (W, L, M, M_to_L, L_to_M, new_action)

96

97 # given a FreeModule M over a ring R’ with a coerce_map to R,

98 # returns the base change of M to R, i.e. M\otimes_{R’} R

99 def base_change_module(M,R):

100 assert R.has_coerce_map_from(M.base_ring())

101 MM = FreeModule(R, len(M.basis()))
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102 # given an element x of M, returns the image of x in MM under the canonical map

103 # M ---> MM = M \otimes_{R’} R

104 def base_change_map(x):

105 return MM.from_vector(vector(map(R.coerce_map_from(M.base_ring()), M.coordinates(x))))

106 MM.base_change_map = base_change_map

107 return MM

108

109 # given a f homomorphism between FreeModule’s over a ring R’ that is

110 # endowed with a coerce map to a ring R, returns the base change of f:

111 # f\otimes_{R’} R: M\otimes_{R’} R ---> N\otimes_{R’} R

112 def base_change_morphism(f, R):

113 M = f.domain()

114 N = f.codomain()

115 assert R.has_coerce_map_from(f.base_ring())

116 MM = base_change_module(M, R)

117 NN = base_change_module(N, R)

118 return FreeModuleMorphism(Hom(MM,NN), f.matrix().change_ring(R))

119

120 # class generating the lattices Q(R^vee) <= X_\Omega <= P(R^vee)

121 # , corresponding to subgroups \Omega <= P(R^vee)/Q(R^vee), as

122 # free ZZ-modules endowed with action of the Weyl Group

123 #

124 # TODO: At the moment, only the computation of the cocharacter lattice is implemented,

125 # as it’s the only thing we need. Maybe one fine day I shall implement the character lattice

126 # too.

127 class RootDatumGenerator:

128 def __init__(self, R):

129 self.R = R # don’t really need to keep this, but might as well

130 self.Pvee = R.coweight_lattice()

131 basis = self.Pvee.basis()

132 basis_keys = tuple(basis.keys())

133 dim = len(basis_keys)

134 self.MPvee = FreeModule(ZZ, dim)

135 self.MQvee = self.MPvee.submodule([ vector([ alpha_vee[j] for j in basis_keys ]) for ⏎

� alpha_vee in self.Pvee.simple_roots() ])

136 self.fundamental_group = self.MPvee/self.MQvee

137 def Pvee_to_MPvee(x):

138 return vector([ x[k] for k in basis_keys ]) # using x[k] is way faster than x. ⏎

� coefficient(k)

139 def MPvee_to_Pvee(x):

140 return sum_in_module(self.Pvee, [ x[i]*basis[basis_keys[i]] for i in range(dim) ])

141 def action52(g, x):

142 return Pvee_to_MPvee(g.action(MPvee_to_Pvee(x)))

143 self.action = action52

144 self.Pvee_to_MPvee = Pvee_to_MPvee

145 self.MPvee_to_Pvee = MPvee_to_Pvee

146

147 # returns an element of Pvee that maps to x under Pvee -->> fundamental_group

148 def lift_to_Pvee(self, x):

149 return self.MPvee_to_Pvee(x.lift())

150

151 # returns the image of the element x under the map Pvee -->> fundamental_group

152 def map_to_fundamental_group(self, x):

153 return self.Pvee_to_MPvee(x)

154

155 # returns the sublattice X of Pvee corresponding to the subgroup Omega of the ⏎

� fundamental_group

156 def cocharacter_lattice(self, Omega):

157 return self.MPvee.submodule(list(self.MQvee.gens()) + [ x.lift() for x in Omega.gens() ⏎

� ])

158

159 class CohomologyOfRootData(RootDatumGenerator):

160 def __init__(self, R):

161 RootDatumGenerator.__init__(self, R)

162 self.W = R.coweight_lattice().weyl_group()

163

164 def cohomology_of_cocharacter_lattice(self, Omega):

165 WC = WeylCohomology(self.W, self.cocharacter_lattice(Omega), self.action)

166 WC_mod2, comparison = WC.base_change(GF(2))

167 def universal_2_cocycle():

168 assert tuple(self.W.simple_reflections().keys()) == tuple(self.Pvee.simple_roots(). ⏎

� keys())

169 assert list(self.W.simple_reflections().keys()) == list(self.Pvee.basis().keys())

170 indices = self.W.simple_reflections().keys()
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171 assert all(self.W.simple_reflections()[i].action(self.Pvee.simple_roots()[i]) == - ⏎

� self.Pvee.simple_roots()[i] for i in indices) # make sure numberings match up

172 K2, K2_basis, K2_basis_keys, K2_components, K2_from_components, K2_action = WC._K ⏎

� (2)

173 phi_u_components = {}

174 for i in indices:

175 Gamma = ((i,), (i,))

176 assert Gamma in K2_basis_keys

177 phi_u_components[Gamma] = self.Pvee.simple_roots()[i] # again, L.simple_roots() ⏎

� actually consists of coroots (weird convention)

178 return K2_from_components({Gamma: self.Pvee_to_MPvee(phi_u_components[Gamma]) for ⏎

� Gamma in phi_u_components.keys()})

179 phi_u = WC_mod2.K(2).base_change_map(universal_2_cocycle()) # universal_2_cocycle() ⏎

� lives in Hom(CS_2, X^vee) (and isn’t actually a cocycle)

180 _comp = {}

181 def comparison_on_gens(k):

182 if not k in _comp:

183 _comp[k] = [ WC_mod2.H(k).quotient_map()(WC_mod2.K(k).base_change_map(x.lift()) ⏎

� ) for x in WC.H(k).gens() ]

184 return _comp[k]

185 mod2_ker = WC_mod2.d(2).kernel()

186 M = mod2_ker / mod2_ker.submodule([ WC_mod2.K(2).base_change_map(x) for x in WC.d(2). ⏎

� kernel().gens() ])

187 return (WC, WC_mod2, comparison_on_gens, phi_u, WC_mod2.H(2).quotient_map()(phi_u), M. ⏎

� quotient_map()(phi_u))

188

189 def subgroups_of_finite_abelian_group(A):

190 assert len(A.invariants()) == len(A.gens())

191 B = AbelianGroup(A.invariants()) # A is an instance of FGP_Module, which is not a subclass ⏎

� of AbelianGroup

192 # The Sage function AbelianGroup.subgroups is *really, really* slow (as of version 8.1)

193 for BB in reversed(B.subgroups()): # I prefer to get smaller subgroups first

194 yield A.submodule([ A.sum(( gen.exponents()[i]*A.gens()[i] for i in range(len(A.gens()) ⏎

� ) )) for gen in BB.gens() ])

195

196 def faster_kernel(f):

197 ’’’Computes the kernel of a morphism between FreeModules.

198

199 Until this is fixed in Sage, it is necessary if we want to compute

200 kernels of integer matrices in our lifetime.

201 ’’’

202 if f.base_ring() == ZZ:

203 K = f.matrix().change_ring(QQ).kernel().intersection(FreeModule(ZZ, f.domain().rank()))

204 return f.domain().submodule([ f.domain().linear_combination_of_basis(x) for x in K.gens ⏎

� () ])

205 else:

206 return f.kernel()

207

208 # base class for cocomplexes that are dimension-wise finite free R-modules

209 class CocomplexOfFreeModules:

210 def __init__(self, R=ZZ):

211 self.R = R

212

213 def base_ring(self):

214 return self.R

215

216 # the k-th dimensional module

217 def K(self, k):

218 raise NotImplementedError # override in subclass

219

220 # the k-th dimensional differential d(k): K(k) --> K(k+1)

221 def d(self, k):

222 raise NotImplementedError # override in subclass

223

224 def base_change(self, new_base):

225 assert new_base.has_coerce_map_from(self.R) # in a just world, we would start from a ⏎

� ring morphism, and wouldn’t need this code

226 new_cocomplex = CocomplexOfFreeModules(new_base)

227 _K = {}

228 _d = {}

229 def new_K(new_self, k):

230 if not k in _K:

231 _K[k] = base_change_module(self.K(k), new_base) # self.K(k).change_ring( ⏎

� new_base)
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232 return _K[k]

233 def new_d(new_self, k):

234 if not k in _d:

235 _d[k] = base_change_morphism(self.d(k), new_base) # self.d(k).change_ring( ⏎

� new_base)

236 return _d[k]

237 # comparison map, given k returns a (python) function

238 # self.K(k) --> self.base_change(new_base).K(k)

239 # at the moment, this is just the identity (because of Sage’s weirdness)

240 def comparison(k):

241 def identity(x):

242 return x

243 return identity

244 new_cocomplex.K = new_K.__get__(new_cocomplex, CocomplexOfFreeModules) # thanks to Mad ⏎

� Physicist! https://stackoverflow.com/q/394770/

245 new_cocomplex.d = new_d.__get__(new_cocomplex, CocomplexOfFreeModules)

246

247 return (new_cocomplex, comparison)

248

249 # the k-th dimensional cohomology group

250 def H(self, k):

251 if not hasattr(self, ’_H’):

252 self._H = {}

253 if not k in self._H:

254 self._H[k] = faster_kernel(self.d(k))/self.d(k-1).image()

255 return self._H[k]

256

257 # A cocomplex K that computes the cohomology of a R[W]-module M.

258 # More precisely, the cocomplex K(k) = Hom_R[W](C(k),M), where C(k) is

259 # the DeConcini-Salvetti resolution of the trivial R[W]-module R.

260 #

261 # It is assumed that R is a principal ideal domain and that M is a FreeModule over R.

262 class WeylCohomology(CocomplexOfFreeModules):

263 def __init__(self, W, M, action, R=ZZ):

264 self.DCSR = DeConciniSalvettiResolution(W, R)

265 self.M = M

266 self.action = action

267 self.R = R

268 self.modules = {}

269 self.differential = {}

270 self.cohomology = {}

271

272 def _K(self, k):

273 if not k in self.modules:

274 self.modules[k] = hom_module(self.DCSR.C(k), self.M, self.action)

275 return self.modules[k]

276

277 def K(self, k):

278 return self._K(k)[0]

279

280 def d(self, k):

281 if not k in self.differential:

282 self.differential[k] = hom_module_induced_morphism(self.DCSR.delta(k+1), self.M, ⏎

� self.action, self._K(k+1), self._K(k))

283 return self.differential[k]

284

285 def test():

286 def d(cartan_type):

287 CRD = CohomologyOfRootData(RootSystem(cartan_type))

288 _, WC_mod2, _, _, _ = CRD.cohomology_of_cocharacter_lattice(CRD.fundamental_group. ⏎

� submodule([]))

289 return WC_mod2.H(2).dimension()

290 dims = {1: 1,

291 2: 0,

292 3: 2,

293 4: 0,

294 5: 3,

295 6: 0,

296 7: 3,

297 8: 0}

298 for ell in dims.keys():

299 print "Checking␣that␣dim_\\F_2␣H^2(W_0,X^\\vee␣\\otimes_\\Z␣\\F_2)␣=␣%d␣for␣A_%d" % ( ⏎

� dims[ell], ell)

300 dim = d([’A’,ell])
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301 if dim == dims[ell]:

302 print "OK"

303 else:

304 print "Test␣FAILED:␣dimension␣=␣%d" % dim

B.3 LaTeXOutput.py

1 import itertools

2 from sage.all import *

3 from CoxeterCohomology import *

4 from cypari2.handle_error import PariError

5 from os.path import isfile

6

7 def latex_rep_of_finite_abelian_group_with_invariants(invariants):

8 if len(invariants) == 0:

9 return ’0’

10 return ’␣\\oplus␣’.join(map(lambda n: (’\\Z/%d\\Z’ % n) if n > 0 else ’\\Z’, invariants))

11

12 def latex_rep_of_fundamental_group(crd):

13 omega = crd.fundamental_group

14 return (latex_rep_of_finite_abelian_group_with_invariants(omega.invariants()), ’,␣’.join( ⏎

� map(lambda gen: crd.lift_to_Pvee(gen)._latex_(), omega.gens())))

15

16 def latex_rep_of_subgroup_of_fundamental_group(crd, omega_prime):

17 if omega_prime == crd.fundamental_group:

18 return ’P^\\vee/Q^\\vee’

19 s = ’,␣’.join(map(lambda x: str(crd.fundamental_group.coerce_map_from(omega_prime)(x)), ⏎

� omega_prime.gens()))

20 if s == ’’:

21 return ’0’

22 else:

23 return ’\\left<%s\\right>’ % s

24

25 def latex_rep_of_salvetti_flag(Gamma):

26 return ’␣\\supseteq␣’.join(map(lambda Lambda_i: ’%s’ % ’,’.join(map(str, Lambda_i)), Gamma) ⏎

� )

27

28 def latex_rep_of_element_of_Pvee(x):

29 return x._latex_()

30

31 def latex_rep_of_element_of_MPvee(crd, x):

32 return latex_rep_of_element_of_Pvee(crd.MPvee_to_Pvee(x))

33

34 def latex_rep_of_element_of_MXvee(crd, MXvee, x):

35 return latex_rep_of_element_of_Pvee(crd.MPvee_to_Pvee(crd.MPvee.coerce_map_from(MXvee)(x)))

36

37 def latex_rep_of_salvetti_cochain(WC, k, phi, rep_for_M=str):

38 """Returns latex representation of the element phi of WC.K(k)."""

39 _, M_basis, M_basis_keys, components, _, _ = WC._K(k)

40 comp = components(phi)

41 def optional_parentheses(x):

42 return (’\\left(%s\\right)’ % x) if (’+’ in x or ’-’ in x) else x

43 s = ’␣+␣’.join(map(lambda Gamma: ’%s\\bm{\\text{\\mbox{$[%s]$}}}’ % (optional_parentheses( ⏎

� rep_for_M(comp[Gamma])), latex_rep_of_salvetti_flag(Gamma)), filter(lambda Gamma: not ⏎

� comp[Gamma].is_zero(), M_basis_keys)))

44 return s if not s == ’’ else ’0’

45

46 def transpose_matrix(A):

47 n = len(A)

48 if n == 0:

49 return A

50 m = len(A[0])

51 return [ [ A[j][i] for j in range(n) ] for i in range(m) ]

52

53 def latex_rep_of_matrix(A):

54 matrix_contents = ’’

55 for row in A:

56 matrix_contents += ’␣&␣’.join(map(str, row)) + ’␣\\\\␣’

57 return ’\\begin{pmatrix}␣%s␣\\end{pmatrix}’ % (matrix_contents if matrix_contents != ’’ ⏎

� else ’\\relax’)

58

59 def latex_rep_of_cohomology(omega_prime, crd, WC, WC_mod2, comparison_on_gens, phi_u, ⏎

� class_of_phi_u, class_of_phi_u_mod, range_of_k=[0,1,2,3]):

60 s = ’’
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61 def cochain_rep(k, x):

62 return latex_rep_of_salvetti_cochain(WC, k, x, rep_for_M=lambda x: ⏎

� latex_rep_of_element_of_MXvee(crd, WC.M, x))

63 def mod2_cochain_rep(k, x):

64 x_lifted = WC.K(k).linear_combination_of_basis([ GF(2).lift(y) for y in x]) # lift to ⏎

� cochain in the Salvetti complex over MXvee

65 return latex_rep_of_salvetti_cochain(WC, k, x_lifted, rep_for_M=lambda x: ⏎

� latex_rep_of_element_of_MXvee(crd, WC.M, x))

66 def rep_of_comparison(comparison_on_gens):

67 A = [ x.list() for x in comparison_on_gens ]

68 return latex_rep_of_matrix(transpose_matrix(A))

69 # The cocycle phi_u

70 s += ’\n\\vskip␣5pt’

71 s += ’\n\\begin{center}’

72 s += ’\n\\scalebox{1.15}{\\fbox{\\begin{tabu}spread␣1cm{X[-1,R,$$]X[-1,L,$$]}’

73 if phi_u.is_zero():

74 s += ’\n␣\\phi_u␣&␣=\\␣0␣\\\\’

75 elif class_of_phi_u.is_zero():

76 s += ’\n␣\\phi_u␣&␣=\\␣\\partial␣\\tau␣\\text{␣with␣}␣\\tau␣=␣%s␣\\\\’ % ⏎

� mod2_cochain_rep(1, WC_mod2.d(1).lift(phi_u))

77 else:

78 s += ’\n␣[\\phi_u]␣&␣=\\␣\\left(%s\\right)␣\\\\’ % ’,␣’.join(map(str, WC_mod2.H(2). ⏎

� coordinate_vector(class_of_phi_u)))

79 if class_of_phi_u_mod.is_zero():

80 s += ’\n␣&␣\\textbf{␣lies␣in␣the␣image␣of␣$\\text{comp}_2$}’ # TODO: Give pre-image

81 else:

82 s += ’\n␣&␣\\textbf{␣does␣not␣lie␣in␣the␣image␣of␣$\\text{comp}_2$}’

83 s += ’\n\\end{tabu}}}’

84 s += ’\n\\end{center}\n’

85 # Integral cohomology

86 s += ’\n\\begin{longtabu}{lX[-0.3,C,$$]>{\\footnotesize}X[1,L,$$]}’

87 s += ’\n\\toprule’

88 s += ’\n\\rowfont{\\bf}’

89 s += ’\nk␣&␣H^k(W_0,␣X^\\vee)␣&␣\\textbf{{\\normalsize␣generating␣cocycles}}␣\\\\’

90 s += ’\n\\midrule’

91 s += ’\n\\endhead’

92 row_counter = 1

93 n_rows = len(range_of_k)

94 for k in range_of_k:

95 row = ’%d␣&␣’ % k

96 row += ’%s␣&␣’ % latex_rep_of_finite_abelian_group_with_invariants(WC.H(k).invariants() ⏎

� )

97 row += ’%s’ % ’␣\\linebreak␣\\newline␣’.join(map(lambda x: cochain_rep(k, x.lift()), WC ⏎

� .H(k).gens()))

98 s += ’\n%s␣\\\\%s’ % (row, ’\\\\’ if row_counter < n_rows else ’’)

99 row_counter += 1

100 s += ’\n\\bottomrule’

101 s += ’\n\\end{longtabu}\n\n\\vskip␣0.5cm\n’

102 # Mod 2 cohomology

103 s += ’\n\\begin{longtabu}{lX[0.1,C,$$]>{\\footnotesize}X[1,L,$$]}’

104 s += ’\n\\toprule’

105 s += ’\n\\rowfont{\\bf}’

106 s += ’\nk␣&␣h^k(\\overline{X^\\vee})␣&␣\\textbf{{\\normalsize␣generating␣cocycles}}␣\\\\’

107 s += ’\n\\midrule’

108 s += ’\n\\endhead’

109 row_counter = 1

110 for k in range_of_k:

111 row = ’%d␣&␣’ % k

112 row += ’%s␣&␣’ % str(WC_mod2.H(k).dimension())

113 row += ’%s’ % ’␣\\linebreak␣\\newline␣’.join(map(lambda x: mod2_cochain_rep(k, WC_mod2. ⏎

� H(k).lift_map()(x)), WC_mod2.H(k).gens()))

114 s += ’\n%s␣\\\\%s’ % (row, ’\\\\’ if row_counter < n_rows else ’’)

115 row_counter += 1

116 s += ’\n\\bottomrule’

117 s += ’\n\\end{longtabu}\n\n\\vskip␣0.5cm\n’

118 # Matrices of comparison maps

119 s += ’\n\\begin{center}\\begin{tabu}spread␣1cm␣{>{\\bf}X[-1,R,$$]X[-1,C,$$]X[-1,C,$$]X[-1,C ⏎

� ,$$]X[-1,C,$$]}’

120 s += ’\n\\toprule’

121 s += ’\n%s␣\\\\’ % ’␣&␣’.join((’\\textbf{k}’,) + tuple(map(str, range_of_k)))

122 s += ’\n\\midrule’

123 s += ’\n%s␣\\\\’ % ’␣&␣’.join((’\\textbf{comp}_k’,) + tuple(map(lambda k: rep_of_comparison ⏎

� (comparison_on_gens(k)), range_of_k)))

124 s += ’\n\\bottomrule’
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125 s += ’\n\\end{tabu}\\end{center}\n’

126 s += ’\n\\vskip␣1␣cm␣\n’

127 return s

128

129 def latex_rep_of_trivial_cohomology(crd, WC_triv, WC_triv_mod2, range_of_k=[0,1,2,3]):

130 s = ’’

131 def cochain_rep(WC, k, x):

132 return latex_rep_of_salvetti_cochain(WC, k, x, rep_for_M=lambda x: ’’ if x[0] == 1 else ⏎

� str(x[0]))

133 # Trivial integral cohomology

134 s += ’\n\\begin{longtabu}{lX[0.3,C,$$]>{\\footnotesize}X[1,L,$$]}’

135 s += ’\n\\toprule’

136 s += ’\n\\rowfont{\\bf}’

137 s += ’\nk␣&␣H^k(W_0,␣\\Z)␣&␣\\text{{\\normalsize␣generating␣cocycles}}␣\\\\’

138 s += ’\n\\midrule’

139 s += ’\n\\endhead’

140 row_counter = 1

141 n_rows = len(range_of_k)

142 for k in range_of_k:

143 row = ’%d␣&␣’ % k

144 row += ’%s␣&␣’ % latex_rep_of_finite_abelian_group_with_invariants(WC_triv.H(k). ⏎

� invariants())

145 row += ’%s’ % ’␣\\linebreak␣\\newline␣’.join(map(lambda x: cochain_rep(WC_triv, k, x. ⏎

� lift()), WC_triv.H(k).gens()))

146 s += ’\n%s␣\\\\%s’ % (row, ’\\\\’ if row_counter < n_rows else ’’)

147 row_counter += 1

148 s += ’\n\\bottomrule’

149 s += ’\n\\end{longtabu}\n\n\\vskip␣0.5cm\n’

150 # Trivial Mod 2 cohomology

151 s += ’\n\\begin{longtabu}{lX[0.1,C,$$]>{\\footnotesize}X[1,L,$$]}’

152 s += ’\n\\toprule’

153 s += ’\n\\rowfont{\\bf}’

154 s += ’\nk␣&␣h^k(\\F_2)␣&␣\\text{{\\normalsize␣generating␣cocycles}}␣\\\\’

155 s += ’\n\\midrule’

156 s += ’\n\\endhead’

157 row_counter = 1

158 for k in range_of_k:

159 row = ’%d␣&␣’ % k

160 row += ’%s␣&␣’ % str(WC_triv_mod2.H(k).dimension())

161 row += ’%s’ % ’␣\\linebreak␣\\newline␣’.join(map(lambda x: cochain_rep(WC_triv_mod2, k, ⏎

� WC_triv_mod2.H(k).lift_map()(x)), WC_triv_mod2.H(k).gens()))

162 s += ’\n%s␣\\\\%s’ % (row, ’\\\\’ if row_counter < n_rows else ’’)

163 row_counter += 1

164 s += ’\n\\bottomrule’

165 s += ’\n\\end{longtabu}\n\n\\vskip␣1cm␣\n’

166 return s

167

168 def latex_rep_of_cohomology_of_type(cartan_type):

169 s = ’’

170 R = RootSystem(cartan_type)

171 CRD = CohomologyOfRootData(R)

172 cartan_type_text_repr = "%s%d" % (cartan_type[0], cartan_type[1])

173 s += ’\\subsection{Root␣system␣\\texorpdfstring{$%s$}{%s}}’ % (R.cartan_type()._latex_(), ⏎

� cartan_type_text_repr)

174 s += ’\n\\fbox{\\begin{tabular}{rp{1cm}l}’

175 s += ’\n\\textbf{Dynkin␣diagram}␣&␣&␣%s␣\\\\␣[2em]’ % R.dynkin_diagram()._latex_()

176 group_rep, gens_rep = latex_rep_of_fundamental_group(CRD)

177 s += ’\n\\textbf{Fundamental␣group}␣&␣&␣\n{$\\begin{aligned}␣P^\\vee/Q^\\vee␣&␣\simeq␣%s␣ ⏎

� \\\\’ % group_rep

178 if len(gens_rep) > 0:

179 s += ’\n␣&␣\\text{␣generated␣by␣}␣%s␣\\in␣P^\\vee␣\\mod␣Q^\\vee’ % gens_rep

180 s += ’\n\\end{aligned}$}’

181 s += ’\n\\end{tabular}}\n’

182 section_counter = 0

183 for omega in subgroups_of_finite_abelian_group(CRD.fundamental_group):

184 WC, WC_mod2, comp_on_gens, phi_u, class_of_phi_u, class_of_phi_u_mod = CRD. ⏎

� cohomology_of_cocharacter_lattice(omega)

185 if omega.invariants() == (): # simply connected case

186 s += ’\n\\subsubsection{Cohomology␣of␣coroot␣lattice␣\\texorpdfstring{$X^\\vee␣=␣Q ⏎

� ^\\vee$}{X^v␣=␣Q^v}}’

187 s += ’\n\\label{subsub:cohomology_of_%s_simply_connected}’ % cartan_type_text_repr

188 elif omega == CRD.fundamental_group: # adjoint case

189 s += ’\n\\subsubsection{Cohomology␣of␣coweight␣lattice␣\\texorpdfstring{$X^\\vee␣=␣ ⏎

� P^\\vee$}{X^v␣=␣P^v}}’
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190 s += ’\n\\label{subsub:cohomology_of_%s_adjoint}’ % cartan_type_text_repr

191 else: # general case

192 omega_latex_rep = latex_rep_of_subgroup_of_fundamental_group(CRD, omega)

193 omega_text_rep = str(omega)

194 s += ’\n\\subsubsection{Cohomology␣of␣lattice␣\\texorpdfstring{$X^\\vee$}{X^v}␣ ⏎

� corresponding␣to␣\\texorpdfstring{$\\Omega␣=␣%s$}{Omega␣=␣%s}}’ % ( ⏎

� omega_latex_rep, omega_text_rep)

195 s += ’\n\\label{subsub:cohomology_of_%s_%d}’ % (cartan_type_text_repr, ⏎

� section_counter)

196 section_counter += 1

197 s += ’\n’+latex_rep_of_cohomology(omega, CRD, WC, WC_mod2, comp_on_gens, phi_u, ⏎

� class_of_phi_u, class_of_phi_u_mod)

198 WC_triv = WeylCohomology(CRD.W, FreeModule(ZZ, 1), lambda g,x: x, R=ZZ)

199 WC_triv_mod2 = WeylCohomology(CRD.W, FreeModule(GF(2), 1), lambda g,x: x, R=GF(2))

200 s += ’\n\\subsubsection{Cohomology␣with␣trivial␣coefficients}’

201 s += ’\n\\label{subsub:cohomology_of_%s_with_trivial_coefficients}’ % cartan_type_text_repr

202 s += ’\n’+latex_rep_of_trivial_cohomology(CRD, WC_triv, WC_triv_mod2)

203 return s

204

205 def compute_cohomology_for_type(X, range_of_ell):

206 for ell in range_of_ell:

207 print "Computing␣cohomology␣of␣%s_%d␣..." % (X, ell)

208 filename = ’cohomology_of_%s_%d.tex’ % (X, ell)

209 if isfile(filename):

210 print "File␣already␣exists,␣SKIPPING."

211 else:

212 s = latex_rep_of_cohomology_of_type([X,ell])

213 with open(filename, ’w’) as f:

214 f.write(s)

215 print "DONE."

B.4 main.py

1 from sage.all import *

2 from LaTeXOutput import *

3 import sys

4

5 def main():

6 if len(sys.argv) > 2:

7 compute_cohomology_for_type(sys.argv[1], list(map(int, sys.argv[2:])))

8 else:

9 print "Usage:␣sage␣main.py␣<type>␣<list-of-ranks>\nFor␣example:␣sage␣main.py␣A␣2␣3␣4\n"

10

11 if __name__ == ’__main__’:

12 main()

B.5 Makefile

1 .phony: no-default-goal sync-changes compute-A compute-B compute-C compute-D compute-F compute- ⏎

� E compute-G compute-all

2

3 SAGE = /Applications/SageMath/sage

4

5 A_RANGE = 1 2 3 4 5 6 7 8

6 B_RANGE = 2 3 4 5 6 7 8

7 C_RANGE = 2 3 4 5 6 7 8

8 D_RANGE = 3 4 5 6 7 8

9 E_RANGE = 6 7 8

10 F_RANGE = 4

11 G_RANGE = 2

12

13 CRD-FILES = DeConciniSalvetti.py CoxeterCohomology.py LaTeXOutput.py main.py

14 CRD-DIR = /Users/nico/Documents/math/crd

15

16 no-default-goal:

17 @echo "No␣default␣goal␣set.␣Please␣choose␣a␣goal␣manually"

18

19 sync-changes:

20 rsync -v *.py $(CRD-DIR)

21

22 commit: sync-changes

23 cd $(CRD-DIR) && git commit -a && git push

24
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25 compute-A:

26 @echo "Computing␣cohomology␣of␣type␣A"

27 $(SAGE) main.py A $(A_RANGE)

28

29 compute-B:

30 @echo "Computing␣cohomology␣of␣type␣B"

31 $(SAGE) main.py B $(B_RANGE)

32

33 compute-C:

34 @echo "Computing␣cohomology␣of␣type␣C"

35 $(SAGE) main.py C $(C_RANGE)

36

37 compute-D:

38 @echo "Computing␣cohomology␣of␣type␣D"

39 $(SAGE) main.py D $(D_RANGE)

40

41 compute-E:

42 @echo "Computing␣cohomology␣of␣type␣E"

43 $(SAGE) main.py E $(E_RANGE)

44

45 compute-F:

46 @echo "Computing␣cohomology␣of␣type␣F"

47 $(SAGE) main.py F $(F_RANGE)

48

49 compute-G:

50 @echo "Computing␣cohomology␣of␣type␣G"

51 $(SAGE) main.py G $(G_RANGE)

52

53 compute: compute-A compute-B compute-C compute-D compute-E compute-F compute-G
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