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Abstract

This is a contribution to the theory of Hecke algebras. A class of algebras called generic pro-p Hecke
algebras is introduced, enlarging the class of generic Hecke algebras by considering certain extensions of
(extended) Coxeter groups. Examples of generic pro-p Hecke algebras are given by pro-p-Iwahori Hecke
algebras and Yokonuma-Hecke algebras. The notion of an orientation of a Coxeter group is introduced and
used to define ‘Bernstein maps’ intimately related to Bernstein’s presentation and to Cherednik’s cocycle.
It is shown that certain relations in the Hecke algebra hold true, equivalent to Bernstein’s relations in the
case of Iwahori-Hecke algebras.

For a certain subclass called affine pro-p Hecke algebras, containing Iwahori-Hecke and pro-p-Iwahori
Hecke algebras, an explicit canonical and integral basis of the center is constructed and finiteness results
are proved about the center and the module-structure of the algebra over its center, recovering results of
Bernstein-Zelevinsky-Lusztig and Vignéras.

Zusammenfassung

Es wird ein Beitrag zur Theorie der Hecke-Algebren geleistet. Speziell wird eine Klasse von Algebren
eingefiihrt, die generischen pro-p Hecke-Algebren, welche die Klasse der generischen Hecke-Algebren erwei-
tert durch Ubergang von Coxetergruppen zu Erweiterungen solcher durch abelsche Gruppen. Beispiele sind
gegeben durch pro-p-Iwahori Hecke-Algebren und Yokonuma-Hecke Algebren. Es wird der Begriff der Orien-
tierung einer Coxetergruppe eingefithrt und benutzt um sogenannte Bernsteinabbildungen definieren, welche
eng verwandt sind mit der Bernsteinprasentierung und dem Cherednik-Kozykel. Sodann wird gezeigt, dass
zwischen den Bildern der Bernsteinabbildungen gewisse Relationen herrschen, welche sich im Spezialfall der
Iwahori-Hecke Algebra auf die bekannten Bernsteinrelationen reduzieren.

Ferner wird fiir die Unterklasse der affinen pro-p Hecke-Algebren, welche sowohl die Iwahori-Hecke als
auch die pro-p-Iwahori Hecke-Algebren umfassen, eine kanonische und ganzzahlige Basis des Zentrums kon-
struiert und es werden Endlichkeitssétze tiber das Zentrum, aufgefasst als Algebra, und tiber die Hecke-
Algebra selbst, aufgefasst als Modul iiber dem Zentrum, bewiesen. Dabei werden bereits bekannte Ergebnisse
von Bernstein-Zelevinsky-Lusztig und Vignéras verallgemeinert.
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0 Introduction

The present article is a contribution to the theory of Hecke algebras, continuing previous work of the
author. It is concerned with a recent addition to the diverse family of algebras that go under the name ‘Hecke
algebra’, the ‘pro-p Hecke algebras’. The story of these algebras begins with the two articles , of
Vignéras, both of which generalize the theory of the center of affine Hecke algebras (‘Bernstein’s presentation’)
of Bernstein-Zelevinsky and Lusztig , but in different directions.

The first article develops an integral version of this theory, removing the restrictions on the ring of
coefficients. Recall that affine Hecke algebras H, (W, S) are defined with respect to a base ring R by generators
{Tw}wew and relations

(0.0.1) Tyl = Tww if £(w) + L(w') = (ww')
(0.0.2) T? = g5+ (¢s = DTs (s€S)

depending on the choice of an extended affine Weyl group W (associated to some root datum (X, ®, XV, ®V)), a
set S C W of simple reflections (defining a length function ¢ : W — IN), and a family {¢s}scs C R of parameters
subject to the constraint

qs = q¢ if s,t € S are conjugate in W

This general definition imposes no restrictions on the nature of the ring R whatsoever. However in , it
was assumed that the ring of coefficients be R = C and that the parameters ¢, are invertibleﬂ Traditionally,
this wasn’t seen as a restriction because the results of were usually applied in the context of complex
representations of reductive groups and the classical Langlands program.

Let us briefly recall how affine Hecke algebras are related to reductive groups. Given a splitEl connected reduc-
tive group G over a nonarchimedean local field F' and an Iwahori subgroup I < G(F'), a standard construction
from representation theory yields the associated Iwahori-Hecke algebra H(G(F'),I) over R. This algebra has
an R-basis indexed by the set I\G(F')/I of double cosets with product structure given by convolution. More
conceptually, the algebra H(G(F), I) identifies with the endomorphism ring of the R-linear G(F')-representation
ind?(F) 1 induced from the trivial representation of I. By Frobenius reciprocity, this induced representation
also represents the functor of I-invariants of G(F')-representations, and the latter therefore lifts to a functor

(0.0.3) {R-linear G(F')-representations} — {Right-H(G(F), I)-modules}

relating representations of reductive groups to modules of Iwahori-Hecke algebras. Finally, affine Hecke algebras
and Iwahori-Hecke algebras are related via the Iwahori-Matsumoto presentation of H(G(F'),I), which defines
an isomorphism

H,(W,S) =5 H(G(F),T)

where W is the extended Weyl group of the root datum of G and the parameters ¢ all equal the cardinality
q = p" of the residue field of F.

1The results of are actually applicable to any ring R as long as the ¢s are invertible and admit square roots.

2The splitness assumption is necessary in order to dispose of the Iwahori-Matsumoto presentation; although it was a folklore
result that Iwahori-Hecke algebras of non-split groups admit an Iwahori-Matsumoto presentation with unequal parameters, there
was no proof or even a precise result available until the appearance of .
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Note that when R = C, the parameters g5 are invertible and the results of [Lus89] are applicable. On the
other hand if R is a field of characteristic p, the ¢, are all equal to zero. In this case there is no hope of applying
the Bernstein-Zelevinsky theory as presented in [Lus89], since the relevant constructions depend ezplicitly on
the invertibility of the parameters ¢s.

In particular, Bernstein-Zelevinsky’s description of the center of affine Hecke algebras had not been available
to the mod p Langlands program—which aims to study representations of reductive groups in precisely this equal-
characteristic situation—when it emerged in the early 2000s. The purpose of [Vig06] was to remedy this fact
by developing an integral version of the theory in [Lus89|. The surprising result of [Vig06] was that one could
completely avoid any invertibility assumptions and make the results carry over to arbitrary coefficient rings by
simply replacing the Bernstein-Zelevinsky basis {0,7,,} with an integral variant {E,,} differing from it only by
explicit scalar factors.

Still, it was not clear how useful Hecke algebras would be in the study of mod p representations because, in
contrast to the case of characteristic zero, the functor of I-invariants is not exact in characteristic p. However, it
was soon observed that a certain variant of the Iwahori subgroup enjoys a remarkable property in characteristic
p that almost makes up for the lack of exactness. This property goes back to the following elementary fact:
a p-group that acts on a nonzero IF,-vector space must have a nonzero fix point. It follows at once that the
same holds true more generally for pro-p groups acting smoothly, i.e. with open stabilizers, and for arbitrary
coefficient rings of characteristic p. Thus, if one replaces an Iwahori subgroup I by its maximal open normal
pro-p subgroup I(1) < I, the analogue

{R-linear G(F')-representations} — {Right-H (G(F), I(1))-modules}

of the functor above sends nonzero smooth representations to nonzero modules (while still being not
exact of course). This remarkable property has some important consequences. For example, it implies the
following practical irreducibility criterion: a G(F)-representation V generated by its I(1)-invariants V() is
irreducible if the H(G, I(1))-module V() is simple.

The subgroup I(1) < I and the algebra H(G(F'),1(1)) were introduced by Vignéras in the second article
[Vig05], where they were named ‘pro-p-Iwahori group’ and ‘pro-p-Iwahori Hecke algebra’ respectively. Since the
appearance of [Vig05], these ‘higher congruence analogues’ of the Iwahori-Hecke algebras have proven to be of
ever-growing importance in the mod p Langlands program (see also |F1il1] for an application in the classical
context).

Having removed the restrictions on the ring of coefficients in [Vig06], in [Vig05] Vignéras re-developed this
new integral Bernstein-Zelevinsky theory in the context of pro-p-Iwahori Hecke algebras (of split groups). Sur-
prisingly, the results carried over almost verbatim. However, the methods of proof were different as [Vig05|] dealt
with the concrete convolution Hecke algebras H(G(F'),I(1)) and not with abstract Hecke algebras H,(W,.S)
defined by generators and relations. As a result, the proofs in [Vig05| were less elementary as they assumed
some familiarity with reductive groups. A more serious consequence was that one could not take advantage of
a reduction argument (the ‘specialization argument’; see remark available in the abstract setting that
often allows one to reduce statements to the case of invertible parameters.

For these reasons, it seemed desirable if there was a ‘pro-p analogue’ of the affine Hecke algebras. Our first
contribution to this subject was to verify that such an analogue exists: the generic pro-p Hecke algebras that
formed the subject of [Sch09].

More precisely, generic pro-p Hecke algebras are the pro-p analogues of generic Hecke algebras. The latter
generalize affine Hecke algebras by allowing (W, S) to be abstract ‘extended Coxeter groups’ instead of just
extended affine Weyl groups. The generic pro-p Hecke algebras which are analogous to affine Hecke algebras
and to which the Bernstein-Zelevinsky method applies are the affine pro-p Hecke algebras (see definition [2.1.4)).

Like generic Hecke algebras, generic pro-p Hecke algebras are associated to a ‘Coxeter-like’ group W)
equipped with a length function £ : W) — IN and a set of parameters, and are equipped with a linear basis
{T,,} indexed by W) such that relations similar to , above (see definition for details) hold
true.

However, there are two essential differences. First of all, the W) aren’t extended Coxeter groups but
extensions

1 T w w 1

of extended Coxeter groups by abelian groups (where the group T is not to be confused with the basis {T},}).
In particular even for affine pro-p Hecke algebras, the representation as a group of isometries of a real affine
space the groups W) come equipped with is in genera not faithful. In other words, the groups W) are

3The general case being T' # 1; in the degenerate case T = 1, the notion of generic pro-p Hecke algebras reduces to that of
generic Hecke algebras, making the latter a special case of the former.



only ‘geometric up to T’, which adds an extra layer of difficulty to many statements whose analogues for affine
Hecke algebras have purely geometric proofs. But, this difficulty also forces one to recognize structures that
remain hidden in the classical case. Namely, of great importance is the existence of a family (ns)ses of lifts of
the simple reflections s € S to the group W) which satisfy the braid relations

(0.0.4) NN ... = NyNgny ... if st is of order m < oo
—_—
m factors m factors

For generic Hecke algebras, the canonical choice ns = s renders this point trivial. But, even in this case it
is ultimately the existence of this family (cf. the proof of theorem that allows the construction of the
‘Bernstein functions’ 6 on which the Bernstein-Zelevinsky theory rests. Showing the existence of such lifts
ns € W) in examples associated to reductive groups is nontrivial (cf. lemma and related to describing
normalizers of maximal tori in split reductive groups, a problem that has been studied in depth by Tits [Tit66].
In fact, his ‘groupes de Coxeter étendu’ are almost the same as our ‘pro-p Coxeter groups’ (see section [L.8]).

The second difference is that the analogues of the quadratic relations are more delicate and that
generic pro-p Hecke algebras must therefore be viewed as objects H(Y) = H(1)(a, b) that depen on two families
{as}s, {bs}s of parameters, instead of one family {gs}s, and are thus actually pro-p analogues of the two-
parameter generic Hecke algebras Hy (W, S) which are defined like H, (W, S) but with the quadratic relation
T? = g5+ (gs — 1)Ts replaced by T2 = a4 + bsTs. But whereas working with two parameters is a convenience in
the classical case, in the pro-p case it becomes a necessity because the parameters by appearing in the quadratic
relations

n

T3 =asTh2 + bT,,

are no longer elements of the ground ring R but elements of the group ring R[T] of T' (viewed as a subalgebra
of #Y) by identifying an element ¢ € T with the basis element T; € H()). Thus, there is no sensible one-
parameter version of the generic pro-p Hecke algebras as the parameters as, bs never satisfy a simple relation
like by = as — 1 in interesting examples. Yet, even for generic Hecke algebras it is fruitful to let as and b, vary
independently because then (and only then!) it is possible to reduce statements to the case as = 1 using the
‘specialization argument’ mentioned before, where formulas take on a particularly simple form.

With these abstract versions of the pro-p-Iwahori Hecke algebras at hand, the next goal then becomes to
redevelop the integral Bernstein-Zelevinsky theory of [Vig05| using generic algebra methods as in [Lus89] and
[Vig06]. Recall that the method of Bernstein—ZeleVinskyEl rests on the decomposition

W:XNWQ

of W into a semi-direct product of a finite group Wy (‘Weyl group’) and a ‘large’ abelian subgroup X (‘lattice
of translations’) provided by the root datum (X, ®, XV, ®V) giving rise to W, with the group Wy acting on X;
because the group law on the abelian subgroup X is traditionally written additively, one uses the exponential
notation 7* when viewing an x € X as an element of W, in order to avoid confusion. With this convention, the
action of Wy can be written as
w(z) = wrw ™!
To the commutative subgroup X now corresponds a commutative subalgebra A C H,(W,S) via a group
homomorphisnﬁ ~
0:X — Hy(W,S)~

such that the 0(x), x € X form a basis of A and Wy acts on it via algebra automorphisms permuting the basis
elements. The main result of the Bernstein-Zelevinsky method is the equality

Z(Hy(W,8)) = Ao

between the center of the Hecke algebra and the invariants of this commutative subalgebra under the action of
the Weyl group. Proving this equality usually proceeds in two steps (cf. [Lus89]). First, one establishes that
AWo lies in the center using the Bernstein relations, and then one shows—using this inclusion—that equality
must hold. In [Lus83] the last step is justified by referring to a ‘Nakayama argument’ (without providing
details). Here and in [Sch09], we follow the mentioned outline but replace the ‘Nakayama argument’ with a
combination of an induction (theorem and an explicit computation (proposition that shows that

4The dependence on the group W) is suppressed in the notation.
5The description of the center of affine Hecke algebras for ‘constant parameters’ was obtained by Bernstein and Zelevinsky in
an unpublished work. Their results were generalized by Lusztig in [Lus89|, which is the canonical reference for the theory.

69 corresponds to the map denoted by 0 in [Lus89]. We use the notation 0 in order to be consistent with the notation for the
normalized Bernstein maps 6, to be introduced later that generalize # and have ‘unnormalized’ counterparts denoted by 6,.
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the subalgebra A equals its own centralizer (in the ‘split case’; in the ‘non-split case’ it is a proper subalgebra
of A in general). This step isn’t difficult although somewhat convoluted (especially in the ‘non-split case’).

The essential difficulty of the Bernstein-Zelevinsky method lies in establishing the Bernstein relations. In
[Lus89], they are stated in the following form (restated here for two parameters). Given a reflection s = s, €
Wy N S attached to a simple root o : X — Z and an element z € X, we have

bsw if ao(X) =2
(0.0.5) 0(x)T, — T,0(s(z)) = —6(=a?) o
ai/Q (a;1/2b5 + as_,l/zbs/a(—av)) —l(x) 0:( (28(3))) if a(X)=2Z

where oV € X denotes the dual coroot of o and s’ € S is any simple reflection conjugate to the affine reflection

V; Vo, . a .
Sa1 =T ¢ 547" in W. The homomorphism 6 is defined as

0(x) = T,T; "
where y, z € X are any two elements lying in the dominant cone that satisfy = y—z, and the Tw are normalized
versions of the T,, determined by TS = agl/ it s and the analogues of the braid relations .

In [Vig05|], Vignéras established analogues of the Bernstein relations for pro-p-Iwahori Hecke algebras; her
proof closely followed Lusztig’s intricate computational proof |[Lus89|. Shortly after her article appeared, Gortz
published a simple geometric proof |G6r07] of the Bernstein relations for affine Hecke algebras. When we learnt
of his article, we hoped that his geometric approach might work for pro-p-Iwahori Hecke algebras too. His proof
was based on Ram’s theory of alcove walk algebras [Ram06]. The main input of that theory to Gortz’ proof is a
geometric interpretation of the elements 0( ) based on identifying formal expressions in the Hecke algebra hkl

ToTe . T (e € {£1))

S1 7 82

with ‘coloured’ or ‘signed’ galleries (i.e. ‘unfolded alcove walks’ in the terminology of [Ram06]) in the Coxeter
complex starting at the base alcove C, the above expression corresponding to the gallery

F:(C'():C'7 012810, 02281520, ey Crzsl...STC)

from C to wC', where w = s7 . - Sr and the colour of the arrow from C;_1 to C; is determined by the sign ¢;, as
in figure [1 Expandmg T and T in the definition of 9( ) = T T ! into a product of generators TS7 it is easy
to see that 9( ) is given by some coloured gallery in this way.

The key point however is this: fixing an ‘orientation’ (see definition , there is a canonical way to colour
every ordinary (uncoloured) gallery starting at C' in such a way that any two such coloured galleries having
the same endpoint define the same element in the Hecke algebra. For the ‘spherical orientation’ attached to
the dominant Weyl chamber (see definition , this is the content of the following theorem, quoted verbatim
from |Gor07] (W corresponding to ‘W,’°; and C to ‘a’ in his notation):

0.0.1 Theorem. Let w € W,. For an expression
(1.1.1) w=S8; ...,
of w as a product in the generators (which does not have to be reduced), consider the element

W(w) =TS ... T

S"n

in the affine Hecke algebra, where the €, € {£1} are determined as follows. Let b be an alcove far
out in the anti-dominant chamber (“far out” depends on w, and the result will then be independent
of b, see section [...] for a precise definition). For each v, consider the alcove ¢, := s;, ...S;,_,a,
and denote by H, the affine root hyperplane containing its face of type i,,. We set

{1 if ¢, is on the same side of H, as b
€, =

—1  otherwise

Then the element U(w) is independent of the choice of the expression (1.1.1).
(|Gor07, Theorem 1.1.1])

"In order to avoid some minor subtleties arising from the group € of elements of length zero, we assume that = 1, i.e. that
the extended affine Weyl group W coincides with the affine Weyl group.
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Figure 1: The coloured gallery I' = (Cy, ..., Cs5) corresponding to the expression Ty, T, Ty, T, T, " in the affine
Coxeter complex of type As.

The theorem also holds true with the T replaced by the T;, and the galleries corresponding to the expressions

T, . T 00 T

tVYl
arising from expanding fy and T, in 0(z) = fyijl into reduced products (i.e. £(y) =n, £(z) =m)
FooF. T and T—T . 7,

of the generators TS are easily seen to be coloured according to the method given in the theorem. Therefore,
O(zx) is given by any canonically coloured gallery from C to z + C, giving the Bernstein homomorphism 6 a
very natural and intuitive interpretation in terms of alcove walks. This geometric interpretation fueled Gortz
geometric proof of the Bernstein relations, reducing it essentially to a telescopic sum expansion of the left hand
side, with each summand possessing a geometric interpretation as an alcove walk. Before we explain this in
more detail, let us note some further consequences of the above theorem. These consequences played no explicit
role in Gortz’ original proof, but they allow us to recast it in a way that makes it adaptable to the pro-p case.
In order to simplify the exposition, we will discuss everything in the affine case first, making only some brief
indications on how the pro-p case differs, and then later discuss the pro-p case more fully.

The first thing to note is that the above theorem suggests to extend the Bernstein homomorphism to a map
defined on all of W. Further, we will see in a moment that it is useful to explicitly denote the dependence
on the orientation. Let us therefore write 6,(w) for the element defined by a gallery from C to w(C') that is
coloured according to the orientation o, and let o denote the spherical orientation attached to the dominant
Weyl chamber (hence § = 6,) in the following. The group W naturally acts on orientations from the right such
that the signs assigned to a gallery T by o e w are the ones assigned to w(I') by 0. Granting the theorem, the
definitions then immediately imply the following cocycle rule (called product formula in [Sch09)):

(0.0.6) B0 (ww') = O (w) 0w (w')

The cocycle rule recovers the homomorphism property of the ‘Bernstein homomorphism’ because the subgroup
X acts trivial on o (indeed on all spherical orientations). Moreover, the cocycle rule implies the formula

50 (w)™t = go.w(w_l)

Because the spherical orientation o of the dominant Weyl chamber has the property that go(s) = f; L for all
simple reflections s € Wy, it follows from the cocycle rule that one can rewrite the second summand on the left

hand side of (0.0.5) as
To0(5(2)) = a ' ?0pes(5)0, (5(2)) = a1/ %00es (s7°)) = a1/?0pes(775)

S S
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The first summand can’t be rewritten in this way, but since

Ooes (2)Ts = a1/ %000s(2)000s(5) = a}/20pes(%5)

it follows that

g(x)TS — ng(s(x)) = a§/2 (50 (x) — 50.5(:13)> Ooes(S)

The proof of the Bernstein relations therefore comes down to computing the difference 50 (z)— 50.5 (z). To carry
out this computation, one chooses an explicit expression 7% = s; ... s, (not necessarily reduced) and writes this
difference as a telescopic sum

Oo(z) — Ooes(z) = TEH .. T5r = T5H ... Toy = T, TS, (f — s ) Tor T
i
Since the sum needs only to be taken over the indices ¢ where e; # €/, one can use the quadratic relations in
the Hecke algebra written in the symmetric form Ty — T, 1 = a?l/ 2bs to simplify each summand:
T To, (To =TS TS T = el P, T T TS T

Si+1 Si41

The crucial point of the proof now is to recognize each summand as something defined a priori, without reference
to the particular chosen expression 7 = s1...s,. This step is very delicate in the pro-p case, which makes
transposing Gortz’ to this context nontrivial. In fact, it quickly became apparent to us that a purely geometric
proof of the Bernstein relations for pro-p Hecke algebras couldn’t exist, unless a miracle happened. This miracle
is:

0.0.2 Theorem. For any hyperplane H € $ and any orientation o € O, there exists a unique
element Z,(H) € HY, such that if s € S, w € W with

r(wnsw ) = H
then
ED(H):\/@Aw(bS) fo(wn; 'w™l) = Vas Y0, (wng fw ) - w(bs)
(Proposition/definition [1.11.1])

For affine Hecke algebras no miracle beyond Gortz’ theorem is needed to see that

(0.0.7) TS .. TS~ 1Tfjf...f§: Oo(51...5;...5,)
= 0o (s1,7") = O0(55, )000s(2)

writing sz, = (s1...8i_1)8i(s1...5,_1)" ! for the reflection at the i-th (affine) hyperplane H; crossed by the
gallery T' = (C, 51C, 51520, ..., 2 + C), and denoting with §; the omission of the element s; from the sequence.
One therefore arrives at the formula

(0.0.8) 00(2) — Ooes <Z€ a; o(sH, )) Ooes(2)

If the expression 7% = s;7...s, is taken to be reduced, the H; appearing in the above sum are precisely the
hyperplanes separating C' and = + C at which the orientations o and o e s disagree (i.e. those parallel to the
hyperplane H, defined by the root «). Since as,, bs,, and the sign &; only depend on the hyperplane H;, the
whole sum is therefore purely geometric and independent of the chosen expression. The classical Bernstein

relations (0.0.5)) are now easily derived from ((0.0.8) using the identity

Oo(51)0005(2)000s(5) = b (s5)00 (s(2))

and by recognizing >, 50(5 H,8) as a geometric sum.
The proof sketched above is a reformulation of the proof of Gortz: his proof was direct and didn’t involve
formula (0.0.8]). Although a general notion of orientation was defined there, the discussion in |Go6r07] was
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restricted to the spherical orientation o attached to the dominant Weyl chamber and its associated Bernstein
map 6,; in particular, neither the cocycle rule nor appeared.

As we’ve already seen, the cocycle rule is important because it simplifies many computations. It also brings
the connection to the work of Cherednik (see below), and forms the proper basis for the definition of the Bernstein
maps in the case of extended or pro-p Coxeter groups. Its discovery—a lucky byproduct of pedantic notation—
was the origin of [Sch09]. Its impetus led us to consider {6,(w)}wew and its integral version {0, (w)}wew
instead of the traditional Bernstein-Zelevinsky basis {gg(x)Tw}we X, wew, and its integral analogue {E,, }wew
defined in [Vig06]. This resulted in the following integral analogue of the cocycle rule (see corollary ,
generalizing the formula for the product Fy,,,F,s given in [Vig06|:

(0.0.9) B0 (W)Boew (W) = X(w, w" )b, (wu')

The factor X(w,w’) that appears in this formula played an important role in establishing the integral theory,
both in [Vig06|] and in [Sch09]. In [Vig06], it appeare(ﬁ in the crucial ‘lemme fondamental’ ([Vig06, 1.2]), which
was not explicitly mentioned in [Sch09] but which we recover here in lemma In [Sch09|, the factor
X(w, w') entered through its relation to another map 7 (|Sch09, Lemma 3.3.26]) that was used to relate the
integral Bernstein map é\o to its non-integral counterpart 6, but was given no further interpretation. Here, we
show that the ‘lemme fondamentale’ and |[Sch09, Lemma 3.3.26] can be seen as exhibiting X as a 2-coboundary
in two different ways (see remark for details), the latter exhibiting X as the coboundary of 7.

Another interesting consequence of the cocycle rule—further emphasizing the importance to consider all
spherical orientations—was the realization that the basis of the center of the Hecke algebra provided by the
orbit sums N

z5 = Zaa(ﬂf)a v € Wo\X
iSie's
under the equality
Z(H,(W, ) = Ao

is in fact canonical, i.e. independent of the choice of 0. In fact, the independence of the element 23 from o turns
out to be equivalent to the fact that it lies in the center (see the proof of proposition .

Unfortunately, in [Sch09] we couldn’t realize this geometric approach to pro-p Hecke algebras to its full
potential as we didn’t dipose of the ‘miracle’ needed transpose Gortz’ proof into the context of pro-p Hecke
algebras. In addition, the proof of the Bernstein relations we gave was ﬂawedﬂ Moreover, the axiomatics of
‘affine pro-p Hecke algebras’ were too restrictive, as they only included the pro-p-Iwahori Hecke algebras of
split reductive groups. And so, although we achieved our goal of developing an abstract theory of pro-p Hecke
algebras and of re-deriving the integral Bernstein-Zelevinsky theory of [Vig05] in this context, [Sch09] remained
incomplete in a technical and a moral sense.

Forunately, these issues are all resolved in this article. We give a new and purely geometric proof of the
Bernstein relations for pro-p Hecke algebras, based on formula derived above. First of all, there is no
need to restrict to elements x € X in this formula: it remains true for any element of W. Second, its proof
never explicitly used that W is an affine Weyl group. This fact only entered indirectly through the properties
of the orientations o and o0 e s used in deducing . By abstracting these properties (and using the ‘miracle
proposition’ to extend to the pro-p case), we can thus prove the following generalization of , holding
for any generic pro-p Hecke algebra whose parameters as are invertible and squares, generalizing the Bernstein
relations for affine pro-p Hecke algebras obtained earlier by Vignéras [Vigl6, Theorem 5.46]:

0.0.3 Theorem (Theorem [1.11.3]).

(0.0.10) ao (w) — 50’(“’) = (Z o(1, H)Eo’(H)> 50 (w)

H

Here, 0, o’ denotes a pair of adjacent orientations (see definition . Apart from spherical orientations
op, op: of affine Coxeter groups associated to adjacent Weyl chambers D, D', the hyperbolic Coxeter group
PGLy(Z) provides examples of such pairs (see remark and therefore new examples of Bernstein relations.
But even in the affine case, is more general than the Bernstein relations in [Vigl6| as w is allowed to
be an arbitrary element of W), Moreover, phrasing the Bernstein relations in this abstract generality makes
the proof cleaner and more transparent, especially in the pro-p case.

We will now discuss the contents of this article in detail. After recalling the notion of Coxeter groups and
some common (and maybe not so common) related geometric terminology, we introduce in section two

81In a slightly disguised form; see remark [1.7.11{ii) for details.
9We thank M.F. Vignéras for pointing this out to us.
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(successive) generalizations of the notion of Coxeter groups, extended and pro-p Coxeter groups, designed to
capture the essential properties of the groups appearing in the Bruhat decomposition for Iwahori and pro-p-
Iwahori groups.

In section [I.2] we give a classification of 1-cocycles of pro-p Coxeter groups that is later used to construct the
Bernstein maps. Section [I.3] that follows is fundamental: we define generic pro-p Hecke algebras and show that
they behave like generic Hecke algebras (existence of a canonical linear basis, Iwahori-Matsumoto relations); we
also give a first proper example of generic pro-p Hecke algebras, the Yokonuma-Hecke algebras. The Iwahori-
Matsumoto presentation of generic pro-p Hecke algebras is proved in the following section phrased in the
language of braid groups.

Section [1.5] introduces another fundamental concept, the notion of orientations of Coxeter groups, which
abstracts and generalizes similar notions considered earlier by [Gor07] and [Ram06], and besides the classification
of 1-cocycles is the second ingredient in the construction of the Bernstein maps. The set O of all orientations of
a Coxeter group W is shown to be endowed with the structure of a compact Hausdorff topological space acted
upon by W, and the group W is embedded as a subset in O in two different ways, associating to an element
w € W the orientation o,, towards w and the orientation o0 away from w, both embeddings being exchanged
under a canonical involution o +— 0°? on O. It is shown that the images of these embeddings give all orientations
when W is finite, but that there must exist other orientations when W = (W, S) is infinite and #S < oo, the
boundary orientations. The notion of orientation is then transferred in a natural way onto extended and pro-p
Coxeter groups, such that the set of orientations of an extended or pro-p Coxeter group is in canonical bijection
with the set of orientations of its underlying Coxeter group.

The third principal protagonist, the Bernstein maps, is introduced in the following section[I.6} The existence
theorem, theorem proven there should be seen as the equivalent of Gortz’ theorem in our context. Sec-
tion[I.7] discusses a certain 2-cocycle that is canonically associated to every Coxeter group and plays a prominent
in the theory of Hecke algebras. We show that it can be written as 2-coboundary in two different ways, which
is used to define integral and normalized Bernstein maps in section The intermediate sections section (1.8
and section [1.9] are logically independent from the rest of the text, and should be regarded as optional: in
section [I.8] we show that the 2-cocycle X can be used to classify pro-p Coxeter groups, recovering a result of
Tits [Tit66, 3.4], and in section we discuss the relation of the Bernstein map 6 to a cocycle considered by
Cherednik.

Finally, in section we prove one of the main results of this article, the generalized Bernstein relations
(10.0.10)).

Whereas the first part dealt with general generic pro-p Hecke algebras, the second part of this article
specializes to those generic pro-p Hecke algebras for which a meaningful analogue of the Bernstein-Zelevinsky
theory can be developed. These are the affine pro-p Hecke algebras, the generic pro-p Hecke algebras whose
underlying extended Coxeter group is equipped with the structure of an affine extended Coxeter group, a notion
that is introduced in section [2.I] and which generalizes the class of extended affine Weyl groups to allow all
groups that appear in the Bruhat decomposition of Iwahori groups of (possibly non-split) connected reductive
groups over local fields. This makes it necessary to prove some well-known facts from the theory of root data
in our more general context.

In section [2.2] we show that our theory is non-empty by introducing three examples of affine pro-p Hecke
algebras: the affine Hecke algebras considered in the classical Bernstein-Zelevinsky theory [Lus89|, the pro-p
Twahori Hecke algebras considered in the p-adic and mod-p Langlands program, and the affine Yokonuma-Hecke
algebras from the theory of knot invariants. These examples have already appeared in the literature before (see
|CS15], [Vigl6]), and for the heavy-duty computations needed for the verification of the axioms in the case of
pro-p-Iwahori Hecke algebra we refer to [Vigl6]; however, this section provides some details not found in either
source, including an effective version of the existence of the lifts (ns)ses, which the reader may find helpful.

Section [2.3]is devoted to the proof of some finiteness properties of affine extended Coxeter groups, which are
the key to prove corresponding finiteness results for affine pro-p Hecke algebras. These results were basically
already proven in [Sch09| 4.2.5], but the proofs were a bit ad hoc. Here, we give a more unified treatment by
relating these finiteness properties to the (known) fact that the weak Bruhat order is a well partial order.

In section 2.4 we introduce spherical orientations of affine extended Coxeter groups W and prove that they
are limits of nets of chamber orientations o,,, which makes them concrete examples of boundary orientations
and gives a precise sense to the notion in Gortz’ theorem, of the orientation ‘attached to an alcove infinitely
deep in the anti-dominant chamber’ The most important property of the spherical orientations is that the
subgroup X < W of ‘translations’ acts trivially on them, as the cocycle rule implies that the Bernstein map 6,
induced an embedding of the group algebra of the stabilizer of o (in W) embeds into the Hecke algebra. Thus
we introduce in the following section subalgebras .Agl) C HW for every spherical orientation, which are not
far from being commutative (and are commutative for affine Yokonuma-Hecke algebras or pro-p-Iwahori Hecke
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algebras of split groups remark . The main result of this section is the computation of the centralizer of
these subalgebras in the Hecke algebra; in particular, we prove that the centralizer of Agl) is a subalgebra of
Agl), which is an important step towards the computation of the center of H(1).

In section , we use the Bernstein relations to show that the invariants of AE,” under the natural action of
W are contained in the center of H(). Afterwards, we verify using explicit computations that this exhausts
the center. In the final section [277] the results of the previous sections culminate in the structure theorem
theorem which elucidates the structure of (1) in terms of its center under very mild assumptions on the
coefficient ring and the group W), satisfied in all the examples we consider. This generalizes similar results

obtained by Vignéras in [Vigl4] for pro-p Iwahori-Hecke algebras. In particular, the structure theorem covers
)

n

the affine Yokonuma-Hecke algebras ’Hg of Juyumaya and Lambropoulou (section i in all cases (when d is

a prime-power, Hl(ilj1 is isomorphic to the pro-p Iwahori-Hecke algebra of GL,, and the results of [Vigl4] apply).

In the third pa7rt, section [3] we investigate the hyperbolic Coxeter group PGL2(Z) and its Hecke algebra
H, and we describe some boundary orientations, attached to points of the ‘actual’ boundary IP!(IR). Moreover,
for the point at infinity co € IP1(R), we define a subalgebra A, and show that H is free as a right module
over Ay, with an explicit basis. Finally, we compute the intertwiners of the induced module M, = x ® 4. H
for x : Aoc — R a character, proving that these intertwiners reduce to R and the module M, is therefore
Schur-simple.

In the fourth and final part, we use the characterization of pro-p Coxeter groups in terms of the 2-cocycle
X proven earlier, to investigate the question when the canonical exact sequence

1 T N W, 1

, given by the rational points T and N of a maximal split torus and its normalizer inside a split reductive
group, splits. This question (which had been already resolved for almost-simple semisimple split groups) is
answered up to rank eight using computer calculations, which compute the cohomology groups H*(Wy, XV) and
H*(Wy, XV ®zIF3). Using the theory of FI-modules and a theorem of Nagpal and Snowden, these computations
in a finite number of cases are extended to prove the following theorem:

0.0.4 Theorem. The dimension
di(£) := dimy, Hk(SHb QZ/ Xz |F2)

of the first cohomology group of the mod 2 reduction of the coroot lattice Q) of the root system Ay
is given in degrees k =1 by
1 ife=1
di(6) =<0 if£>2, and £ even
2 ifl>2, and ¢ odd

in degree k = 2 by

1 ife=1
0 ife=2
dy() =<2 ift=3
0 ¢ €>4, and l even
3 ifl>4, and l odd
and in degree k = 3 by
1 ife=1
0 ¢e=2
3 ifl=3
ds(() =<0 ift=4
5 ifl=5
0 i €>6, and l even
6 if£>06, and { odd

(Theorem [4.8.5)
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1 Generic pro-p Hecke algebras and Bernstein maps

1.1 Basic definitions and some geometric terminology

We recall some standard facts and terminology from the theory of Coxeter groups (cf. [Bou07, Ch. IV] or
[Brog9, I1]).

1.1.1 Definition. A Coxeter group W = (W, S) consists of a group W and a set S C W of generators of
order 2 satisfying the action condition. That is, there exists an action

p: W — Autget (9 x {£})
on the set $ x {£1}, where
H={wsw ' :weW, seS}CW
such that a generator s € S acts as

p(S)(H,E) =

(sHs ', —e) :H=s
(sHs™',e) :H#s

1.1.2 Remark. There are several other equivalent definitions of the notion of a Coxeter group (see [Bro89,
I1.4]). In particular, given a group W and a set S of generators of order 2, the action condition is equivalent
to both the exchange condition (E) and the deletion condition (D). The former states that given a reduced
expression w = s1...s, and an element s € S, either ¢(sw) = {(w) + 1 or

(E) W=551...5...5

for some 1 < i < r (where §; denotes omission of s;), the latter that if the expression w = s;...s, is not
reduced, then

for some 1 <i<j<r.

1.1.3 Terminology. If an action as in definition [L.1.1]exists, it is uniquely determined and called the canonical
action. The set § is called the set of walls or hyperplanes. When we want to view a hyperplane H € §) as
the reflection in W it corresponds to, we sometimes write sy instead of H. Elements of W are also called
chambers. A distinguished chamber is given by the neutral element 1 € W and is called the fundamental
chamber. Two chambers w,w’ are called adjacent if w™'w’ € S. A gallery from w to w’ is a finite sequence
I' = (w = wy,...,w, = w') such that w;,w;;+1 are adjacent. Galleries from the fundamental chamber to a
chamber w € W correspond to expressions
wW=3S81...5¢

of w as a product of generators s; € S, the associated gallery being
I'=(1,s1,8182,...,51-.-8)
A wall H is said to separate wy,ws € W if
p(wy twr) (wy ™ Hwy, 1) = (wy ' Hws, —1)

Otherwise wy, wo are said to lie on the same side with respect to H. The number of walls separating 1 and w
is finite and equal to
lw) :=min{r e N:3s1,...,5, €S w=351...5}

which is called the length of w. An arbitrary expression

W=281...5p
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is called reduced if r = ¢(w). Given such a reduced expression, the set
{s1, 81828;1, vy (810 .5p1)8p (510 80-1) )

is the set of hyperplanes separating 1 and w. More generally, we can define for any two chambers w,w’
the distance d(w,w’) between w and w’ as the length of the shortest gallery from w to w’. A gallery T
is called a geodesic if its length equals the distance between its start- and endpoint. One can show that a
gallery is a geodesic if and only if it does not cross a hyperplane twice. In particular the distance d(w,w’)
equals the number of walls separating w and w’. Moreover, the distance is W-invariant and so in particular
d(w,w') = d(1,w™'w') = f(w='w'). A wall H = woswy ' divides W into two equivalence classes under the
relation of lying on the same side with respect to H, namely the positive half-space

Ul = {w e W : {(swy w) — b(wy 'w) = £(swy ') — L(wy ')}
and the negative half-space
Ug = {w e W : l(swy ' w) — L(wy 'w) = —(U(swy ) — L(wg 1))}

By definition the positive half-space is the one containing the fundamental chamber. The map (H,e) — U
gives a bijection between $ x {£1} and the set of all half-spaces. This bijection is W-equivariant with respect
to the natural actions and allows to identify these two W -sets.
The (strong) Bruhat order < on W is the strict partial order in which w < w’ if and only if for some (every)
reduced expression
w=S81...8¢

there exist 1 <11 < ... < 4y, <7, m < r such that
w' =si .08,

The order of the product st € W of two generators s,¢t € S will be denoted by m(s,t) and is an element of
{1,2,...,00}.

1.1.4 Remark. The inclusion S C §) induces a bijection
S/ = W\$H
where ~ is the equivalence relation given by
s~t oo FJweW wsw =t

In the context of root systems and Iwahori-Hecke algebras one is naturally led to consider groups slightly
more general than Coxeter groups. We will therefore introduce a nonstandard definition which axiomatizes
extended Weyl groups.

1.1.5 Definition. An extended Coxeter group W consists of a group W, subgroups Wag, 2 < W, a subset
S C Wag and a retraction W — Q of inclusion 2 C W such that

(i) The sequence
1 Was w Q 1

is exact.
(ii) (Wag, S) is a Coxeter group.
(iii) The action of ©Q on W,g by conjugation restricts to an action on S.

In other words an extended Coxeter group W is a semidirect product W = Wog x Q of a Coxeter group
(Wag, S) and a group 2 acting on W,g by automorphisms of Coxeter groups.

1.1.6 Notation. The action of u € Q on w € W,g will be denoted by u(w), uwu=! or even u e w.

1.1.7 Remark. The conjugation action of 2 on W,g induces a right action on Homget(Wag, IN) by acting on
arguments. The invariance of S C W,g is then equivalent to the length function £ : W, — IN being fixed under
the action of 2. We may therefore uniquely extend ¢ to a function W — IN denoted by the same letter and
satisfying

Lwu) = L(uw) = b(w), w € Wag,u € Q
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1.1.8 Remark. The group W acts on the set $) of walls of (W,g,S) by conjugation and we again have a
bijection

S/ S W\S
where ~ now refers to the equivalence relation given by

s~t & JuweW wsw l=t

Two elements s,t € S can be conjugate in W without being conjugate in W,g. In the context of extended
Coxeter groups, ~ will by convention always refer the relation induced by conjugation in W.

1.1.9 Remark. By assumption we have an action p : Q@ — Autgyp,(Wag) of Q on W,g by group automorphisms.
On the other hand W,g acts on itself via left translation A : Wag — Autset(Wagr). One has

pu(Aw (w/)) = pu(ww') = pu(w)Pu(w/) = Ap,u(w)(Pu(w/)) = Au-w(Pu(w/))

for every w’ € Wag. By the universal property of the semidirect product p and A therefore combine in a
unique way to an action of W on the set W,g, which we would like to view as the set of chambers. It follows
immediately that the stabilizer of the fundamental chamber 1 € W,g is 2. We will occasionally view elements
w € W as chambers via the orbit map W — Wag,w — wel, that is w = w'u, w’ € Wag, u € Q will be replaced
by w’. Accordingly we will talk about walls separating two elements w,w’ € W or the distance between w and
w’. This is consistent with the definitions given so far in the sense that the distance between w,w’ viewed as
chambers is equal to £(w~ w’).

1.1.10 Remark. One can extend the Bruhat order on Wyg to a strict partial order < on W by letting
wu<wu: & u=u Aw<u
for all w,w’ € W, and u, v’ € Q. This relation is invariant under conjugation by Q, but beware that in general
ww < u'w S ow<w

Note that in [Sch09] (and a previous version of this article) we gave a definition of the Bruhat order that was
non-standard. We thank C. Heiermann and U. Gértz who (independently) pointed this out to us.

1.1.11 Remark. Some caution has to be applied when dealing with length function on extended Coxeter
groups. It is not true that for any w,w’ € W and u € Q

L(wuw') = £(ww)
If for example u permutes two distinguished generators s # ¢ then
((sut) = L(s(utu™ )u) = £(ssu) =1

whereas ¢(st) = 2. However, it remains true that for s € S and w € W either {(sw) = ¢(w)+1 or {(sw) = £(w)—1
and similarly either ¢(ws) = ¢(w) + 1 or £(ws) = £(w) — 1.

1.1.12 Remark. The examples motivating definition [I.1.5| are the extended affine Weyl groups associated to
root data. This will be discussed later (see example [2.1.3)), when we will introduce the stronger notion of affine
extended Coxeter groups.

We will define generic pro-p Hecke algebras via a presentation a la Iwahori-Matsumoto. In this presentation
the “Weyl group” will not be an extended Coxeter group, but a group of a more general type which naturally
occurs when considering algebras of the form Endg(ind?(l) 1). The following axioms are modelled on this
particular case (cf. [Vig05} 1.2]).

1.1.13 Definition. A pro-p Coxeter group W consists of an abelian group T, an extended Coxeter group
W and a group extension

1 T w1 1

together with a family (ns)ses of lifts ny € m=1(s) of the generators s € S subject to the following “braid”
condition. If s,t € S with m(s,t) < oo then

(1.1.1) MMM oo = NgNgNg . . .

where the number of factors on both sides is m(s,t).
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1.1.14 Convention. To ease the notation we will in the following always assume that the map 7' — W) is
an inclusion.

1.1.15 Notation. In the above situation we have a canonical action of W™ on T by conjugation. This action
WM x T — T is denoted by (w,t) + w(t). Since T is commutative this action factors over the projection
7 : WO — W. The induced action of W on T will also be denoted by (w,t) — w(t).

1.1.16 Notation. Given a pro-p Coxeter group W) as above with associated extended Coxeter group W and
length function £ : W — IN, we will by abuse of notation denote the composite function £ o7 : W) — IN again
by ¢ and refer to it also as “the length function”.

1.1.17 Definition. There is a natural strict partial order on W) such that 7 : W) — W is monotone with
respect to the order on W defined in remark [1.1.10l Namely, for w,w’ € W) the relation w’ < w holds if and
only if there existd"V] a reduced expression

W="Ng, ... N, U, 8 ES, u€E oW
and integers 1 <141 < ...4, < r such that
w' =ng, ...ng, u and m<r

This relation will also be called the (strong) Bruhat order. One checks easily using the definition of the Bruhat
order on W,g (1.1.3) and its extension to W (remark [1.1.10) that 7 is monotone, i.e. that

w<w =  7w(w) <)

Note however that the reverse implication does not hold, i.e. the order < on W) is not the pullback of the
Bruhat order on W along 7, and so is different from the definition of the Bruhat order on W) given in [Vig05]
(also used in [Vigl6]) which we adopted in our previous work [Sch09]. The reason for our choice is that we want
< to be as weak as possible such that proposition [I.6.3] still holds.

1.1.18 Notation. Given any subset X C W we will denote by X the preimage of X under 7. In particular
we have

oW =fwewW : (w) =0}

1.1.19 Notation. Via the quotient map Q) — €. the Q-action on S can be inflated to an action of Q).
Following notation this action will be denoted by

u(s)=ues, uecQW secs

1.2 1-Cocycles of pro-p Coxeter groups

We recall that a 1-cocycle of a group G with values in a (possibly non-commutative) G-module M (i.e. a group
endowed with a G-action by group automorphisms) is a map ¢ : G — M satisfying the cocycle rule

Vg,9' € G é(99") = o(g9)9(o(g))

Generalizing a result of Cherednik, we will now obtain an explicit description of the set Z(G, M) of 1-cocycles
when G = W is a pro-p Coxeter grou

1.2.1 Lemma. Let M be a W -module. Restriction defines an injective map

ZY WM, M) — Homge (S, M) x ZH(QW | M)

¢ ((s = d(ns)), (ur— ¢(u)))

whose image consists of all pairs (o, p) satisfying the following properties.

(i) a(s)ns(o(s)) = p(n?) for all s € S

10Equivalently, for every (even though we won’t need this fact). This follows the fact that any two reduced expressions are
connected by a finite chain of ‘braid transformations’ I (see proof of lemma .

11In a previous version of this lemma, we had assumed that T acts trivial on M. We thank M.F. Vignéras for suggesting to
remove this hypothesis.
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(ii) For allu e QW sec S
p(u) - u(o(s)) = o(u(s)) - nus)(p(utsu))

where ts ., €T denotes the element defined by the equation uns = 1y uts u

(iii) For all s,t € S with m(s,t) < oo, the following two products with m(s,t) factors are equal
a(s) - ns(o(t)) - (nsni)(o(s)) - (nsnins)(o(t)) ... = o(t) - ni(o(s)) - (mans)(o(t)) - (nensni)(o(s)) ...

Proof. The map is obviously well-defined and also injective. In fact, let ¢ € Z*(W1), M) be mapped to (o, p).
For any w € W), we can find an expression

(1.2.1) W="Ng, ...Ns U

T

with s; € S and u € Q). The cocycle rule for ¢ now implies

(1.2.2) P(w) = o(s1) - 15, (0(52)) - (n5,15,)(0(83)) - - (05, s, ) (0 (s7)) - (ns, s, ) (p(u))

Moreover, straightforward computations show that the cocycle rule for ¢ implies the conditions ()-(éi7) for the
pair (o, p).

We will now show that, starting with any pair (o, p) satisfying (4)-(4i), equation gives rise to a
well-defined cocycle ¢ : W) — M. In fact, to show that gives a well-defined map ¢ : W) — M of sets
independent of the choice of the expression (I.2.1)), it suffices to assume (i), (iii) and the following condition
(iv). It is implied by (i) by taking u =t € T, observing that in this case uts, = s~1(t)

(iv) p(t) - t(o(s)) = o(s)ns(p(s~ (1)

Now let

~—

) VseS, teT

be another expression for w. We verify that

(1.2.3) o(s1) ns, (0(s2)) ...r (Ngy -..ns,.)(p(w) =0(51) - nz, (0(52)) - ... (ng, ...n35,,)(p(@))

It suffices to show this when u,w € T. Indeed, assume the statement is true in this case. Then, since W =
Wag % 2, reducing the equation

(1.2.4) Ng, ... Mg, U=MN5, ...N5, U

m

via 7 : W) — W shows that s;...s, = 51...5,, and 7(u) = 7(%), and therefore vz~! € T. Multiplying

(1.2.4) by w! and using (1.2.3)) for the case u,u € T gives
(1.2.5) o(s1) oo (ngy oo ons,_)(0(5)) - (g, .5 ) (pluta™ ) =a(31) - ... - (05, ...n5,, ) (0(Gm))

The cocycle property for p implies

plua™) = p(u) - u(p(@™)) = p(u) - u(@*(p(@)™))

Therefore
(ns, -, ) (p(u™ 1)) = (1, -5, ) (p(w)) - (5, ... 15,,) (p(@) ™)

Multiplying from the right by (ns, ...ns,,)(p(u)) therefore gives the desired equation (L.2.3).

We proceed now with the proof of in the case u,w € T. Since the two words s;...s, and 51 ...5,,
in the generators define the same element in W,g, by Tits’ solution |Tit69] of the word problem for Coxeter
groups we can transform s; ...s, into §;...5, by applying a finite number of transformations of words in the
generators s € S of the following form.

(I) tl--~titi+1~-~tm'—>t1~~'ti55ti+l---tm
(II) t1... tiSStH_l ot — ... titi-i-l oot
(III) ti1...t; sts... ti+1...th—>t1...ti tst... ti+1~-~tm

m(s,t)<oco m(s,t)<oo
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Consider the following ‘companion’ transformations for expressions of the form ny, ...n;, u (with¢; € S,u € T)

1 —1(, -2
Iy Mty oo M Mgy - e Mg > gy oo g MMMy Ny, (Fig1 oo )™ (0 %)

1 1, 2
1y Nty oo M MMMy e Mg U Mgy o Ny NN (i1 - ) T (50

1
(III( )) L R L R (N T L TR TR L L T PR L P 1
—— —
m(s,t) m(s,t)

Taking the sequence of transformations of type (I)-(III) which transforms s;...s, into 3y ...3,, and applying
the corresponding sequence of transformations of type (I(l))—(HI(l)) to ng, ...ns u will give an expression of
the form ns, ...ns, t with ¢ € T. A simple computation shows that the transformations (I'))-(II1") do not
change the element in W) which the expression defines. Therefore

Ng, ...N5,t="Ng, ...Ns U ="N3 ...N5, U
and therefore t = u. To prove , it is therefore enough to show that the element in M defined by the right
hand side of corresponding to an expression ng, ... ns, u does not change if we apply any transformation of
type (IW)-(111M).
of type (I(l)), leaving the dual case (II(l)) to the reader. It obviously suffices to consider the case i = 0, i.e. the
transformation

For (IIIV) this follows from property (iii). We now prove the invariance for transformations

Mgy + v Mg, U NN, .. Ng, (51 -..5:) H(ng ?)u

and to prove that
o(s1) o (nsy oo oms, ) (0(s7) - (nsy -, ) (p(0)
is equal to
a(s) - ng(a(s)) - (nsns)(a(s1)) - - .- (nsnsng, -..ns,_)(0(8r)) - (Nensng, .15 )(p((51 ... 8.)  (ng?)u)

But, using property (i) and the following identity (implied by the cocycle property of p)

(nsnsns, ...ns,.)(p((s1- .. ST)_l(n;Q)u)) = (nsnsns, ... ns,)(p((s1- .. Sr)_l(ns_Q))) “(ns, - ms,) (p(u))
it follows that the last expression is equivalent to

p(n) - ng (o(s1) - o (nay o, )(0(50)) - (s -, ) (p((51 -2 80) T (052))) + (ns - s, ) (p (1)

Thus it suffices to show that

o(s1) ..o (nsy - .ns,_,)(0(8r))

is equal to

p(n2) - nZ(o(s1) o (ny o, )(0(50)) - (nsy o, )(p((s1 - 57) 71 (1))

But, this follows by repeated application of (iv), using that p(n?) - n2(p(n;?)) = 1.
Thus, we have shown the existence of a map ¢ : W) — M satisfying (1.2.2)). It remains to show that ¢ is
a 1-cocycle if condition (ii) is satisfied, i.e. that

(1.2.6) p(ww') = p(w) - w(g(w'))

holds for all w,w’ € W), First, we consider the case when w is as a product w = Ng, ... Ng, in the distinguished
generators. In this case, (T.2.6) follows from (T.2.2). Next, we treat the case w = u € Q). From the identity

u(ns) = nu(s)u(ts,u)
it follows by induction that

(1.2.7) u(ng,) - u(Ng,) = Ny(sy) - - - nu(si)u(tsi,usi_l(ts%_hu) (8900080 Htsy )
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Usmg , we can now repeatedly apply property (ii) to compute ¢(w) - w(p(w')) for w = u € QM) and
/
w =ng, ...ng.u':

u\Ss1

¢(u) - u(d(w’)) = p(u) - u(o(s1) ns,(0(52)) - - (s, s, )(0(s1)) - (ns, -, ) (p(W))
= p(u) - u(o(s1)) - (nsl)U(ff( ))) S u(ns s, (u(p(u'))
= 0(u(s1)) - sy (p(ulsy u)) - u(ns, ) (u ( (s2))) - - ul(ng, s, ) (u(p(u')))
(u(51)) - (s (0 (ufs2))) - '

(n Toay( 81)nu(52))(p(UtSz,u52 (tsyu))) -

“u(ng s, ) (u(o(s3))) - - wlng, s, ) (u(p(u)))

= o(u(s1)) - nu(sy) (0 (uls2))) - o (Musy) - - - Tu(s,—p)) (0 (ulsr)) -
(Nu(sy) - M) (p(uts, s, ( seerau) -+ (520080) T (Esy )
“(u(ng, -..ns,))(u(p(u’)))
Using again, we see that
u(ng, .15 ) (w(p()) = (Mu(sy) - Nu(s) Ut uSy  (Esyv ) - (52 80) (e u) (p(W))
We can therefore apply the cocycle property of p to finally obtain that

¢(u) - u(d(w')) = o(u(s1)) - Musy) (0 (u(s2))) - -+ (Ru(sy) - - (s, 1)) (@ (ulsr)) -

(1.2.8) ) ) ,
(us) - s ) (P(Us,usy (b, yu) - (520 50) T (g u)u'))
Now
ww' =ung, ...ngu’

= My(s1) Ubsy uMlsy - - Mg, W = Ty ) UNsy < Mg (82 8p) " (s )0

= Na(s1) Mu(sa) - - - M) Ulsy Sy () oo (S2-080)  (Esy )t
and hence
(1.2.9) p(uw’) = o (u(s1)) - nusy) (@(uls2)) - o (ugsy) - - g, ) (0 (ulsy)) -

) (nu(sl) e nu(sr))(p(Utsrﬂ/LS;l(tsr—17u) s (52 ST)il(tsl,u)Ul))

Comparing (1.2.8) with (T.2.9) gives (1.2.6)) for w = u € QM) and w’ € W) arbitrary. The general case now
follows by induction on ¢(w). We have just proved the start of the induction ¢(w) = 0. Now let {(w) =7 >0
and write w = ng, ...ns.u. Then

d(ww') = d(ng,ns, - .. ns, uw')
= ¢(ng, )ns, (¢(ng, - . .15, uw"))
= @15, )05, (P(1sy - M5, 1) - (N5, -5, ) (D(w)))
= PN, Ny - - - Mg, w) (Mg, Mgy « .. Mg, 0) (A(W))
= ¢p(w)w(p(w'))

where we used that ¢(ng, ...ns,u) =r —1 < r in line 2 in order to apply the induction hypothesis. O

1.3 Construction of generic pro-p Hecke algebras

In this section we will construct the main object of this article. Throughout, W) will denote a fixed pro-p
Coxeter group. The notation W, Wg, S, 2, £ etc. will be conserved. We will also fix a commutative associative
unital ring R. The monoid algebra of T over R will be denoted by R[T]. The action of W on T extends naturally
to an action on R[T] by R-algebra automorphisms.

1.3.1 Theorem. Let (as)scs and (bs)ses be families of elements as € R and bs € R[T] subject to the following
condition. Given s,t € S and w € W) such that sm(w) = n(w)t, the following two equalities in R resp. R[T)

hold™
(131) as = A¢ (nswnt_lw_l)w(bt) = bS

12Note that nswnt_lw_l eT
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Under this assumption, there exists a unique structure of an R-algebra on the free R-Module M with basis
{Tw b wew ) which is compatible with the given R-module structure and such that the following two conditions
hold

(1.3.2) vYw,w' € WO f(ww') = l(w) +L(w') = Tww =TT,

(1.3.3) VseS T =asT,2+ T, bs
Before we begin with the proof of theorem we make a couple of remarks.

1.3.2 Remark. (i) As a consequence of the first condition, the natural embedding R[T] < M of R-modules
will be a morphism of R-algebras because the length function vanishes on 7. The R-algebra M will
therefore carry a canonical structure of an (R[T], R[T])-bimodule so that the second condition makes
sense.

(ii) The first condition implies the following basic commutation rule for ¢t € T and w € W)
(134) TwTi = Twt = Twpw-10 = w(t)w — Tw(t)Tw
This implies more generally that for any b € R[T] we have

(1.3.5) Towb = w(b) T

(iii) Applying relation (1.3.1)) for w = n ! and s = t shows that

(1.3.6) ng t(bs) = by

(iv) In view of (1.3.5) and (|1.3.6)), the second relation could also have been written as

T3 = asThz + bT,,

Ns

Proof of theorem [1.5.1, We will closely follow the proof in the classical case (cf. [Bou07, Ch. IV, Exercices §2,
Ex. 23]). First, we show uniqueness. It suffices to prove that for all w,w’ € W the expansion of the product
T, Ty in terms of the given basis can be effectively computed in terms of the coefficient families (as)s and (b)s.
If ¢(w) > 0, we can write w = n,w with ¢(w) =1+ ¢(w). By

TwTw =T, T;Tw

By induction it therefore suffices to compute products of the form T, T, for u € QW and T,.T,. From it
follows immediately that 13, T, = Ty,. We now show how to compute products of the form 7, T, by induction
on f(w). If {(nsw) = £(w) + 1, again by we find that T,, Ty = T, w. If {(nsw) = ¢(w) — 1, we can write
w = nsw with £(w) = ¢(wW) + 1, and so

T Tw = T, T, Ty = (a5 Tz + T bo) Ty = 0, T, o+ T, T (by)

We now show the existence of the algebra structure in question. The construction proceeds by defining an
R-subalgebra A C Endz(M) and then showing that evy, : Endg(M) — M induces an isomorphism A — M
of R-modules. By transport of structure, we obtain an R-algebra structure on M which is then easily verified
to have the required properties.

First, we will construct the structure of an (R[Q™], R[Q(M)])-bimodule on M. Such a structure is equivalent
to giving morphisms A\ : R[QM)] — Endz(M) and p : R[QM]P — Endr(M) whose images commute. For
u € QW) we define \(u) and p(u) on basis elements by

AMu)(Tw) = Tuw p(u)(Tw) = Twu

One verifies immediately that A(uw') = A(u)A(vw) and p(uv’) = p(u')p(u) and hence we get well defined
morphisms A and p. From the definition it is immediate that the images of A and p commute. With respect to
this bimodule structure the following identity

Twb = w(b)T,
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holds for all b € R[T] € R[QW] and w € W),
We will now introduce for every s € S elements A, p,, € Endg(M), which will a posteriori turn out the
be left respectively right multiplication by 7,,,. Put

oty [Tt =t
’ asTh.w+bsTw :l(nsw) =4(w)—1
Town, l(wng) = f(w) + 1

pns(Tw) = ' . ( )_ (w)
Town.as +Twbs : l(wng) = L(w) — 1

The products by Ty, asT). ete. therefore refer to the (R[QM)], R[2M)])-bimodule structure already constructed.
Also note that \,, and p,. are linear with respect to the right respectively left R[Q2())]-module structure.

The main part of the proof consists of showing that the elements A, _, p,, commute for all s,t € S. Fix w €
WM and s,t € S. We make a case distinction according to the 6 possible constellations of £(w), £(nsw), £(wn;)
and ¢(nswny)

(i) L(nswny) > L(nsw) = L(wny) > L(w):
(Anepn)(Tw) = Ao (Twn,) = Toswne = Pry(Tasw) = (PngAn, ) (Tw)
(i) (nswny) < l(nsw) = L(wng) < L(w):

(Ane o) (Tw) = An, (Twn,at + Tuwbt) = An, (Twn, )at + An, (Tw)be
= asTnswnta't + bsTwntat + asTnswbt + bswat
= QgsPn, (Tnsw) + bspnt (Tw) = Pn; (asTnsw + bsTw)
= (PrsAn,)(Tw)

(iii) £(nswny) = L(w) < L(nsw) = f(wng): By lemma [1.3.3] we have sm(w) = w(w)t and hence that
nswn; 'w™! € T. We can therefore invoke relation conclude that
Anepn)(Tw) = An. (Twn,) = asTown, + bsTwn,
= @ Ty wn, + (nswng w™ )w(be) pn, (Tw)
= a:Tr.wn, + P, (nswn; ' w™w(be)Ty)
= atTp wn, + pn, (nswny 'w™1)Tb;)

= atTnswnt + Pny (T —1bt)

= a/ T wn, + pn, (Rswny ) (b0)T,, 1)
= a/ Ty uwn, + (nswng ) (be)pn, (T, 1)
= aiTn wn, + (”swnt_l)(bt)Tnsw

= atTh wn, + Tnswn;l(bt)

CEGp  wiae + Toowb

= P (Togw) = (Pny An ) (Tw)

(iv) L(nswny) = £(w) > L(nsw) = £(wny): Similar to (iii).
(v) L(nsw) < L(w) = L(nswng) < (wny):

()\ns pnt)(Tw) = )\ns (Twnt) = asTnSwnt + bsTwnt = Pn; (asTnsw + bsTw)
= (Pn,An.)(Tw)

(vi) L(nsw) > L(w) = £(nswny) > L(wny): Similar to (v).
Let now A C Endg(M) be the R-subalgebra generated by {\,,}ses and {A,},cq0 and consider the
evaluation homomorphism evy, : Endg(M) — M, evr, (¢) = ¢(T1). We claim that restriction to A

induces an isomorphism
evp | : A= M
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of R-modules. If s € S and w € W) are such that £(n,w) = 1+£(w), then \,_(Tyy) = Tj.. by definition.
From this it follows immediately that

evr, ()‘"81 ©...0\,, O /\u) = Tnslu.ns,,.u

Sy

if w=mns..n5u ue€ QW is a reduced expression. This proves surjectivity. To show injectivity let
¢ € A be such that ¢(T;) = 0. It suffices to show by induction on £(w) that ¢(T,,) = 0 for all w € W),
For ¢(w) = 0 we have w = u € Q) and hence

¢(Tw) = ¢(pu(T1)) = pu($(T1)) = 0
Here we have used the fact that p, commutes with all elements of A. If ¢(w) > 0, write w = wns with
l(w) =1+ ¢(w). Then

¢(Tw> = (b(pnéT{;) = Pn, (qﬁ(T{;)) =0
where we have made use of the fact that p,, commutes with the elements of A.

By transport of structure, we now get on M the structure of an R-algebra compatible with the given R-
module structure. It remains to verify the conditions and (1.3:3). Assume ((ww’) = {(w)+{(w') and
let w = ung, ...ns,, W' =ng_, ...ng u be two reduced expressions. Then evr, (AuAn, - An, ) = Tw
and evry, (A A Ay) = Ty and hence

Mspyr "7 T Mgy

TwTw = evr, (/\u/\nSI D ¥ = Tun,,. = T

e /) ’
spMispyq Mgy gy U Mg My g e Ths gy U

The validity of (1.3.3)) is equivalent to
(An, 0 A )(T1) = asAn2(T1) + (An, © Ay, )(T1)

But
)‘121; (Tl) = )\ns (Tns) = aSTng + bscrns

by definition and

as)\ng (Tl) + ()\ng (@) )\bs)(Tl) = asTng + )\ns (bs) = asTng + T‘ng bs
asTng + ns (bs)TjnS = asTng + bsTnS

1.3.3 Lemma. Let W be an extended Coxeter group and w € W, s,t € S. If either
(sw) = L(wt) < L(w) = L(swt)

or

U(sw) = L(wt) > L(w) = {(swt)

then
swt = w

Proof. For the case of ordinary Coxeter groups we refer to [Hum00, Lemma 7.2]. We show why the statement
carries over to the case of extended Coxeter groups. Assume for concreteness that we are in the first case. Write
w = w'u with w’ € W,z and u € Q. Then

((sw') = £(sw) = L(wt) = L(w'u(t)u) = L(w'u(t))

and
Lw') = L(w) = £(swt) = £(sw'u(t)u) = £(sw'u(t))

According to the version of this lemma for Coxeter groups we conclude that
w' = sw'u(t)
and hence w = swt. O

1.3.4 Definition. The R-algebra constructed in theorem is called the generic pro-p Hecke algebra
for the parameters a = (as)s,b = (bs)s and is denoted by ’Hg)(a7 b).
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1.3.5 Remark. Because of remark and the condition (|1.3.1)), we can extend the family (as)ses to a family

(ag)Hen by putting
A = Qg

if s € S is an element conjugate to H € § under W.

1.3.6 Remark. The condition (|1.3.1)) of theorem is easily seen to be equivalent to the following two
conditions.

(i) For any s,t € S which are conjugate under W we have
as = ay
and for some w € W) with s7(w) = 7(w)t we have
(nswn; 'w™Hw(by) = b,
(ii) For every s € S and every t € T we have
s(t)t by = by
and for every w € W with sw = ws we have
(nswng ' Hw(bs) = bs
for some lift w € W) of w under 7 : W) — W.

1.3.7 Remark. If the coefficient a, is a unit in R, then the quadratic equation

T2 =asTh2 + T, bs

ng
implies that T}, is a unit in %), and in this case

(1.3.7) T, =a; (T,-1 = b,T,-2)

n

Moreover, T\ -1 is then also invertible and we can rewrite the quadratic equation in the following symmetric
form

(1.3.8) T, —a;'T 1 = b,
Proof. Since n? € T € QW the element T,z is invertible with inverse 7, 2. Moreover, it follows that

1=aT2T, a;' =T, (T, = bs)T,—2a; " =T (T,-1+ — bsT),—2)a;"

Ng Ng n

where we have used that n? is of length zero in the last step. Thus a; }(T, -1 —b,T, —2) = (T,,-1 —b,T,—2)a; ' is a
right inverse to 1,,,. Since 1), bs = bsT),_, a similar computation shows that it is also a left inverse to 7),,, and the
formula eq. lj The invertibility of 7, -1 and eq. 1’ both follow from the formula 7, -+ =T, T, -». [

1.3.8 Example. The main examples of generic pro-p Hecke algebras that motivated their introduction and
the terminology are the double coset convolution algebras H(G, I (1)) associated to pro-p-Iwahori subgroups
I < @G of reductive groups. These will be considered in detail in the next section (section [2.2.3). Let us
therefore consider here other important examples.

(i) Every Coxeter group W can be viewed as a pro-p Coxeter group with 7'= = 1 and ny, = s. The generic

pro-p Hecke algebra Hg)((as)s, (bs)s) then coincides with the classical generic Hecke algebra associated
to the Coxeter group W and the families (as)s, (bs)s € R of parameters. In the notation of [Bou07, Ch.
IV, Exercices §2, Ex. 23] we have

Hg)((%)s’ (bs)s) = Er((bs), (as))

(ii) Given a Coxeter group W and an action

W — GLZ (T)
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on an abelian group T by group automorphisms, we get a pro-p Coxeter group W) with Q = 1 by forming
the semi-direct product W) = T x W and letting ny = s.

Generic pro-p Hecke algebras of this type include Yokonuma-Hecke algebras Yy, (d,n € IN). These are
algebras over R = Clu™?!,v] generated by elements (cf. [Jd15])

gl,...,gn_l,tl,...,tn

subject to the relations

9i9; = 9;9i forallé,5=1,...,n — 1 such that |i — j| > 1
9iGi+19i = Gi+19igi+1 foralli=1,...,n—2
tit; = tit; foralli,j=1,...,n
git; = ts,(5)9i foralli=1,...,.n—1land j=1,...,n
t?:l forall j=1,...,n

g? =u® +veig; foralli=1,....n—1

where s; € S, denotes the transposition (i ¢ + 1) and e; is given by

€i :é Z (ti/tit1)”

0<s<d

In order to relate these to generic pro-p Hecke algebras, let W be the Coxeter group S,, with the standard
generators S = {s1,...,8,-1} and let T be the finite abelian group T = (Z/dZ)™. Then we get an
isomorphism

Yan = HE ((as)s, (bs)s)
of R-algebras by sending g; to Ty, =T, and t; to the element of T denoted by the same letter and given
component-wise by (¢;); = 6;; € Z/dZ, if we let

as, =u? € R i=1,....n—1

i

and
bs, =

ISHIES]

> (tifti1)* €RIT]  i=1,...,n-1
seZ/dZ

1.3.9 Remark. (i) Given a ring R and families a = (as)ses € R, b = (bs)ses € R[T] satisfying condition

(1.3.1), it is clear that for any ring homomorphism ¢ : R — R’ the image families ¢(a) = (¢(as))scs € R’
and ¢(b) = (¢(bs))ses € R'[T] again satisfy condition (1.3.1). Moreover, the natural homomorphism of
R'-algebras

M1 (a,0) @r R — HG) (p(a), 0(b))
Tw QT > QD(:L')TU)

is an isomorphism, as it is a bijection on the canonical R’-bases on both sides.

Given a pro-p Coxeter group W, let R(W 1)) denote the following category. Objects of R(W 1)) consist
of triples (R, a,b) where R is a ring and a = (as)ses € R and b = (bs)scs € R[T] are parameters satisfying
condition (1.3.I). A morphism f : (R,a,b) — (R',a’,V') is a ring homomorphism f : R — R’ preserving
the parameters

flas) = a5, fITI(bs) =V Vs€S
Here f[T]: R[T] — R'[T] denotes the induced ring homomorphism.

If the group T is finite, the category R(W 1)) has an initial object R™ given as follows. Consider the
polynomial ring
R=7Z[{as,bs::5€ 5, t €T}

in the formal variables a; and b, ;. Let

b, =Y by, t€RT]
teT
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(iii)
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The families (a;)ses € R and (bs)ses € R[T] do not satisfy condition (1.3.1)) in general. However,
condition (|1.3.1]) is equivalent to a set of relations of the form

ag;=ay and by =Dbgy

where (s, s’) ranges over all pairs of W-conjugate elements of S and (¢,t') ranges, for each pair (s, s’), over
certain pairs of elements of 7. Letting p : R — R"™" denote the quotient of R by the ideal generated by
these relations, we obtain a well-defined object

Runiv — (Runiv’ auniv’ buniv) = (Runiv7 (p(as))seS; (p[T](bs))s€S)

of the category R(W®)). Tt is clear from the construction that this object is initial. Moreover, by
construction R"™V is the polynomial ring over Z on a set of formal variables, that is a quotient of the set
S1I(S x T). In particular R" is noetherian if #S < co.

By the above remarks, when T is finite, every generic pro-p Hecke algebra Hg)(a, b) over a ring R is
naturally obtained by base change

H (@™ 5™ @ guniv B = HY (a,b)

from the universal generic pro-p Hecke algebra ’ngmv (auni", b“ni") over R"™V. This allows to reduce many
statements about generic pro-p Hecke algebras to the ‘universal case’ In particular when we will study
the structure of affine pro-p Hecke algebras (in which case S and T are finite) in section [2] this will allow

us to reduce to the case of a noetherian coefficient ring R.

Presentations of generic pro-p Hecke algebras via braid groups

Generic Iwahori-Hecke algebras can be described as quotients of monoid algebras of braid monoids (see [GP00,
4.4.1]). The same holds true for generic pro-p Hecke algebras if one introduces the appropriate analogue of braid
monoids in the context of pro-p Coxeter groups.

1.4.1 Definition. Let W) be a pro-p Coxeter group.

(i)

(i)

The (generalized) braid monoid B(W 1)) associated to W) is the monoid with presentation

BWD) = (T} wew® : Tww =TT if L(ww) = £(w) + £(w'))

The (generalized) braid group 2(W () associated to W) is the group with presentation

AWD) = (T wew : Tww = TuwTw if Llww') = £(w) + £(w"))

By (1.3.2), the canonical map {T3,} ey — ’Hg)(a, b) of sets extends to a morphism

BW D) — HE (a,b)

of monoids which in turn induces a morphism

RBWD)] — HG (a,b)

of R-algebras. Let b denote the two-sided ideal in R[B(W ()] generated by all elements of the form Tgs —

asTyz

—T,.bs , where s runs over all elements of S. By (/1.3.3]), we have an induced morphism

¢ : RIBW M) /b — HY (a,b)

1.4.2 Proposition. The above map ¢ is an isomorphism of R-algebras.

Proof. The proof is standard (cf. |[GP00|). Obviously ¢ is surjective. It therefore suffices to show that ¢ has
a left inverse 1. Because Hg)(a, b) is a free R-module over {T\,}, ey, we have a map 1 which associates to
any element T, of the basis the image of the generator T, of the braid monoid in the quotient R[B(W1))]/b.
Obviously the equation (1 o ¢)(x) = = is satisfied for said images of the generators of B(W ™). But because
of the quadratic relations, these images already generate the quotient R[%B(W(1)]/b as an R-module. Hence,
o ¢ =id. O
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When the parameters ay are units in R, the generic pro-p Hecke algebra has a second presentation in terms
of AW M), In fact, in this case T),, € Hg)(m b)* with inverse (see remark )

T, ' =a;" (T~ — b,T,—=)

This implies that for every w € W) we have T, € ’Hg)(a, b)*, since
Ty="Th,, .. Tn, Ty
ifw=ns ...n5u, u€E QW is any expression with r = £(w). Just as before, we get an induced morphism
o RRUW D) /a — My (a,0)

of R-algebras, where a denotes the two-sided ideal generated by T,fs —asTyp2 =Ty, bs, s € S. The same arguments
as in the previous proposition show that

1.4.3 Proposition. The above morphism ¢ is an isomorphism of R-algebras.

1.4.4 Example. (i) Continuing the examples given in example if we take W) = W = S, to be
the symmetric group on n letters in the first example, the associated generalized braid group A(W M)
identifies canonically with the classical Artin braid group B, on n strands. The above presentation
then relates the representation theory of finite Hecke algebras associated to S,, to invariants of braids and
hence of links, via the construction which associates to a braid its link closure.

(ii) In the second example of example m the generalized braid group 2A(W®M) of W) = (Z/dZ)" x S,
identifies canonically with the d-modular framed braid group (Z/dZ)" x B,, on n strands, where B,
acts on (Z/dZ)™ by permutation. The above presentation then relates the representation theory of the
Yokonuma Hecke algebra Yy ,, to invariants of framed braids and links (see [Jd15]). The special interest in
framed braids and links arises from the fact [Kir78| that 3-manifolds are classified up to homeomorphism
(or equivalently, up to diffeomorphism) by framed links up to a certain equivalence.

1.5 Orientations of Coxeter groups

The following definition is motivated by theorem [0.0.1

1.5.1 Definition. An orientation o of a Coxeter group (W, .S) is a map
0: W xS — {£1}

satisfying the following two properties:
(OR1) o(ws,s) = —o(w,s) forallw e W, s € S.
(OR2) If s,t € S with m(s,t) < co and w € W is arbitrary, then pair of sequences

(o(w, s),0(ws, t), 0(wst, s), o(wsts, t),...), (o(w,t),o(wt,s),o(wts,t),o(wtst,s),...)

is either of the form

(Foi =)y (==, )
k m(s,t)—k m(s,t)—k k
or
(==t t), (e — )
k m(s,t)—k m(s,t)—k k

for some 0 < k < m(s,t).
The set of all orientations of a Coxeter group (W, S) is denoted by O(W, S), or simply by O if the underlying
Coxeter group is understood.

1.5.2 Terminology. Viewing elements w € W of Coxeter groups as chambers according to the terminology
introduced in the sign o(w, s) should be interpreted geometrically as follows. The sequence w,ws of
adjacent chambers forms a gallery that crosses the hyperplane H = wsw™!. We will say that o(w, s) is the sign
given to this crossing by the orientation o, or that it is the sign attached to crossing H at w by the orientation
0. The axiom therefore ensures that the sign attached to the opposite crossing ws,w is opposite.
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—— ——— ——— —— —i —
—— ——— ——— —— — —
1 C - C
—— ——— ——— —— — —
x
—— ——— —— —— — —
—— ——— —— —— — —
(a) The undirected Cayley graph T. (b) The directed Cayley graph I', given by the orientation o

towards C'. On the ‘cycle’ v (in grey and light yellow), the
orientation coincides with the orientation towards = € ~.

Figure 2: The Coxeter complex of the affine Coxeter group (W, S) of type Ay and its Cayley graph I'. The
orientation o of (W, .S) towards the chamber C (definition determines an orientation of the Cayley graph,
giving rise to the directed Cayley graph I',. The condition |(ORZ2)|ensures that restricted to any ‘cycle’ v C o,
the orientation coincides with the orientation towards a chamber z € 7.

1.5.3 Remark. Definition is inherently symmetric: to any orientation o : W x S — {4} one can associate
its opposite orientation 0°P : W x S — {£} given by 0°P(w,s) = —o(w, s).

1.5.4 Remark. Definition can be interpreted in terms of the (undirected) Cayley graph I' of (W,S).
Recall (cf. [ABO8, Def. 1.73]) that I is the undirected graph with Vert(I') = W and {wy,ws} € Edge(T") iff
wflwg € S. By|(OR1)} an orientation o of W now determines an orientation of I' in the sense of graph theory,
i.e. it determines a directed graph I', whose underlying undirected graph equals I, if one lets

(w1, ws) € Bdge(T,) <  wylwy € SAo(wy,w; 'wy) = +1
In terms of [y, means that every cycle v C I of the form
v = {w, ws, wst, wsts, ... w(st)™ SV s te S m(s,t) < oo
is ‘oriented towards’ some vertex wy € 7, as indicated in figure 2]

1.5.5 Remark. There exists a natural right action of W on the set of all orientations of (W, S). Given an
orientation 0 and w € W, it follows easily that the function o e w defined by

(0 ew)(w,s) :=o(ww', s)
is again an orientation of W. Moreover, it is clear that this action commutes with the involution o +— 0°P.

1.5.6 Remark. The set O(W,S) of orientations of a Coxeter group (W,S) naturally carries the structure of
a topological space, in fact that of a compact Hausdorff space. Namely, we can view it as a subspace of the
mapping space {+}"*% endowed with the compact-open topology'EI, where {£} and W x S are considered
discrete. By definition, a basis of the topology on {£+}W*¥ is given by

Uity = 1F € {7 f@) =y Vi=1,...,n}

where {z1,...,2,} CW x S and {y1,...,yn} C {£} are finite subsets.

13Which can also be viewed as the product space H(w s)eWxS{i}‘
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It is then easy to see that the set of orientations of (W, S) forms a closed (and hence compact) subspace of
{£}" >3 as the conditions [(OR1)|and |(OR2)|involve only finitely many elements of W x S at a time. This is
of course trivial when W is finite, but this fact will be useful later when we will construct spherical orientations
of affine Coxeter groups, which are obtained as limits of orientations associated to chambers, in the sense of the
definition below.

1.5.7 Definition. Given a chamber wg € Wag let 04, : W x S — {£} be the map defined by

l’LU)

1

—1 :l(wytws) > L(wy

Oy (W, 8) = {-l—l (wy tws) < L(wy v

Then o, is called the orientation associated to the chamber wy or the orientation towards the cham-
ber wy (cf. figure [2)).

1.5.8 Remark. The o,, are indeed orientations in the sense of definition In particular, the set of

orientations of a Coxeter group is always non-empty. Indeed, by construction we have 0., = 0,/ ® w™!, so

it suffices to verify that o; is an orientation. Obviously condition [(OR1)[ holds true. An exercise in Coxeter
groups [Bou07, Ch. IV, Exercices §1, Ex. 2] now shows that for any given w € W and s,¢ € S we can always
find an element wy € w (s, t) such that

U(wo) = L(w') + L(wy "w')
for every w’ € w(s,t). So approaching 1 is the same as moving further away from wg. By remark [1.5.4] it
follows that o is an orientation.

1.5.9 Remark. The orientation 0,, defined in definition is not the only orientation naturally attached to
an element w € W. One can just as well define an orientation ‘away from the chamber w’, which in fact is none
other than the opposite orientation 0SP, and so there is no need for a separate definition.

Moreover when W is a finite group, every orientation away from a chamber is in fact also an orientation

towards another chamber, namely
op _
Uw - 011}011}

if wy is the longest element of W. In contrast, for infinite groups orientations towards and away from chambers
are disjoint in general (cf. proof of remark [1.5.10)).

1.5.10 Remark. For a Coxeter group (W, S), the map
Jj W — O(W,S5)
W — 0y
is injective. Moreover if S is finite, then W is discrete as a subset of O(W,S). In fact, in this case
Ochamber := J(W) U j(W)P = {0y, 05 cw e W} C O
is discrete. In particular for an infinite Coxeter group (W, .S) with #S5 < oo, the set
Oboundary = Ochamber — Ochamber € O
of boundary orientations of W is non-empty.
Proof. The element w € W can be recovered from the orientation o0,, as the unique element w’ satisfying
ow(w,s) =—1
for all s € S, which shows the injectivity of the map. Moreover if S = {s1,...,s,} is finite, this also shows that
Uy fyy "W ={ow}, zi=(w,s:), 4 =1

and therefore that W is discrete as a subset of O(W,S). Furthermore, if the above neighbourhood U,y (4.}
contains o for some wo € W, then

0w (W, 8) = L(wy 'w) — L(wy  ws) = 1

for all s € S. This implies (cf. [Bou07, Ch. TV, §1, exerc. 22b]) that wy 'w is a longest element of W; in
particular, the length on W is bounded. Since S is finite, it follows that W must be finite and so the space O
is finite and discrete itself, and there is nothing to show.

Finally if W is infinite and #S < oo, the set W U W°P is discrete and infinite, and therefore its (compact)
closure must be a proper superset. O
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1.5.11 Remark. (i) The above remark gives an abstract proof (relying on Tychonoff’s theorem) that for an
infinite Coxeter groups W = (W, S) with #S < oo the (compact, W-invariant, and °P-invariant) set

Oboundary = Ochamber - Oboundary c O

is non-empty. In section we will construct some concrete examples of elements 0 € Opoundary for
affine Coxeter groups, the spherical orientations that lie at the heart of the Bernstein-Zelevinsky method.
What makes these orientations useful for the study of Hecke algebras is the fact that they have a very
large stabilizer (the commutative subgroup X < W of translations) under the actlon of W, and via the
unnormalized and normalized Bernstein maps 6, 0 deﬁnltlon i deﬁnltlon therefore give rise
to embeddings (cf. proposition

k[Stabyy (0)] < HY)

of the corresponding group algebra, given by w — 6,(w) and w — 0, (w) respectively. Although these are
the only boundary orientations that we will be concerned with, there exist many more (infinitely many)
such orientations for affine Coxeter groupd™}

(ii) The set Opoundary Seems to be particularly interesting in the case of hyperboliﬂ Coxeter groups. In
particular, there seems to be a rich supply of orientations having non-trivial stabilizer, although it is
not clear at the moment whether the corresponding subalgebras k[Staby (0)] € H() yield any useful
information about the structure of the Hecke algebras HD attached to W. The set Oboundary also
appears to be somewhat related to the Gromov boundary (W, S) of W (see [Dav08, 12.4]).

The richness of Opoundary it the hyperbolic case is illustrated by the example of the group W = PGLy(Z) =
GL2(Z)/{£} of invertible 2x2 integer matrices modulo center, which is discussed in section
1.5.12 Remark. We will show later in lemma that orientations 0o € O can also be viewed as choosing
for every hyperplane H € ) a ‘positive’ half-space U:H € {U#;, Uy} such that o(w, s) = 1 iff ws € U:H where
H = wsw™!. In view of this, it follows easily from unwinding definitions that the union

Og = j(W) U W) = 5(W) Uj(W) = Oparmter € O

identifies exactly with the root hyperplane orientations defined in |Go6r07, Def. 2.3.1], i.e. those orientations o
having the property that all finite intersections

Ubg, N--nUSy #0
of positive half-spaces with respect to o are non-empty, or that all finite intersections

Ugpr, V- NUyy #0
of the corresponding negative half-space are non-empty. The example of the infinite dihedral group (the free
group on generators s, t; m(s,t) = oo) shows that the inclusion

OcCO
is proper in general.

1.5.13 Remark. The two orientations attached to a rational point = € IP}(Q) are adjacent in the sense of

definition [L11.21

Proof. If 0 is an orientation attached to a point z € IP*(IR) as above, then for all hyperplanes H € §) that don’t
end in x (i.e. ¢ H), the half-space bounded by H that is positive with respect to o is the one containing
z (in the ‘obvious’ sense). In particular, the orientation o is determined on all those H by the point x alone.
Therefore, if 0}, 0, now denote the two distinct orientations attached to z € IP1(Q), then o), 0, disagree
precisely at those H with € H, and it’s clear that for every such H, the reflection sy permutes the two
subsets in

H={HeH: 2¢O I{HeH :zcH}

amongst themselves, and moreover preserves the half-spaces bounded by the hyperplanes in the left set that
are positive with respect to o} (equivalently o, ), and maps the half-spaces bounded by the hyperplanes in the
right set that are positive with respect to o} to negative ones (i.e. positive with respect to o} ). O

14The set of boundary orientations can easily be worked out for the group of type ;1\;; apart from the six spherical orientations,
it contains countably many orientations all of whose stabilizers are subgroups of X of rank 1.
15There are several inequivalent definitions of the term hyperbolic Cozeter groups, see [ABO8| 10.4].
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As a complement to remark[1.5.10} the following lemma shows that for finite Coxeter groups (W, S) chamber
orientations do exhaust all possibilities. This lemma is not used in our results concerning affine pro-p Hecke
algebras and may therefore be safely skipped.

1.5.14 Lemma. Let o be an orientation of (W,S), and suppose that #W < oco. Then
0 =0y
for some w e W.

Proof. Let us begin with a general observation. Given any (not necessarily finite) Coxeter group (W, S) and an
orientation o, we can construct a function

b W —Z
as follows. Given a w € W, let w = s; ..., be any expression as a product of generators, and put

T

d)o(w) = 20(81 . Si_l,si)

=1

In other words, ¢,(w) is the sum of the signs that o associates to the gallery T' = (1, s1, 8182,...,w) from 1 to
w. We need to see that this sum is well-defined independent of the choice of I'.

By Tits’ solution of the word problem for Coxeter groups [Bro89, II1.3C], any two expressions of w as a
product of generators are related by a sequence of transformations of the following type.

(I) 81...8i888i21 80 > 81 ...8iSi41---Sr
(II) 81...8iSi4+1---8p = 81...8;888;+1.-.8¢

(IIT) S1...8;8tS... Siq41.---Sp > S1...8itst... Siy1...8 if m(s,t) < oc.
m(s,t) m(s,t)
Because [(OR1)| guarantees the invariance under the first two transformations and [(OR2)| guarantees the in-

variance under the third, it therefore follows that ¢,(w) is well-defined. Moreover, it is immediate from the
definitions that

bo (ww/) = ¢o(w) + ¢00w(w/)

which we can also write as

(1.5.1) Doew = o @ W — ¢o(w)

For orientations o of the form o = 0,,, the function ¢, is easily seen to be given by
Po(w') = L(w) — L(w™ ')

Conversely, if ¢, is of the above form, it follows that o = 0,,, and in this case w is determined as the unique
element w’ € W at which ¢, attains its global maximum.

Let us now assume that W is finite, and let w be such that ¢,(w) is maximal. Using and replacing
0 by 0 e w, we may assume that w = 1. In order to show that o = 0y, it suffices by the above remark to prove
that

$o(w) = —L(w)
or equivalently, to prove that ¢, is monotonously decreasing along geodesics, i.e. to prove that for every reduced
expression si ... S, the sequence

(1.5.2) Do(wo), Po(wi), ..., Po(w,) with w; =s81...8;

is (strictly) decreasing (note that two consecutive elements of the above sequence differ by +1).

We prove this using induction over 7. For r = 1, this follows from the fact that ¢ has its (a priori not unique)
global maximum at w = 1. Let now r > 2, and assume that the claim holds for sequences of length < r. In
particular

do(w;) =—i fori<r

Suppose that we had ¢, (w,) > ¢o(wyr—_1), i.e. ¢o(w,) = —(r —2), and put s = s,_1, t = s,.. We then have the
following situation

Po(wr—2) = —(r =2) Po(wr—1) = —(r—1) | Po(wr) = —(r = 2)
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By remark the restriction of o to the ‘loop’ w,_2- (s, t) is given by the distance to a chamber, and therefore
¢, attains precisely one local minimum there. Thus, this minimum is attained at w,_; = w,_ss and for all
k < mf(s,t) — 1 we have that

(1.5.3) Po(wr_otst..)=—(r—2)+k
k

Note that m(s,t) < co because W is finite, and m(s,t) > 2 because s = ¢t would contradict the reducedness of
81...8q. In particular, ¢,(w,_ot) = —(r —3); because of our induction hypothesis, it follows that the expression
$1 ...Sp._ot must be reducible, yielding an immediate contradiction if r = 2. If » > 3, we can apply the deletion
condition (see remark and the reducedness of the expression si ...s,_5 to conclude that

wr72t281...Sr72t281...8‘7‘...8r72

for some 1 < j <r — 2. This subsequence $1...5;...s,_2 of length r — 3 is again reduced, and its associated
sequence of values of ¢, is again strictly decreasing (we don’t need to use the induction hypothesis for this; this
already follows from the fact that ¢,(1) =0 and ¢,(s1...5;...5.—2) = —(r — 3)).

We can therefore repeat the above argument with the expression s; ...s,_o replaced with s;...5;...5,_2,
using equation for k = 2 and the induction hypothesis to conclude that s;...5;...s,_2s is reducible.
We can keep iterating this argument as long as we are able to apply , that is, applying this argument k
times we end up with an equation

Wy—2 tst... = Sjy e Sir_ ok
k

for some sequence 1 < j; < ... < jr_o_g < r — 2, such that either k = r — 2 < m(s,t) — 1 and the product on
the right hand side is empty, or k = m(s,t) — 1. In the first case, we would have

Wp—_g = ...18t
r—2

Again, using that the restriction of o to the loop (s,t) of length m(s,t) is given by the distance to a chamber,
and that the restriction of ¢, to this loop therefore has a unique local minimum and a unique local maximum,
both of which are lying opposite to each other, it follows that the maximum must be attained at w =1 (!) and
that the minimum must be attained at w = w,_1. In particular, »r — 1 = m(s, t) which is a contradiction.

In the second case, we would have a reduced (!) expression

Wr—2 = Sj; - Sj_o_p - tst
m(s,t)—1

Since w, = wy_gst and ¢(w,) = w,_s + 2 by assumption, the expression

Sii...8; ...tst st
J1 Jr—2—k X 7

m(s,t)—1
would be reduced. But already the subexpression
...tst st
——
m(s,t)—1
is reducible, yielding a contradiction. O

We will now extend the notion of an orientation to extended and pro-p Coxeter groups. The extension from
extended to pro-p Coxeter groups is trivial, but the extension from Coxeter to extended Coxeter groups is a bit
subtle because of the action of €.

1.5.15 Definition. Let W be an extended Coxeter group and o be an orientation of W,g. Then the map
0: W xS — {£1}

given by o(wu, s) := o(w, u(s)), w € Wag, u € Q is called the orientation of W associated to o.
A map o: W xS — {£1} is called an orientation if it is associated to an orientation of Wg in the above
sense, and the set of all such orientations is denoted by O(W), or simply by O if W is understood.
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1.5.16 Remark. There exists a natural right action of  on the set O(W,g, S) of all orientations of W,g.
Given an orientation 0 € O(W,g,S) and u €

(0 @ u)(w,s) := o(uwu", u(s))

again defines an orientation of Wag. On the other hand by remark [T.5.5] we also have a natural right action of
Wag on O(Wa,g, S). From the definitions it follows immediately that

(oou)ew= (0o (uwu ")) eu

and hence by the universal property of the semidirect product 2 x W, the two actions give rise to an action
of W on O(W,g, S).

1.5.17 Remark. There exists a natural intrinsic right action of an extended Coxeter group W on the set O(W)
of its orientations. If 0 is an orientation of W associated to an orientation o of Weg, then for any w € W the
map o e w defined by

(0 ew)(w,s):=0(wuw,s)

is again an orientation. In fact, if we write w = wou and w’ = wju’ with wg, w) € Wag and u, v’ € Q then
o(ww', 5) = o(wouwhutun’, s) = o(wouwhu ", (uu')(s))

— (00 wo) (el u(w (5))) = (0 @ wo) » u)(wh,u/(s))

— (0 0 w)(uh,u'(s))
Hence, 0 @ w is associated to o e w. This computation also shows that the natural bijective map
O(Wag, S) — O(W)
is W-equivariant with respect to the two actions described.

1.5.18 Remark. The set O(W) of orientations of an extended Coxeter group W also carries a natural topology,
namely the subspace topology induced by the space {£}"*S and its compact-open topology. The above
bijection then is actually a homeomorphism. This follows immediately from the fact that the extension map

{:l:}Waﬁ'XS N {i}WxS
[ ((wu, s) = f(w,u(s)))
is a homeomorphism onto the subspace
{f e {39 f(wu,s) = f(w,u(s)) YweW, ueQ, scS}
}W><S.

Since this subspace is closed, it follows that also the set of orientations of (W), S) is a closed subspace of {+

1.5.19 Definition. Let W) be a pro-p Coxeter group and o be an orientation of the underlying extended
Coxeter group W. The map 0 : W) x .S — {+1} defined by

o(w, s) = o(w(w), s)

is called the orientation of W) associated to o.
An orientation of W) is a map W) x § — {41} associated to an orientation of W in the above sense,
and the set of all such orientations is denoted by O(W(l)), or simply by @ if W) is understood.

1.5.20 Remark. There exists a natural right action of W) on the set of all orientations of W) again by the
formula (o @ w)(w’, s) := o(ww’, s). There also exists an action of W () on the set of all orientations of W and
Wg respectively via pulling back the W-actions along m : W) — W. The natural bijection

oOW) = o(wW)

is then equivariant with respect to these W)-actions.
By remark [1.5.17, we may therefore identify O(W ™) and O(W,g, S) as W (H-sets, and may consider the
former as a topological space through identification with the latter.
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1.6 Bernstein maps

In this section, we will introduce the first of three related families of functions 6,, 50, 50 which we loosely refer to
as “Bernstein maps”, as they are related to Bernstein’s presentation of Iwahori-Hecke algebras. We fix a pro-p
Coxeter group W) throughout and denote by O = O(W 1)) the set of orientations of W (1),

The following theorem is essentially the transposition of ([Gor07, Thm 1.1.1]) into our context. We first
phrase it in terms of the braid group (W) (see definition

1.6.1 Theorem. There exists a unique map

0: WL — Homge (O, A(WD)),  w = (0 0,(w))
satisfying the cocycle rule
(1.6.1) 0o (W) = 0, (w)0oew(w')  Yw,w' € W

such that for s € S,0 € O
Oo(ns) =T, where e=o(1,s) € {£1}

and for u e QM 0 c O
Oo(u) =T,

Proof. We apply lemma to the W -module M = Homge (O, A(W ™)) and the pair (o, p), where
o(s) = (o — T,ii) . e=o(1,s)

and p is the ‘trivial’ cocycle
pu) = (0 = Ty)

Here, the monoid structure on M is given by pointwise multiplication and the left W-action is induced by the
right action on O of remark [1.5.20] It then only remains to verify conditions (i)-(iii) of lemma [.2.1] Bearing
in mind the defining property |(OR1)| of an orientation, condition (i) amounts to showing that for all s € S and
0cO

ToT 5 =Ty
where ¢ = o(1,s). First of all, note that T}, commutes with T}, since

T, =Ty s 2 T T Tt

s n2ngng
where we used that nz e T C QM. Therefore T, n. commutes also with

Tnfl = T‘n72nS = Tn_i’lTns
Given € € {£1}, we have
Tpe =Ty =TT,

2
nitng ning

and hence
T,:T ! =1T¢
ng nge ng

Since T;,, and T\ -1 commute, we can raise the last equation to the power ¢ to get
15 —& __
Tn§ Tns—a = 4in?2

We now turn to the verification of condition (ii). Unwinding the definitions and observing that the values of p

lie in the invariants M W(l), we see that condition (ii) amounts to showing that for 0 € O, s € S and u € Q1)

we have
15 €
TuTng = Tng( .)Tu

ts,u

where we abbreviated ¢ = o(1,u(s)). When ¢ = 1, this reduces immediately to the defining equation ungs =
Ny(s)Utsu Of ts . When e = —1, we first compute

T

—1
ng

T+ Ty=T, ,=T, =T,

ts
u(s) u(s)u uts,ums S
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Rearranging then gives the desired equation. Finally, let us verify condition (iii). Given s,¢ € S with m(s,t) <
00, we have to show that for every orientation o we have

(162) Tf(l) TE(Z) T5(3) — Ts/(l) T5/(2) T‘f/(3)

pED e @ L@ T LSS @ e

where
e(1) =0(1,s), €(2)=o0(s,t), e(3)=o(st,s), e(4)=o(sts,t),
and
6/(1) =o(L,t), 5/(2) =o(t,s), 6/(3) = o(ts,t), 5/(4) = o(tst, s),

are precisely the sign sequences appearing in condition for w = 1 in definition [I.5.1] By condition
(OR2)| these sequences are in one of two forms. Without loss of generality we may assume that they are in the
first form, i.e.

k m(s,t)—k
and
’ /
(5 (1)v€ (2)7 ): (75 "377+7~'~7+)

——— ——

m(s,t)—k k
Writing

$1 =TNg, S2 =N, S3=TNg, ... S =Ny, Sh=TNg, S§="4, ...

eq. (1.6.2)) is thus of the form

Ty ... T TZh .. TN =T .TY T,

k41 Sm(s,t) m(s,t)—k

T

"m(s,t)—k+1 " L8 m(s,)

Rearranging the last equation slightly, we see that it is equivalent to

T T -1 T

‘e =kt B man et s

T,  ..T, Ty ... Ty =T,
1

. S
S (s t)—k k

Both sides of this equation are words Ty, ... T, of length m(s,t) in the distinguished generators T, of

C T Wim(s,t)
Ql(W(l)). Moreover, the words w; ... wp(s¢) in the elements of W@ corresponding to them define reduced

expressions, since under W) — W they project to alternating words of length m(s,t) in s and t. Therefore,
we can simplify both sides of the above equation to get

T,-1

/=1 - ’ ’ -1 -1
S m(s,t)—k"'s 1 S1---Sk S m(s,t)—k+1---S "”(5=t>sm(s,t)'“sk+l

The validity of this equation now follows from the equation

=1 =1 o / -1 -1
S m(s,t)—k - S1 S1...8 =S m(s,t)—k+1--- S m(svt)sm(s,t) N sk+1

in W™ which by backtransforming is seen to be equivalent to the braid relation (T.1.1)
S1... Sm(s,t) = 5/1 e S’ll’n(s,t)
which holds by assumption. O

1.6.2 Definition. The map 6 defined in the previous theorem is called the (unnormalized) Bernstein map.
Given a generic pro-p Hecke algebra H") = H™1)(a,b) associated to parameters a = (as)ses and b = (bs)ses
with as invertible, we have (by proposition [1.4.3)) a morphism of monoids

AWD) — RRAWD)) — #D
Using this map we can push 6 forward to obtain a map
W — Homge (O, HM)

still satisfying the 1-cocycle rule. This map will also be denoted by 6 and referred to as the (unnormalized)
Bernstein map.
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Let now H() be a generic pro-p Hecke-algebra with invertible parameters a, as above. Fixing an orientation
0 € O, we thus have a family {f,(w)}, e of elements in H ).

The crucial point is that this family forms an R-basis of H(1). This is the content of the next proposition,
which shows that in fact the change of basis matrix between {0, (w)},cw o and {Ti, },ew @ is ‘upper triangular’.
We will see later (equation ) that for a certain orientation o the restriction of 6, to the subgroup X < W
of translations recovers the map 6 of Lusztig [Lus89]. This motivates the terminology ‘Bernstein map’.

1.6.3 Proposition. In HY) one has an expansion of the form

eo(w) = Cw,wTw + Z Cw,w/Tw’

w!' <w

where ¢y € R* and ¢y € R zero for almost all w', for every w € W. Here < denotes the strong Bruhat
order on W) (see definition . In particular {0,(w)},ew o s an R-basis of HY.

Proof. The first claim follows by taking an expression w = ng, ...ns,u with {(w) = r and expanding
bolw) = T5ty ... Tz, T,

using (cf. eq. (1.3.3))

(1.6.3) T =a;' (T, = bs)

S

and the commutation rule (1.3.5). Here one also uses that T, ...T,, =T,
one either has

n., and that for every w € w

s1 -

Tns Tw = Tnsw

or
TnsTu) = asTnsw + bsTw

according to whether ¢(nsw) = 14 £(w) or £(ns,w) = ¢(w) — 1. The second claim is a formal consequence of the
first and the irreflexivity and transitivity of the relation <. O

1.7 A 2-coboundary X appearing in Coxeter geometry

The purpose of this section is to pave the way for introducing an integral 6 and a normalized version 6 of the
Bernstein map 6 defined in the previous section.

The map 0 has the ‘defect’ that it is only defined when the parameters as are invertible. In view of the
study of mod p representations of pro-p-Iwahori Hecke algebras (where a; = 0), it is important to have an
integral version which is defined for all parameters. Such variants of the classical Bernstein-Lusztig basis have
been first introduced by Vignéras [Vig05], [Vig06]. The construction of 6 is based on the following relation (see

ca. ([C39))

asTn_s—ll = 4dng, — bs
which is an immediate consequence of the quadratic relations. It suggests to formally multiply
Oo(w) = TEi ...TZ%:Tu

by the product

Yo (w) = H As;

1iE,=—

to get an integral expression in the generators T,,, and to define ao(w) as the resulting element. However,
a priori the factor 7,(w) and therefore é\o(w) depends on the chosen expression w = ng, ...ns.u for w as a
product in the distinguished generators. The first goal of this section is therefore to establish the independence
of 7,(w) from the chosen expression for w. As this is a purely combinatorial question, it will be useful to work
with formal products of hyperplanes instead of products of the parameters as, and to replace 7 by a purely
combinatorially defined map ~.

The second goal of this section is to determine the multiplicative properties of v, as these determine the
multiplicative properties of § and the usefulness of 8 wholly depends on the fact that it satisfies the cocycle rule.
We will achieve this by identifying the coboundary of v (viewed as a map w +— (0 — v,(w)) in one parameter)
with another explicitly and combinatorially defined map X.
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We will then give a second characterization of X as a coboundary of a ‘generalized length function’ VL,
which is needed in order to introduce and prove the multiplicative properties of a normalized variant 6 of 6.
This normalized version is closely related to the classical Bernstein-Lusztig basis of the Iwahori-Hecke algebra
(see section [2.2.1)).

Since everything in this section only involves the combinatorics of extended Coxeter groups, we need only
to fix an extended Coxeter group W = (W, W, Q, S).

Let us start by defining the ‘coboundary’ mentioned in the title of this section.

1.7.1 Definition. Given w,w’ € W let

X(w,w') = HaH € IN[9]
H

where IN[$)] denotes the free abelian monoid on the set $ of hyperplanes and the product is taken over all
hyperplanes H € $ which both separate 1 from w and w from ww'.

In other words, X(w, w’) is the product over all hyperplanes which are crossed twice by any gallery that is
the concatenation of a minimal gallery from 1 to w and a minimal gallery from w to ww’. In particular we have
the following observation, which we record separately.

1.7.2 Remark. For all w,w’ € W
lww') =L(w) +L0(w') = Xw,w')=1
1.7.3 Remark. From the definition of X, it also follows directly that
X(w,w') =1
whenever w € Q or w’ € Q.

Next, we will show that the sign attached by an orientation to crossing a hyperplane H at a chamber
w € Wag does not depend upon the chamber itself but only upon which half-space with respect to H this
chamber lies in.

1.7.4 Lemma. Let 0 € O(Wa,g, S) be any orientation of Wag. If w,w € Wag and s,5 € S are such that

wsw ' =wsw ' and L(swTlw) =14 L(w D)

1

that s, if w,ws and W, ws are separated by the same wall H = wsw™! = wsw ! and w,w lie on the same side

with respect to H, then
o(w,s) =o(w,s)

Proof. After replacing o by 0 e w, we may assume that w = 1. Then sw = ws and ¢(sw) = {(ws) = L(w) + 1.
Therefore, if we take any reduced expression w = sy ... s, then

881 ...8- =81...5:S

will be two reduced expressions of the same element in W,g and o(1,s), 0(w, 5) are the signs which appear in
these galleries when crossing the wall H. It therefore suffices to show that for any two reduced expressions
of the same element in Wog and any hyperplane H the signs which appear when crossing H are the same for
both expressions. By Tits’ solution of the word problem |[Bro89, I1.3C], two such reduced expressions can be
transformed into each other by a finite sequence of transformations of type (III) (cf. proof of theorem

t1...t sts... Ciy1...tpm——T1...0 tst... tig1...tm
m(s,t)<oco m(s,t)<oo

If H is crossed before or after the part where these two galleries differ, the signs are equal for trivial reasons. It
therefore suffices to show that for s,¢t € S with m(s,t) < oo the signs of all the walls crossed by the two galleries
corresponding to the reduced expressions

sts...=1st...

T =

m(s,t) m(s,t)
are equal. But by remark the signs are determined by the distance to some reference chamber in (s,t).

In particular the sign o(w,s) only depends on which half-space with respect to H = wsw~! the fundamental
chamber lies in. O
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1.7.5 Notation. Thanks to the previous lemma, we may extend any orientation o canonically to a map
0: W x9H— {£}
by letting
o(w, H) := o(wwy,s), weW, HeS$

where wyg € W and s € S are such that
WoSWe '=H

and 1, wq lie in the same half-space with respect to H. It follows quite easily that this does indeed give rise to a
well-defined map W x § — {+} that extends o. In the terminology of [[.1.3]and the sign o(w, H) has the
geometric interpretation as being the sign that is attached to crossing the hyperplane wHw ™! at any chamber
that lies in the same half-space with respect to wHw ™! as w. In particular o(1, H) is the sign attached by o to
crossing H at any chamber that lies in the same half-space with respect to H as the fundamental chamber.

1.7.6 Corollary. Given an orientation o of W, there exists a unique map v, from W into the free commutative
monoid IN[$)] with generators agy corresponding to the hyperplanes H € § such that if w = s1...8.u, s; € S,
u € Q is a reduced expression for w, then ~y,(w) equals the product of the hyperplanes crossed in the negative
direction by the gallery corresponding to this reduced expression. In other words

(1.7.1) Yo (w) = H am,

i g,=—1
where g; = 0(s1...5i_1,8;) and H; = (s1...5;_1)s;(s1...8;_1)" L.

Proof. We need to verify the independence of the right-hand side of equation from the choice of the
reduced expression. Since s; ... s, is a reduced expression of wu~! € W,g, the walls H; appearing are pairwise
distinct and are equal to the walls separating 1 and w. On the other hand, by the previous lemma the sign ¢;
only depends on which half-space with respect to H; the fundamental chamber lies in. Therefore, the H; with
€; = —1 only depend on w and o. O

1.7.7 Remark. As promised, we will now explicitly determine the ‘coboundary’ of the map ~ defined above.
More precisely, let us view the collection of all elements 7, (w) as the map

v W — M, ww— (0~ v, (w))

taking values in the W-module M = Homge (O, Z[$)]). The structure of an abelian group on M is ‘pointwise’,
and Z[H] 2 IN[$] denotes the free commutative group on $). The W-action on M is induced by the canonical
right action on O and the canonical left action on $, i.e.

(wed)(o)=wedloew) YweW, peM, 0O

Finally, let us view X as a map
X:WxW—M, (wuw) (o~ Xwuw)
The statement of the next lemma is then equivalent to the coboundary equation
dy=X
of the inhomogeneous standard cochain complex on M.
1.7.8 Lemma. For all w,w’ € W, one has
Yo(w)w (Yoow (w')) = X(w, w)yo (wu')
Proof. Write w = wou and w’ = wju' with wo, w(, € Wag and u, v’ € Q. Then by definition
Yo(w) = Yo (w0)  Yoow(w') = Yasw(wh) Yo(ww') = o (wou(wy))

and
X(w, w") = X(wo, wou(wy))
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Moreover, it follows from the definitions that

’7(oowo)ou(w6) =u! ('700w0 (u(wé)))

It therefore suffices to prove the formula for w,w’ € W,g. Taking reduced expressions w = si...s, and
w' = Sp41 .. Sr+m, one has

Yo (’LU)’LU (’Yoow(w/)) = HaH

where the product extends over all walls H which are crossed with a negative sign by the gallery corresponding
to the possibly nonreduced expression i ...Spy4m,. A wall H will be crossed by this gallery if and only if it
separates 1 from w or w from ww’. A wall H is crossed twice iff it separates both 1 from w and w from ww’,
otherwise it is crossed only once. The walls that are crossed once are exactly the walls that separate 1 from
ww’ and they are crossed with the same sign as in a minimal gallery from 1 to ww’. The walls that are crossed
twice are crossed once with a positive and once with a negative sign. It therefore follows immediately that

Yo (W)w (Yoow(w')) = X(w, w)vo (wuw')
O

The length ¢(w) of an element w € W is given by the number of walls separating 1 and w. Replacing
numbers by formal products of walls we get the notion of the generalized length IL(w) of an element, which leads
to another characterization of X as a coboundary.

1.7.9 Definition. The generalized length IL(w) of w € W is the element of IN[$)] given by
IL(w) = HaH
H

where the product is taken over all H € §) separating 1 and w.

1.7.10 Lemma. For all w,w’ € W we have
IL(w)w (IL(w")) = X(w, w’)?IL(ww')

Proof. This follows from the same arguments given in the proof of lemma The only difference is that here
every wall that is crossed twice also appears twice. O

1.7.11 Remark. (i) The length ¢(w) of an element w € W and its generalized length IL(w) are related via
the ‘cardinality morphism’
#:(N[®],) — (N, +), ag+—1

by the equation
f(w) = #1L(w)
The lemma above therefore gives the formula
#X(w,w') = £(w) + £(w") — L(ww)
which reproves and generalizes remark [I.7.2} The lemma also shows that

lww') =Ll(w) +L(w') = Lww)=Lw)wL(w))

(ii) The above lemma says that X is the coboundary of the formal square root VIL of IL.. More precisely, letting
Z[\/$)] denote the free abelian group on the symbols \/az, H € £ we can view Z[$)] as a subset of Z[/§]

via the embedding given by ag +— (,/aH)Q. Pushing IL : W — Z[/$] forward via this embedding, it has

a unique square root VIL: W — Z[\V/$)]. Viewing X as a map W x W — Z[/$], the formula of the above
lemma is equivalent to the coboundary equation

dVIL = X

of the inhomogeneous cochain complex on Z[v/$)].
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(iii) The construction of the integral Bernstein-Lusztig basis in [Vig06] heavily depends on the ‘lemme fonda-
mental’ [Vig06, 1.2]. There it is proven that a certain expression q,.,q,'q, (w,v € W) which is a product
of formal parameters is a square of an element c,,,. This relates to the previous lemma as follows. Con-
sider the orbit map $ — W\$ of the canonical action of W on $. Pushing L and X forward along the
induced map Z[$)] — Z[W\$], we get maps IL and X with values in Z[W\$)]. The formula proven in the
above lemma then simplifies to

(1.7.2) IL(w)IL ()L (ww') ™! = X(w, w')?

Identifying the formal parameter (‘poid générique’) g (s € S) of [Vig06] with the generator ajy € Z[W\$]
corresponding to the class [s] € W\$, the element g, (w € W) defined in loc. cit. identifies with IL(w).
In this notation the above formula reads

G Gy = X(w, w')?
In particular we find that
G oy G’ = Guor Qo Gt Gy = X(w, w') 72,
and therefore that the element ¢, . defined in [Vig06l 1.2] is given by
Cww! = X(w, w) ™ gy

This element is more explicitly given as the product
Cw,w’ = Ha[H]
H
where the product runs over all hyperplanes H which separate 1 from w’ but don’t separate 1 from w.

1.8 A characterization of pro-p Coxeter groups in terms of X

Throughout this section, we will fix an extended Coxeter group W = (W, Wog,Q,S). Our goal here is to
characterize some (all, if W = W,g) pro-p Coxeter groups W@ whose underlying extended Coxeter group
equals W, using the ‘2-coboundary’ X of the previous section. Even though this result will not be used in the
rest of the text, we choose to present it because we think it is of independent interest.

By definition, a pro-p Coxeter group W) is given by a group extension

1 T w® W 1

of W by an abelian group T, together with a choice of lifts (ns)secg of the distinguished generators which satisfy
the braid relations. In the case W = W,g, such groups have been studied by Tits |Tit66] under the namﬂ of
‘extended Coxeter groups’. Among the many interesting results obtained in |Tit66] is a characterization (|Tit66,
3.4 Proposition]) of such extensions in terms of data related to W and T, and the construction and explicit
description of a ‘universal’ extension V. Implicit in this (see especially |Tit66, 3.4 Proposition]) is that the
2-cocycle

6 WxW =T, é(w,w)=n(wn(w)n(ww)*

associated to the extension and the canonical set-theoretic section
n:Ww—wo
determined by n(s) = ns and
Lww') =L(w) +L(w') = n(ww')=n(w)n(w)

can be explicitly computed. However in |Tit66] an explicit expression for this 2-cocycle was not given. We shall
therefore explicitly compute these cocycles in terms of X, and deduce the existence of a universal extension
(without reference to |Tit66]) whose corresponding 2-cocycle identifies with X.

Let us begin with a definition.

L6We apologize for not following the terminology of [Tit66], because in our contexts we have to consider extensions of groups
which are themselves (split) extensions of Coxeter groups.
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1.8.1 Definition. The category W/(;), is the category whose objects consist of extensions

1 T G W 1

of W by an abelian group, together with a set-theoretic section n : W — G of the map G — W satisfying
Lww') =Ll(w) +L(w') = n(ww)=n(w)n(w) Yww eW
A morphism f: (G,T,n) = (G',T',n’) is given by a morphism f : G — G’ which makes the diagram
T ——G——W
if lf \Lid
7 ——G ——W
commute and which satisfies fon =n’.

1.8.2 Remark. Essentially, the objects of the category Wﬁ‘), are pro-p Coxeter groups whose underlying
extended Coxeter group equals W. However, not all pro-p Coxeter groups give rise to objects of this category.
More precisely, an object (W(l),T ,n) of Wﬁ[), corresponds to a pro-p Coxeter group W) together with a

section of groups
n:Q— 1 Q)

of the restriction of 7 : W) — W to €, such that we have the relation
n(unn(u) ™t =nye YueQ, seS

The map n: W — WO is then uniquely determined by 7 and (ns)ses by requiring
n(u) =n(u), n(s)=ns YueQ, se€s

Note that given a pro-p Coxeter group W) such a section 7 might not exist. And even if it does, the relation
n(u)ngn(u)=t = Ny(s) Might not be fulfilled. However, when W = W,g, the set of pro-p Coxeter groups with

underlying extended Coxeter group W and the set of objects W%,[), are canonically identified.

1.8.3 Lemma. Given an object (G,T,n) of W/(%A),, the 2-cocycle ¢ : W x W — T determined by the section n

v1a

d(w,w') = n(w)n(w)n(ww) !

satisfies
p(w,w’) = h(X(w,w’))

Here
h:Z[$H — T

denotes the unique W -equivariant homomorphism of abelian groups satisfying
h(s) =n(s)* Vsec S
Proof. First, note that h is obviously unique if it exists since we have
h(wsw™) = wn(s)?*w™! YweW, s€ S
by assumption. Therefore, such a map exists if and only if for w € W and s,t € S we have
wsw =t = wn(s)?w ! =n(t)?

But replacing w by ws if necessary, we may assume £(ws) = £(w) + 1. Hence, we also have £(tw) = ¢(w) + 1
and therefore
n(w)n(s) = n(ws) = n(tw) = n(t)n(w)

implying
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Now, both ¢ and h o X fulfill the 2-cocycle relation

d(wr, w2)p(wiws, ws) = wi (P(we, w3))d(wr, waws)

Moreover, both of these maps vanish whenever one of their arguments lies in €2. For ¢, this follows from the
relation
l(ww') = l(w)+L(w') = n(ww')=n(w)n(w)

For h o X, this follows from remark Therefore, in order to show that ¢ = h o X, it suffices to prove that
o(s,w) = h(X(s,w)) Vse S, weW

Since both maps vanish on pairs (w,w’) satisfying ¢(ww’) = ¢(w) + £(w’) (cf. remark , it suffices to treat
the case £(sw) = {(w) — 1. Take a reduced expression

SW=81...8u, 8 €S8, ueQ, r=~_»sw)

of sw, then
W= 8§81 ...5-U

is a reduced expression of w. Hence
n(w) =n(s)n(s1)...n(s)n(u)

and
n(sw) =n(sy)...n(s.)n(u)

and therefore
o(s,w) = n(s)® = h(X(s, w))

because X(s,w) = s is the unique hyperplane crossed twice by the gallery (s, s, s1,...,58.). O

1.8.4 Definition. Ty is the category whose objects are given by pairs (T, h) consisting of an abelian group W
endowed with a Z-linear W-action and a W-equivariant map

h:9—T

(identified with its linear extension h : Z[$)] — T) and whose morphisms f : (T,h) — (T,h’) are given by
W-equivariant group homomorphisms f : T — T” satisfying f o h = h'.

With the above definition, we have the following immediate corollary of the above lemma.
1.8.5 Corollary. The functor
W/(%), — Tw
given on morphisms in the obvious way and on objects by
(G, T,n) — (T,h), h(s)=n(s)?

is an equivalence of categories, with quasi-inverse associating to an object (T, h) the object (T x W, T, 1), where
the set T x W is endowed with the group law

(t,w) - (¢, w') = (tw(t (X (w,w)), ww")
and v : W — T x W is given by t(w) = (1,w).

The following corollary essentially recovers Tits’ description of the group V' (cf. [Tit66], 2.5 Théoréme]; see
also [DWO05] 3.3]).

1.8.6 Corollary. The category Wﬁ‘)/ has an initial object V given by
V= (V.T,n) = (Z[H] x W, Z[H],+)
where V.= Z[$H] x W is endowed with a group law via
(t,w) - (', w') = (tw(t)X(w,w), ww")
and v : W =V is given by t(w) = (1, w).

Proof. Immediate from the above corollary, since the pair (T, h) with T' = Z[$)] and h = id obviously forms an
initial object of the category Ty . O



1.9 Relation of Bernstein maps to Cherednik’s cocycle 45

1.9 Relation of Bernstein maps to Cherednik’s cocycle

In this optional section, independent from the rest of the text, we discuss the work of Ivan Cherednik on Hecke
algebras and its connection to Bernstein maps. This connection arises through the cocycle rule eq. .

Motivated by problems in quantum physics, Cherednik has constructed various 1-cocycles of Coxeter groups
with values in (localizations of) affine Hecke algebras and their degenerate (i.e. graded) versions, viewing these
cocycles as generalized ‘ R-matrices’.

By definition, R-matrices are solutions of the Yang-Bazter equation. This remarkable equation—connecting
low-dimensional topology, representation theory, category theory and physics—was discovered independently
by C. N. Yang [Yan67] and R. J. Baxter |[Bax72|, who worked on finding ezact solutions of certain physical
models from quantum and statistical mechanics respectively. Its simplest and most recognizable form is

(1.9.1) Ri2Ri3Re3 = RozRizRi2

with the R;; being elements of some monoid (usually an algebra, although the case where the R;; are endo-
morphisms of a set is of considerable interest too; see ‘set-theoretical solutions of the Yang-Baxter-equation’).
Assuming the existence of an action of the symmetric group S3 on the monoid in which the R;; take values,
and assuming ‘W-invariance’ of the R-matrix, i.e.

“Rij = Ry (i)o(j)

for all o and i, j for which both sides are defined, the Yang-Baxter equation (1.9.1]) can be rewritten equivalently
as

(1.9.2) R°R*' R, = R'R,"* R,

where s = (12), t = (23) and indices ij are identified with transpositions (ij). This equation in turn is nothing
but the self-consistency condition necessary for the existence of a 1-cocycle o — R, that results from the braid
relation sts = tst in the symmetric group. This relation is almost sufficient for the existence of such a cocycle;
necessary and sufficient is the above relation together with the ‘unitarity condition’

RSSRS = Rtth = ].

resulting from s? = t2 = 1 (cf. |Che84, Prop. 4]). Thus, unitary invariant R-matrices are identified with
1-cocycles of the group Ss.

Cherednik used this observation to define a general notion of ‘R-matrices’ attached to root systems as
cocycles of Weyl groups [Che92bl Sect. 2], and has constructed examples given by the Demazure-Lusztig
operators |Che92bl Prop. 3.5] and the standard intertwining operators |[Che92b, Prop. 3.8] (cf. |Che91, Prop.
1.2]) familiar from the representation theory of reductive groups. The latter are directly connected to Bernstein
maps, realizing them as a limit. In order to make this precise, let us recall the definition of the standard
intertwiners. In the following, all algebras will be over C.

Given a root datum (X, ®, XV, ®V) with basis A C & and extended affine Weyl group W = X x Wy, the
standard intertwiners are elements F,, (w € W) of the localization

Hgen = Hy(W, S) ®z Frac(Z)
of the affine Hecke algebra at its center Z, determined by (cf. [Che91, Prop. 1.2]; also [HKP10, Lem. 1.13.1])
(1.9.3) Fuw = FypFy if L(ww') = f(w) + (w")
(194) Fso, = T‘s(1 + (QSQ - 1)(Ya - 1)717 a e A

where we write

Y, = 0(«)

for ecasier comparison with [Che91]. The F,, now constitute an R-matrix in the following sense. The basis

property of the Bernstein-Lusztig basis {6(2)Ty }zex, wew, implies that we have linear isomorphisms
CX]® Hy — Hy(W,S) and C(X)® Hy — Hgen

Here €(X) = Frac(C[X]) and H, denotes the finite Hecke subalgebra spanned by T,,, w € Wy. Note that the
group Wy acts on €(X) ® Hy via its canonical action on X. Now, if we consider €(X) ® Hy with its canonical
(tensor) algebra structure, then the map

d)WO—)C(X)@HO
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defined by w — F,, satisfies the partial cocycle relation
P(ww') = p(w)w(p(w)) if  L(ww') = l(w) +L(w)

i.e. defines a (non-unitary) R-matrix in the sense of Cherednik (cf. [Che92bl, Thm. 2.3 a)]). This follows by
easy calculations from relation (1.9.3)) and the intertwining property

Fya=w(a)F,, a€A

The intertwiners F,, can be normalized so that one gets a proper cocycle (unitary R-matrix) instead: let (cf.
[HKP10, 2.2], [Lus89, Prop. 5.2]; also |[Opd09, p. 146])

—1 1_Ya

K = P ———
Sa qs,, 1_ q;a1ya

Fs

a

for a simple root « and extend to elements K,, for all w € Wy using as before. It can be shown that these
normalized intertwiners satisfy Ky, Ky = Ky for all w,w’” and therefore define a cocycle ¢ : Wy — C€(X)® H
in the usual sense.

This cocycle 1 partially recovers the Bernstein map 6 : W — Homge (O, Hy (W, S)*) as follows (cf.
[Opd09]). Elements of C(X) ® Hy can be viewed as meromorphic function on the complex torus T = XV @ €*
with values in Hy. For every Weyl chamber D in VV = XV ® IR, given as an intersection

D:m{xEV:ai(x)>0}

of half-spaces, one can add a point {p at infinity to T, such that
lim t,=¢p < lim o(t)=0VW
n—oo n—oo
for every sequence (t,), in T. Then 6 is partially recovered as the pointwise limit

(1.9.5) Oop(w) = lim P(w)(t), Yw e W

with respect to the natural topology on Hy = €, €T’,. Note that §,,, (w) lies in Hy C Hq(W, S) for all w € W
a priori; indeed, the restriction of op to Wy C W is nothing but the chamber orientation (definition
towards the element wp € Wy corresponding to D via wp(C) = D, where C' denotes the fundamental Weyl
chamber, and 6, ,,(w) identifies with the image under the Bernstein map 6,,, : Wo — Hy' of the finite Hecke
algebra. Thus, eq. can also be seen as recovering the cocycle 6 : Wy — Homge (O(Wy), H') of the finite
Hecke algebra.
Because of the cocycle rule, eq. needs only to be checked in the case w = s,, where it follows from

easy computations. Indeed

lim Y,=0 or lim Ya_1 =0

t—E&p t—¢ép
depending on whether D lies in the positive {x : a(z) > 0} or negative half-space {z : a(x) < 0} defined by «,
respectively. Moreover, from the expression defining F§_ it is immediate that

F, (Yo=0)=T,,

and

Fsa (Yojl = O) = Tsa - (qsa - 1) = qsaTszl

where the second equality follows from the quadratic relation Tfa =qs,Ts, + (gs, —1). Hence

K, (Yoa=0)=T,, and K, (Y;'=0)=T,"

Sa «@

which proves (1.9.5) for w = s,, taking into account the definition of § and op (see definitions and
resp.

Thus one notices a curious fact: to construct R-matrices (cocycles) in the finite Hecke algebra Hy, one
should study intertwiners of the affine Hecke algebra H,(W,.S), which contains the former as a subalgebra.

I7Note: the expression for Fs, can be interpreted as defining a ‘Yang-Baxterization’ of the element T, € Hp, i.e. a parametric
deformation Fs, = Fs,(Ya) that satisfies the Yang-Baxter equation with spectral parameter Y,. This deformation interpolates
between Ts, = Fs,, (Yo = 0) and qSOT_1 = Fs, (Yo = 00).

Sa
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Does this pattern continue? Cherednik has shown that it does (at least for affine Hecke algebras). His double
affine Hecke algebras H,(W,S) contain the affine Hecke algebras H,(W, S) as subalgebras, and one can define
elements F,, € H,(W,S) for all elements w € W of the affine Weyl group (cf. [Che92a, Theorem 3.3]), satisfying

FyFy = Fopy  if 0(w) + £(w') = f(ww')

and defining R-matrices (with spectral parameters) with values in H, (W, S) that recover the whole Bernstein
map 6 : W — Homge (O, Hy (W, S)*) as a limit.

1.10 Integral and normalized Bernstein maps

We now apply the results of section to the construction of an integral and a normalized version of the
Bernstein map. Throughout this section we fix a pro-p Coxeter group W), a coefficient ring R, and a generic
pro-p Hecke algebra H(") = H(Y)(a,b) with arbitrary parameters.

Let us begin by constructing the integral Bernstein map.

1.10.1 Theorem. For every orientation o of W) there exists a unique map
B : WO — 3™

such that if w = ng, ...ng,u with u € QY and (w) = r, then

~

O(w) =Ty ...T,T,

where

T = Tnsi rep =+l
Tﬂsi — bs. L& = -1

i

and g; = 0(81...8i—1, ;). Moreover, whenever the as are units in R we have the equality

(1.10.1) Bo(w) =7, (7(w))f(w)
where ¥, : W — R is the composition of v, with the specialization map IN[$)] — R sending ag to ag (see
remarkfor the definition of the elements ay € R).

Proof. Because of the relation ([1.6.3]), we have
asTn:—ll —1dn, — bs

whenever a; € R*. The second claim therefore follows immediately from the definitions provided the existence
of #,. We are therefore left to show that the expression T ...7T,.T, does not depend on the choice of the
expression w = ng, ...ng. u. If this independence result is true for the generic pro-p Hecke algebra HD over
R, then it is also true for the generic pro-p Hecke algebra H™ ((4(as))s, (¢(bs))s) ~ HL) @r R over R’ for
every ¢ : R — R’. We may therefore replace the parameters a; € R by indeterminates a, which satisfy
a, = a; whenever s,t are conjugate via W and replace R by the polynomial ring R[as] and prove the claim for
HD ((ay)s, (bs)ses). Because HW) is a free R[a,]-module, the localization map

H(l) —_ H(l) ®R[as] R[asaagl]

is injective. It therefore suffices to prove the independence in the localization, that is it suffices to prove it in
the case the as are invertible. In this case we may use (1.10.1]) as a definition of #,. From the definition of 6,
it follows immediately that the map defined this way satisfies 6,(w) = T3 ... T, T, for every reduced expression
W="Ng, ...Ng U O

1.10.2 Definition. The map

~

6 : WM — Homge (O, HM),  wr— (0 By (w))
defined in the above theorem is called the integral Bernstein map.

1.10.3 Remark. The above technique of establishing a certain identity for generic pro-p Hecke algebras with
arbitrary parameters by reducing it to the case where the a, are invertible is the main advantage of considering
Hecke algebras with two formal parameters over considering only one-parameter Hecke algebras or Hecke algebras
with fixed parameters.

We will use this argument over and over again, and will therefore often refer to it simply as the ‘specialization
argument’.
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1.10.4 Notation. In remark|1.7.11|we considered the composition X of the ‘2-coboundary’ X : W x W — IN[$)]
with the quotient map IN[$] — IN[W\$]. Let us, by abuse of notation, write X to also denote the composition of
X with the evaluation map IN[IW\$] — R sending af,) (s € S) to as. Let us further denote by X the composition

of X WxW — Rwith mxm: WO x WO — W x W. With these conventions, we have the following corollary
of the previous theorem and of lemma [1.7.8

1.10.5 Corollary. For every w,w’ € W)

~ ~ -~

O (W)0gew (W) = X(w, w"), (ww")

Proof. By the specialization argument, it suffices to prove this when the a5 are invertible. In this case, the
claim follows by combining the identity 6, (w) = 7, (7 (w))0, (w) with the cocycle property of § and the equation

To (T(W)) T g0 (m(w")) = X(w, w)7, (1 (ww"))
following immediately from lemma [1.7.8 O

1.10.6 Remark. Let us record a few relations that will be useful later. First of all, we have that for any
u € QW) and any orientation o € O R
Oo(u) =T,

by construction. This together with remark and the formula proven in the previous corollary shows that
0o (w)Ty = 6, (wu)

and that

~

ToBoeu(w) = Oy (uw)
for any w € W, In particular, we get that

Tué\o(w)TJ1 = Opeu—1 (vwu™t)

Moreover, since the group T acts trivially on orientations by definition, for u =t € T these relations simplify to

~

B0 ()T, = B, (wt)
and R R
T:0,(w) = 0, (tw)

respectively. Using the conjugation action w(t) = wtw~"! of W on T, these relations combine to give

and more generally
(1.10.2) Os(w)b = w(b)b,(w)
for any b € R[T] C HW).

1.10.7 Corollary.
0o (w) =Ty + Z Cw,w’Tw’

w’ <w
for some ¢y € R, almost all of them being zero. In particular, ((9\0 (0))wew is an R-basis of H).

Proof. The proof is the same as for proposition [I.6.3] O

1.10.8 Remark. Consider an orientation o and a submonoid U < Staby, (0). By corollary the
R-submodule Agl)(U) of H) spanned by 50(56), x € U is in fact a free R-module on {50 (2)}zev- By corol-
lary this submodule Agl)(U) c HY is also an R-subalgebra. When the a, are units in R, the 0,(z),
x € U provide a different basis of Agl)(U ) inducing an isomorphism of the monoid algebra R[U] with Agl)(U ).

In particular, .Agl)(U ) is commutative if U is commutative. From the specialization argument it follows that
this last statement is true even if the as are not invertible. In fact, this also follows directly from the product
formula (corollary [1.10.5)) and the fact that

X(w,w') = X(w', w)
whenever ww’ = w'w, which itself follows immediately from formula (1.7.2)).
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The statement of corollary [1.10.5| says informally that df = X. The fact that dv/IL = X suggests that we

= -1
can restore the cocycle property of @ by formally twisting it with v/IL . This is made precise in the following
definition.

1.10.9 Definition. Assume that the parameters a, € R are units and squares in R. Recall from remark
that as only depends on the class [s] it defines in S/ ~ W\$) (see remark for notation), and that ay for
H € $ is by definition equal to a, for any s € S which is W-conjugate to H. We may therefore also write

a.:=ayg, H € carbitrary
for a class ¢ € W\$). For every class ¢ € W\$), choose now a square root ,/a. of a., and write

Vag :=+/a. YH €c

Then let

Oo(w) = VIL(w) '0p(w) Yoe O, weWw®
where ﬁ denotes the composition of maps

WO o Y 71/6] —s R

with VIL : W — Z[\/E] the formal square root of the generalized length function IL defined in remark and
Z[V$H] — R*

the group homomorphism sending a formal square \/ay to \/ag.
The map

6. wh — Homget (O, HY),  w — (0 = 0, (w))
is called the normalized Bernstein map (with respect to the chosen square roots /a.).

In the situation of the above definition, we have the following immediate corollary of corollary [1.10.5] and
remark [L7.111

1.10.10 Corollary. For all w,w’ € W) ando € O

90 (ww’) = 00 (W)Gocw (wl)

1.10.11 Remark. For our purposes the main reason for introducing the normalized Bernstein map lies in the
fact that it gets transformed into the integral Bernstein map under a certain isomorphism of Hecke algebras.
More precisely, in the situation of the above definition we have an isomorphism

0 : H W (ag, b)) = HV(1, \/@_%s)

of R-modules determined by T, + VIL(w)T,,. Note that HM (1, /as ~'b,) is well-defined as the parameters
again satisfy the conditions of theorem [[.3.1] This isomorphism is also an isomorphism of R-algebras, which
follows easily by combining the presentation of H(l)(as, bs) given in section with remarks and
and verifying the following quadratic relation

(Va,T,,)* = asThz + (Va Ty, )bs

in the Hecke algebra H(M (1, \/a;~ 'bs).

The normalized Bernstein map 0 of HV (ag,bs) and the integral Bernstein map 9 of HD(1, \/@_11)5) are
now related as follows

(1.10.3) bo(w) = p(0,(w)) Yoe O, weWwm
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1.11 Bernstein relations

In this section we again fix a generic pro-p Hecke algebra H(Y) = H (1) (ay, bs) and assume that the parameters
as € R are units and squares in R, and that a choice of square roots /a5 and consequently of a normalized

Bernstein map 0 has been made according to the previous section.
The goal of this section is to compute the difference

(1.11.1) 0o (w) — Oor (w)

as a sum over certain hyperplanes, for two orientations 0,0’ € O that are ‘adjacent’. This computation will be
crucial in section [2, where we will use it to show that certain elements z,() of an affine pro-p Hecke algebra
lie in the center. In the classical case (W) = W) this computation is essentially equivalent to Bernstein’s
relations for the Iwahori-Hecke algebra.

We remind the reader that (see

H={wsw':s€8 weWeg}={wsw?:s5€8 weW}C Wy

denotes the set of hyperplanes of the underlying Coxeter group Wag of W),
The next proposition introduces some canonical elements in the generic pro-p Hecke algebra, which will

appear in the sum expansion of expression (|1.11.1]).

1.11.1 Proposition/Definition. For any hyperplane H € $) and any orientation o € O, there exists a unique
element Z,(H) € HY, such that if s € S, w € W) with

r(wnsw ') = H

then
Bo(H) = va, w(bs) - fo(wntw™) = ag O (wn w™) - w(bs)

Proof. Applying the isomorphism ¢ of remark [[.10.1T} we may assume that a, = 1 for all s € S and that
§ = 0. Moreover, we observe that w(bs) and 0, (wn; 'w™!) commute with each other. Indeed, by applying the
commutation relation ((1.10.2)) this is easily reduced to show the basic identity

ng t(bs) = bs

which was already seen to be true in (|1.3.6]). Therefore, it only remains to show that the expression

-~

w(bs) - O (wny tw™t) = é\o(um;lw*l) ~w(bs)

only depends on the element
W(wnswfl) =HeH

and not on the choice of w € W) and s € S. So let wy,ws € W) and s,t € S with
m(wingwy ') = 7(wengwy )

By the above equation, we may apply condition (|1.3.1]) of theorem on the existence of generic pro-p Hecke
algebras to w = w; 'wy (in the notation of said theorem). Condition (1.3.1]) then states that

(nswn; *w™) - w(b;) = b
as an equality in R[T]. Acting on both sides with w;, we get the formula
wi (bs) = (wlnswflwgn;lwgl) - wa (by)

Bearing in mind that wlnswflwgn;lwgl € T, we can use the relations proved in remark [1.10.6[ to compute

~

Oo(wing twrt) - wi(bs) = Oo (wing twi ) - (wingwi wang twy ) - ws(by)

0,
90(w1n;lwflwlnswflwgn;lwgl) - wa (by)
0,

(wany 'wy ') - wa(by)
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The classical Bernstein relations compute the difference (1.11.1)) when o’ = 0 e s, for a ‘simple root’ « of a
root system and the orientation o is ‘spherical’ (cf. definitio . The following definition allows us to state
the Bernstein relations in a more general context.

Recall that by lemma [1.7.4] an orientation o of a Coxeter group is given by defining for every hyperplane
H € $ a notion of positive/negative crossing for passing from one half-space (with respect to H) into the other.
It therefore makes sense to say that two orientations agree (or disagree) at a hyperplane H if the signs attached
by the orientations to passing from one half-space with respect to H into the other are equal (or unequal).

1.11.2 Definition. Two orientations 0,0’ € O of W are said to be adjacent if for every wall H € §) at which
o and o’ disagree, we have
oesg=o0

Note that the notion of adjacency is symmetric in 0 and o’. We are now ready to give the ‘Bernstein relation’.

1.11.3 Theorem. Let w € W) and 0,0’ € O be adjacent. Then

(1.11.2) Bo(w) — Oy (w) = (Zo(l,H)zu,(H)> B0 (w)

H
where the sum is taken over all hyperplanes H € £ which separate 1 and w, and at which o and o’ disagree.

Proof. We may again invoke remark [1.10.11] to reduce to the case as = 1 and 6 =0=0. Now take any (not
necessarily reduced) expression
W="MNg ...Ns, U, 8 €S, u€ QW

Using this expression, the cocycle rule and the definition of the Bernstein map together give the following
explicit expressions

Oo(w) = T, ... T, Ty, O (w) =T, T, T,

s1

where
Ei :0(81...Si_1,5i>, 52 :0/(51...8i_1,8i)

We expand the difference 6, (w) — é\u/(w) now as a telescopic sum

i—1 N
Ny ns 1 Si41

T
~ -~ / ’ ’
_ €1 Ei—1 £4 €4 Eit+1 Er
Oo(w) = o (w) = YT, ... T7, (Tn -T ) TS LT T,
=1

In this sum the i-th summand vanishes unless ¢; # €/, so let us fix an index ¢ where ¢; # €. Observing that

(ct. eq. (L3))
T —T = =¢eby Vs€S, ce{£}

and using the commutation rule (cf. (1.10.2))
Bo(w)b = w(b)by(w) Ywe WD, be RIT
we see that the i-th summand can be rewritten as

~ £} €io1 mEit1 e
eiw(by )T, ... T T, T, T,

n
ngt i—1 Ms;iq sr

where we have put

Since o and o’ disagree at
S . R _
sg=H:=n(wngw ) =(81...5-1)5(81-.-8i-1)
and o and o’ are adjacent, we have
o' =o0esy
In particular, for j > i we have
g5 = 0(51 S 85—1, Sj)
0(8H81 cee 8851, Sj)
(0 [ SH)(Sl ceeSie S5, Sj)

= 0/(81...§i...8j_1,8j)
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This implies that

’ / N ~
€1 Ei—1 Eit+1 e (_) —~
T, T 5T T T, = Oy (s, - T, - T, W)
1 i n

i—1 n5i+1 ErS

Ms1 Msj_1

and therefore

where
Hi = (81 . si,l)si(sl . Si,1)71

is the hyperplane crossed by the gallery (s1,. .., s,) in the i-th step. Until now we have not assumed this gallery,
i.e. the expression
W= MNg, ... N U

s

to be reduced. Assume now that this is the case. Then the hyperplanes crossed by the gallery (s1,...,s,) are
exactly the hyperplanes separating 1 and w. Moreover, in this case we have

& = 0(17 Hl)
and hence the theorem follows. O

As already mentioned, the ‘Bernstein relation’ proven above will be used to show that certain elements of
affine pro-p Hecke algebras lie in the center. This application of the Bernstein relation will involve showing that

o ()~ Doms (@) = = (u(50(2)) — Dousa (5a(2)))
for & an element of a certain subgroup X € W) and s, € W a reflection associated to a simple root o. This
will follow from the above theorem and the following elementary property of the elements =, (H).

1.11.4 Lemma. Let H € $), o an orientation and x € Cyq)(T) an element of the centralizer of T in W),
Then we have that _
Eo(H)  Oansyy (s (2)27") = Eo(m(w) Hr(2) ™)

where sp(x) denotes the induced action of W on Cyyay (T) by conjugation.
Proof. Letting w € W) and s € S be such that
H = n(wnsw™")

we have by definition that

o(H) = /a5~ w(bs)fo(wn; w™?)

w~! acts both on o and on sy (z) via sy, we have that

(1]

Since wn !

B0 (wns ' w Nbges,, (sg(x)x™ ) = O, (wn 'w sy (x)z™) O 0o (zwn; wtz )

Therefore

o(H) - Oousy (s11(2)a ") = /@3 w(b)bo(wwn; ' w e ")
= v @w) (b, (zwn; fw )
— Z,(n(0) Hre(z) ")

[1]

where we have used the fact that x acts trivially on 7" on the second line, and the definition of = on the third
line. O
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2 Affine pro-p Hecke algebras

In this section, we want to apply the general theory developed so far to the study of a special class of generic
pro-p Hecke algebras, the ‘affine pro-p Hecke algebras’ We will give a description of the center of these algebras
and prove that there they are module-finite over their center in section [2.7] recovering classical results of
Bernstein-Zelevinsky in the case of W = W),

In order to obtain these results, we need to assume that the group W is of a special form. Basically we need
W to be a semi-direct product W = X x W of a finitely generated commutative group X and a finite reflection
group Wy. Moreover, we need to assume that there exists a representation of W as a group of isometries
preserving a locally finite affine hyperplane arrangement which is compatible with the abstract decompositions
W = Wag x Qand W = X x Wy. Finally we need to assume that X is ‘large enough’ with respect to this
representation. This will be made precise in the next section.

2.1 Affine extended Coxeter groups and affine pro-p Hecke algebras

Before we give the definition of an affine extended Coxeter group, let us introduce some notations and recall
some basic facts from the theory of affine reflection groups (see for instance [Bou07, Ch. V, §1]).

Given a finite dimensional euclidean vector space V and a hyperplan@ H <V, there exists a unique element
s € Autgucia (V) of the group of euclidean motions such that sy # id and sy operates on H as the identity.
This element sy is called the orthogonal reflection with respect to H. More generally, an affine endomorphism
s € End,g(V) is a called a reflection if s* = id and if the linear part so of s is a linear reflection in the sense
that (cf. [Bou07, Ch. V, §2.2])

s2=id and id—sq is of rank 1

Note here that s3 = id follows already from s? = id. The set H := {z : s(z) = x} of fix points of a reflection
s is an affine hyperplane, and it is therefore the unique hyperplane fixed by s. Of course, a reflection s is not
determined by the affine hyperplane H that it fixes, but if s also happens to be an element of Autgyeiq(V),
then it must coincides with the orthogonal reflection sy with respect to H.

For a given affine hyperplane Given a set § of hyperplanes in V', we let

W($) = (sg: H € 9H) < Autgyeia(V)

denote the group generated by the reflections with respect to the hyperplanes in $. If o € V'V is a non-zero
functional and k € R, we write

Hyp:={zeV:ax)+k=0}

and Sq k= SH, . Sa = Sa,0-

A point z € V is called special with respect to § if for every H € $ there exists a hyperplane H' € $
parallel to H with x € H'. A set $ of hyperplanes in V is called locally finite if for every x € X there exists a
neighbourhood U of x such that {H € $: HNU # 0} is finite.

Assume that a locally finite set $ of hyperplanes on V is given. The elements of the set

C:=m(V - |J H)
He$H

of connected components of the complement of all hyperplanes are called chamberﬂ A hyperplane H € §) is
called a wall of a chamber C' if H N C has non-empty interior as a subset of H, or equivalently, if the affine
span of H N C equals H. We let

S(C):={H € $H: Hwall of C}

denote the set of all walls of C. If the group W ($)) leaves the set §) invariant, then it followﬂ that for every
chamber C the pair (W ($),{sg : H € S(C)}) is a Coxeter group (cf. [Bou07, Ch. V, §3.2, Théoréme 1]) and
that S(C) is finite (cf. [Bou07, Ch. V, §3.6, Théoreme 3]).

We will now give the definition of ‘affine’ extended Coxeter groups.

18Unless specified otherwise, hyperplane means affine hyperplane.

197t is common to use the term alcove instead of chamber if the hyperplanes H € § aren’t all linear, but we will not make this
distinction.

20In [Bou07] it is assumed that the group W ($)) acts properly discontinuously, and the local finiteness is deduced as a consequence.
However, it is enough to only assume that ) is locally finite and W ($)) preserves £, as these assumptions already imply that W ($)
acts properly discontinuously.
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2.1.1 Definition. An affine extended Coxeter group W consists of a group W together with a homomor-
phism
p: W — Autag (V)

of W into the group of affine automorphisms of a finite-dimensional real vector space V', a locally finite set
of (affine) hyperplanes in V', a chamber Co € mo(V — Upcy H) and for every H € $ an element sy € W such
that the following hold.

(ACI) W leaves $) invariant, i.e. p(w)(H) € $ for all w € W and H € §.
(ACII) For every H € $), p(Sg) is a reflection fixing H.
(ACIII) Letting pg denote the composition of p with the projection

Autag(V) = V % GL(V) — GL(V)

onto the linear part, the group

Wo = po(W)
is finite.
(ACIV) 0 € V is a special point of §.
(ACV) The subgroup p(W) NV of translations in p(WW) generates the quotient V/L as an

IR-vector space, where
L= () H
Hes, 0eH
(ACVI) For every H € ) and w € W we have
ngw_l = gw(H)
where we abbreviate w(H) = p(w)(H).

(ACVII) For every pair Hy, Hy € S(Cy) of walls of Cy such that p(5m,Sp,) is of finite order
mq,2, we have the relation
(SH,5m,)"™? =1

in W.

(ACVIII) The group Wy is generated by the images of the sy, H € $) under the natural map
W — Wo.

(ACIX) 0€Cy

(ACX) Let

X=p ' (V)<W

denote the subgroup of all elements of W which are mapped to a translation under
p. Then X is finitely generated and commutative.

Note that given the remaining axioms, [[ACIV)| and [[ACIX)| are always satisfied up to a translation and
only serve to fix notation. The rationale behind the above definition of an affine extended Coxeter group is to
have a set of axioms which are easy to verify in examples. However, as it stands the definition does not even
mention extended Coxeter groups. Our first task will therefore be to ‘unpack’ this definition.

2.1.2 Lemma. Let W = (W, V,p,$9,Co, (5u)u) be an affine extended Cozeter group. Let
Wag = <§H2H€f)>, S = {gH:HES(Co)}

and
Q := Staby (Cp)
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Then the following holds.

()

(i)

(ii)
(iv)

(v)

(vi)

(vii)

There exists a positive definite scalar product on V' invariant with respect to Wy, i.e. such that W acts by
euclidean motions.

(Wagt, S) is a Cozeter group and for any choice of an invariant scalar product, p induces an isomorphism

~

(Wag, §) — (W(9), {su : H € 5(Co)})

of Cozeter groups, where sy denotes the orthogonal reflection with respect to H and W($)) denotes the
group generated by sy for H € 9. In particular, W($)) and the sy do not depend on the choice of the
scalar product.

(W, Wag, S, Q) is an extended Cozeter group.

The group Wy is equal to the special subgroup of (W($),{sg : H € S(Cy)}) generated by the sy with
0 € H. In particular, (Wo,{smg : H € S(Cy), 0 € H}) is a Coxeter group. Moreover, the subspace L <V

of is given by
L= ﬂ H=VvWo
He$H, 0eH

Let
O:={acVY:VEER HyreHe kel

Then (R®, ®) is a reduced root system and
H={Hyr:a€d kecZ}
Moreover, V.5 V'V induces an isomorphism
V/L = (R®)"
The map
Wo — GL(V/L) ~ GL((R®)")

induced by po : Wy — GL(V) is injective and identifies Wy with the Weyl group W(®V) of the dual root
system ((R®)V,®V). Moreover, this is an identification of Cozeter groups if we endow W (®V) with the
generating set {s, : a € A} corresponding to the basis

A={ae€®: H, € S(Co), a|g >0}
The basis A corresponds to the positive root system ®T C ® given by
ot ={a € ®:a(x) >0}
where x € Cy is arbitrary.

The exact sequence
PO

0 X W Wo 1

splits via the map Wy — W given by the composition

—1
Wo CW(H) Lo Wag CW

Viewing Wy as a subgroup of Wag via this splitting, Wy equals the special subgroup of (Wag, S) generated
by
So:={sa:a€A}={sy:He S(Cy), 06 H} C S

where S == SH, ,-
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Proof. Point (i) follows immediately from the finiteness of Wy, since given any positive definite scalar product
B :V xV — R, the expression

(x,y) = Z B(w(x)7w(y))7 r,yeVv
weWy

defines a Wy-invariant positive definite scalar product. To prove (ii) we may assume a Wy-invariant scalar
product has been fixed. In this case we may invoke [Bou07, Ch. V, §3.2, Théoréme 1] to conclude that
(W(9),{suy : H € S(Cp)}) is a Coxeter group. Since p(5x) is a reflection fixing H by and W acts by
euclidean motions with respect to the chosen scalar product, we must have p(5y) = sy for every H € ). Since
Waagt is generated by the Sy, this shows that we have a well-defined group homomorphism

p: Wag — W(H)

that moreover maps S into S(Cp). Since W (£, 5(Cp)) is a Coxeter group, by one of the various characterizations
([Bou07, Ch. IV, §1.3, Définition 3]) of Coxeter groups, W ($)) has a presentation

W(®9) = (sg, He S(Cy) | (sgsu)™ =1if m =ord(sgsy) < 00)

and hence by property [((ACVII)| there exists a unique homomorphism
p:W(H) — Wag

of groups with ¢(sg) = 5y for every H € S(Cp). Since p o ¢ = id, it follows that ¢ is injective. We claim
that ¢ is also surjective, or equivalently that S generates Wyg. From the theory of affine reflection groups it
follows (cf. [Bou07, Ch. V, §3.2, Corollaire]) that for every H € §) there exists an element w € W ($) and a
wall H' € S(Cp) such that wsgw™! = sy or equivalently w(H') = H. Writing

w = SH, ---SH,, HZGS(C())

and putting
w = ng ~-~§Hr S <S> C Wag

we have p(w) = w and hence by [(ACVI)|

~—~ ~71 ~
ws w =S ~ =S
H p(w)(H") — °H

lies in the subgroup of W,g generated by S. Since W,g is generated by the Sy, it follows that (S) = W,g and
hence that ¢ is an isomorphism of groups. Since poy = id, also p must be an isomorphism of groups. Moreover,
as p preserves the distinguished sets of generators, it is also an isomorphism of Coxeter groups.

Now to prove (iii), we only need to verify that Q preserves the subset S C W,¢ under conjugation and that
every element w € W can be written as a product w = w'u with w’ € Wog and u € Q. But the invariance of
S follows immediately from and the fact  permutes the walls of Cy (as it preserves Cy and therefore
also Cp setwise). Because W ($)) acts transitively on the set mo(V — Uycs H) of chambers (see [Bou07, Ch.
V, §3.2, Théoréme 1]), we can find w” € W($) with p(w)(Co) = w”(Cp). Since p(Wag) = W($), we can find
w' € Wag with p(w’) = w”. Tt follows that u := w'~lw € Q.

Next, we show that (iv) holds. Observe that by the group Wy is generated by the set of linear
parts of the sy with H € $). By[(ACIV)| the point 0 € V' is special and hence the aforementioned set coincides
with {sy : H € $, 0 € H}. In particular, Wy C W ($) and the formula L = V" holds. Let F C V be the
unique facet of (V, ) containing 0. By F is a face of Cy. From [Bou07, Ch. V, §3.3, Proposition 1]
it therefore follows that W, must be contained in the subgroup of W ($)) generated by the sy with H € S(Co)
and F' C H. So we have the inclusion

W0:<SH:H€.6, 0€H>Q<SH:HES(C()), 0€H>

and hence equality holds.

Claim (v) follows from [[ACIV) [[ACV)| and a slight modification of the arguments in [Bou07, Ch. VI,
§2.5, Proposition 8]. Fix an invariant positive definite scalar product (—,—) on V. Given H € §) with 0 € H,
let @ € VV be any element with ker(a) = H. Consider

Ay ={ke€eR:Hy €H}

Then k — H, ;, gives a bijection between A, and the H' € § parallel to H. Then A must contain a positive
element, for we have 0 € A, and by [ACV)|there exists an element w € W such that p(w) equals the translation



2.1 Affine extended Coxeter groups and affine pro-p Hecke algebras 57

by a vector v € V with a(v) # 0. Replacing w by w™?! if necessary, we may assume that a(v) < 0. Since W
preserves $), it follows that
p(w)(Hap) =v+ Hap = Ho —a@w) €9

and hence —a(v) € A. Let now § > 0 be the smallest positive element of A,. This element exists because §) is
locally finite. We claim that A, = Z4. To see this, first note that given any two parallel hyperplanes H' and H”
the product sy~ sy of the associated orthogonal reflections equals the translation by 2t, where ¢ is the unique
vector orthogonal to H' with H” = ¢+ H’'. Let now H' = Hy,y, H” = H, with k,¢ € A, and let n € V be
the unique vector orthogonal to H satisfying a(n) = 1. Then H, = —kn + H, and H, o = —¢n + H,. Since
W ($) leaves $) invariant, it follows that

(SH//SH/)(HI) = 2(/€ — f)n + H/ = Ha,fok

must again be a member of §), i.e. 2/ — k € A,. Taking ¢ = 0 it follows that A, is stable under inversion.
Taking ¢ = § it follows that A, is stable under translation by +2§. Every element k € A, can therefore be
written in the form k = x +nd with n € Z and 0 < x < 26. If x < §, it follows that x = § by minimality of .
If 6 < o <26, it follows by the above that 0 < 26 — z < § lies in A, and hence 2§ — x = § by minimality. In
both cases it follows that k € ZJ.

From the above discussion it is now clear that given H € $ with 0 € H there exists a € VY uniquely
determined up to =+ such that

{H' € : H parallel to H} = {H, 1, : k € Z}

Then
@z{aGVV:VkGIR Hyrenekel}

is just the set of these a. Obviously (R®, ®) is reduced if it is a root system, so it suffices to verify the root
system axioms (RSI)-(RSIII) (see [BouO7, Ch. VI, §1.1]). There is only a finite number of H € $) with 0 € H
by the local finiteness of $) and hence it follows readily that ® is finite. Moreover, 0 € ® by construction, and
hence (RSI) is verified.

Now we prove (RSII). First, we remark that IR® equals the image of the dual of the projection V' — V/L.
This is equivalent to the claim that V -~ VvV induces an isomorphism (V/L) = (R®)" and follows from

L= ﬂ H= ﬂ ker(a)

He$, 0eH acd

Given a € ®, the associated reflection s, € O(R®) is given by the restriction

Sa = S}/{||Rfi>

of the transpose of the orthogonal reflection sy € O(V) with respect to H = ker(«). This holds since both are
elements of O(IR®) having as fix-point set the hyperplane

at =R®N{we VY :ww) =0}

where v € V is any vector # 0 orthogonal to H. Since sy leaves §) invariant, it follows that s, leaves ® invariant;
thus sq,0v = s for ¥ :=2 (@) ¢ (R)VV leaves ® invariant, and (RSII) is verified. Lastly to prove (RSIII),

(o)
let o, 3 € ® be given. Identifying (R®)" with the subspace L+ < V, the dual root " is the unique element of
V orthogonal to H, satisfying a(a") = 2. In particular letting H' = H, o and H” = H,q = —%av + H' we
have that

(smrsnr)(Hpo) = —a + Hpo = Hp gav) €9

and hence f(a") € Z since 8 € .

Next, we prove (vi) keeping the choice of an invariant scalar product on V. The injectivity of the map
Wy — GL(V/L) follows from the fact Wy is finite and hence acts by semi-simple transformations on V. Indeed
since L = V"o any w € Wy lying in the kernel of Wy — GL(V/L) acts trivially on L and V/L and hence must
act trivially on V' by semi-simplicity. In the proof of (iv) we have already seen that Wy is generated by the sy
with H € $ and 0 € H. By (v) we know that H is of the form H = ker(«) with o € ®. Moreover, we have
already seen that the image of sy under Wy — GL(V/L) ~ GL((IR®)") equals the transpose sY of the reflection
associated to «. This shows that the image of Wy < GL((R®)V) is given by W (®)¥ = W(®V). Moreover it’s
clear by the previous remarks that under Wy — W (®") the generating set {sy : H € S(Cy)} corresponds to

{s% : @ € A}. Now to see that A is a basis of the root system ®, let Dy € m(V — |J,cq ker(a)) be the unique
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chamber of the spherical arrangement containing Cy. The image 7(Dg) of Dy under 7 : V — V/L ~ (R®)Y
then is a chamber of the linear arrangement on (IR®)" induced by ®. Moreover, for a: € ® the hyperplane ker(«)
is a wall of Cy if and only if the hyperplane in (R®)Y associated to « is a wall of m(Dg), and « is positive on
Cy if and only if « is positive on m(Dy). By the theory of root systems, it then follows that A is a basis of P,
in fact A is the basis of ® associated to the dual chamber 7(Dg)Y C R® (see [Bou07, Ch. VI, §1.5, Rémarque
5]). Moreover, it is obvious that ®* consists of the roots which take positive values on 7(Dy). It hence follows
(see [Bou07, Ch. VI, §1.6]) that ® coincides with the set of positive roots associated to w(Dg)". Since we have
A C ®T, it follows that A is the root basis associated to ®.

Finally (vii) follows immediately from (iv)-(vi) and the fact that for & € ® we have p~'(s) = 5m,, - O

2.1.3 Example. (i) Let (X, ®, X", ®Y) be a root datum (in the sense of [DG70, Exposé XXI]|) and A C ¢V
a root basis. In particular, ® C X and ®V C XV are finite subsets that are in bijection via a given pair
of inverse bijections

o & DY
both denoted by a — o, and X, XV are free abelian groups of finite rank in duality via a given pairing

(Y XVx X —Z

Let Wy := W(®) be the finite Weyl group, i.e. the subgroup of GLz(X) generated by the reflections s,
a € @ given by
so() =2 — (0¥, 1)

Let W := X x Wy be the extended affine Weyl group. Let us now see that W carries a canonical structure
of an affine extended Coxeter group in the sense of definition[2.1.1} and therefore also a canonical structure
of an extended Coxeter group via lemma 2.1.2]

Welet V:= X ®z R and let p : W — GL.g (V) be the inclusion
W =XxWyCV xGL(V) =~ GLag (V)
This action leaves invariant the collection $) of hyperplanes given by H, i, o € ®V, k € Z where
Hyp={xe€V:{(oz)+k=0}

Since p is injective, the choice of the sy is unique in this case. Moreover, it is clear that for any choice of
a chamber Cy with 0 € Cj, the axioms are satisfied, in particular if we let Cy be chamber

corresponding to A determined by the conditions
0€Cy and CoC{z eV :{(az)>0 VYaecA}

Moreover, the groups Wy and X of definition 2.1.1] coincide with the groups denoted by the same letters
here. The root system ® and the basis A constructed in the lemma above coincide with ®" and A
respectively. The structure W = (W, Wog, S, ) of an extended Coxeter group induced on W by the above
lemma can be made more explicit as follows. Let @ := Z® < X be the root lattice. Then elementary
arguments (see [Bou07, Ch. VI, §1.2, Proposition 1]) show that the affine Weyl group Wog < W is the
semi-direct product Wog = @ x Wy. Hence, there is an isomorphism

Q~X/Q

By definition, the generating set S of W,g consists of the reflections sy for all walls H of Cy. Using the
theory of root systems it can be seen that the walls of Cy are either of the form H = H, o with a € A or
H = H_, 1 with « a highest coroot, i.e. a maximal element of ®" with respect to the partial order

a<fB & (a,z)<{(B,z) Ve

Hence
S={sa:a€A}U{s_41:a€ P maximal}

where (by slight abuse of notation) s, and s, for o € @V, k € Z denote the elements of W,g given by

sa(@) =2 — (a,x)a¥ and sak(z) =2 — (o, 2) + k)
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(ii) We specialize the above example now to the root datum of the group GL,,. In this case we have
X=XV=27"
with the pairing between X and XV being the canonical one. Moreover
P=0"={e;—€;:1<i,j<n, i#j}

and the correspondence o <> «¥ between roots and coroots is the identity. The finite Weyl group Wy
identifies with the symmetric group S,, on n letters. The choice of the (co-)root basis

A={es—e1,....en —€n_1}
makes Wy = S, into a Coxeter group with generators si,...,s,_1, where
Si = Sejy1—e; — (’L i+ 1)

is the transposition permuting the i-th and i + 1-th coordinate. The chamber determined by A is given
by
Co={zeR":z1<... <z, <1 +1}

The root sublattice QQ = Z® < Z" is the kernel of the ‘augmentation map’
7" — Z, e;—1

hence the group  ~ X/Q (which as a subgroup of W depends on the choice of Cy!) is canonically
isomorphic to Z, with canonical generator u given by

u=7"(nn—1...1)

Here, in order to avoid confusion arising from mixing the additive group notation on X and the multi-
plicative group notation on W = X x W, we use the exponential expression 7% instead of x when we
want to view an element € X as an element of the group W. Thus, 7%7Y = 7%t¥ for all z,y € X in this
notation.

The highest (co-)root is unique and given by a = e,, — e;. Hence, the generating set S of W,g is given by

S = {81,...,(9”_1,5_0(,1}

with
S—q1=T""(1n)

Writing sg = $_q,1 and viewing {0,1,...,n — 1} as the group Z/nZ, the action of Q on S is determined
by

(2.1.1) us;u~t =8,

We are now in the position to define the principal object of study of this article, the class of affine generic pro-
p Hecke algebras (or simply affine pro-p Hecke algebras) as those algebras whose underlying extended Coxeter
group W arises as in the above lemma from an affine extended Coxeter group. Since the description of the
structure of these algebras will depend on the decomposition W = X x W, it makes sense to make the affine
extended Coxeter group part of the datum.

2.1.4 Definition. An affine pro-p Hecke algebra (") over a ring R consists of a generic pro-p Hecke algebra
H® over R and an affine extended Coxeter group W such that the extended Coxeter group underlying the
pro-p Coxeter group W) associated with H") coincides with the extended Coxeter group associated to W by

lemma 2.1.2]

2.1.5 Terminology. Following tradition and to prevent confusion with the chambers C' € mo(V — Uy 5 H ),
the connected components of the complement of the finite linear hyperplane arrangement {H € $ : 0 € H}
will be called Weyl chambers. They will usually denoted by the letter 'D’, while ’C’ will be used to denote the
chambers of the affine hyperplane arrangement .

The main goal of this article will be to describe the center of affine pro-p Hecke algebras using the Bernstein
maps introduced in the previous section. As in the classical work of Bernstein and Lusztig, this involves con-
structing big (almost) commutative subalgebras of H("). In view of remark this amounts to constructing
orientations with big stabilizers, which we will do later in section [2.4]
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2.2 Main examples of affine pro-p Hecke algebras

In this section we want to consider the main examples of affine pro-p Hecke algebras, the classical affine Hecke
algebras and two ‘new’ examples, the pro-p-Iwahori Hecke algebras and the affine Yokonuma-Hecke algebras.
We point out that the last two examples slightly overlap.

2.2.1 Affine Hecke algebras and Iwahori-Hecke algebras

The affine Hecke algebras are (cf. [Mac03l 4.1]) the generic pro-p Hecke algebras for the extended affine Weyl
groups, i.e. for pro-p Coxeter groups W) of the form W) = W, T = 1, W = X x Wy for a root datum
(X,®, XV, ®V) with chosen basis A C ®V as in example As was explained there, the group W carries a
canonical structure of an affine extended Coxeter group in the sense of definition [2.1.1] hence these algebras are
affine pro-p Hecke algebras in the sense of definition

Affine Hecke algebras play an important role in various different but related subjects, including the represen-
tation theory of reductive groups over local fields, the theory of orthogonal polynomials [Mac03], the theory of
knot invariants, and in physics in the study of certain exactly solvable systems (see [Mar91|). Historically, affine
Hecke algebras made their debut in the first of the subjects mentioned, namely in the 1965 paper of Iwahori and
Matsumoto [IM65] that elucidated the structure of double coset algebras Hg(G,I) (cf. section attached
to pairs (G,I), where G = G(F) is the group of rational points of a split, connected, semisimple reductive
group (Chevalley group) G over a nonarchimedean local field F', and I < @ is a certain open compact subgroup
nowadays referred to as ‘Iwahori subgroup’

One of the main results (Propositions 3.5, 3.7 and 3.8) of [IM65] was the description of a presentation of
Hp(G,I) in terms of the extended affine Weyl group W = X x Wy of the root datum corresponding to G,
i.e. an isomorphism of Hg(G,I) with an affine Hecke algebra. More precisely, they showed that Hr(G, 1) is
isomorphic to the R-algebra generated by symbols T;,, w € W subject to the relations

(1) T T = Tyt if {(w) + l(w'") = L(ww")
(2) T? =g+ (¢ — 1T, seS

where g denotes the cardinality of the residue field of F'. Hence, Hg(G, I) identifies with the generic pro-p Hecke
algebra H(l)(as, bs) for W) =W and constant parameters a; = ¢, by = g — 1 by proposition which is an
affine Hecke algebra.

The algebras of the form Hg(G,I) are commonly referred to as Iwahori-Hecke algebras. Sometimes the
terms ‘affine Hecke algebra’ and ‘Iwahori-Hecke algebra’ are used synonymously, but here we will distinguish
between the two. The notion of Iwahori subgroup is defined in great generality for any connected reductive
group G over a local field |Tit79, 3.7], and one can consider the corresponding algebras Hg(G, I). These more
general Iwahori-Hecke algebras have a similar presentation in terms of a certain group W = X x Wy which
admits the structure of an affine extended Coxeter group but where the constant coefficients ¢ and ¢ — 1 are
replaced by coeflicients gs; and g5 — 1 that can depend on s (cf. lemma .

This was first proved by Vignéras |Vigl6, Proposition 4.1, 4.4], although it has long been a part of mathe-
matical folklore that ‘Iwahori-Hecke algebras for non-split groups are affine Hecke algebras for unequal param-
eters’. The latter is in fact not true. The algebra Hg(G,I) is isomorphic to the generic pro-p Hecke algebra
HD (g4, qs — 1) associated to the affine extended Coxeter group W and hence is an affine pro-p Hecke algebra,
but it is not always an affine Hecke algebra (in our sense) as the group W = X x W, does not necessarily arise
from a root datum. In fact, X is a finitely generated abelian group with nontrivial torsion part in general.
However, when the group G is split, this subtlety disappears and the corresponding Iwahori-Hecke algebras
are affine Hecke algebras with constant coefficients as = ¢, by = ¢ — 1 for the extended affine Weyl group
corresponding to the root datum of G.

The most important structural results concerning affine Hecke algebras in general are the ‘Bernstein rela-
tions’, the ‘Bernstein presentation’ and the computation of the center in terms of invariants of certain commu-
tative subalgebras. These results were obtained by Bernstein and Zelevinsky in an unpublished work for the
special case of constant parameters a; = q,bs = ¢ — 1. Lusztig later published a generalized version of these
results in [Lus89], where he took the parameters to be of the form as = g¢s, bs = g5 — 1 with ¢, = v?" for
some integers n, and an invertible formal variable v € R = C[v,v™!]. Lusztig obtained these results using a
group homomorphism ¢ from the group X of translations into the group of units of the affine Hecke algebra.
We will see below (in ) that this map coincides with the restriction of our map 6, (see definition
to X < W, where 0 = op denotes the spherical orientation (see definition corresponding to the dominant
Weyl chamber D. These results of Bernstein, Zelevinsky and Lusztig were further generalized by Vignéras in
[Vig06] to allow for parameters of the form ays = ¢4, bs = qs — 1 with ¢, not necessarily invertible or admitting
a square root.
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The Bernstein relations and the description of the center in all of the above cases are recovered here in
theorems [[.I1.3] and 2.7.1] Note that the results of theorem [2.7.1] hold unconditionally in these cases since
T =1 (cf. remark . For the readers convenience we will quote the construction of the Bernstein-
Zelevinsky subalgebra and the description of the center from theorem for our special case. For every
spherical orientation 0 = op of W, associated to a Weyl chamber D (see deﬁnition, the integral Bernstein
map 50 W —HD (see definition gives rise to a commutative subalgebra

A, = @ Rau(m) cH®
zeX

whose multiplicative structure is determined by the product rule (corollary [1.10.5])

~ ~

0o (2)05(y) = X(,y)0o(z + 1)

If the parameters a;, € R are units and squares, then we can also consider the normalized Bernstein map
0, : W — HM whose restriction to X is determined by the fact that it is multiplicative and satisfies the
following relation (see definition [1.10.9] for details)

(2.2.1) 0o(z) = VIL(z)"'T, Voe XND

These properties together imply that 50 . coincides with the map denoted by 6 by Lusztig [Lus89|, which ap-

pears in the classical Bernstein-Lusztig basis {0,T, }ze x wew,. Moreover, 50 is related to the integral Bernstein
map via 0, (w) = vIL(L) "} (w)f,(w) (sce theorem [1.10.1). It follows from this that A, can also be expressed as

Ao = P R, ()

reX

and that 5(, induces an isomorphism of the group algebra R[X] with A,. In any case, the group Wy acts on A,
by permuting the basis elements w(6,(x)) = 0,(w(z)) and the center of H(!) is given by the Wy-invariants

ZH) =AY = P Rz

"/EW()\X

Zy = Z 0o (2)

rey

with

independent of the orientation (Weyl chamber) chosen.

2.2.2 The affine Hecke algebra of GL,

We now specialize our discussion to the case where the root datum defining W is the root datum of GL,.
The affine Hecke algebra of W with parameters ag,bs will be denoted by H2f(ay,b,) or simply by H2. The
generalized braid groups A(W), A(Wy) (see definition [[.4.1]) associated to W = X x Wy and W, will be denoted
by 22F and 2, respectively. From example ii) we recall that

W =Z" xS, =Wag xQ, Wag=(S), S={so,...,sn}, Q=(u)

where
so=7""%(1n), s;=(G(i+1)fori>0 and u=7"(nn—-1...1)
with u acting on S as
usiu_l =8;_1
In particular, all the generators s € S are conjugate under W and condition (|1.3.1)) on the parameters as, by is
equivalent to
as =ag, by =>b; Vs, teS

Hence, we can write H(a,b) = H®(a,,b,) with parameters a,b € R subject to no further constraint. The
‘affine braid group’ A can be interpreted ([Diin83|,|Lek83]) topologically as a group of braids as follows.
Consider the real affine hyperplane arrangement

H={Hp:a€ Py}, Hyo={zcA:a(x)=0}, Py={a+k:ae®, keZ} CHom(A,R)



62 2 AFFINE PRO-P HECKE ALGEBRAS

in A = IR™ induced by the root datum
(X7(I)7XV7CI)V) = (Zna {ei — €5 { 7é j}vznv{ei — €5 { 7&]})

of GL,, (cf. example . The complement X := A —J Hes, H is disconnected, the connected components
being in bijection with the infinite group Wg, but the complement Y := A¢ —Jp¢ 5 He of the complexified ar-
rangement is connected. The fundamental groupoid 71 (Y") of Y can be described as follows (see [Dun83],|Lek83]).
For any two points z,y € X C Y let P, , be the subspace of the space of all paths 7 : [0,1] — Y consisting of
those v which satisfy

(i) 7(0) =z,7(1) =y
(ii) vt € [0,1], a« € oy R(ac(y(t))) =0 = a(z)aly) <0
(iii) Vt € [0,1], a € Pur a(x)a(y) <0 = S(ac(y(t)) - (a(z) —a(y)) >0
In words the second condition says that the real part of v should only cross these hyperplanes H € § which
separate x and y, while the third condition means that for every hyperplane H, € §, a € ®,; separating x and
y, the path a¢ o~ : [0,1] — € should wind around the origin counter-clockwise and should stay completely in

either the upper or lower half-plane. It is easy to see that P, , is contractible, hence giving rise to a well-defined
homotopy-class

Vy,e € Homy, (vy(z,y)
It is even easier to see that
W(Py.z) = Pu(y)w)
and hence
W(Yy,e) = Yw(y) aw(z)
for w € W. Moreover, for any three points z,y, z € X it holds true that

PeyoPya C P

and therefore that
Vz,y © Vy,x = Vz,x

if the set of hyperplanes separating x and y is disjoint from the set of hyperplanes separating y and z, i.e. if
d(Oﬂm Oy) + d(cy7 CZ) = d(Oﬂm OZ)

where C), denotes the connected component of X (chamber) containing p and d(C,C") denotes the distance
between two chambers. One can now show (|Dun83],|Lek83|) that the full subgroupoid of 71 (Y) corresponding
to X CY is described algebraically as the free groupoid on symbols v, , subject to the relation

d(Cy, Cy) +d(Cyy Co) = d(Cay, C) = Yoy © Yy = Vo

From this one deduces a description of the fundamental group of the quotient space W\Y', where the action of
W is naturally extended to A¢. Indeed, W acts properly discontinuously and without fix points on Y, therefore
Y — W\Y is a covering map with Galois group W. Fixing a base point ¢ € X and letting

Tw = D« (,y;ol,w(xo)> S WI(W\K p(x()))7 weWw
it follows easily from the above that
TwTw = Tww if L(w)+(w") = (ww')

and that the elements Ty, together with the above relation define a presentation of w1 (W\Y,p(zo)) and hence
an isomorphism of this group with 22, The interpretation of 71 (W\Y, p(z0)) as a group of ‘affine braids’ arises
by viewing W\Y as the iterated quotient

WAY = S, \(Z™M\Y) ~ S, \((€)" — 4)
where A =, ,;{# = z;} is the diagonal and Z"\Y is identified with (€*)" — A via z > exp(2miz). A loop v
in S, \((€C*)™ — A) around p(zp) can be identified with the braid

n

Lt A®):) - t € [0,1]} € [0,1] x €

=1
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¢ ¢ ¢ ¢
t=0
/
"
—
t=1
¢° 0 ¢ ¢
(a) The braid T given by the path 7(t) = (b) The inverse 7! of the braid 7. (c) The ‘composite’ TT*.

(627rit CeQTrit §2627'rit).

Figure 3: Loops in S, \((€C*)" — A) based at [(1,¢,¢?%,...,¢"1)] (¢ := exp 2X) can be identified with braids
in [0,1] x €% with endpoints {(0,¢*) :i=0,...,n— 1} and {(1,¢%) : i =0,...,n — 1}, by lifting a loop v to a
path 7 in (C*)" — A and associating to it the braid |J;_,{(¢,7(¢);) : t € [0,1]}.

where 74 denotes any lift of v to a path in (€*)™ — A. Under this bijection, composition of paths corresponds to
‘stacking’ of braids (rescaling the ¢-coordinate by %), and the inverse of a braid is given by its reflection along
the t = %-plane. This is illustrated in figure 3| (for the base point xy = (O, %, cee ”771) and n = 3), where
the ‘missing’ central line [0, 1] x {0} C [0,1] x € has been enlarged to a flagpole for better visibility. Figure
depicts the braids corresponding to some representatives of the generators T; = T, X; = T__el1 of the group
Q(?,jﬁ appearing in lemma m below.

The classical Artin braid group 2, can be interpreted similarly either as the fundamental group of S, \ (€™ —
A) or as a group braids (without a flagpole). From the topological picture it is therefore clear that there should
be a canonical map

et 9,

induced by the inclusion S, \((€C*)™ — A) C S,\(C™ — A), corresponding to ‘removing the flagpole’ on the level
of braids. However, this map is not simply given by T, + T}(), where p denotes the canonical projection
W =X x Wy — Wy. To describe it we need another presentation of the group 20(W).

2.2.1 Lemma. Let Ql‘:ff be the group generated by elements

Ty,...Th_1,X1
subject to the relations
(1) T;T; =TT, foralli,j=1,...,n—1 such that |i — j| > 1
(2) TiTiJrlTi = Ti+1TiTi+1 fO?" alli= 1, e — 2
(3) XihXiTh =T XhTh Xy
(4) X1, =T X, foralli=2,...,n—1

Then there are inverse isomorphisms ® : ﬁ%ﬂ — g gt ﬁfff of groups determined by

) =T, i=1,....,n—1
O(X,) =T}

—e

and
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¢ ¢ ¢? ¢ ¢ ¢? ¢ ¢ ¢?

g

\\

O ¢ ¢° O ¢?

(a) Th = Ts, (b) To = T, (c) X1 =T~}

—eq

Figure 4: The generators of évlgﬂ viewed as braids in [0, 1] x C*.

Proof. We only give some brief indications as the proof consists mostly of straightforward computations. First
of all, for every extended Coxeter group W the decomposition W = W,g x €2 induces an isomorphism

Q((Waﬁ X Q) >~ Q[(Waff) x )

where the action of  on 2A(W,g) is determined by u(Ty) = Ty (). Moreover, one sees easily that there is an
isomorphism

A(Wag) ~ <{Ts}s€S cTshTs ... =TTy ..., s,te€ S, ord(st)=m < oo>
—_—
m factors m factors

To see that W is well-defined it is therefore enough to check that

(T, )W(Ts,

) )
(T, ) (Ts,,,)O(Ts,)
\P(Tufl)\:[l(Tsi)\I/(Tufl)il

\IJ(TSJ)\IJ(TS,i), hwi=1,....n—=1 |i—j|>1
U(Ts,, )V (T:,)¥(Ts,,,), i=1,...,n—2
U(Ts, ), 1€{0,....,n—1}=2Z/nZ

i—

The first two relations are immediate and the last one follows from a lengthy computation. By definition, the
well-definedness of ® amounts to checking relations (1)-(4). Again relations (1) and (2) are immediate, while
(3) and (4) follow from (1), (2) and

Ty T, T =T.

Si—1

Finally, more straightforward and lengthy computations show that ® and ¥ are inverse to each other. O

In terms of this description, the map 2A2f —; 2, is then given by
A A, Ti— T, X1 1

Writing H,, = H,(a,b) for the generic pro-p Hecke algebra of Wy with constant parameters a,b, the above
morphism of groups induces a morphism of algebras

m:HY 5 H,

by proposition m (one easily checks that the quadratic relations are preserved). Explicitly, this map is the
identity on H, (viewing it as a subalgebra of H2f) and sends the generator Ty, to the elements

Te, ... T, T, T, ... T "

n—1 S178p—1 T s

The map 7 is very important because it gives a description of the center of H, in terms of the center of H2f.
Namely, it turns out that 7 maps the center of H* surjectively onto the center of H,,. This should be contrasted
with the fact that

ZH*YNHy =R
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More explicitly, the center of H,, is the algebra of symmetric polynomials in the pairwise commutative Jucys-
Murphy elements Jy, ..., J, given recursively by

Ji=1, Jip =15, 0T,
The following lifts of the J; under 7 are also called Jucys-Murphy elements
JH =Xy, JM =T, T,

The elements J3, .. .| Jgff also commute pairwise. In fact, they are nothing else but the images of the standard
basis vectors e; € Z™ under the unnormalized Bernstein map.

2.2.2 Lemma. Let o = op be the spherical orientation (see definition of W associated to the dominant
Weyl chamber
D={zeR":z; <...<ax,}

Then
JM = 0,(e;), i=1,...,n

as an equality in H*E (in fact already in A2 ).

Proof. By induction. For i = 1 the statement follows immediately from the definitions. Indeed, —e; € D and
therefore
90(61) = 00(761)71 = T_1 = X1 = f‘ff

—eq

For the induction step we need to prove that
Ts,00(ei)Ts, = Oo(eiv1)

But this is shown in [Mac03] 3.2.4], where the notation Y is used instead of 6, (z). O

2.2.3 Pro-p-Iwahori Hecke algebras

Let F be a nonarchimedean local field, i.e. a field endowed with a nontrivial discrete valuation vg : F' —
Z U {400} whose residue field k is a finite field with cardinality ¢ a power of some prime p. Let G be a
connected reductive group over F';, G = G(F') the group of rational points, I < G an Iwahori subgroup in the
sense of [Tit79} 3.7] and I(1) < I its pro-p radical. Recall that the pro-p radical of a profinite group containing
an open pro-p subgroup is by definition (see [HV15| 3.6]) its largest open normal pro-p subgroup. Finally, let
R be a commutative ring.

To this data one associates an R-algebra, the pro-p-Iwahori Hecke algebra, as follows. Let

HY := Hp(G,1(1)) = Endg(indf,) 1)

be the ring of endomorphisms of the G-representation induced from the trivial representation of I(1). This
R-algebra is canonically identified with the convolution algebra R[I(1)\G/I(1)] of I(1)-double cosets, where the
product of the basis elements T, Ty corresponding to double cosets ¢,t" € I(1)\G/I(1) is given by

T, T, = Z m(t, t' ") Ty

!

Here the sum runs over all double cosets and m(t, ;") denotes the number of I(1)-left cosets of t N gt'~! for
g € t” arbitrary.

Vignéras [Vigl6] has shown that the set I(1)\G/I(1) is in bijection with a certain group W) (which can
be given the structure of a pro-p Coxeter group) and that the basis elements T, of H(!) satisfy relations of
Iwahori-Matsumoto type

TwTw = Tww, if l(w)+l(w'") = l(ww")
T? = a, Ty + bsT,, if£(s) =1

Given a suitable structure of a pro-p Coxeter group on W) and an affine extended Coxeter group on W, the
above presentation implies that H) is an affine pro-p Hecke algebra in the sense of definition Our goal
now is to explicitly construct these structures.

Let C be the chamber of the building of G which corresponds to the Iwahori subgroup I = I and let S < G
denote the maximal split torus corresponding to an apartment containing C. Let Z < N < G respectively denote
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the centralizer and normalizer of S in G, and let Z = Z(F) and N = N(F) denote their groups of rational
points. Let
ZO = ZOI, Zo(l) :Zﬂl(1)7 Zk = Zo/Zo(l)

The groups Zy and Zy(1) are normal in N (cf. [Vigl6, 3.7]) and thus we may form the quotient groups
W :=N/Zy,, W .=N/Zy1)
The inclusion N C G induces a bijection ([Vigl6), Proposition 3.35])
w® = TONG/I(1), [n] — I(1)nI(1)

and therefore (1) has a canonical basis T, indexed by elements w € W), Moreover, we have an exact sequence

(2.2.2) 1 Zy w®) W 1

with Zj, finite abelian (in fact Zj identifies with the rational points of a torus over k, cf. [Vigl6| 3.7]).

Let us now see how W can be given the structure of an affine extended Coxeter group. The theory of
buildings associates to the triple (G, S, F) an apartment A = A(G, S, F) (see |Tit79, 1.2]), which is an affine
space over the vector space V = X, (S) ® R endowed with a homomorphism

v:N — Aut,g(A)

into the group of affine automorphisms of A, such that we have a commutative diagram

(2.2.3) 1 Z N Wy 1

L

1——=V ——= Aut,g(A4) —=GL(V) ——=1

Here the rightmost vertical map is the canonical (faithful) representation of the finite Weyl group Wy as a
reflection group in V', and the leftmost vertical map is uniquely determined by the condition

x(w(2)) = —vr(x(2)) VzeZ, xeX*(Z)

This condition implies that v(Z) < V is a discrete subgroup of rank dim(V'), i.e. a lattice in V. As I is compact
so is Zg = 1N Z, and hence Zy < ker(v) since v is continuous. Therefore, v factors to a map

v: W — Aut,g(A)

which after an appropriate choice of an origin in A and hence an identification A ~ V will define a map
p: W — Aut,g(V). Regardless of this choice the above diagram shows that the subgroup po(W) defined in

(ACIII)| is equal to the image of Wy in GL(V'), and hence |(ACIII)| is verified. Moreover, the injectivity of
Wy — GL(V) and the commutativity of the above diagram imply that

p(W)NV = v(Z)

regardless of the choice of an origin. In particular [(ACV)| holds, since v(Z) is a lattice in V. Now in order to
choose an origin, we first need to define the locally finite set $) of hyperplanes.
For this we need to recall a few more facts from the theory of buildings. Let

o= ®(G,S) C X*(S)C VY

denote the root systemlﬂ of the pair (G, S).

Let us for a root a € ® denote by U, < G the root subgroup corresponding to a, let U, := U,(F) and
Ur:=U, — {1}. For every u € U}, the set U_,uU_, N N consists of a single element, denoted m(u) in [Tit79,
1.4]. The linear part of the image v(m(u)) € Aut,g(A) is the reflection s, € GL(V) associated to a, which
implies that v(m(u)) is an affine reflection. Let a(a,u) denote the affine function whose linear part is a and

21Note that in general, ® is not reduced and so in particular it will not be the reduced root system ® attached to the affine
extended Coxeter group W by lemma m
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whose vanishing set is the hyperplane fixed by v(m(u)). For any affine function « : A — IR with linear part a,
let
Xo ={ueU;:alau)>atU{l}

It is a major result of the theory of buildings that X, is in fact a subgroup of U,. However, from the definition it
is immediately clear that the X, with a running over all affine functions with linear part a form an exhaustive
and separated filtration of U,. Moreover, any two elements m(u), m(u') with u,«’ € U differ only by an element
of Z. Since v(Z) <V is a discrete subgroup, it follows that the filtration {X, } is locally constant and that

9= {{ala.u) =0} ra € B, uecly}

is a locally finite set of hyperplanes. The set §) is left invariant under the action of W, thus verifying [(ACI)]
which follows from
nUin~' = Upar NEN,a€®

and
(2.2.4) nm(u)yn™t =m(nun~'), neEN, ac® ueclU;

The last equation also shows that
nilXan = Xaol/(n)

Let W ($)) denote the subgroup of Aut,g(A) generated by all v(m(u)) with a € ', w € U}. Then W ($)) leaves
§) invariant as $) is already invariant under W. Fixing a Wy-invariant positive definite scalar product on V,
the group W($)) becomes the affine reflection group generated by the orthogonal reflections sy with H € .
By [Bou07, Ch. V, §3.10, Proposition 10], there exists a special point p € A. As W($)) maps special points
to special points and acts transitively on the set of chambers, we may assume that p lies in the closure of the
chamber C' which corresponds to I.

Identifying A and V' via p, we will assume from now on that A = V and p = 0 and we will put p := v. Letting
Cop := C, we fulfill [ACIV)| and [[ACIX)} This gives W ($)) the structure of a Coxeter group (cf. section
by letting the set of distinguished generators be the set S(Cp) of reflections with respect to the walls of Cp.

We now want to construct lifts Sy € W of the reflections sy € W (), H € $ satisfying and
Note that [[ACII)| and [[ACVIII)| are then satisfied automatically. Consider the subgroup N,g < N
generated by Zy and all m(u), u € U}, a € ®. From relation it follows that it is a normal subgroup of
N. Moreover, by construction the map v restricts to a surjection

Naff - W(ﬁ)
which we claim has kernel Z, (cf. [Vigl6, 3.9]). Admitting this claim, it follows that the subgroup
Wag = Nag/Zo C N/ Zog =W

maps isomorphically onto W ($) under v and hence that [[ACVT)| and [[ACVII)| are fulfilled by letting 5z be
the unique preimage in W,g of sy under v.
Let us now show that ker(v) N Nog = Zy. We already saw that Z; is contained in the kernel. The reverse

inclusion follows from the following characterization of the Iwahori subgroup given by Haines and Rapoport
(Def. 1, Prop. 3 and Lemma 17 in [HRO8])

Ic = FiXG(C) N Gag

Here C denotes the chamber in the reduced building of G corresponding to C' and Fixs(C) denotes the subgroup
of all elements of G fixing C pointwise. Note that Fixg(C) C Fixg(C). Moreover, Gag denotes the subgroup of
G generated by all parahoric subgroups, or equivalently, the subgroup generated by Z; and the root subgroups
U,, a € ®. It follows that N.g C G.g and therefore that

ker(v) N Nag C Fixg(C) N Gag = I

Since ker(v) C Z, this implies
ker(v) N Nog C ZN1T = Z

We have therefore now verified conditions [[ACI){{ACIX)| It remains to show that [[ACX)|holds, i.e. that the
subgroup

X=p' V)2 2/2 <W
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is finitely generated and commutative. But this is shown in [HR10, Theorem 1.0.1], where are Z,Z; are denoted
by M(F), M(F)1. To apply this theorem one has to note that Z; is the unique parahoric subgroup of Z (see
the discussion before [Vigl6l Proposition 3.15]).

We have therefore given W = N/Z; the structure of an affine extended Coxeter group. By lemma [2.1.2
this induces on W the structure W = (W, W,g, S,§2) of an extended Coxeter group. The exact sequence
therefore makes W1 = N/Zy(1) into a pro-p Coxeter group, provided we specify lifts of the generators
Sy € Wag, H € S(Cp) that satisfy the braid relations. This is the content of the next lemma. In order to state
it, we need to recall a few more things from [Tit79).

Let {X,}a denote the family of quotients of the descending filtration { X, }a, i.e.

Xa = Xa/Xa—i-e

for € > 0 sufficiently small. If ¢ € ® with 2a € ®, then the inclusion Us, C U, induces an inclusion Xoq C X4
for every o with ap = a. The set ®,¢ of affine roots is then defined to be (cf. [Tit79} 1.6])

O ={a:ap€ P, Xoy # Xo}

where Xo, = {1} by convention if 2ap ¢ ®. Note that if X, # 1 but a & ®,¢, then necessarily 2a € ®,;.
Hence, every H € ) is of the form H = {a = 0} for some o € Py.

2.2.3 Lemma. In the situation of the above example, the following holds. Given a wall H € S(Cy) let o € Pyop
denote the unique affine root with

1
H={a=0}, CoC{a>0} and §a€<1>af

and put ng = m(u) for some arbitrary u € X,, with nonzero image under X, — Xo. Then for all H, H' € S(Cy)
with ord(spspr) < 0o we have the relation

ngngnNyg ... =NgmMgng’ ... mod Zo(l)
in N, where the number of factors on both sides equals ord(sgsm’).

Proof. If H,H' are parallel, then either H = H' or ord(sysp/) = 0o, in which case there is nothing to prove.
So we may assume that H, H' are not parallel, and hence that the intersection H N H’ contains a non-empty
face of the fundamental chamber Cy. To every face F' of Cy is associated a subgroup (parahoric) Kr < G as
follows (see also [Vigl6} 3.7]). Every face F of Cy corresponds to a face in the apartment A" corresponding to
S in the reduced building of G. To every nonempty bounded subset Q C A" is attached ([BT84, 4.6.26] and
[BT84} 5.1.9]) a smooth affine group scheme &Y, over the ring of integers of the local field F' (O% in the notation
of [BT84]) with generic fiber G. In the notation of [BT84] the parahoric K corresponding to F is then defined
to be (see [BT84, 5.2.6] and the remark before [BT84, 5.2.9])

Kr = 63(0) N G(K*) = 65(0%)

From [BT84] 5.2.4] it follows that the group K is also characterized as the subgroup generated by Z; and the
X, for all @ with o9 € & and F C {a > 0}.
For F' = Cy one has Kr = I and for any two faces F, F’ of Cy (see |Vigl6, Corollary 3.21])

FCF = Kp2Kp and Kp(l) C Kp (1)
Here K (1) denotes the pro-p radical of Kp. In particular
(2.2.5) Kp(1) CI(1)
for all faces F of Cy. Let now F # ) be a face of Cy contained in H N H'. The subset
Op:={apg:a €Dy, FC{a=0}}C

is a sub root system of ®. Moreover, elementary arguments show that ag,af € ®p are part of a basis of Pp.
Here it is used that %a, %a’ Z Dy
- —red
Let Gp = &% Xgpec(0r) Spec(k) be the reduction of the group scheme &% and let G? denote the quotient

— R d J—
of G by its unipotent radical. Identifying G;S with the unique Levi subgroup of Gr containing the reduction
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S of the canonical model of S over O, the group é;fd coincides with the group denoted by the same symbol
in [Tit79, 3.5]. The canonical map

—red

Kp=6%0r) — G (k)

—red
is surjective and its kernel is equal to the pro-p-radical Kr(1) by [HV15] 3.7]. The group G; is a connected
reductive group over k and its root system with respect to the maximal split subtorus S, as a subset of

X*(S) = X*(9), is equal to ®p (see |Tit79, 3.5.1]). Moreover, for any o € ®,¢ with F' C {av = 0} we have
(2.2.6) X, C Kp

and (see |Tit79, 3.5.1])

(2.2.7) X = Uay (k)

as an equality of subgroups of é}ed(k) = Kr/Kp(1). Here U,, denotes the root subgroup of éﬁd corresponding
to ay € Pp.

Let now a,a’ € ®,¢ and u € X,, v’ € X, with ng = m(u), ngr = m(u') be as in the statement of this
lemma. Denote by %, u’ the images of u,u’ under Kz —» é?d(k). By and the choice of u, v/, the elements
w,u’ are not reduced to the neutral element. Applying to the reductions of the elements appearing in
the decomposition of m(u) and m(u’) respectively, it follows that

(2.2.8) m(u) = m(@), m)=mu)

by uniqueness, where m(u), m(u’') denote the images of m(u), m(uv') € Kp under Kp — é;cd(k) and m(a),
m(u') are associated to %, u in the same way as m(u), m(u') are associated to u,u’. In fact, m(u), m(u’) are
the elements canonically associated to the elements %, u’ and the root datum (Z(S)(k), (Ua(k))aca,) (in the
sense of [BT72, 6.1.1]) by [BT72, 6.1.2 (2)]. Applying Proposition [BT72, 6.1.8] to the root datum given by
restricting (Z(S)(k), (Us(k))aco,) to the rank two sub root system (Zag + Zajy) N @, it follows that

(2.2.9) m@)m(u)m(a) ... = m(u)m@m). ..

where the number of factors on both sides equals the order of sa,54; € Wo(®r) € Wo(®). Let  be an arbitrary
point of the face F'. As sy and sy both lie in the stabilizer Aut,g(V), and the map Aut.g(V) — GL(V)
restricts to an injection Autag(V), < GL(V'), the order of the image s34, of spsy € Autag(V) is equal to
the order of sy s%;. Hence, it follows from (2.2.9) and (2.2.8) that ab~! € K (1) where

a=m(uymu)mu)... b=m)mu)m')...

and the number of factors on the right hand side of each equation equals the order of sgs%. On the other hand
we have ab~! € Z since Z equals the kernel of the composition N — W ($)) — Wy, and a, b are mapped to the
same element under N — W ($)). Hence

ab~t e ZNI(1) = Zy(1)
and the claim follows. O

Now, for a generator s = 35, H € S(Cy) of Wag let ny, € W) = N/Zy(1) be the class of an element
ng € N as chosen according to the lemma. Then the lemma states that W) together with the choice of these
lifts becomes a pro-p Coxeter group in the sense of definition [1.1.13

We can now finally state the relation between pro-p-Iwahori Hecke algebras and generic pro-p Hecke algebras.

2.2.4 Lemma. Given a generator s = sy € Wag, H € S(Cy), let o € Bur be the unique affine root with
H={a =0} and 1o & ®u. Then the following holds.

(i) We have
qs = #InsI /T = #I1(1)nsI(1)/1(1) = #Xo = qd(”)

where d(v) € IN denotes the integer associated to the vertex v of the local Dynkin diagram A(Pqa) (see
|Tit79, 1.8]) corresponding to H.

(ii) Let F be any face of Cy contained in H, let Gp s be the subgroup ofér;d generated by X, and X _, (cf.

proof of lemma and let o
Zys i =GpsNZy < Zy

Then Zy s is independent of the choice of F.
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(iii) Let
Cs 1= Z cs(t)t € R[Zy]
teZy s
with
cs(t) == # (nsyans N Yanstya)

where the intersection is taken inside é;:d(k:) (for any F as in (ii)), and ng denotes (by abuse of notation)
the image of the element ng = m(u) € X, under X, — X, C @r;d(k:).

Then the families (qs)s, (cs)s fulfill condition (1.3.1)) with respect to the pro-p Cozeter group W) defined
above, and the R-linear isomorphism

H (qo,c) =5 Hr(G,I(1)), Tw— T
is a morphism of R-algebras. Moreover, the integers c4(t) satisfy

Vit € Zys cs(t) >0 and Z cs(t) =¢qs —1
tEZy, s

In particular, the integers cs(t) are all equal to 1 if and only if the order of Zy s equals gs—1. For example,
this is the case if G is split and simply connected. More generally, if G is only split (but not necessarily
stmply connected), it holds that

Vi, t' € Zy s cs(t) = cs(t)

Proof. ad (i): For the first equality and second equality we refer to [Vigl6, Corollary 3.30], recalling that (see
[2.2.7)) X, is naturally identified with the group U,, (k) (denoted U, 3k in [Vigl6]). The last equality follows
directly from the definition of the integer d(v) as the sum of the dimensions of k-vector spaces (cf. [Tit79} 1.6])
YQ/YQQ and Xga.

ad (ii): The independence of Zj ; from the choice of F' is implicit in the proof of [Vigl6, Proposition 4.4]. It
can also be seen as follows (cf. [Vigl6, Proposition 3.26]). Given two (nonempty) faces F, F’ of Cy with F’ C F,
we have an inclusion Kr C Kps. The image of K in Kp j under the natural map Kpr — Kpr j = Kp/ /Kp/(1)
is equal to the subgroup M generated by Z; and the groups Uy(k), a € @ C ® /. Moreover, My appears as
a Levi subgroup of a parabolic subgroup Qr = Mp X Up, such that the inverse image of the unipotent radical
Ur under Kr — K/, equals Kr(1). Hence, we have an induced injective map

Krpp — Mp C Kpr i,

Whiih is tlE) identity orLZk an(tnhe Ua(k), a € Pp. In particglar, the subgroup ép/,s of é;f,d = Kp/ 1, generated
by Xo = Uq,y(k) and X_, = U_,, (k) equals the image of G s under the embedding Kpj <> Kps . As this
embedding is the identity on Zj, it follows that

éF,s NZ, = ép/’s N Zp,

ad (iii): As Vignéras has observed [Vigl6, Theorem 4.7], the condition is not only sufficient but
also necessary for the existence of an algebra structure on the free R-module over W) satisfying and
(T:3:3). As the latter two conditions are satisfied for Hr(G,I(1)) by [Vigl6, Proposition 4.1] and [Vig16)
Proposition 4.4], it follows that is satisfied. Moreover, the fact that the relations (1.3.2)) and (1.3.3) hold
in Hp(G, I(1)) implies that 7—[5%1)(%7 ¢s) — Hg(G,I(1)) is a morphism of algebras.

Finally, for the properties of the integers c;(t) we refer to step 3 of the proof of [Vigl6l Proposition 4.4];
however note, that the proof contains some errors as it is incorrectlyﬂ claimed there that #7;, ; = ¢; — 1 always
holds when G is split. O

We have therefore now recognized Hr(G,I(1)) as an affine pro-p Hecke algebra. Since in this case the
abelian group T' = Z;, underlying W) is finite, all the structure results of theorem hold unconditionally
for Hr(G,1(1)) (cf. remark[2.7.3). In particular the center of Hr(G,I(1)) is finitely generated as an R-algebra,
and Hr(G, I(1)) is module-finite over its center.

22for example, for G = PGL5 one has H#Zy,s = qu—l
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2.2.4 Affine Yokonuma-Hecke algebras

The Yokonuma-Hecke algebras Yy, of example [I1.3.8] _ 8| have a natural variant, the affine Yokonuma-Hecke al-
gebras Y;g According to [CS15, Introduction] these algebras have first been introduced by Juyumaya and
Lambropoulou [JL] under the name of ‘d-th framization of the Iwahori-Hecke algebra of B-type’. Later they
were studied by Chlouveraki and Poulain d’Andecy [Cd14] under the name ‘affine Yokonuma-Hecke algebra’.
The different terminologies reflect the two different ways in which Ydalcf can be seen as modifications of other
algebras. This is visualized in the following commutative diagram (deﬁned down below)

(2.2.10) vl gt

|l

Yd,n — Hn

were the left column is the ‘framization’ of the right column, and the upper row is the ‘affinization’ of the lower
one.

Chlouveraki and Sécherre have recognized |CS15| the algebra Y;ﬁ as (in our terminology) generic pro-p
Hecke algebras for the split pro-p Coxeter group W) =T x W, T = (Z/dZ)", W = Z" x S,,. In fact, we will
see in a moment that they are affine pro-p Hecke algebras in the sense of definition

Let us first recall the definition (cf. [Cd14} 3.1]) of the affine Yokonuma-Hecke algebras. For integers d,n > 1,
the algebra Yda,flf is the algebra over R = Clu™!, v] generated by elements

gla'"7gn—1;t17"'atnaX17X1_1

subject to the relations

(1) 9i9j = 99 forall i, =1,...,n— 1 such that |i — j| > 1
(2) 9i9i+19i = Git19:9i+1 foralli=1,....,.n—2

(3) tit; = t;t; foralli,j=1,...,n

(4) git; = ts,(j)9i foralli=1,....n—1landj=1,...,n

(5) tle forallj=1,...,n

(6) XXt =X1x =1

(7 X191 X191 = 1 Xag1 Xu

(8) X1g9; = g: X1 foralli=2,...,n—1

9) Xit; =t; X4 forallj=1,...,n

(10) g? =u*tvegy foralli=1,....n—1

where as in example [T.3.8] we let

€; :é Z (ti/tiy1)’

0<s<d

Note that this definition of the Yokonuma-Hecke algebra slightly differs from the one given in |[Cd14], as we are
considering Yda,ff as an algebra over the ring C[u™,v] in two formal variables. The algebra of [Cd14] is obtained
by specializing Yjﬁ along the ring homomorphism Clu*!,v] — C[¢T!] sending u + 1 and v+ ¢ — ¢~ L.

Let us now recognize Y;g as an affine pro-p Hecke algebra. More precisely, let us show that Ydﬁ is isomorphic
to a generic pro-p Hecke algebra H(V) for the pro p Coxeter group W) = (Z/dZ) X W, where W = Z™ x S, is

the affine extended Coxeter group of example |2 11)7 (cf. also sectlon 2) acting on (Z/dZ)"™ by permuting

the coordinates via the projection W — W, = S,,. By proposition we have an isomorphism H() ~
R[A(WW)]/I, where I is the ideal generated by the elements T2 — asT,2 — bsT,,. It therefore suffices to see
that Y is a quotient of RRU(W1))] by the same ideal I.

For this we need the following ‘framed version’ of lemma [2.2.1], providing two descriptions of the d-modular
framed affine braid group.

2.2.5 Lemma. Let ﬁ;ﬁ;(l) denote the group generated by elements

917"'5971—17t17"'7tn7X1
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subject to the relations (1)-(9) above, and let Qlaff’(l) = A(WW) with W) as above. Then there are inverse
isomorphisms P : Qlaff 1), Q(Zi’(l) and VU : Qlaﬁ (1) Qlfli(l) determined by

q)(tl) —TtL =1, ,
O(X1) =T,
and
UV(Ts,)=9; i=1,...,n—1
\P(Tso) = lI/(Tu)gl\II(Tu)
V(Ty) = gn-1..-91Xa
U(Ty,)=t; i=1,...,n
where t1,...,t, denote the canonical generators of (Z/dZ)™.

Proof. Follows immediately from (W M) = T x A(W), ﬁ;i;(l) T x 22 and lemma 1| (where the T; have
to be replaced by g;). O

From the above lemma, it follows readily that the affine Yokonuma-Hecke algebra Yjﬁ is the quotient of

the group algebra R[Qlaff (1)] by the ideal generated by the relations in (10). This doesn’t yet prove that Yda,g

is isomorphic to the generic pro-p Hecke algebra () (with the obvious parameters as, bs), since we still need
to show that the latter exists. Moreover, carefully comparing the relations in (10) with the generators of the
ideal I realizing the isomorphism H() ~ R[A(WM)]/T of proposition one notes that I is generated by
one extra relation not appearing in (10). However, as we will see now, this extra relation is redundant.

2.2.6 Theorem. Let W) =T x W, T = (Z/dZ)™, ng = s, W = Z™ x S,, be the split pro-p Cozxeter group
constructed above. Fori=0,...,n—1 put
v

s, = u2 € Rv bSi = & Z (ti/tiJrl)s € R[T]
SEZ/dZ

where tg := t, by convention and the group T is written multiplicatively. Then the following holds.

(i) The parameter families (as)ses, (bs)ses defined above satisfy condition 1)) of theorem|1.3.1}, and hence
the generic pro-p Hecke algebra 7-[((11) = H W (ag,bs) for these pammeters exists.

(ii) There is an isomorphism of R-algebras
Yin A,
determined by
gi Tsi
t; — Tt
X1 —> T‘__P1

where the element T:ell € ng is well-defined since the parameters as are invertible in R (cf. section .

(iii) Via the structure of an affine extended Cozeter group on W from example 'H((ilzl (and hence Ydal;r
becomes an affine pro-p Hecke algebra. Moreover, as the group T is finite, all results of theorem

apply without restriction (cf. remark . In particular 7-[
the latter is given by the invariants

dn U finite as a module over its center, and

2 = (A0)"

of the subalgebra
AV = @ Ro(x) SH),

QjeX(l)
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where 0 is any spherical orientation of W. Since the parameters as are units in R, the unnormalized
Bernstein map 0, exists and provides an isomorphism

RXW] = AV res Oo(z) (zexW)

Since the group XV = T x Z™ is commutative, the algebra Agl) is also commutative and hence by
Bx

theorem (2.7.1| is equal to its centralizer in ”H((ilzb.

Proof. We begin by showing (i) using the equivalent reformulation of condition (1.3.1]) given in remark

From example ii) recall that

usiu_l =S;_1

for alli € {0,...,n— 1} = Z/nZ. In particular all elements of S are conjugate. The first of the two conditions
of remark [1.3.6] therefore follows from the equation

(2.2.11) u(bs,) = bs,_,

Recall here that u = 7¢7s,,_1...s1 and hence u acts on T' = (Z/dZ)" via the cycle s,—1...51=(n—1 ...1).
Now in order to see that the second condition of remark holds true, first note that by a general result on
reflection groups (see [Bou07, Ch. V, §3.3, Proposition 2 (I)]), it follows that for every s € S

{fweW wswl=s}={l,s}-{veQ:vsv =5} ={1,s} - {u"" : kcZ}
Here
= perteten € X

Taking @ = w to be the canonical lift for the split pro-p group W) = T x W for every w as above, condition
(ii) of remark follows then from
s(bs) =bs, s€S

and
st by =b,, s€8,tecT
The latter two equations follow by a simple computation, for instance
v

si(bs;) = p > siltiftin)® = g > (tiga/t) = g > (ti/tip) " = by,

se€Z/dz se€z/dz se€z/dz
and writing t =t ... t#n we have
_ Kooy 1—hs ks —ha s
si(t)t lbsi =t o ti—o—l +1b3i = (ti/ti+1)kl+1 ktbsi' = bSi

Now claim (ii) is an almost immediate consequence of (i), lemma and proposition m since Yda)fs and
"Hély)b both are quotients of the group algebra R[Ql&li] by ideals I and I’ respectively, generated by the elements

2 _ 72
T”Sz‘ N aSiTngi h bsiTnsi - TS@ —as; — b5, T,

However, for I’ the index ¢ ranges from 0 to n whereas for I it only ranges from 1 to n. But by equation (2.2.11)
we have
T, (T2 — as, — b5, Ts,) T,-1 = T2 — as, — by, T.

S0 0S80

and therefore I = I’. In fact, this argument shows that
I=1=(T? — a5, — by, Ty,)
Finally for (iii), there is nothing to prove. O

2.2.7 Remark. By definition, the algebras Y;’g and 7—[((117)1 are algebras over the ring R = C[u™', v]. However,
the definition of Yd“g and the verification of condition (|1.3.1]) did not make use of the invertibility of u, i.e. both
algebras can already be defined over C[u,v]. In contrast, the above isomorphism between ng and 7-[((;% does

make explicit use of the invertibility of u. This poses the question whether both algebras are isomorphic over
Clu,v].
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2.2.8 Remark. In the beginning of section we remarked that the examples of pro-p-Iwahori Hecke algebras
and affine Yokonuma-Hecke algebras overlap. Let us now make this more precise. It is not hard to see that
whenever d is of the form

d=qg—1, ¢q=p" aprime-power
the pro-p Coxeter group W) = T x W considered above (together with the structure of an affine extended
Coxeter group on W !) can be identified with the pro-p Coxeter group W) = N/Zy(1) associated to the
reductive group GL,,, the diagonal subtorus in GL,, and the Iwahori subgroup

Op pPr ... Pr

I= QF < GL,(F)
. U
Op ... Op OFf

by section [2.2.3] where F' denotes any nonarchimedean local field with residue field & = Op/pp of cardinality
q. Explicitly, the choice of a uniformizing element m € Op provides a splitting of the exact sequence

1 Zy, w® W 1

by identifying an element w = 7%0 € W = Z" x S, with the class of the monomial matrix (770, ;)s,;-
Moreover, the choice of a primitive d-th root of unity in &k provides an isomorphism of the group Zy = (k*)"™ with
(Z/dZ)™. Unwinding the definition of the groups Z s in lemma one sees that for s = s;,4 € {1,...,n—1}

Zys = {(ti/tin1) : j € Z/dZ}
as subgroups of Z;, = T, where we recall that the ¢; denote the standard generators of T' = (Z/dZ)™ and that
this group is written multiplicatively. From this and lemma it then follows immediately that we have an
isomorphism
Vit ©p €~ HY) ©p €~ H(GL, (F), 1(1))
where the base change — ® g € is with respect to the homomorphism R = C[u*!,v] — C sending u to /g and
v toq—1.

We now come back to the commutative diagram ([2.2.10))

aff aff
Yd,n - Hn

| )

Yd,n — Hn

that was mentioned in the beginning, and will define all the maps involved. The right vertical arrow is the
quotient map 7 constructed in section We recall that m was induced by the map
AT ~ 2 — 2,
Ti—1T,, 1=1,....,n—1
Xi1—1
between braid groups. In fact, the whole diagram (2.2.10)) is induced by a diagram

(2.2.12) D/ e —, L

ALY ——= A,
of braid groups, where Ql%l) = (T x Wy) denotes the d-modular framed braid group. The horizontal arrows
are given by the projection onto the second factor, with respect to the isomorphisms (cf. example |1.4.4])
QMW ~ o 2 gD~ T,

Finally the left vertical arrow is given by

M)~ g aff X T 50 QA AL

n

It is easy to see that (2.2.12) respects the quadratic relations and hence induces a diagram between Hecke
algebras.
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2.3 Some finiteness properties of affine extended Coxeter groups

In this section, we will collect some properties of affine extended Coxeter groups and their associated affine
hyperplane arrangements that will be needed in the structure theorem of affine pro-p Hecke algebras. In
particular, we will prove some finiteness properties which will directly imply corresponding finiteness properties
for affine pro-p Hecke algebras.

Throughout this section, we will fix an affine extended Coxeter group W. The notations introduced in
definition and lemma will be used freely.

2.3.1 Remark. Let us begin by relating the abstract geometric terminology introduced in to the concrete
geometry of the hyperplane arrangement (V, ). It is a basic result (see. [Bou07, Ch. V, §3.2, Théoréme 1]) of
the theory of affine reflection groups that W (£)) acts simply transitively on the set of chambers mo(V —Uycq H)-
Since p induces an isomorphism W,g — W ($)), also Wag acts simply transitively on the set of chambers. Via
the map w — w e Cy we can therefore identify the set of ‘abstract chambers’ (in the sense of [I.1.3) with the
chambers in V. Moreover, under this identification the ‘abstract orbit map’ W — W,g of [1.1.3] coincides with
the actual orbit map given by w +— w e Cjy. The identification of abstract and concrete chambers also extends
to hyperplanes such that the notion of ‘separation’ is preserved. More precisely, the map

ﬁ—){wswilzweWaﬁ:, s€ S}
HI—):SvH

is a bijection, and for H € $) and w,w’ € W,g it holds true that H separates w(Cy) from w’(Cp) if and only if
the abstract hyperplane 5y separates the abstract chambers w, w’ in the sense of The bijectivity follows
easily from the fact that p gives an isomorphism W,g — W ($) that satisfies p(Sg) = sy and maps the set
S C Wag bijectively onto the set of reflections with respect to the walls of the fundamental chamber Cjy. That
the notion of ‘separation’ is preserved follows from the fact that the set of abstract hyperplanes separating 1, w
and the set of concrete hyperplanes separating Cy, w e Cj respectively can both be read off from the choice of
a reduced expression w = s7 ...s,. We may therefore identify concrete and abstract hyperplanes without harm
and write
H =75y

Using the formal notation sy = H of [[.1.3] we therefore have
sy =5y € Wag
and the compatibility p(5y) = sy can be written as
p(su) = su € W(9)

Whenever it matters, it will either be stated explicitly or it will be clear from the context whether we view sy
as an element of W, or of W (), so that no confusion will arise.

As we just saw, the abstract geometry of an affine extended Coxeter group W is faithfully reflected (no
pun intended) in the geometry of the affine hyperplane arrangement (V, $)). Using the extra structure available
on (V,$), this dictionary between abstract and concrete geometry makes some questions concerning W very
transparent.

Consider for instance the following basic problem of Coxeter geometry. Given chambers C,C’ and C”, when
does

d(C,C") =d(C,C") +d(C’,C")

hold true? This problem can be made more transparent with the help of the following ‘vector-valued’ distance.
2.3.2 Definition. Given chambers C,C" € mo(V — Uycq H) the element
d(c,cy e z®"
defined component-wise via .
d(C,C")a = mo(=a)(C") = mo(—)(C) € Z

is called the vector-valued distance between C and C’. Here mo(—a) denotes the map induced on connected
components by
—a: V- |JH—R-Z
He$H
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and the difference mo(—a)(C’) — mo(—a)(C) is to be understood in the sense of affine spaces over Z, with
mo(R — Z) carrying the obvious affine structure. In other words

dC,CNa =k — k
if k, k' € Z are such that
—a(C) Clk,k+1] and —o(C") CJK, K +1]

-

2.3.3 Remark. From the definition it is quite obvious that |d(C,C"),| equals the number of hyperplanes of
the form Hy, 1, k € Z separating C from C’. In particular the vector-valued and the normal distance are related
by the formula

-

(2.3.1) d(C,C") =1d(C,C")| = Y 1d(C,C")a

which justifies the terminology. In particular, using remark the length ¢ on W can be expressed in terms
of d as

f(w) = d(Co,w(Co)) = Y |d(Co,w(Co))al

aedt

where Cj denotes the fundamental chamber and w(Cy) = p(w)(Cp) the action of W via p : W — Autag(V).
By definition, an element € X acts by translation by p(z) € V on V. It is therefore easy to see that

-

d(Co, p(x)(Co))a = —alp())
leading to the more useful formula
(2.32) Uz)= D lalp())], ze€X
acedt

2.3.4 Remark. Let us now return to the problem posed above, to determine when three chambers C,C’, C"
fulfill the relation
d(C,C") =d(C,C") +d(C",C")

and let us see how the vector-valued distance helps in making this problem more transparent. Immediately
from the definition it follows that . . .
d(C,C") =d(C,C") +d(C’,C")

By equation , we are therefore reduced to determine for which z,y € Z*" we have
|z +yl = || + [yl

where |z| =) |zo|. Let < denote relation on Z*" defined by

(2.3.3) 2y fy| = |z| + [y — |

= xa(ya - ma) >0 Va
S x,=0V (xaya >0 A |$a|f;|yaD Va

It is easy to see that =< is a partial order. Moreover, the above problem can now be phrased equivalently in
terms of < as

(2.3.4) d(C,C") = d(C,C") +d(C',C") & d(C,C") =d(C,c")
2.3.5 Remark. In particular, fixing a chamber C', the relation

C'=cC" e d(C,C")=d(C,C")+d(C',C")

& d(C,C) =d(C,C")

defines a partial order on chambers. For C = (| this is just the weak Bruhat order, i.e. the partial order
induced on Wyg via
w =w e W (Ch) Ze, w(Ch)
& d(Cy,w" (Cp)) = d(Co,w' (Cp)) + d(w'(Co),w"(Cop))
s L) =w) +((w) ")
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is the weak Bruhat order.

It is known that the weak Bruhat order on an affine Coxeter group is a well partial order, in fact the affine
Coxeter groups are characterized among the infinite Coxeter group as those for which this property holds (see
[Hul07]). In the next lemma we will prove that < defines a well partial order on Z®", thus recovering the first
statement about the weak Bruhat order, as the proof is not difficult and moreover the result is crucial for the
structure theory of affine pro-p Hecke algebras. In fact, the well partial order property guarantees that H(%) is
finitely generated as a left module over a certain subalgebra Af,” C HW (see the proof of theorem, which
is an important step in showing that #(Y) is finitely generated as a module over its center.

Let us recall the notion of a well partial order (cf. [Kru72]).

2.3.6 Definition. A partial order < on a set X is said to be a well partial order if for every nonempty
subset A C X the set min(A) of minimal elements of A is nonempty and finite.

Obviously this generalizes the notion of a well ordering from total orders to partial orders, hence the name.
Let us now show that < defines a well partial order on ze".

2.3.7 Lemma (“Dickson’s lemma”). (Z®", =) is a well partial order.

Proof. Let A C X be a nonempty subset and assume that min(A) was infinite. We would then find a sequence
(An)nen of pairwise distinct elements A, € min(A), which would necessarily be also pairwise incomparable.
Choose a numbering ®* = {«1,...,a,} of the positive roots, and look at the sequence (A, (aq))nen of ‘first
coordinates’.

There are two possibilities, either this sequence is finite or infinite. In the first case we may (after possibly
replacing (A, )nem by a subsequence) assume that the sequence (A, (a1))nen is constant. In the second case we
can assume (again replacing (A,)nemn by a subsequence if necessary) that the sequence (A, (aq))nen is strictly
increasing or decreasing with respect to the usual total order on Z, i.e. strictly increasing with respect to the
well partial order (!) 2 <y :< z(y — ) > 0 on Z.

Repeating this procedure with as, s, ..., ay,, we may therefore assume that for every o € ®* the sequence
(An(@))new is either constant or strictly increasing with respect to the well partial order < on Z. In particular,
since the order (Z‘ﬁ, =) is just the power of the order (Z, <), we would have A\; < Aq, contradicting the fact
that the \,, are pairwise incomparable. O

2.3.8 Corollary. For every chamber C, the relation <c on the set of chambers defined in remark [2.3.3 is a
well partial order.

2.3.9 Remark. Obviously the above proof holds verbatim with (Z, <) replaced by any well partial order, and
the argument recovers the basic fact that finite products of well partial orders are again well partial orders (cf.
[Kru72]).

As already mentioned, the well partial order property of < is crucial for proving the finiteness of H(!) as
a left module over AE,”. But it is also crucial for proving yet another finiteness property, namely it ensures
i

that AS,” is finitely generated as an algebra (see theorem . This rests on the finiteness property of the
submonoids Xp < X defined below, which we will prove in the next lemma.

2.3.10 Definition. Given a Weyl chamber D € g (V —Usea Ha), we let
Xp:={re€eX : p(x) e D}

be the submonoid of X consisting of all elements which act by translation by an element of the closure of D C V
under p: W — Aut,g (V).

2.3.11 Lemma (“Gordan’s lemma”). Xp is finitely generated as a monoid.

Proof. Consider the evaluation map

vV — R®"

vi— (a— av))
Since the action of X preserves the set $) of affine hyperplanes and by definition of ® we have for every o € ®

VkER HypeH kel
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it follows from p(z)(Ha,0) = Ha,—a(p(z)) € 9 that a(p(x)) € Z for every = € X. Hence, v(p(x)) lies in Z*" and
we may consider the image

—_ +

Ep =v(p(Xp)) C Z*

As v is a group homomorphism, Zp C Z?®" is a submonoid. Moreover, the partial order < restricted to Zp is
compatible with the monoid structure in the sense that

(2.3.5) a<a+b Va,beZ=p

To see this, let ep o denote the sign of a(q) for ¢ € D arbitrary. We then have the following equivalence for an
element v € V o
veD & VYaecdt ep,act(v) >0

The implication ‘=’ is obvious and the reverse implication follows by choosing a point ¢ € D and noting that
v lies in the closure of the half-open line segment

{1=Xg+X I : 0<A<1}CD
This implies that Zp is characterized as
(2.3.6) Ep ={acv(p(X)) : Va€ ®" ep,a(a)>0}

In particular, for a,b € Ep and every aw € @ we have a(a)b(c) > 0 and hence a < a + b by definition of <.

Let us now call an element a € Zp irreducible if a # 0 and a cannot be written as a sum a = b + ¢ with
b,c € Ep and b,c # 0. Since < is a well partial order, it is in particular a well-founded relation. This implies
that every element a € Zp can be written as a (possibly empty) sum of irreducible elements. Indeed, if this
was not the case, we repeatedly expand a as a sum

a:a1+b1 :a2+b2+b1 :a3+b3+b2+61:...
with a;, b; # 0 and it would follow from property (2.3.5)) that we would have an infinite strictly descending chain
L= ay<a; <a

contradicting the fact that < is well-founded.

Hence, every element a € Zp can be written as a sum of irreducible elements. Because of property ,
every element of Ep — {0} minimal with respect to =< is irreducible. But the converse also holds. Indeed, by
(2.3.6) and the fact that v(p(X)) C 7% isa subgroup, it follows that for a,b € Zp we have the implication

a=b = b-—a€kp

Namely if b — a would not lie in Zp, it would follow from that ep (b —a)(a) < 0 for some o € ®F. If
a(a) = 0, this would imply that ep b(a) < 0 and hence b & Ep by again. If a(a) # 0, it would follow
from a < b that sgn(a(a)) = sgn((b — a)(a)) and hence p qa(e) < 0 implying a ¢ Zp by (2-3.6).

Therefore, the irreducible elements are precisely the minimal elements of Zp — {0} with respect to <. Since
= is a well partial order, this set is finite. Hence, there exist finitely many elements x1,...,z, € Xp such that
every element z € X can be written as

T = Z nx; +y
i=1

with n; € Z>¢ and
y € ker(v o p)

By X, is a finitely generated abelian group. Hence, the subgroup ker(rop) < X is also finitely generated
as a group, say by y1,...,ys. Hence

{wla e Ty Y1y, Y1, - -5 Ys, _ys}
forms a set of generators of Xp as a monoid. O

For later reference we need to record another property of Xp.

2.3.12 Lemma. The submonoid Xp < X generates X as a group, i.e. every element x € X can be written as
rT=y—=z

with y,z € Xp.



2.4 Spherical orientations 79

Proof. Tt suffices to show that the subset (using the notation of the proof of the previous lemma)
{xeX : p(x)eD}={r€eX : Vae d®" ep,alp(z)) >0} C Xp

is non-empty, since if y denotes an element of this set, then for n € N sufficiently large we have

z+ny € Xp
and hence

z = (z+ny) —ny

with z + ny,ny € Xp. Let p: V — V/L denote the projection, where

L= () Ha

acdt
is the common kernel of the o € ®*. Denoting @ : V/L — R the functional induced by a € ®*, we have
{reX : Vaed epaalp(z)}={r€ X : YVae d epa(p(p(z))) > 0}
Thus it suffices to show that the subgroup p(p(X)) < V/L has non-empty intersection with the image
(V> V/L)(D)={zx€V/L : Yac€®t ep,a(v)>0} CV/L

of the chamber D under V' — V/L. But since by [(ACV)| this subgroup generates V/L as an IR-vector space,
it contains a basis and hence a full sublattice of V/L. And since the image of D is a non-empty open cone in
V/L, it has non-empty intersection with every full sublattice of V/L. O

2.4 Spherical orientations

In this section we fix an affine extended Coxeter group W.
Our goal (in view of remark [1.10.8) is to construct for every Weyl chamber D an orientation op satisfying

oper=o0p VeelX

and
0D ® W = 0y-1(D) Yw € Wy

The construction of op can be seen as a variant of the orientations 0,,, defined in definition [[.5.7] Instead of
‘orienting towards’ a chamber w € W,g of the affine chamber complex corresponding to W,g, we orient towards
the chamber induced by D in the ‘spherical chamber complex at infinity’. In fact, we will show that op is the
limit
op = limy,, 04,
in the sense of nets, where the limit is taken over the directed set of chambers endowed with the dominance
order induced by D (defined below).
Let us now define these orientations.

2.4.1 Definition. Given a Weyl chamber D € 7 (V —Uacao Ha), the associated spherical orientation op
of W is the map
op: W xS — {£}

defined as follows. Given w € W and s € S, let (o, k) € ® x Z be the unique pair such that « is D-positive, i.e.
DC{veV : a() >0}
and such that H, ; is the hyperplane separating w(Cp) and ws(Cp). Then let
op(w,s) :=sgn (mo(a)(ws(Co)) — mo(a)(w(Co)))

where

mo(e) : mo (v U H) — (R - 2Z)

He®H

is the map induced on connected components by the restriction of «, and the difference is to be understood
with respect to the structure on 7o (IR — Z) of an affine space over Z.
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2.4.2 Remark. From the defining formula of op it follows immediately that
0D W =0p(w)-1 (D) YWEX

In particular
opexr=o0p VeelX

and
op ®w =0,-1p) Ywe Wy

However, we still have to show that op actually is an orientation.

2.4.3 Remark. In lemma [1.7.4] we have seen that orientations are given by singling out for every hyperplane
H € $ one of the two half-spaces bounded by H as positive, such that o(w,s) = + iff ws lies in the positive
half-space bounded by H = wsw™!, where the notions of hyperplane and half-space are to be understood in the
sense of abstract Coxeter geometry. Unwinding the above definition, one sees that under the dictionary between
the abstract geometry of W and the concrete geometry of the hyperplane arrangement (V, £)), the orientation
op is given by letting

U ={veV : a()+k>0}

be the positive half-space bounded by H = H, ; if a is D-positive.

2.4.4 Definition. Given a Weyl chamber D € 7y (V —
D is the partial order on the set of chambers given by

aed Ha) the dominance order <p associated to

C<xpC & 7(a)(C)<mo(a)(C’) VYa D-positive
where (R — Z) is endowed with the total order < induced from IR.

2.4.5 Remark. Obviously < is a partial order. Moreover, any two chambers C, C’ are dominated C,C’ <p C”
by a third, thus making the set of chambers endowed with <p into a directed set.
Indeed, for a D-positive root « let

o := max(sup 7o () (C),sup mo(a)(C")) € Z
Then any chamber C” contained in
U:={veV:alw)>r, VYo D-positive}
satisfies C,C’ xp C"”. It’s easy to see that such a chamber always exists. Since
D={veV:alw)>0 Ya D-positive} # ()

it follows that U must also be non-empty, hence it (as an open non-empty subset in V') must meet some chamber
C", which then must already be contained in U.

Let us now show that ‘spherical orientations’ are indeed orientations.

2.4.6 Proposition. The map op, considered as an element of the mapping space {£}"V > with its compact-open
topology (cf. remarks|1.5.6) and|1.5.18), is the limit

0p = limc (e

in the sense of nets, where the limit is taken over the directed set of chambers endowed with the dominance
order <p, and where 0c = 0,, denotes the orientation towards the ‘chamber’ w in the sense of definition[1.5.
and w € Wog is the unique abstract chamber corresponding to C via w(Cy) = C.

In particular, op lies in the closure of

{ow 1w € Wyg} C {:I:}WXS

and hence by remark[1.5.18 it also lies in the subset of orientations.
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Proof. To show that
0p = limc 0c

means concretely to show that for every w € W and s € S we have
op(w,s) =oc(w,s)

for C' sufficiently large with respect to <p. Recall that we have oc(w,s) = + iff ws(Cp) is closer to C' than
w(Cy), i.e. iff the hyperplane H separating w(Cp) and ws(Cy) also separates w(Cp) from C, i.e. if C and ws(Cp)
lie in the same half-space with respect to H. Let H = H,  with o D-positive. Then on the other hand we have
op(w,s) = + iff mo(a)(w(Cp)) < mo(a)(ws(Cyp)), ie. if ws(Cp) lies in the positive half-space Uj; determined
by op. Therefore, op(w,s) = oc(w, s) iff C lies in the positive half-space U};. Moreover, if C, C” are chambers
with C' C Ug and C <p C’ then C’ also lies in UI'{". Letting C' denote an arbitrary chamber contained in UI'{",
we therefore have

op(w,s) =ocr(w,s)

for every chamber C’ with C' <p C". O

2.5 Some (almost) commutative subalgebras

In this section, we let o denote an arbitrary spherical orientation (see definition [2.4.1]) of W. In remark |1.10.8
we saw that every submonoid U < Staby, ) (o) gives rise to a subalgebra Agl)(U ) € H™ that has a canonical
R-basis {0, (z)},cv indexed by the elements of U. By remark we may take U = X1,

2.5.1 Definition. R
AN = AP XDy = P R, ()
zeX ()

2.5.2 Remark. Recall from remark[1.10.8 that the subalgebra Agl)(X (1)) is commutative if the subgroup X®

is. Since X is an extension

1 T xM X 0

of abelian groups, certainly XY is commutative if this sequence splits (the reverse doesn’t need to hold unless
X is projective). For example, when W) is the pro-p Coxeter group associated to a connected reductive group
G over a nonarchimedean local field F as in section [2:2.3] the sequence above splits when the group G is split
because

XY =2z/2,(1)

, where Z is the group of F-rational points of the centralizer Z = Z(T) of the chosen maximal split torus
T < G, and because (see |Mill7, 17.61])

Gsplit & Z=T

As a first step towards the computation of the center of #(*) in theorem we will now determine the

centralizer of the subalgebra AE,I) of #(M). Here and in theorem , we will make use of the following auxiliary
notion.

2.5.3 Definition. Given an element

z= Z cwga(w) eHDY, ¢, €R
weW (1)

and an orientation o of W), the set
supp, (z) == {w € W : ¢, # 0}
is called the support of z (with respect to o).
2.5.4 Proposition. The centralizer CH(1>(AE,1)) of the R-subalgebra
AL c W

is given by the XV -invariants

Cuew (A5)) = (Ag”)m
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with respect to the R-linear XM -action on AV determined by

~

I(é\o(y)) = eo(zyxil)
x @
In particular Z(HM) C (Af,”) .

Proof. First, we show that Cy;a) (AS,”) - Agl). For this, consider an arbitrary element z of the centralizer of
AW in 7D Write R

z = Z cwbo(w), ¢y €R

weW 1)

We need to show that supp,(z) € X(). Assume this is not the case and choose w € supp,(z) — X1 with £(w
maximal. Fix an element z € XU such that m(x) € E, where Z C X is the set associated to w by lemmaﬁ
below. Consider now the elements ao(x)z and z@o(m) Using the product formula (corollary and the fact
that o is invariant under X, we see that on the one hand we have

é\a(x)z = Z Cw/é\o(x)é\o(wl) — Z cw/X(x,w')ao(Tww')

w' eW @) w/ €W (1)

On the other hand we have (again using the product formula)

w’ €W (1)
= Z Cor X (W', )8, (W' T7) + Z Corbo (W) (00 (2) — Bgeuw (2))
w' eW ™ w/ eW @)

By the change of basis formula (corollary [1.10.7), the expansions of the two elements ao(x) and Ggeu (z) in the
Iwahori-Matsumoto basis {T } e have the same leading term 7T, with respect to the Bruhat order on

W), Therefore, 0, (2) —0Boey (x) is an R-linear combination of terms T,y with w” < 7% and hence ((w”) < £(z).
It follows that in the expansion of 8, (w’)(0,(2) — Oew (z)) in the Iwahori-Matsumoto basis only terms Ty, with

Uw") < £(w') + £(z) < L(w) + L(z) = ((r°w)

appear. Usmg corollary [I.10.7] again, it follows that the same is true for the expansion of this expression in the
basis {0 (W) brewm . In particular, the coefficient of B, (7"w) vanishes. Comparing the coefficients of B0 (T7w)

on both sides of the equation 90( )z = 290( ), we see that there exists w’ € W@ such that 77w = w'7® and
coX(z,w) = cp X(w', )

Since 7(z) € = we have £(7%w) = £(z) + £(w) by definition of = and hence X(z,w) = 1 by remark Since
¢w 7 0 by assumption, it follows from the above equation that ¢, # 0 and hence w’ € supp,(z). Moreover, we

have
T :vfw(z)w

w =71"wr =1

By lemma [2.5.6] below, we can assume that = has been chosen such that ¢(w(z) — ) > 2¢(w). But then
((w') = 07" @) > 07700 — f(w) > f(w)
But this is a contradiction to the choice of w, and hence we have shown that
O (AP) € A

Now in order to show that i

Crn (A € (A7)
we have to show that the coefficients of z satisfy
o Va,ye XW

Co = Cygy

By lemma below, it suffices to show this for y € X(1) satisfying ¢(2y) = £(z) + £(y). From

0o(y)2 = 20,(y)
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and the product formula it follows immediately that

X(y, z)er = X(yzy ™', y)e

yry 1

Since the image of XM under = : W) — W is commutative, we have

X(yzy ™, y) = X(z,y)

by definition of X. Moreover, from ¢(zy) = ¢(x) + £(y) and remark it follows that

X(z,y) = X(y,2) = 1

Therefore
Cy = Cygy—1

Thus it only remains to show the reverse inclusion

x @
(A)" oAl

So let

z= Z Czé\o(x)

reXx ()

be an element of the invariants, i.e.
Cox = Cygy—1, VIT,Y€ xM

We need to show that

o~

20,(y) = go(y)z Yy € XM

This amounts to showing that

X(y, z)ce = X(yzy ™", y)cypy—

for all z,y € XM, But since
X(yzy ™t y) = X(z,y)

this follows from
X(z,y) = X(y, z)

O

2.5.5 Remark. The action of X () on itself is trivial if and only if X(*) is commutative, and when this is the
case, it follows from proposition that the subalgebra

A = A (x Dy cH®

(which is then also commutative; see remark [1.10.8) equals its own centralizer. In particular, this is the case
when W) arises from a split reductive group G (see remark 2.5.2)), and one should see the equality

AW =y, (ANM)

as a reflection of the equality
T =Zc(T)

between the split maximal torus T and its centralizer Zg(T) in G.

2.5.6 Lemma. Let W = X x Wy be an affine extended Cozeter group (see definition and lemma[2.1.9
for notation). Let w € W with w ¢ X. Then the set

E={re X L(7"w) =L(z) +{(w)}

satisfies
sup{f(w(z) —z) :x € Z} = 0
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Proof. By remark [2.3.5 we know that

- -

(2.5.1) Urw) = (z) + bw) & d(Co,7%(Cy)) =< d(Cy, (T°w)(Cy))

where Cy denotes tlie fundamental chamber and d is the ‘vector-valued distance’ with values in Z®" and =< the
partial order on Z®" defined in remark Moreover, from the definition of d it follows immediately that

- — -

d(Co,7"(Co)) = —v(p(x)) and d(Co, (7*w)(Co)) = —v(p(x)) + d(Co, w(Co))
where v is the evaluation
ViV —RY, v (o= a(v))
map. Note that v(p(z)) € Z®", as we verified in the proof of lemma Let D € mo (V — Upeo Ha) be the
Weyl chamber containing w(Cp). For v € @ let
€D, = sgn(a(p))

where p € D is any point. Then

D={x€V : Vaed®" ep,azx)>0}
and hence the closure of D is given by (cf. proof of lemma

D={z€V : Yae®" ep,a(r) >0}

Moreover, by choosing p to lie in w(Cp) it follows easily from the definition of d (remembering that 0 € Cp)
that
—ED)OCCZ‘(CQ,U)(C()))Q >0 VYae ot

From the above and the definition of < it follows that

-

—v(p(z)) 2 —v(p(x)) + d(Co, w(Co))

for all x € Xp, where o
Xp={xeX : p(z) e D}

From (2.5.1)) it therefore follows that
Xp C

(1]

Since

U(x) = |d(Co, 7" (Co))| = | = v(p(@))| = Y lalp(x))

acdt
it follows from the definition of X p that

Uz +y)=Lz)+L(y) Vz,ye Xp
In particular we have £(nz) = né(x) for n € IN, so in order to prove the claim it suffices to show that
{lw()—2) : =€ Xp})
contains a nonzero element. If this was not the case, we would have
plw(z) —z) = po(w)(p(x)) —p(z) L= () Ha
acdt

for all z € Xp, where we recall that pg : W — GL(V') denotes the composition of p : W — Autag = V x GL(V)
with the projection onto the linear part. But every x € X can be written as a difference z = y — z with
Y,z € Xp by lemma hence we would have

po(w)(v) —v e L

for all v € p(X). Since the image of p(X) C V under V — V/L generates the vector space V/L by it
would follow that pg(w) acts trivially on the quotient V/L. But by lemma the group Wy = po(W) acts
faithfully on V/L, hence

w € ker(pg) = X

contradicting the assumption. O
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2.5.7 Lemma. For allz € X(V
{yzy ™ iy e XD} = {yay ™ 1y € XU, lay) = L) + L(y)}
Proof. From remark recall equation (2.3.2)
Uz) = tn(2)) = Y |alp(n()))]

acdt
Now given any z,y € X1 we have

1

T=yry =7k = (@) x(Thy) !

for all k € Z. It therefore suffices to show that
UaTty) = U(z) + LT Y)
for k > 0 sufficiently large. Since X is commutative we have 7(z) = 7(z) and hence
a(p(r(@y))) = alp(r(2)*n(y))) = ka(p(r(2))) + alp(n(y)))

If a(p(m(x))) # 0, we can therefore always choose k big enough such that a(p(7(z*y))) and a(p(r(z))) have
the same sign and hence

la(p(n(xz*y)))| = la(p(n(2))) + alp(r(@y)))| = lalp(x(@))] + a(p(x(T*y)))|
For those a for which a(p(7(x))) = 0 the equation
la(p(n(x))) + alp(x(@)))| = |a(p(n(x)))] + |alp(x(TY)))|
holds true for trivial reasons. Hence, for k sufficiently large we have
|a(p(m(z3*y)))| = a(p(m(2)))] + |alp(x(@y)))]

for every a € ®T, and hence
((xTy) = 0(x) + LT )

2.6 The center of affine pro-p Hecke algebras

In this section, let H(1) be an arbitrary affine pro-p Hecke algebra. Our goal is to show that, for any orientation
0, the center of H(1) is given by the invariants

(1
Z(H(l)) _ (A(Dl))W
of the R-linear action of W) on Af,” by permutation of the basis elements é\o (x),z € X (1), Note that the
action of W) is by algebra automorphisms, since we have
X(w(x), w(y)) =X(z,y) Ywe W, z,yex®

which follows immediately from formula (1.7.2) and the Wy-invariance (see lemma [2.6.2)) of IL on elements of
X C W. In particular, the invariants form a subalgebra.
Let us now show one inclusion.

2.6.1 Proposition. Let W(l)\X(l) denote the set of orbits with respect to the natural conjugation action of
W on XD and let (WO\X W) denote the subset of finite orbits. For everyy € (WM\XM)g,, the element

Zy 1= Z 0o(z), o spherical orientation
xreEYy

is well defined independent of the choice of a spherical orientation o of W) . Moreover, the element 2y lies in
the center of Z(’H(l)), and hence the subalgebra of W) -invariants

(4®)" < zum)

is contained in the center and independent of o, with distinguished R-basis {z,},y € (WIN\X 1)), .
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Proof. Using the specialization argument (see remark [1.10.3)), it suffices to prove the statement in the case when
the as € R are invertible and admit square roots. In this case we have by definition [1.10.9|(for some fixed choice
of square roots /as)

B (w) = VIL(w) B, (w)

From the definition of ﬁ : W — R and lemma below, it follows that we have

Vi(w(x)) = Vi(z) vwew®, zex®

Therefore, it follows that

Z 0,(z) = \T"_(xo) Z 0o ()

xeEY Trey

for any zg € . We may therefore prove the claim with ) replaced by 5, i.e. using the isomorphism of
remark [[.10.11] we may assume that a, = 1. In this case the independence of the element

> " 0,(x) € HW

xTEY

from the choice of o is equivalent to this element lying in the center since Wj acts transitively on spherical
orientations and because of the formula

o~ ~

B0 ()00 ()0, (w) ! = B, (w(z)) Ywe WD, zex®

So it suffices to show the well-definedness of z,. Since spherical orientations are in bijection with Weyl chambers
and any two Weyl chambers are connected by a gallery, it suffices to show that

D 0s(x) =D Ooas, (@)

ey xeEY

where 0 is any spherical orientation and s, € W is associated to a root a € ® that is simple with respect to
the Weyl chamber D, to which the orientation o corresponds. In this situation, o and o e s, are adjacent in
the sense of definition [[.11.2] since s, permutes the positive roots with respect to D, that are not parallel to «
among themselves.

The decomposition W = Wy x X induces an identification W) /X 1) ~ W}, and therefore the W )-orbit ~
decomposes into a disjoint union of X V-orbits that are permuted amongst themselves by Wy. Considering the
action of the subgroup {1, s, } < Wy, we can therefore write

y=]l&Usal&)

icl

Wher & € XN\ XM and either s4(&) = & or s4(&) N& = 0. Accordingly, if J C I denotes the indices 4
where s,(&;) = & and o € W) denotes any lift of s,, we have that

S 0@ =S 0@+ 3 S (@) + (o)

TEY i€J z€E; ie€l—J z€eg;

Whence it suffices to show that for all z € & with s,(&;) = & we have that

Let us begin by proving the first statement, and assume that s, (&;) = &. Note that because X is commutative,
7 WO — W maps X M-orbits to singletons; in particular, 7(o(x)) = 7(z). Therefore

sa(m(7)) = m(o(2)) = 7(z)

23X(1)\X(1) denotes the set of orbits of X(1) acting on itself via conjugation
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Further, recall that the abstract geometry of the extended Coxeter group W and the concrete geometry of the
affine hyperplane arrangement (V, $) are compatible via p (see remark [2.3.1]). By definition of the s, € Wy (cf.
lemma [2.1.2), we have p(sq) = sa, Where s, € GL(V) is given by the formula

sa(p(7(2))) = p(r(2)) — a(p(n(z)))a’

Therefore, it follows from applying p to the equality s, (7(x)) = w(z) that a(p(7(x))) = 0. This means that 1,z
are not separated by any hyperplane of type a, where we agree to call H a hyperplane of type a if H = H, i
for some k € Z. Since 0 and o0 e s, agree except at the hyperplanes of type «, it follows that

00(2) = boes, (7)
Let us now prove the second statement and let 2 € X be arbitrary. Since o and 0 e 5, are adjacent, we may

apply the Bernstein relation (theorem [1.11.3) to conclude that (remembering that 6 =0 in our case)

~ -~ ~ ~ ~

Oo(2) — Oanso () = | S 0(1, H)Egus, (H) | Bo(x)

H

where the sum runs over all hyperplanes H of type a which separate 1 and . On the other hand applying
theorem |1.11.3[to o(z) instead of = gives

00(0(2)) = Oous, (0(2)) = (Z o(1, H)Eo-sa(H)> Oo(o(x))

H
- <Z o(l,H)Eo.sa(H)@,(a(m)x1)) 0o ()
H

where the sum runs over all hyperplanes H of type « separating 1 and o(z). By lemma [1.11.4] we have
eso (H)Ba(0(2)2 ™) = Zous,, (m(a) Hr() )

The result follows if we can show that

[1]

Hv+— H :=r(z)Hn(z)""

gives a bijection between the hyperplanes H of type a separating 1 and o(z) and the hyperplanes H of type «
that separate 1 and x, and that
o(1,m(z)Hn(x)™") = —o(1, H)

since then

00 (0(x)) = Ooes, (0(x)) = (Zoa,H)Eo.saw(x)Hw(x)-l)) 0 (x)

H

~ ~

=—| D o(1,H)Zes, (H) | O(x)

H
= = (06(2) = Bous, (@)

Let H = H, be a hyperplane of type a and y € Cp an arbitrary point. Then H separates two elements
w,w’ € W if and only if w(y) and w'(y) lie in different connected components of V — H, , i.e. if and only if
a(w(y))+k and a(w’(y)) + k have different signs. Moreover, for a hyperplane H we have H = H,, j, if and only
if p(sg) = S,k Where

sa.k(y) =y — (aly) +k)a”

Denoting by 7% € Aut.g (V) the translation by a vector v € V', we have the formula
Tysa,kT_y = Sa,k—a(y)

Let now H = H, j be a hyperplane of type a. Since X C W gets mapped into the subgroup V < Autg(V) of
translations under p, it hence follows that

p(r(z)Hr(z) ™) = 77 Ds 7@ = 5 o))
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Hence, 7(z)Hm(x)~! separates 1,z if and only if a(y) + k — a(p(7(z))) and

a(y + p(n(x))) +k — alp(r())) = aly) + k
have different signs. On the other hand H separates 1,c(x) if and only if a(y) + &k and
a(y + p(sa(m(2)))) +k = aly) + k — alp(r(z)))
have different signs. Hence, H — H gives a bijection as desired. Moreover
o(l,m(x)Hn(x)™') = —o(1, H)

By notation [[.7.5] o(1, H) is the sign attached by o to crossing H at any chamber lying in the same half-space
as the fundamental chamber. Letting € € {£} be such that e« is positive with respect to the Weyl chamber D,
corresponding to o, it then follows that

o(1,H) = —esgn(a(y) + k)

and
o(L,m(x)Hr(z) ™) = —esgn(a(y) + k — a(n(x)))

As we saw above, H separates 1,z if and only if a(y) + k and a(y) + k — a(n(z)) have different signs. Hence,
the claim follows. O

2.6.2 Lemma. The length function of definition[1.7.9
L:W —s N[5

satisfies
L(w(z)) = po(w)(L(z)) YweW, ze€X

where pg : W — Wy denotes the projection.

Proof. Recall from remark that the number of hyperplanes of the form H,x, kK € Z separating the
fundamental chamber Cy from p(x)(Cp) is given by

-

|d(Co, p(x)(Co))al = | — a(p())]

With a bit more notation, we can be more precise and specify the set of these hyperplanes. For k € Z let

{0,1,...,k—1} k>0
[0,k[:==<0 k=0
{-k+1,...,-1,0} :k<O

Using that 0 € Cy by [(ACIX)|and that
CoC{veV : Yaedt a(v) >0}

by definition of @7, it is easy to see that the set of hyperplanes of the form H,, ; which separate Cy and p(z)(Co)
is in fact given by
{Ha,k ke [Oa —O((p(.]?))[}

Hence
)= I II  How
a€®t ke[0,—a(p(x))]
Moreover
p(w(x)) = po(w)(p(x))
and hence

a(p(w(@))) = alpo(w)(p(x))) = (po(w) ™" » a)(p(x))

Since ® is the disjoint union of ®+ and —®*, we have

po(w) ' e a = eqila)
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for some uniquely determined &, € {£} and ¢(«) € ®*+. Using that
w(Ha,k) = Hwoa,k‘ Yw € VV()7 [ORS] (I), kel

that
Hyr=H_,_ YVacd® keZ

and that ¢ : @+ — ®T is a bijection, we now simply compute

Lw(z) = ]] 11 He

a€dt kel0,—a(p(w(z)))]

11 I He

a€d+ ke[0,—eap(a)(p(z))[

H H Ha,eak

a€®t kel0,—¢(a)(p(x))]

= H H Hsaa,k

acdt kel0,—¢(a)(p(x))]

= H H po(W)(Hg(a),k)

a€dt ke[0,—¢(a)(p(x))[

po(w) | ] I[I  Hownr

a€®t ke[0,—¢ () (p())]

= po(w)(IL(x))

O
w @)
We will now show that the center Z(’H(l)) is in fact equal to (ngl)) , via induction on the support (see
definition [2.5.3)) of an element.

2.6.3 Theorem. The center Z(HM) of the affine pro-p Hecke algebra HY) is given by
Z(’H(l)) _ (Agl))W(l)

for every spherical orientation o of W) . It is a free R-module with distinguished basis {2y} indexed by the
finite orbits v € (WINXW) g of WO in X where

2y = Zé\o(m)

Trey
for every spherical orientation o.
Proof. Tt only remains to prove that

Z(H(l)) C (Agl))W(l)

In view of the computation of the centralizer of Aﬁ” in proposition we already know that

x @
Z(HM) ¢ (A()
Therefore, it only remains to show that for an element

z= Z Cabo(z) = Z 05250(90) e Z(HY), cceR

zeX ™ Ee(XMON\XD))g, x€E

we have
Ce = Cw(¢)
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for every w € Wy. We will prove this by induction on supp,(z) using proposition If supp, () = 0, then
z = 0 and the claim is clear. So let’s assume that supp,(z) # . Choose = € supp,(z) with ¢(z) maximal and
let £ = X ez be the (finite) X M-orbit associated to it. We now want to show that

Ce = Cy(¢) Yw € Wy

in order to apply induction. For this, recall that W, is generated by the reflections s, for roots « that are
simple with respect to the Weyl chamber Dy containing Cy (see lemma [2.1.2)) and let s = s, € S for any such
a. We have {(nsx) = ¢(x) £ 1. Moreover, we claim that

lnsz)=L(x)—1 = Llzns)=4L(z)+1
To see this, let zg € Cy be arbitrary. We have {(nsz) = ¢(z) + 1 if and only if
d(C(), nstO) = d(Co7 nSCo) + d(nsCo, nsa:Co)

that is, if and only if the set of hyperplanes separating Cy and n;Cy and the set of hyperplanes separating n;C
and ns;zCo = ng(x)nsCo = ns(m(x)) + nsCy are disjoint. Since C and nsCy are separated only by H, = ker(«)
and this hyperplanes separates n;Co and ng(m(x)) + nsCo if and only if

sgn(a(ns(m(z)) +1s(20))) = — sgn(a(ns(x0)))

we see that
lnsz) =L(x)+1 or {l(nsx)=4l(z)—1

depending on whether
sgn(a(m(z)) + a(zo)) = sgn(a(zo)) or  sgu(a(r(x)) + alzo)) = —sgn(a(wo))
respectively. Using that zns = nes(x) and £(s(z)) = £(z) it follows from the above that
Uans) = L(x) +1 or L(zn,) =l(z) -1
depending on whether
sgn(—a(m(z)) + a(zo)) = sgn(a(zo)) or sgn(—a(m(x)) + a(wo)) = —sgn(a(wo))

In particular it follows that
lnsx) =L(x)—1 = Llans)=L(z)+1
We now distinguish two cases. First, assume that ¢(nsz) = £(z) + 1. We have

Os(n)z =D ¢,00(ns)(0s(y) = Oous @) + Y X(5,7())0s(nsy)

yex @ yeXxX @)

We claim that the nsr does not appear in the support of the first big sum. In fact, by the change of basis

formula (corollary we have
supP, (0o (1) — foes(y)) € {w € WD - w <y}
In particular each w appearing in the support of 50 (y) — 50.5 (y) is of length
(w) < L(y) -1

Hence, for all

-~

w e Suppa(é\o (ns)(é\u (y) - eaos(y)))
we have

U(w) < Lns) + (U(y) —1) = Uy) < lz) < l(z) +1 = L(nsz)

The coefficient of 8, (nsx) in go(ns)z is therefore given by

e X(s,m(x)) = ¢z = ¢
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Here we have used that X(s,7(z)) = 1, which follows from £(nsz) = £(ns) + ¢(z) and remark On the
other hand we have

~

Bo(ns) = Y e, X(m(y), 5)00(yns)

yeXx @)
and hence the coefficient of nsx = ns(x)ns in aa(ns)z is given by
Cny(0)X(7(5(2)), 8) = Cn, ()
where again we have used remark and the fact that
L(s(z)ns) = L(nsx) = l(x) + L(ns) = L(ns(x)) + L(ng)
Since 8, (z)z = 20,(z) it follows that

Cz = Cp (x)

Consider now the case ¢(nsz) = ¢(x) — 1. As already observed, in this situation we must have ¢(n,s(z)) =
l(xng) = £(z) + 1. Replacing = by s(z), we are therefore reduced to the first case. Thus we have shown that
for any x € supp,(z) with ¢(z) maximal we have

Ce = Co = Cny(a) = Cs(¢)

for all simple reflections s = s, € Wy, o € A, where £ = X1 denotes the (finite) X M-orbit of . In particular
ng(x) is again an element of supp,(z), and since £(x) = ¢(ng(x)) it is also of maximal length. Inductively it
therefore follows that

Ce = Cu(g)
for all w € Wy. Letting v = WM ez = Uwew0 w o &, the element
2 —cezy € Z(HW)

therefore has support strictly contained in supp,(z), and by induction we conclude that

e (Agl)) w®

2.7 The structure of affine pro-p Hecke algebras

In this section we will give the main theorem on the structure of affine pro-p Hecke algebras.

2.7.1 Theorem. Let HV) be an affine pro-p Hecke algebra over a ring R in the sense of deﬁm’tion and
let o a spherical orientation of W) in the sense of definition .

Let W\ X () denote the set of orbits of the conjugation actions of W) on XM let (WIN\XD)g, denote
the subset of finite orbits, and consider the condition

(HeckeF'in) (WONXD)e = WONXD A (T finite vV T finitely generated and R noetherian)
Then the following holds.
(i) There exists an R-subalgebra
A CH®
with R-basis {0, (%) }rex defined in theorem|1.10.1, The product of two basis elements is given by
0o ()00 (y) = X(7(2), 7(y))0o (wy)
where X : W x W — R denotes the ‘2-coboundary’ defined in notation|1.10.4}
(ii) The ‘conjugation action’ of W on X1 induces an action on AE,” by R-algebra automorphisms via
w(fs(x)) = 0o (w(x))

The centralizer C’H(n(ASl)) of A(ol) in HWY s given by the subalgebra of XM -invariants in AE,”. In

)

particular, the centralizer is contained in Al(,l and hence equals the center of AE”:

x
Z(AD) = Cpgon (A) = (A
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(iii)

(iv)

(v)
(vi)

(vii)

(viii)
(iz)
(z)

2 AFFINE PRO-P HECKE ALGEBRAS

If the abelian group T is finitely generated, the R-algebra AE,” is finitely generated. More precisely, the
following holds. The algebra A(gl) is a finite sum

AL =3 (RIXS)))
D

of subalgebras, where the sum ranges over the Weyl chambers D € wo(V —|Jcq Ha). Here R[X(Dl)] denotes
the monoid algebra over the submonoid

X](Dl) ={z e XY : p(n(x)) € D}

of XN consisting of those elements which act through p : W — Autag (V) by translation by an element
lying in the closure of D C V', and vp denotes the algebra embedding

Lp : R[X(Dl)] o AN

determined by tp(x) = 9\0(1“) for all x € X](Dl). Moreover, if T is finitely generated, then the submonoid

Xl(:,l) and hence the algebra R[Xg)] are finitely generated, and thus AE,” is finitely generated in this case
too.

x
If|(HeckeFin)| holds, then AE,” is a finitely generated (AE,”) -module.

x@
If|(HeckeFin)| holds, then (.Agl)) is a finitely generated R-algebra.

The center Z(HM) of HW is given by the subalgebra of W -invariants in .Agl)
w
Z(HM) = (A)

It has a distinguished R-basis {z,},y € (WIN\XMD)q, with

2y = Z 0o (z)

TeEY

independent of the choice of the spherical orientation o.

HD) s a finitely generated left Agl)-module. More precisely, a finite set of generators is given as follows.
For w € Wy let X e w=1(Cy) denote the set of X -translates of the chamber w=*(Cp). Let A,, denote the
set of minimal elements of X e w=1(Cy) with respect to the partial order ¢, defined in remark . By
corollary[2.3.8, the set A, is finite.

Choose for each C € Ay, an element w € W) with
m(w) € Xw CW and w *(Cp)=C
and let K;, C WO denote the set of these elements. Then
{0,(@) : w e Wo, @€ Ay}

is a set of generators of HY as a left module over AE,”.

If holds, then ALY is a finitely generated Z(H™M))-module.

If|(HeckeFin)| holds, then Z(H™M) is a finitely generated R-algebra.

If|(HeckeFin)| holds, then H™V) is a finitely generated Z(H™M)-module.

(xi) If holds and R is noetherian, then the R-algebras Z(HM), AW and HO are noetherian

(i.e. left and right noetherian).
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Proof. (xi): Follows directly from (viii), (ix), and (x). (i): Was proven in section [T.10] (ii): Was shown in
proposition 2.5.4] (vi): Was shown in theorem [2.6.3] (vii): By corollary [1.10.5 and remark [1.7.2] we know that

Cww') = 0w) + L) = Bo(ww') = By (w)Boew(w') ¥V w,w’ € WD

Since o is assumed to be a spherical orientation, we have 0  z = o for every z € X(*) and hence
(2.7.1) Ozw) = 0(z) + L(w) = Bo(zw) = O,(x)0(w) Vae XD, wew

We have the equivalences

(2.7.2) ((zw) = (x) + L(w) & Lw ™) =@ + Lw™)
1

Here the first equivalence is simply the invariance f(w) = f(w™!) of the length under inverses, the third
equivalence is the W-invariance of the distance d and the last equivalence is by definition (see remark .

Let now w’ € WM be arbitrary. Because W = X x Wy, we have 7(w’) € Xw for some w € Wp. In
particular (w')~1(Cy) € X e w™1(Cy) and hence by definition of A,, we can find w € A,, with 7(w) € Xw and
W (Cy) =¢, (w')~H(Cp). Hence, for some z € X we have

w' = zw

From
w1 (Co) = (w1 (Co)

and ([2.7.2]) above it therefore follows that
Uzw) = L(z) + {(w)

Hence, by equation (2.7.1) above we have

~

0o (w/) = ‘/9\0 (x)é\o (@)

and hence ag(u/ ) lies in the Agl)—submodule generated by the set we claim to be a set of generators. Since
w' € W) was arbitrary, (vii) follows.

Next, we prove (iii). First, we need to show that ¢p is well-defined. Recall that it was shown in the proof
of lemma that on the submonoid

Xp=n(X\)={zeX : px) eD} <X

the length function is additive

Uz +y)=L(z)+Ly) Yz,ye Xp
Since the length function on W) arises by pullback along 7 : W) — W of the length function on W, it follows
that ¢(zy) = ¢(z) + £(y) and hence X(z,y) = 1 for all x,y € Xl(:,l). The product formula (corollary [1.10.5)
therefore implies that 2 — 6,(z) defines a morphism of monoids

XS) — Agl)

inducing ¢ p. Moreover, since V = |J,, D, we have X() = |J, Xl()l) and therefore A" is the R-module sum of the

subalgebras ¢ D(R[XS)]) as claimed. Lastly we need to show that the monoid Xg) is finitely generated, assuming
that T is finitely generated as an abelian group (and hence as a monoid). But since T' = ker(r : W) — W)
is the kernel of 7, it suffices to show that the image Xp = W(XS)) is finitely generated as a monoid. But this
was shown in lemma R.3.T11

It remains to show claims (iv),(v),(viii) and (ix). Since the subalgebras

x @

Z(HY) = (Aﬁ”)wm c (A)" caAl cuo
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have explicit R-bases, it is easy to see that they are preserved under base change. If we are in the situation
where T is finite, we may therefore reduce to the case R = R™YV of the universal coefficient ring, which exists
and is noetherian by remark Therefore, it suffices to prove the claim in the case where T is finitely
generated and R is noetherian. In this case, claims (iv),(v) and (viii),(ix) each follow from lemma [2.7.2] (which
follows after this theorem). To get (iv) and (v), we apply lemma with

C= (Aﬁ“)xm c AV =B

A={0,(z): z € Ap, D Weyl chamber} C ALY
and
x @
M= {xyz 'y ':z,yc A} CTC Z(.Agl)) = (Af,l))

where Ap denotes any finite set of generators of the monoid X](jl) whose existence is guaranteed by (iii). Let us
verify that assumptions (a)-(d) of the lemma are satisfied. In the discussion of claim (iii) we have seen that (a)
holds. To see that (d) holds, note that an element ¢ € T is annihilated by the monic polynomial

I &x-1)

t’'eWet
with coefficients in
w®
RITV C (,45,”) e

Assumption (c¢) follows by a formal computation from the product formula, the fact that (cf. remark |1.10.6]

o~

0o (tw) = 0, (w) Yw e WO

and the fact that (cf. remark [1.10.8)
vw,w' e WY ww' =w'w = Xw,w') = X(w',w)

Indeed, for any z,y € X we have

x
Finally we need to verify (b), i.e. we need to provide monic polynomials f,(Z) € (A(ol)) [Z] with

fu (50 (z)) = 0. Even though AW s possibly non-commutative, it still makes sense to form the polynomial ring
AW [Z] in one variable Z that commutes with AP, For z € X arbitrary, let € = X(1) o 2 be the orbit of =
under the (conjugation) action of X1 and let

f2(2) = fe(2) == [](Z - b)) € AV (2]

IS

Note that ¢ is finite since W) (and therefore X (1) acts on X ") with finite orbits by assumption. However, a
priori the above expression is still ill-defined, as it depends on the choice of an ordering of the factors. However,
the elements 6,(y) with y € £ in fact commute with each other pairwise. This follows from remark and
the fact that the elements of the orbit £ themselves commute with each other pairwise, as an easy computation
shows. The expression f¢(Z) therefore is well-defined. Moreover, the R-algebra action of W®) on ALY extends
to ALY [Z] by acting on coefficients. A formal computation shows that f¢(Z) is invariant under X () with respect
to this action, hence we have a well-defined element

e (40 1z
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Moreover, f¢(Z) annihilates 50 (z) which can be seen as follows. Let A denote the subalgebra of Agl) generated by

R x @
the 8,(y), y € € over the center (AS”) of Af,l). From the previous remarks it follows that A is commutative.

Moreover, we have

1(2) = [1(Z = bs(w)) € AZ]

yeg

as an equation in A[Z]. Using the evaluation homomorphism
ev: AlZ] — A
1(2) — [(Ba())
it follows that

~

fe@o(@)) = ev(fe) = [ (Bu(x) — s (y)) =0

yeE

Thus the assumptions of the next lemma are satisfied and (iv) and (v) follow. In order to get claims (viii) and
(ix), we apply the lemma with B,A and II as before but with

C= (AE”)W<1)

In order to see that assumption (b) of the lemma is satisfied, it suffices to show that

(1)
6= [ m@e(aP)" (2

neWoef

w®
has coefficients in (Agl)) , i.e. that it is invariant under Wj,. But, considering the expression of the

coeflicients of fr as symmetric polynomials in the 5‘, (y), y € &, it follows that
w(fe) = fue) Yw e W
Hence, it follows that g, is invariant under Wy by a formal computation. O

2.7.2 Lemma. Let R be a commutative ring, B a not necessarily commutative R-algebra and C C Z(B) an
R-subalgebra of the center of B. Assume that there exist finite subsets

A={o1,...,2a} CB

and
IT1 C Z(B)

such that
(a) B is generated as an R-algebra by A.
(b) Every x; € A satisfies a monic equation
filz;) =0, fi(X)=X"+ amX”i*1 +...4a;n € C[X]
with coefficients in C'.
(c) The generators commute up to elements of 11, i.e.

Ve,ye A It ell xy=tyx

(d) Everyt € 11 satisfies a monic equation with coefficients in C, i.e. the C-subalgebra C[1I] C Z(B) generated
by 11 is finitely generated as a C'-module.

Then

(i) B is generated as a C-module by
{te* ...xyn 1t € CII, 0 <wy; <my; Vi}

In particular B is a finitely generated C'-module.
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(i) If R is noetherian, then C is a finitely generated R-algebra.

Proof. Claim (i) follows immediately by combining assumptions (a)-(c). Claim (ii) follows as in the classical
commutative case by dévissage. Let C’ be the R-subalgebra of C' generated by the coefficients a; ; and the
coefficients of the monic equations satisfied by the elements of II, and let C’ (x4, ..., z,) be the C'-subalgebra
of B generated by x1,...,2,. This situation is summarized in the following diagram

C'cCcC{xy,...,2,) C B

The assumptions of this lemma are still satisfied if one replaces C by C’ and B by C' (x1,...,z,). From part
(i) it therefore follows that C’ (z1,...,x,) is a finite C’-module. Since C’ is the homomorphic image of a
polynomial ring over R in a finite number of variables it is noetherian, hence it follows that the submodule
C C C'(xy1,...,x,) is also finitely generated. In particular C is a finitely generated C’-algebra. Since C’ is a
finitely generated R-algebra, it follows by transitivity that C is a finitely generated R-algebra. O

2.7.3 Remark. In some of the finiteness results proved in the main theorem we had to assume that W) acts
with finite orbits on X(M). Let us see what this condition amounts to. Since Wy ~ W1 /XM is finite, the
group W) acts by finite orbits if and only if the subgroup X () acts by finite orbits. But, if z,y € X1 then
by definition

1

m(z)ey=azyz ' =ayzly 'y
—_———

=:[z,y]
Since X is commutative by assumption, the commutator [z,y] lies in 7. Thus if T is finite, the group W
always acts with finite orbits.

Let us now consider the case when T is contained in the center of X(*) (but possibly infinite). This means
that X(V) is a central extension

1 T xM X 0

of abelian groups, and therefore the commutator [z,y] only depends on 7(z) and 7(y) and gives rise to an
alternating bilinear pairing
[—,—]: X xX —T

By the above computation the orbit of an element y € X under X is given by the coset
XM e y= [X7 W(y)]y

under the subgroup
[(X,7(y)l <T

This subgroup is always finitely generated, since X is finitely generated by assumption. It is therefore finite
if and only if it lies in the torsion subgroup Tiors < 7. Thus, when T is contained in the center of X the
group W) (actually W) acts with finite orbits if and only if the pairing [—, —] takes values in Tiops. This is for
instance the case if X(!) is abelian or T is finite.

3 The Hecke algebra of PGLy(Z)

In the following, we will study the generic Hecke algebra H associated to the Coxeter group (PGL3(Z), {51, s2, $3})
over a coefficient ring R. Here, PGLy(Z) = GL2(Z)/{%} denotes extended modular group of invertible integer
2 x 2-matrices modulo center. The image of a matrix

(Z Z) € GLy(Z)

under the map GL3(Z) — PGL2(Z) will be denoted by

[Z Z} € PGL,(Z)

The distinguished generators s; are given by

o I ER I A
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The orders m(s,t) = ord(st) are given by
m(sy,s2) =3, m(s1,s3) =2, m(sa,s3) =00

We will write T; := T, for the generators of H, and a; := as, € R and b; := bs, € R for the parameters of H.
Note that
a] = a2 and bl = b2

as 51 and sy are conjugate ((s152)s1(s152)7 1 = s2), but otherwise the parameters are unconstrained.

3.1 Boundary orientations of PGL,(Z)

Let us now investigate the set Opoundary Of the hyperbolic Coxeter group W = PGLy(Z). It is indeed hyperbolic
in every sense of the word, as it’s a hyperbolic reflection group in the sense of Vinberg (cf. [Vin85, Introduction)),
i.e. it’s a discrete subgroup of the group of isometries of the hyperbolic plane H? generated by reflections at
hyperplanes (totally geodesic codimension one submanifolds) in H?. In fact, such a representation of PGLy(Z)
is afforded by its canonical action on the upper half-plane

H:={2€C:32z>0}

considered as a model of H? with metric g(z + iy) = %dm ® dy, via fractional linear transformations

GOl be—1
{a b] cz+d
[ I A—
c d _
a;z—i—b if ad —bc = -1
czZ+d

The generators s1, s2, 3 act as the reflections at the hyperplanes
Hi={ze5: |z =1}, ng{zej’):%z:%}, Hy={z€:Re=0}
bounding the fundamental polytope
C:={ze€e9n:|z| > 1, 0<§Rz<%}

To describe the boundary representations of PGLy(Z), it is useful to extend the hyperbolic plane by its natural
boundary, replacing the upper half-plane by the extended upper half-plane

H:=HUPY(R)={zcC:32>0}U{o0}

considered as a closed subset of the Riemann sphere IPI(([). The boundary orientations 0 € Opoundary We want
to describe are attached to actual boundary points x € IP1(IR), but to certain points corresponds more than one
orientation. A precise statement is that there is a W-equivariant correspondence

/ g \
IPI (lR) Oboundary

defined as follows. Since this construction is in part completely general, let (W, S) be an arbitrary Coxeter
group for the moment. The set § is the quotient I'/ . of the set

= {(wn)nen : Vn w, € W, wglwnﬂ €5, E(wo’lwn) =n}

of (semi-)infinite reduced galleries (carrying a natural W-action via w e (wy)new = (Wwy)nen) by the (W-
invariant) equivalence relation ~ on I' characterized uniquely by requiring

(3.1.1) wo=wy, = (Wp)nen ~ (W))nen < YmInn>mAw, =w,
and

(3.1.2) Vm,m' € N (wp)new ~ (W),)nemn < (Whtm)nen ~ (W4 Jneh
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for all (wp)nem, (W), )nem € I'. Moreover, there is a natural W-equivariant map

5§ — Oboundarya [(wn)nEIN] — lelenlll\l Ow,

where the left action on Opgundary iS given in terms of the natural right action as weo := o e w™!. The
equivariance then follows from the formula 0,/ ® W™ = 0, (cf. remark . The limit lim,en 04, exists
(a priori only as an element of {£}">*S but by remark also as an element of O), as it does exist for
any infinite gallery (wy,)nen that crosses every hyperplane only finitely many times. The limit orientation
0 = limyen 04, must lie in Opoundary because

o(wp, w;lwnﬂ) =+1

for all n by construction, which would be impossible if o were of the form o = 0,, or 0 = 0oP.

The set § can be described a little more explicitly (at the price of making the W-action more complicated) as
follows. The embedding I'y C I" of the subset of infinite reduced galleries starting in wg = 1 induces a bijection
I'y/~ ~T/. of the quotient of I’y by the equivalence relation defined by eq. with §. Indeed, given any
(wn)nem € T', we can choose m € IN such that the subgallery wi,, wy,t1,... does not cross any of the (finitely
many) hyperplanes separating wy and 1, and then (w),)nen defined by

;o {w;{ ifn<=r

Wpe—pgm fn>r

is an element of I’y equivalent to (wy)nen, for any reduced gallery wg = wy(,...,w! =1 from wy to 1.

Let now be (W, S) = (PGL3(Z), {s1, s2, s3}) again, then one can make § even more explicit. Indeed in this
case, a complete system of representatives for I'g/~ is given by galleries corresponding to the infinite formal
words in the generators of the form

(5253)%051(5953)" 51(5253)%s1... and  (s283)%s1...(5152)%" 51(5253)T>

where a; € Z, subject to the condition that Vi a; > 0 or Vi a; < 0, and a; # 0 for all ¢ > 0. Here, the expressions
(s283)7° and (s283)T° are to be understood as s3s25352... and s2838283... respectively. We can identify
these expressions with formal continued fraction as

[ap,a1,a9,...] and [ag,...,ar, £0]
The map
§ — PY(R)
is then given by evaluation of formal fractions, sending [ag, a1, az,...] to
[ag,a1,...] = lim [ag,...,a,]
n—oo
where [ag, . ..,a,] € Q is defined recursively by
1
[ao, ..., an, any1] = [ao, ..., an + J, lao] = —
Ap+1 ap

as usual. The W-equivariance of the map § — IP*(IR) can most easily be verified by establishing that the value
of a class [(wp)nen] is given by the limit lim,, o, w,, ® z, independent of the choice of a z € $. From this it also
follows that the point = € IP*(IR) and the orientation 0 € Opoundary defined by an element of § satisfy

(3.1.3) StabpgL,(z)(0) € StabpaL,z) (%)

From the theory of continued fractions it follows that the map § — IP}(IR) is surjective and that the infinite
formal continued fractions [ag, a1, as, .. .| map bijectively onto R — @, while the finite ones map many to one to
IPY(Q), with [aq, . .., a,, —)], [ag, - - - , ar, +00] both mapping to [ag, .. ., a,] € P*(Q). More precisely, oo € IP}(Q)
has the two preimages [—oo], [+00] (r = —1), whereas every « € Q has four preimages because it can be expressed
as two distinct continued fractions, due to the identity

[ag,...,ar, 1] =[ag,...,ar + 1]

The orientation o = lim, 0, defined by a (w,)nem € T can be described concretely in terms of the
corresponding point z € IP1(R) as follows. The set § = {wsw™! : w € W, s € S} of formal hyperplanes
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Figure 5: The canonical hyperplane arrangement realizing the Coxeter group W = PGL2(Z) as a hyperbolic

reflection group, viewed in the disk model (isometric to the upper half-plane $) via the Cayley transform g = jjr:)

of the hyperbolic plane. The two orientations of W attached to the ‘point at infinity’ z = co (¢ = 1 € A) are
the limits lim,,,_~ 0¢, , lim, 400 0¢,, attached to the two semi-infinite galleries contained in the ‘horocycle’
(Cn)nez and starting in the fundamental polytope Cp.

can be identified as a W-set with the set {w e Hy,w e Hy,w e H3 : w € W} of W-conjugates of the hyperplanes
in H? = $ bounding the fundamental polytope. If H = wsw™' corresponds to a hyperplane H C §) such that
x & H, then

(3.1.4) o(w,s) =+1 <«  we(C and z lie in different connected components of $ — H

The condition z € H is always satisfied if z € IR — , since the endpoints of the hyperplanes H € $ on IP1(R) lie
in IP1(®), and the orientation attached to x is then uniquely and explicitly determined by eq. . It follows
easily that in this case the inclusion in eq. is an equality. Since the stabilizer Stabpgr,(z)() is non-
trivial precisely when x € IP}(Q) or x is a quadratic irrational number (by a classical exercise), the orientation
0, attached to an irrational number x € R— Q has a non-trivial stabilizer if and only if it is quadratic irrational.

The two orientations attached to rational boundary points = € IP1(Q) also have a non-trivial stabilizer, but
the inclusion in eq. is proper in this case. In fact, since

reH < sp=wswle Stabpgr,(z) ()

we have that sy = sp,,53 = sy, € Stabpgr,(z)(c0), but sy and s3 both interchange the two orientations
attached to x = oo (cf. figure . The stabilizers of these orientations are instead equal to the subgroup

i={] ] 2e3

3.2 The geometry of PGLy(Z)

3.2.1 Lemma. There exists a unique subset § C W such that every element of W is of the form w = xwy with
r € Xo and wg € §, and

(3.2.1) Vi € Xoo, weF L(zw) =L(x) + L(w)
Moreover, this set § is given by

F={weW:1 and w lie in the same half-spaces with respect to sy and s3}
= {w € W : no reduced expression of w starts with sy or s}
={w e W : l(s;w) > l(w) fori=2,3}
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Proof. We leave it to the reader to verify that the three expressions given for § define the same set (cf. figure @
Let us begin by showing that the elements of § constitute a complete system of representatives for X\ PGL2(Z).
If w € PGL2(Z) does not already lie in §, then there exists a reduced expression w = s;, ', f(w) = 1 + L(w')
with i; = 2 or i1 = 3. Continuing this reasoning, we can write

"
W = 84,845 -+ 83, W

s

with ¢(w) = r +£(w") and i; € {2,3}, and where w” does not admit a reduced expression starting in sy or s,
ie. w” € F. Thus
w=zw", lw)=Llz)+ ("), z€ X, w' €F

where = := s;, ...s;.. This proves in particular that every element of PGLy(Z) is of the form zf, and it
also proves that £(zf) = £(z) + £(f) once we've proven that such an expression is unique. So assume that
w=zaf =2 f with z,2' € Xo, f,f € F and £(x) + £(f) = £(a’) + £(f"). Without loss of generality, we may
assume that £(z) < £(z'). By taking reduced expressions of 2~z and f’, inserting them into the equality

f _ x_lx’f’
and reducing the resulting expression using the deletion condition, it follows that there is an expression

f=alf" l(f) = a@") + (")

where 2/ < 7 '2’ and f” < f’ in the strong Bruhat order. Since

0f) = L(f") = e(f") = £(f) — €(=")

it follows that either these inequalities are equalities and therefore " = 1, f”/ = f and hence f’ = f (since
f" < f’) or that these inequalities are strict and that 2’ # 1, in which case f would have a reduced expression
starting in s, or ss contradicting f € F.

Thus, the set § as defined satisfies the claimed properties. The uniqueness of § is clear, since if f € §, then
every other element of the Orbit X, e f is of the form w = zf with £(w) = £(z) + £(f) > £(f). But then

™ w) = £(f) < (z) +L(f) = L(x™ ) +L(f) < £(x™") + £(w)
O

3.2.2 Remark. Since X = Stabpgr,(z)(c0) and PGLy(Z) acts transitively on IP'(Q) = QU {oo}, we have a
bijection

X0\ PGLy(Z) = PYH(Q), [w]— w ' eco
By lemma there exists a complete set § C PGLy(Z) for the action of X, and therefore a bijection

F-SPHQ), f—flecx

The set § (indicated in blue) and its labelling are illustrated in figure [f]

3.3 The subalgebra A, CH

We let
Xoo = (82, 83) = Staby (0o € P1(Q))

as before.

3.3.1 Definition. The parabolic Hecke subalgebra associated to the special subgroup (Xoo, {s2,s3}) of W is
denoted by Ay,. In other words,

r€X o

3.3.2 Remark. The Coxeter group (X, {s2,53}) is nothing but the infinite dihedral group Do, which is also
the same as the extended affine Weyl group W = XV x Wy of the root datum

(X,®, XY, ®Y) = (Z,{+2},Z,{+1})

of the group SLs. Under the identification X, = XV x Wy = Z x S5, the subgroup Wy corresponds to
(s3) = {1, s3} and XV corresponds to (s253) = {(s253)" : k € Z}.



3.3 The subalgebra Ao, CH 101

Figure 6: The fundamental domain § (coloured in blue) for the left action of X, on PGL2(Z) and the labelling
of its elements via the bijection § = P1(®), f — f~! e cc.
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In particular, A is the affine Hecke algebra of SLy with parameters ag, bs, s € {s2, s3}, and the structure
theorem applies (cf. also section [2.2.1]), showing that A, is noetherian when R is, and that the center of
Ao is given by the invariants of each of the two commutative subalgebras (e € {£})

A = AE,Z (XV) = @Raozo((sﬁ?’)k) € A

kezZ

under the action of Wy = {1, s3}, where s3 o 9\0;((8283)k) = Byee ((s253) ). Note here that the restriction of

the orientations 07,0 to X, give precisely the two spherical orientations of X,. More explicitly, we have

~

Ooc_ ((5253)7) = TaTs,  Ooc_((s253) ™) = (Ts — by)(Th — bo)
and 50;((5253)ik) = 50&((3233)i1)’“ for k > 0, and
RIX,Y]/(XY — azaz) — A5,
X — gggo (s2s3)
Y 5 Boe_((s253)7 1Y)

Under this isomorphism, s; ¢ X =Y where X,Y denote the images of X,Y under R[X,Y] — R[X,Y]/(XY —
asas). Moreover, there is an isomorphism of R-algebras

R[Z,T)/(T? — ZT + agaz) — R[X,Y]/(XY — asaz)
Z— X+Y
Tr+— X
with the induced action of s3 being trivial on Z and satisfying s3 ¢ T' = Z — T. The invariant subalgebra is

R[Z], and hence
R[Z} = Z(.Aoo), Z — ToT5 + (T3 — b3)(T2 — bz)

Moreover, H is free as a left-module over A% with basis {1, é\a; (s2)}, and :9\0;(52) =T,. As an R[Z]-module,
H is therefore free with basis {1, 75, ToT5, ToT5 1o }.
Y/ \7,—/

T T

3.3.3 Lemma. H is free as a left-As-module, with basis given by the elements

floe =Tr=0_t () =0_,-(f), fE€F
Moreover, the relation (¢ € {£})

[floo - 0ot or (w) = X(f, )00z (@)[f]ocs @ € Xoo, /' €5, f=af’
holds true for all f € §F and w e W.
Proof. Let us begin by proving the equalities

Tr=0_, (f) =0

“ VYoo 0

(f)

By definition

e
0, = nlgrgo O(s385)5m

Therefore, for f € §, i € {1,2,3} and n > 0 sufficiently large we have (cf. definition [1.5.7))

+1 i 0((s283) 7" fs;) < £((s253) " f)

(8:3.1) 05 (f:8i) = Osysq)en (fy8) = {1 if £((s283)7 " fs;) > £((s283) " f)

If moreover fs; € §, then
C((s253)°" fsi) = €((s253)°") + €(fs:), ((s253)" f) = £((s253)7") + £(f)
by eq. (3.2.1), hence eq. (3.3.1]) simplifies to

1 if 6(fsi) < L(f)

(3.3.2) 0% (fy51) = {_1 if £(fsi) > £(f)
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In particular, of (f,s:) = 0. (f, s;) in that case, and
-0 (fs) =1 if  fsi €F, U(fsi) > U(f)
Moreover, § is conver, i.e. given a reduced expression f =s;, ...s;, we have
Sip.--8;, €F Vi=1,...,7r
Therefore, we can apply the above formula to conclude that 0°(s;, ...s;,_,,s;;) = —1 for all j, and it follows

that (cf. theorem [1.10.1])

Using this, we compute

Here we have used that £(zf’) = £(x) + £(f’) in the second-to-last step, and the fact that X, leaves {oT o7}
invariant in the last step.

That the [f]e, f € § constitute a basis of A as left module over A, follows from the fact that A is free
as an R-module with basis T, z € X, and the fact that the elements

T,Ty =15, 2€Xs, [E€ET
are an R-basis of H. O
3.3.4 Remark. Recall from remark that we have a bijection
FT—P(Q), fr— flecx
Let z — f, denote the inverse of this bijection, and let us write
[#]oc := [faloo € H

for € IP}(Q). Then the induction functor M + M ®4__ H can also be written as

Mos H~ P Ml
z€IP1(Q)

Let us now complete explicitly the action of the generators T; := T,, i = 1,2,3 of H on the basis elements
[]oc-

3.3.5 Lemma. For all z € P1(Q) we have

Tr[x] oo if v € {-1,1}

[2]oc - Tt = { X(fay 51)[3]00 if x @ {=1,1}, L(fas1) > U(fz)
)\\((f”ﬂﬂ 51)[%]00 + bl[x]oo fo ¢ {717 1}7 E(frsl) < K(fz)
Ty (2] if x € {3,00}

[x]oo Ty = X(fz, s2)[—7 + 1] ifr ¢ {%,oo}, U(frs2) > (fz)
X(fz,82)[—2 + oo + b2[7]0e  if x & {%,oo}, (frs2) < L(fz)
Ts[x]oo if x € {0, 00}

['75]00 Ty =< X(fz, 83)[~7]oo if v ¢ {0,00}, £(fes3) > £(fx)

X(fz,83)[—]oc +bslz]oc  if x & {0,00}, £(frs3) < L(fe)
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Proof. By lemma [3.3:3] we have

faloof-oz, 0. (51) = X 50)0-0z, (1)[/)oc
where y € X, and f € § are such that
fesi=yf’
In particular R
[frlooO—oz_ et (5i) = X(fz, 8i)[frSi]oo
if fos; € §. Moreover in that case we can apply eq. to see that

+1  if K(fzsi) > E(fa:)

(=0 @ fa) (1, i) = =05, (fo, 5) = {1 if (fusi) < 0(fz)

Accordingly
T; if E(fwsi) > E(fx)

Omomera(si) = {Ti — b if O(frsi) < U(fs)

which proves the claimed formulas in the case where f,s; € § because (f,s;)”! ® co = s; @ x and therefore

fxsi = fsiox

Now, f. € F, fes: & § happens if and only if the hyperplane H = f,s;f,; ! separating f, and f,s; is one of the
hyperplanes s, s3 defining the boundary of §, i.e.

fo5i €8 & fusify ' € {s2,83}

and in that case we have

[falooO—ac e, (5i) = X(fa, 8000z, (57)[fuloo = 0oz, (5;)fi]oo

if j € {2,3} is such that f,s; = s;f;, as the convexity of § and f, € §, fos; ¢ § implies that £(fys;) > (fz)
and therefore X(f,, s;) = 1. But, as figure figure |§| shows, there are only finitely many f € § which have a facet
lying in the boundary hyperplanes ss and s3, namely f, for z € {00,0,1,—1, %} More precisely, inspecting
figure figure [6] again one sees that f,s; ¢ § happens precisely when s; @ z = x, and that

fis1 = saf1, fo1s1 =s2f1
frs2 =saf1, foos2 = 82 fo0
foos3 = 83f, fosz = s3fo

Using eq. (3.3.1) and eq. (3.2.1) it follows that

6 L AL i e((s283) 75 si) > ((s2s3) 7 ")
_000(1731) - {1 if f((SQSg)isnSi) </ (

= 7020(13 Sj)

—~
»
N
vl
W
~

Moreover, elementary arguments show that

—05,(1,8:) = +1 ifi=1V(i=2Ae=—-1)V(i=3Aec=+1)
AT -1 i (i=2Ae=+1)V(i=3Ae=—1)
and hence € can always be chosen so that
(0% @ fa)(1,51) = =05, (1, s5) = 1

which gives
0oz er.(si) =T, O—oc (s5) =T}

and therefore implies the claimed formulas in the case where f,s; € §. O
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3.4 Intertwiners

3.4.1 Lemma.
Vw € PGLy(Z) f(wsa) > £(w) V L(wsz) > L(w)

Proof. Assume that ¢(wse) < ¢(w). Then there exists a reduced expression
W= S ...5

r

of w ending in s (i.e. i, = 2). If we also had ¢(ws3) < {(w), then there would exist another reduced expression
ending in s3. Since two reduced expressions of the same element of a Coxeter group are connected by a finite
sequence of braid moves, this would imply in particular that 7; = 3 for some j < r, and so

max{j :i; =3} < max{j:i; =2}

But this condition is preserved under braid moves (since m(ss, s3) = 00), which leads to a contradiction. Hence
we must have £(wsgz) > £(w). O

3.4.2 Theorem. Let x : Aooc — R be a character. If a; € R* for all i, then
End(x ®a. H) =R
i.e. the induced H-module x ® 4., H = B, cp1(q) X[#]o is Schur-simple.
Proof. Frobenius reciprocity gives
Endy(x ®a., H) ~Homa__ (X, x ®a., H)
~{pex®@a, H : ¢ -T;=x(T;)¢ fori=23}
Let ¢ = >, cpr(q) Cz[%]oc # 0 be a nonvanishing element of the set in the second line above. We must show
that ¢, = 0 for all x # oo. First, let us show that
1
(3.4.1) {z € PY(@) : ¢, #0} C {0, 5,00}

To this end, let f be an element of

FEF : cpran#0)— e iwe {0,500} CW

of maximal length. By lemma we have ¢(fs2) > £(f) or £(fs3) > £(f). Without loss of generality, we may
assume that ¢(fss) > £(f) (the other case is treated similar). Because f & {fs : {0,%,00}} we have fs; € §,
and by lemma it follows therefore that (z := f~! e 00)

(2] T2 = az(s2 ® 2]s

Since f was assumed to be of maximum length and £(fs2) > £(f), it followﬁ that the coefficient of [s2 @ Z]s
in x(T2)¢ vanishes; for the same reasons, the coefficient of [so @ ] in ¢ - Tz equals azc,. Since ¢ - To = x(To)¢
by assumption, it follows that

ascy =0
Since ap € R*, it follows that ¢, = 0 in contradiction to our assumptions. This proves eq. , and we can
therefore write

1
¢ = co[0]c + C§[§]oo + Coo[00] 0o
Using lemma we compute

¢'T2 = G’QCO[l]OO +X(T2)C ]oo +X(T2)Coo[oo]oo

DN =

|

X(T2)6 = X(Ta)eol0loe + x(T2)ey [ 1oe + X(To)eaclo0]c

1
2

Thus ¢ = 0. Since

6+ T5 = asey [~ oo + X(Ts)eoo[o0lc

1
X(T3)¢p = X(T3)C%[§]oo + X(13) o0 [] 0o
it follows that ¢ 1= 0. O

24None of the element fz, = € {0, %,oo} is of the form f; = fs; with £(fz) > €(f), ¢ € {2,3}; in particular, fso € {fe : x €
{07 %?m}
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4 Normalizers of Tori

Let G be a split reductive group over a field k£ with maximal split torus T < G and let N < G be its normalizer.
Then there is a canonical short exact sequence

(4.0.1) 1 T N W 1

where N = N(k), T = T(k) denotes the groups of k-rational points and Wy denotes the Weyl group Wy = N/T
of the pair (G, T). Our goal is to determine when this sequence splits in the case when G is almost simple, i.e.
when G has a finite center Z and G/Z is simple, or equivalently, when the root datum of G is semisimple and
its Dynkin diagram connected.

We point out, that this question has already been resolved. In fact, various versions of it have been resolved
by several different people independently, starting with Tits himself who announced their existence in [Tit66]
but never published them (see also [Pop75]). For compact simple real Lie groups, this questions has been settled
by Curtis, Wiederhold and Williams in [CWWT4], for the case of split simple groups over an arbitrary field in
[AH17, Theorem 4.16]. Over fields of positive characteristics, these results had also been obtained previously by
Galt in several articles [Gall5|, [Gall4], |Gall7a], [Gall7b]. Here, we will provide an answer to this question for
all rings. Note that (a posteriori) the answer for rings is easily deduced from the one for fields (cf. remark.
However, as our method of proof is different and gives new information (the cohomology groups H*(Wy, XV)
and H*(Wy, XV ®z IF3) for small k), we think it is still of interest.

By Schreier theory (see [BS06, 1.5]), the splitness of eq. is determined by the vanishing of a cohomology
class [¢p] € H?(Wy,T) corresponding to this extension. In section we explicitly computed a representing
2-cocycle for the canonical extension

1 T wo %% 1

of a pro-p Coxeter group W) In order to make use of this result, we will see in the next section how N can
be endowed with the structure of a pro-p Coxeter group.

4.1 The normalizer as a pro-p Coxeter group and its description in terms of root
data

Let (G, T) be as before. Our goal in this section is to describe the extension eq. (4.0.1) entirely in terms of the
root datum
R:=(X,®, X", ®Y) = (X*(T),®, X.(T), @)

of (G, T).
First of all, the Weyl group Wy = N/T is equal to the Weyl group of the root datum R as a subgroup of

Aut(T) ~ GLz(X*(T))°P

and the two may therefore be identified. Moreover, the group T" = T(k) of k-rational points of T naturally
identifies with
T ~ Homz(X*(T), k™) ~ X,(T) @ k*

and this identification respects the action of Wj.

By Schreier theory, the extension eq. is determined (up to isomorphism) by its class in H2(W, T).
To compute a representing 2-cocycle ¢ € Z2(Wy,T), we will use the results of section by giving N the
structure of a pro-p Coxeter group, i.e. by exhibiting lifts ny € N of the s € S that satisfy the braid relations.

Recall from section that for every element u € U, u # 1, the intersection U_,uU_, N N consists of a
single element m(u), where U, = U, (k) denotes the group of k-rational points of the root subgroup U, < G
corresponding to a root a € ®.

For every root a € ®, fix an element u,, € Uy, u, # 1 and let

No = m(uy) € U_qu U_o NN
4.1.1 Lemma. With the above notation, it holds that
(i) n2 = aV(—1), where o denotes coroot a¥ € X,(T) = Hom(G,,, T) dual to

(i5) nangne--- =mngnaeng... if a, B € ® are part of a root basis A of ®, where the number of factors on both
sides equals the order m of sos3 € Wy
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Proof. Formula (ii) follows from [BT72, Prop. 6.1.8]. Formula (i) is proven in [Spr98, Lemma 8.1.4] (for a
special choice of the u,; but since m(uq ), m(ul,) for u,u’ € U, — {1} differ only by oV (t) for some t € k*, they
square to the same element). O

To make N into a pro-p Coxeter group, fix a root basis A C ® and consequently a set S C Wy, S = {s4 :
a € A}, making Wy into a Coxeter group, and put

Ng, :=Ng = m(uy) for o€ A

a4

By section a 2-cocycle representing eq. (4.0.1) is explicitly given as follows. First, recall that the lifts n,,
induce a canonical set-theoretic section
n: Wo — N

of N — Wy, determined by
n(s) = ns, n(ww')=n(w)n(w) if L(ww') = £(w) + £(w)
The 2-cocycle
(4.1.1) d(w,w') = n(w)n(w)n(ww) ™!
given by this section is then given in terms of the universal 2-cocycle X by
(4.1.2) b=hoX

where
h:Z[$H] — T
denotes the Z[Wj]-module homomorphism from the free abelian group on the set ) := {wsw™!:w € Wy, s €
S} ={sa : a € ®} of reflections that is determined by
h(sa) =n2 =a’(-1) VaeA

4.1.2 Remark. The homomorphism h : Z[$)] — T = X..(T) can be factorized into the composition

Z[5] 5 X.(T)®zFs —  X.(T)®z k*
So — a’®1
X®T— X ®(=1)*

of Wy-equivariant homomorphisms. In particular, the 2-cocycle ¢ € Z%(Wy,T) defined in eq. (4.1.1)) is the
push-forward of

(4.1.3) Gu :=hoX € Z>(Wy, X,(T) @z F)

along ¢.

4.2 Characterizing splitting in terms of H*(W,, XV @z IF)

In the previous section we have explicitly computed a representative ¢ of the class in H?(Wp,T) corresponding
to the extension eq. (4.0.1), and we have seen that it only depends on the root datum

(Xa (I)aXva (I)v) = (X*(T),(I),X*(T), (I)v)

of (G, T) and the ground field k. Moreover, we have seen in remark [4.1.2|that ¢ is the pushforward t.(¢.) = tog,
of the 2-cocycle ¢, = ﬁ*()‘\() € Z*(Wy, XV ®z IFy) along the map ¢ : XV ®z IF; — XV ®z k* induced by
IFy — k>, 2+ (—1)%.

Since these definitions make sense for any root datum and any (commutative) ring k, we will in the following
assume that R = (X, ®, XV, ®V) is an arbitrary root datum (not necessarily semisimple), that Wy = Wy (R) is
the Weyl group of R, that k is a commutative ring, and that

(4.2.1) bu :=hoX € Z>(Wy, XV @7 IF,)
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and
(4.2.2) b:=10¢, € Z*(Wy, X" @z k)

with A and ¢ given as before.

Our goal in this section will be to characterize the vanishing of [¢] € H?(Wy, XV ®@z k*) in terms of the
cohomology of XV, XV ®z IFy and the element [¢,] € H2(Wy, XV ®z IF2). Note that if —1 =1 in k, then ¢ and
hence ¢ vanish. We will therefore assume in the following that —1 # 1 in k.

The idea is to isolate the dependence on k of the question whether [¢] € H?(Wy, XV ®z k*) vanishes using
the following corollary of the Kiinneth theorem (see theorem .

4.2.1 Corollary (Universal coefficient theorem for group cohomology). Let G be a finite group, M a Z[G]-
module that is flat as a Z-module, and N be any Z-module. Then for any n € Z, there is a split short exact
sequence

(4.2.3) 0—> H"(G,M)®z N — H"(G, M &z N) — Tor?(H"**(G, M),N) —= 0

natural in M and N, where M ®@z N is viewed as a Z[G)-module by action on the left factor only.

Proof. The group cohomology H™(G, M) can be computed as the cohomology of the cochain complex
(Homgz(q)(Ck, M))kez

where (C)rez is any resolution of the trivial Z[G]-module Z by free Z[G]-modules of finite dimension (for
example, the bar resolution). If Sj denotes a basis of the Z[G]-module Cy, then it follows that we have a
natural identification

(4.2.4) Homz(c)(Cr, M) ~ @) M
SESk

of Z-modules. This implies that the natural map
HomZ[G] (Clw M) ®z N — HOmZ[G] (Ck, M ®z |N)

is an isomorphism, and hence the cochain complex (Homgz(g)(Ck, M) ®z N) ez computes (H*(G, M @z N))irez.
Moreover it follows from eq. (4.2.4) that the cochain complex (Homgzq)(Ck, M))rez is degreewise flat, and we
can apply theorem with C := (Homgzg)(Ck, M))rez and D = N considered as a complex concentrated
in degree zero. O

We now apply corollary with M = XV and j : N = IF; — k* = N’ to obtain a commutative diagram

(4.2.5) 0 — H2(Wo, XV) @z IFy ——> H2(Wo, XV ®@z Fy) — TorZ(H3 (W, XV), Fy) — 0

S

0 —— H2(Wy, XV) @z k* — H?(Wy, XV @z k*) — Tor? (H?*(Wy, XV), k) —= 0
of split exact sequences, where the leftmost horizontal maps are induced by the canonical maps
Z2(WOaM) Rz N — ZZ(WOaM Rz N)? ¢® n— ((wvw/) = (rb(w?w/) & n)

on the level of cocycles, and the injectivity of the rightmost vertical map follows from the injectivity of IFy < k*
and [HS96, Ch. III, Cor. 8.4]. The class [¢] € H?(Wy, XV ®z k*) is the image of [¢,] € H2(Wy, XV @z IF)
under the middle vertical map. A diagram chase therefore shows that

(4.2.6) [0] =1 [¢u] € im(n) An~" ([9u]) € ker(v)

In particular, to decide the vanishing of [¢] it suffices to compute the cohomology groups H?(Wy, XV) and
H?(Wy, XV ®z IF2) together with the map . This computation will be carried out for all semisimple root data
of rank < 8 whose underlying root system is irreducible (i.e. such that the Dynkin diagram is connected) in
section appendix [A]

4.2.2 Remark. The following are equivalent:
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(i) The class [¢,] € H?*(Wy, XV ®z IF3) vanishes.

(ii) The extension eq. (4.0.1) splits for all rings k.

(iii) The extension eq. (4.0.1) split for k& = IF3.
Proof. As the 2-cocycle classifying the extension eq. (4.0.1) over a ring k is the pushforward of ¢, it’s clear
that (i) implies (ii). It’s also clear that (ii) implies (iii). Finally, IF; = {£1} ~ (IF3,+), and hence the cocycle
classifying the extension eq. (4.0.1) over k = IF3 is precisely ¢,, hence (iii) implies (i). O
4.3 Direct products of root data
We preserve the notation and assumptions of the previous section. In particular,

R=(X,® X", 3

is an arbitrary root datum, not assumed to be semisimple. Instead, we assume in this section that R is a direct
product [DG70, Exposé XXI, 6.4]
R = Rl X RQ

of root data
Ri = (X, ®;, X/, ®)), i=1,2

i.e.
X =X 6 X, Xv:X}/EBXg/

and the duality pairing (-,-) : XV ® X — Z is given in terms of the duality pairings (-,-), of R; by
((z1,22), (y1,92)) = (T1,91)1 + (T2, 92),
and the sets ®, ® of roots and coroots are given by
O =P x {0} U{0} x Py, @Y =) x {0} U{0} x Dy
Finally, the bijection ® <+ ®V between roots and coroots is given by

PR oV
(041, 0) A (a\1/7 0)
(0,a2) <+ (0,03)

It follows that the Weyl group Wy of R decomposes into a direct product
Wo = Wo(R1) x Wo(R2)

of (commuting) subgroups canonically isomorphic to the Weyl groups of Ry and Ry ([DG70, Exposé XXI, Prop.
6.4.2]). More precisely, we have embeddings

W()(Rl) — VV()7 Wo(RQ) — W()
Say s(al,O)a Say 5(0,042)

and the decomposition X = X; & X respects the decomposition Wy = Wy(R1) x Wy(Rz), that is
(w1, ws) @ (z1,22) = (w1 @ 21, w2 ® T2)

4.3.1 Remark. Our goal is now to relate the vanishing of the class [¢] € H?(Wy, XV ®z k*) associated to
R to the vanishing of the classes [¢1] € H2(Wy(R1), Xy @z k*), [¢2] € H2(Wy(R2), Xy @z k*) associated to
R1 and R2. Note that it’s a priori clear that [¢] vanishes if and only if both [¢1] and [¢2] vanish because the
extension eq. associated to R splits into the direct product

1 H—Xi/ Rz k™ % X; Rz kX —— N1 X Ny —— Wo(Rl) X WO(RQ) —1
of the extension associated to R and Rs, and a direct product of extensions clearly splits if and only if each

factor does. However, since we are also interested in the computation of the cohomology groups H*(Wy(R), XV)
in itself, it’s more useful to take the more complicated route using the Kiinneth theorem.
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4.3.2 Lemma. Abbreviate
W1 ZWo(Rl), WQZWO(RQ), WZWO(R):Wl XWQ

and
X =XYozFs Xy=XyezF X =X'ozF=X/oX,
2y oV . , .
The standard 2-cocycle ¢, : Z*(W, X ") associated to the root datum R by eq. |D is reducible to the standard
2-cocycles ¢1,4, € Z2(W1,YY) and ¢2,, € Z2(WQ,Y;/) associated to the root data Ry and Ro in the sense of

corollary [{.4.17, and therefore
[Pu] = 2([01,u] ® 1) + ©(L ® [P2,4])

where

2
o: P (HP(Wl,YY) ® HXP(Wy,IFy) & HP(Wy,IFs) ®H2*p(W2,Y§)) < H2(Wy x Wa, X, & X3)

p=0

denote the injection defined in corollary[{.4.17
In particular for any ring k, the induced 2-cocycle ¢ € Z2(W, XV ®@z k) (see eq. (4.2.2)) ) is reducible to the
respective induced cocycles ¢y € Z2(Wy, XY @z k*) and ¢ € Z2(Wo, Xy @7 IF2), and

[¢] = ([¢1] ® 1) + 2(1 @ [¢2])
with ® the injection defined by corollary[{.4.17 in this case.

Proof. By remark the 2-cocycle X is normalized and therefore ¢, is normalized, too. Moreover, from
lemma [1.7.10] it follows that X(wq, ws) = X(ws, w1) whenever w; and wy lie in special subgroups that commute
with each other, as

X(wr, w2)? = IL(wy) w1 (L(wz))L(wyws) = L 1L (wn )L (ws) L (wiws) "L = X(ws, w:)?

Therefore ¢, has the same property, and it follows that condition eq. (4.4.11) is satisfied. The validity of
eq. (4.4.12) follows immediately from the definition of the homomorphism h (see remark ) appearing in

¢u := h o X and the definition of X (see definition [1.7.1).
Finally, if ¢,, is reducible then obviously also its pushforward ¢. O

4.4 Some results from homological algebra

In this section, we will recall some standard (and not so standard) results from homological algebra, in particular
the theory of group cohomology. In the following unless stated otherwise, R will denote an arbitrary commutative
ring and G will denote an arbitrary group.

First, let’s recall some basic definitions (cf. [Bro82, Ch. 0]).

4.4.1 Definition. The category Ch(A) of chain complexes over an additive category A has as objects the
chain complexes over A, i.e. sequences (C)iez of objects Cj, € A together with a sequence of morphisms
(differentials)

8k : Ck — Ck—l

in A satisfying the chain relation
Op_100,=0 VkeZ

A chain complex (Cf)rez will often be denoted by C,, or simply by C, and if z € C},, we will write deg(x) := k.
A morphism f, : C¢ — D, of chain complexes (chain map) is a sequence fi : Cx, —> Dy, of morphisms in
A satisfying
Opofy=fr-100, VkeZ

More generally, a chain map f, : C¢ — D, of degree r € Z (a regular chain map being of degree zero) is a
sequence of morphisms fj, : Cy — Dy, satisfying

Ok4r 0 fro = fo—100r VEEZ

A chain homotopy he : fo — ge between parallel chain maps f,g : C — D is a sequence (hy)gez of
morphisms
hk : Ck — Dk+1



4.4  Some results from homological algebra 111

satisfying the relation
Tk — gk = Okq1 0 hg + hi—1 0 O

A chain complex C' is said to be contractible, with contracting chain homotopy h, if there exists a chain
homotopy & : ide — O¢ between the identity and the zero map on C, i.e. if

(441) idck = ak+1 ohy + hp_100k

for all k € Z.
If the category A is moreover endowed with a biadditive bifunctor

- - AxA— A

and A has countable coproducts, then for each pair C', D of chain complexes, one defines their tensor product
C ® D degreewise as

(C®D),:= @ C,®D,
ptg=n

with differential determined by
O o ((C® D), + Cp® Dy) =95 ®idp, +(—1)Pidc, @07
Given chain maps f: C — D, g : C' — D’ between chain complexes, their tensor product
feg:CD —C' @D

is defined by

(f®gn = fn®gn
More generally, if f and g are chain maps of degrees deg(f) and deg(g), then the tensor product f ® g is the
chain map C ® D — C’ ® D’ of degree deg(f) + deg(g) determined by

(f ® g)nlz @ y) = (=1)18W 4@ f () @ g(y)

Given any two chain complexes C', D and assuming that A has countable products, there is the (outerﬁ)
Hom complex Hom(C, D), which is a chain complex of abelian groups (or whatever the hom groups in A4 are
enriched over in addition), defined by

Hom(C, D)n = H HOIII_A(Ck, Dk—‘rn)
keZ

with differential
(Onf)k = Opgrfre — (=1)" fu—10k

If the category A is not only additive but also abelian, then for each chain complex (C,,d,) over A and each
k € Z one defines the k-th homology (group) by

ker(Jg)

Hk(C) = im(8k+1)

4.4.2 Remark. There exists a notion dual to chain complexes: a cochain complex C over an additive
category A is a sequence (Cy)rez of objects Cy € A together with maps dy, : Cy, — Ci1 satisfying diy10d = 0.
Correspondingly, when A is abelian, one defines the k-th cohomology (group) by

ker(dg)

k .
HHC) = s

The distinction between chain complexes and cochain complexes is somewhat formal (and confusing), as there
is an isomorphism between the categories of chain complexes and cochain complexes over A, given by sending a
chain complex (C, Ok )kez to the cochain complex C" with C}, := C_j and dj, := 0_j. Under this identification,

H*(C') = H_1(C)

25when A is a closed ®-category, there is an ‘inner‘ version of the hom complex that is again a complex over A, defined using
the inner hom object, which recovers the outer one as the set of maps from the unit object to the inner one.
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Moreover, let us recall the standard (bar) resolution for a group G over a ring R.

4.4.3 Definition. Given a group R (not necessarily finite) and a (commutative) ring R, the standard reso-
lution over R for R is the chain complex P, of R[G]-modules given by

P, = R[G] [GXk] = @ R[G] . [gla cee 7gk]

(91, 9K]€EGXF

, where for a set X we denote by R[G][X] the free R[G]-module with basis X and the elements of the cartesian
power G** are denote using square brackets, with differential given on basis elements by

8k[917-~-79k] = 91[927"'7916‘}—"_ Z (—1)j[917'~7gj—17gjgj+lygj+27«-~gk]+(_1)k[917-~-79k—1]
1<j<k-1

for kK > 1, and 9y := 0 for k£ < 0. This complex is contractible as a chain complex of R—moduleﬂ as witnessed
by the contracting chain homotopy h given on its canonical R-basis by

(4.4.2) hi(golg, - - - 9x]) = [90, - - - gk]

4.4.4 Remark. Given an R[G]-module M, the cohomology groups H*(G, M) can be computed as the coho-
mology groups of the cochain complex Hompg g (Ps, M) induced by the standard resolution P, for G. It is
customary and convenient to identify degree n piece Hompg(g)(Ps, M), = Hompg(g (P, M) with the set of all
functions G*" — M, and hence to denote the value of an element ¢ € Homp(g)(Ps, M), at a basis element
(915, 9n] Dy

d(g15- -, 9n) == O([g15 -+, gnl)

4.4.5 Remark. The cohomology groups H*(G, M) can be viewed as functors in two variables, as follows
(cf. [Bro82, II1.8]). Consider the category D whose objects are pairs (G, M) consisting of a group G and a
Z|G]-module M. A morphism

(G,M) — (G', M")

between two such pairs shall be a pair (¢, ¢1), where pg : G — G’ is a homomorphism of groups and where
p1: M’ — M is a homomorphism of Z-modules which is equivariant in the sense that

(4.4.3) v1(po(g) em/) =gepi(m') VgeG, m' € M
Such a pair (¢g, ¢1) then induces a map
(@03@1)* : Hk(G/aM/) — Hk(Ga M)

in a functorial way, given as follows. Let F, and F, be projective resolutions of G and G’ respectively, with
augmentations maps € : Fo — Z and &' : F, — Z. Let ¢i(F’) denote F’ considered as a chain complex of
Z|G]-modules using the map ¢g. Then ¢f(F") is still acyclic (even though it may not be degreewise projective
anymore), and therefore we can apply the ‘fundamental lemma of homological algebra‘ ([Bro82, 1.7.4]) to the
diagram

F2 F1 FO y/A 0
I I I
I f2 I f1 I lfli_id
Y Y Voo
F} F F,—>7Z 0

26but not as a complex of R[G]-modules
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commutative, and f is uniquely determined up to chain homotopy by this property. Since the functor Homz¢(-
—, M) from chain complexes of Z[G]-modules to cochain complexes of Z-modules preserves the relation of chain
homotopy, and chain homotopic maps induce the same maps on (co-)homology, it follows that the induced map

H*(Homg g (f, M) : H*(Homzg)(¢§(F'), M) — H*(Homgz(g)(F, M)) = H*(G, M)
is independent of the choice of f. Precomposing this map with
H* (Homgc) (05(F"), 1)) : H* (Homgze) (05 (F"), 95(M"))) — H* (Homg(cy (5 (F"), M))

and the map
H*(G', M) = H*(Homg g (F', M")) — H*(Homz|g) (5 (F"), ¢5(M"))

induced by the forgetful map Homgz g/ (F’, M') — Homgz(q (05 (F'), ¢5(M')) then yields the desired
HY(G' M"Y — H*(G, M)

4.4.6 Remark. The functoriality described in remark has a simple description when using the standard
resolution (see definition remark [4.4.4)) to compute the cohomology groups. Namely, there exists a natural
map

[P — g5(P)

between the standard resolutions P and P’ of G and G’ that is compatible with the augmentations. This map
is given in degree k on basis elements by

fe(lgrs - gx]) = [wolgr), - -+ wolgr)]

One can check that the map
HOHIZ[G/] (P/, M/) — HOHIZ[G] (P, M)

of cochain complexes of Z-modules that induces the maps H*(G', M') — H*(G, M) by definition (in re-
mark [4.4.5)) is given in terms of standard cochains by

Homset((G/)Xk, M') — Homge (G, M)
p—> pro0po cpgk

4.4.7 Remark. From the identification of Hompgjg)(Pe, M), ~ Homse (G*™, M) given in remark it fol-
lows that the cohomology groups H*(G, M) of an R[G]-module M and the cohomology groups of the underlying
Z|G]-module are canonically identified. In particular, there is no need to reference the underlying coefficient
ring R explicitly in the notation. However, it is still useful to consider a coefficient ring e.g. in statements of
theorems as an R[G]-module can be flat over R without being flat over Z.

We now specialize our situation, and assume that the group G decomposes into a direct product G = G1 x G4
of commuting normal subgroups.

4.4.8 Lemma. Let Py, and Py 4 be free (resp. projective) resolutions of the trivial R[G1]-module R and the
trivial R[Gs]-module R, respectively, and let €1 : Py — R and €3 : P 4 —> R be the associated augmentation
maps.

Then, the tensor product complex Py ® Py, taken in the category of R-chain complezes and endowed with the
natural R|G1] ®g R|Gs] ~ R[G1 x Gs] = R|G] action, is a free (resp. projective) resolution of R as a trivial
R[G]-module, with augmentation map given by €1 ® 2 (tensor product of chain maps), given in degree zero by

(e1®e2)(z®y) =c1(x)ea(y) €ER, x € Pryo, y € Pay

Proof. Cf. [Bro82, Ch. V]. Because P, and P, are resolutions of R, it follows that €; and e5 are chain homotopy
equivalences (see [Bro82, Ch. 0, Cor. 7.6]) of complexes of R-modules. Since the tensor product of maps of
chain complexes preserves the relation of chain homotopy and therefore preserves chain homotopy equivalences
(see [Bro82, Ch. 0, Sec. I, Ex. 7¢]), it follows that the tensor product

E1Rey: PP, — RIR=R

of R-chain complexes is again a chain homotopy equivalence (here R considered as a chain complex concentrated
in degree zero), and therefore P; ® Ps is a resolution of R as a trivial R[G]-module. Moreover, the tensor product
C1 ® C5 of a complex Cy of R[G1]-modules with a complex Cs of R[G2]-modules is again degreewise free (resp.
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projective) if Cy and Cy are degreewise free (resp. projective) as R[G1]- and R[Gz]-modules, respectively. This
follows immediately from the fact that the tensor product M; @ p My of a free (resp. prOJectlve) R[G1]-module
M, with a free (resp. projective) R[G3]-module My is a free (resp. prOJectlve) R[G]-module. Indeed, for free
modules this follows immediately from the special case My = R[G1], M2 = R[G2] and the identification

R[Gl] XRr R[GQ] ~ R[Gl X G2] = R[G]

Because projective modules are characterized as the direct summands of free modules, the statement for pro-
jective modules follows from the one for free modules. O

We now have two ways to compute the cohomology groups H¥(G, M) of a G-module M, using the bar
resolution P, for G as the cohomology of the cochain complex Hom (¢ (Ps, M), or using the product resolution
Py« ® P54 as the cohomology of the cochain complex Hom R[G (P1,6®P2e,M). It is a basic result of homological
algebra that these groups are canonically isomorphic; however, in order to make this isomorphism explicit, we
need a constructive version of this basic result, which we will recall now.

4.4.9 Lemma (Fundamental Lemma of Homological Algebra). Let R any commutative ring, let A be an R-
algebra, and let C = (Co,0s) and D = (Ds,0s) be chain complexes of left-A-modules. Assume that, in each
degree k, Cy, is a free left-A-module with basis By, and moreover assume that D is chain contmctz'blﬂ as a
chain complex of R-modules, with explicit contracting chain homotopy he.

Then, given any integer v and any family fir : Cx — Dy (k < 1) of A-linear maps that satisfy the chain map
relation

(4.4.4) O o fr = fr—100k

for allk <r, there exist maps fi : Cy, — Dy (k > r) extending this family to all integers, to a map fo : Co — D
of chain complexes of left-A-modules. Any two such extensions are chain homotopic via a chain homotopy
hl, : Co — Dey1 vanishing h), = 0 in all degree k < r.

Moreover, in this situation there is a canonical extension, determined recursively by the conditions

(4.4.5) frerilg,,, = Pio feoOkyily,,, VE=r

Proof. We refer to [Bro82, Ch. 0, Lemma 7.4] for details; here, we’ll only give a sketch and explain why the
formula eq. gives rise to such an extension.

To prove the existence of such an extension, one argues by induction of course. So assume that such an
extension satisfying eq. has been constructed up to degree k, and consider the mapping problem

Ot1 Ok
Cip1 —— Cy —— Ci

|
| fr+1 lfk if}cl
Ok

A Okt
Dyy1 ——= D —= Dy

Now, a map fr4+1 completing the diagram amounts to a lift Cx11 —> Dgy1 of fr 0 Oky1 : Cry1 —> Dy along
Ok+1 : Di+1 —> Dy. However, because

Ok 0 fr0Oky1 = fr—100, 0041 =0

@ 1= f 0041 restricts to a map Cry; — ker(@f), and fry1 must in fact be a lift of ¢ along Dy, 1 — ker(a,’?),
where the surjectivity of the map Dj41 — ker(9P) follows abstractly from the acyclicity of D, and the existence
of fr4+1 follows abstractly from the projectivity of Cj1. However, in our situation we are given a basis By41 of
Cl+1, providing an explicit witness of the projectivity of Cj+1, and we are given a contracting chain homotopy
he, providing an explicit witness of the acyclicity of D, and it follows immediately that formula eq.
defines such an extension fj1. O

4.4.10 Remark. The previous lemma illustrates the difference between abstract and constructive mathematics
(where ‘abstract* is not to be equated with ‘conceptual‘), the former of which most mathematicians are more
accustomed to, since it is easier. That is, it is easier to prove and use abstract existence statements because
one can essentially ‘forget‘ their proof. In contrast, in constructive mathematics the proof of a property, in this
example the proof of projectivity by exhibiting a basis or the proof of acyclicity by providing a contracting chain

27and therefore in particular acyclic
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homotopy, becomes a necessary ‘input‘ into any proof using this property, much like an input into a computer
program. In fact, exactly like an input into a computer program, as the emerging marriage of constructive and
formal mathematics via type theory and the ‘Curry-Howard isomorphism‘ shows.

It is the conviction of the author that the formalization of mathematics, long thought to be a hopeless
endeavour, is inevitable, and that therefore the constructive nature of proofs of classic results, which have been
mostly used abstractly, needs to be rediscovered and appreciated.

We now return to our previous situation of a group G = G; X G2, and will compute the ‘comparison map'
fo:Pl,o®P27o—>Po

between the product P  ® P o of the standard resolutions for G; and G, and the standard resolution P, for
G, up to degree 2.

4.4.11 Lemma. The map
(446) fo : Pl,o & P270 — P,

of chain complezes of R|G]-modules, defined by eq. (4.4.5)) of lemma (with A = R[G)), is explicitly given
on the canonical R[G]-basis elements (see definition|{.4.5 for notation) by

fo(f@ ) =]
Aglel) =19 - [1] ge G
fill®lg]) =[g] - 1] g€ Gy
fa(lg1, 92l @ []) = [g1, 92] = [91,1] = [1, 9192] + [1, 1] 91,92 € Gi
f2([g1] @ [g92]) = [91, 92] — [91, 1] — [1, g2] — [g2; 1] + [g2, 1] + [1, g1] g1 € G1, g2 € Go
f2([l @ [g1,92]) = 91, 92] = [91,1] = [1, g192] + [1, g1] 91,92 € G2
Proof. Left to the reader. O

4.4.12 Corollary. Given an R[G]-module M, the map

HOHIR[G] (P., M) f—> HOHIR[G] (PLQ ® Pz,.7 M)

of cochain complexes induced by eq. (4.4.6)) is given in degree two by

#(g1,92) — ¢(91,1) + o(1,91) — o(1, 9192) if £ =[g1,92] ® ]
[ (@) (@) = ¢(g1,92) — #(g2,91) + (1, 91) — P(g1,1) + P(g2,1) — d(1,92)  if = [91] @ [g2]
?(91,92) — ¢(g1,1) + ¢(1,91) — &(1, g192) ifr=1[®[g1,92]

(we keep the notation of lemmal4.4.11]; see also remark .

The reason for considering the resolution P; o ® P> o is that it allows the comparison between the cohomology
groups of GG; and G3, and the product G = G; x G via the following map:

4.4.13 Definition. Given an R[G1]-module M; and an R[Gs]-module Ms, the cochain cross product (cf.
[Bro82, Ch. V]) is the map

(4.4.7) HOIIIR[GA(PL.7 M) ® HomR[G2}(P27., M) — HOIDR[G](PL. ® Pse, My @p M)

of cochain complexes given in degree n by ¢ ® ¥ — ¢ X ¥, where

(=1)P9(g1,...,9p) @U(h1,...,hg) if p=deg(p), ¢ = deg(v)
0 otherwise

(@ x9)([g15- 1 9p] @ [, hg]) = {

4.4.14 Lemma. If Gy and Gy are finite, then eq. (4.4.7) is an isomorphism.
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Proof. (Cf. [Bro82, Ch. V, Sec. 3, Exercise 2]). First of all, since the chain complexes P; 4 and P, vanish in
negative degree, the direct sum

(Ple®Pae)y = @ P, ®r Poy
p+g=n

is finite for all n € Z. Therefore, the direct product in
Hompq)(Pre ® Pae; M1 ®@r Ma), = Hompq)((P1e @ P2e)n, M1 ®r M2)

~ H Hompgjg)(P1,p ®r Paq, M1 @R Mo)
ptg=n

is actually a direct sum and hence it suffices (we don’t need to bother with the sign (—1)P?) to show that for
all p,q € IN the map

Hom g, (P1,p, M1) ®r Hompa,)(Pa,q, M2) — Hompq)(P1,p ®r Pa,q, M1 ®@r M>)
PRYr— QR Y

is an isomorphism, where ¢ ® 1) denotes the map ¢ ®r Y : Pi p ®g P2.q — M1 ®@r My induced by ¢, ¥ and the
functoriality of ®r. Now, since Py p, P» 4 and P, @ Ps 4 are free modules over R[G1], R[G»] and R[G] with
bases G;7, G5, GP x G5 respectively, we have a commutative diagram

Hom g, 1(P1,p, M1) @ g Hompgg,)(Pa,q, M2) Hom g (P1,p @R Pa g, M1 @r M)

(H[gl,.,.,gp]ecf" Ml) Or (H[hh..-,theG;" M2) > g, sgp o ha ez xaxe M1 @ Mz

Since G and G» are finite by assumptions, the bases are finite and the direct products above are actually direct
sums, and it follows that the bottom homomorphism is an isomorphism since the bifunctor — ® g — commutes
with direct sums. O

Finally, to use the cochain cross product isomorphism eq. (4.4.7) to relate the group cohomology of finite
groups G1, G2 to that of their product G = G X G2, we apply the Kiinneth theorem which we will recall now.

4.4.15 Theorem (Kiinneth). Let C,D be cochain complexes over a principal ideal domain R, and suppose that
one of C, D is degreewise flat. Then for any n € Z, there is a short exact sequence
(4.4.8)

0——= @@, o H*(C) @ HI(D)'— H"(C @ D) —= @, ;1 Tort (H?(C), H!(D)) —0

natural in C and D. This sequence splits (but not naturally), and the map n is induced by the inclusion maps
ZP(C)®g Z9(D) — ZPTI(C® D), r@y—zrRy
of cocycles.

Proof. For a proof of this statement for chain complexes instead of cochain complexes, see [HS96, Ch. V, Thm.
2.1]. The statement for cochain complexes follows by viewing a cochain complex (C,d) as a chain complex
(C',0) with C}, =C_,, and 9, = d_,,. O

4.4.16 Corollary. Let R be a principal ideal domain, G1, G5 finite groups and G = G1 X G5 their product.
Then given an R[G1]-module My and an R|Gz]-module My such that at least one of them is flat as an R-module,
we have for allm € Z a split exact sequence

%)

(4.4.9) 0—&P HP(G1, M) ®r HY(G2, M>)

H™(G,M; ®r M>)

ptg=n

> @, gy Tor (HP(Gy, My), H1(G2, My)) 0

natural in My and My, where, if H"(G, M1 @ M) is computed as the cohomology group of the cochain complex
Hompg(g)(P1,e @ P2e, M1 ®r Mz) and H?(Gy, My) and H (G2, M) are computed as the cohomology groups of
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the cochain complexes Hompg(g,)(P1,e, M1) and Hompg(g,)(P2,e, M2), the map ¢ is given in terms of the cochain

cross product eq. by
o([¢] @ [¢]) = [¢ x ¥]

for representing cocycles ¢ € ZP(G1, M), ¢ € Z1(Ga, Ma).
Moreover, if R =k is a field, this exact sequence simplifies to an isomorphism
¢: @ HP(Gy, My) @ HY(Ga, My) = H™(G, My @3 My)
pF+q=n
Proof. This follows immediately by applying theorem with
C := Hompg(g,)(Pr,e, M1), and D :=Homg|g,(P2,e, M2)

and using the isomorphism between C' @ D and Hompg(g)(P1,e @ Pae, M1 @r M) of lemma [4.4.14} observing
that C and D are degreewise finite direct sums of copies of M and Ms, respectively. The final remark follows
from standard properties of the Tor functor and the fact that every module over a field is flat. O

R[G]-modules of the form M; & Ms, where G = G X G2 acts on each summand through the respective
projection p; : G1 x Go — G;, can also be viewed as the direct sum

Mi® My ~M QrR & RQgr Ms

as tensor product R[G]-modules, where R is considered as a trivial R[Gz]-module or a trivial R[G]-module
respectively. Since cohomology functors are additive, we can therefore derive the following version of corol-

lary [4.4.16| for R[G]-modules of that form.

4.4.17 Corollary. Given an R[G1]-module M, and an R[Gs]-module M, for a principal ideal domain R and
finite groups G1, Ga, the cohomology groups of the R|G|-module My & Ms over the product G = Gy X Gy sit in
a natural split exact sequence

@D (H(Gy, M) ©g HY(Go, R)) & (HP(G1, R) @g HY (G, My)) = H™(G, M, & My)

(4.4.10) pra=n
- @ Torf(H?(Gy1, M), HY (G2, R)) @ Tor{ (H?(G1, R), H(G3, M)
pHg=n+1

where, if H*(G, My & Ms) is computed using the resolution Py e ® P3 o, the injection ® is explicitly described
in terms of representing standard cocycles and the cochain cross product eq. (4.4.7) by

([¢] @ [Y]) = [t10 (¢ x ¥)] ¢:G{" = My, :G3' - R

®([¢] ® [¥]) = [tz 0 (¢ x ¥)] ¢:G{" = R, ¢ : G — My

where 11 : M1 ®gp R — M1 @® Ms, 1o : RQr My — My & Ms are the canonical inclusions. If R =k is a field,
this exact sequence simplifies to an isomorphism

P (H?(G1, M) @ H(Ga, k) © (HP(G1, k) @ HY(Ga, My)) > H"(G, My @ My)
p+g=n

Moreover, if [¢] € H*(G, My ® M) is a class represented by a standard 2-cocycle ¢ : G*? —s My & My that is
reducible to standard 2-cocycles ¢1 : G7* — My, ¢o : G52 — My, in the sense that

(4.4.11) o(g1,92) = d(92,91) Vg1 € G1, g2 € Go #(1,1) =0 (¢ normalized)
and
(4.4.12) d(91,91) = j1(d1(91,91)) V1.9 € Ga b(92,95) = Ja(P2(g2,95)) V92,95 € Go

(where j; : M; — My & Ms denote the inclusions) then [¢] is the sum of the images of [¢1] € H*(G1, M) and
(2] € H?(Go, Ms) under

R
——

H(G1, My) ~ H*(Gy, My) @ HO(Ga, R) <> H2(G, My & My)
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and
R
—_—

[
H?*(Go, My) ~ H°(G4, R) @ R H*(Ga, My) — H?*(G, M, © M>)]
In particular,

(4.4.13) [6]=0 < [f1]=0and[ps] =0

Proof. The statement about the existence of the exact sequence follows by applying corollary to the pairs
My and R, and R and M, and taking the direct sum of those two split exact sequences, noting that since R
is flat, the hypotheses of the previous corollary are satisfied. The statement about reducible 2-cocycles follows
from the description of the map ¢ of corollary (signs!) and the combination of corollary with the

properties eq. (4.4.11)) and eq. (4.4.12) (using that for a normalized cocycle ¢(1,g) = ¢(g,1) = 0 for all g).
Finally, eq. (4.4.13) follows from the injectivity of ®. O

4.5 Maps between root data

In this preparatory section, we consider conditions under which there exist Weyl-equivariant maps (in a sense
to be defined)
Rl = (Xl,q);/,Xg/,q);/) — (Xg,@g,Xg/,q)g/) = RQ

between root data Rq and Rs. In particular, such a map should yield a group homomorphism
@Yo - Wo(Rl) — W()(Rg)

and Z-linear maps
p1:X] — Xy and ) : Xy — X

which are equivariant in the sense that

pr(wex) =po(w) e pi(x) and o (po(w)ey) =wep(y)

for all w € Wo(R1), z € X; and y € X3.

There does exist a notion of morphisms between root data (|[DG70, Exposé XXI, 6.1]), but it is very restrictive.
In particular, a morphism between R; and Ry in the sense of [DG70| always yields an isomorphism between
Wo(Rl) and Wo(RQ)

The following definition is more useful for our purposes:

4.5.1 Definition. A frugal morphism ¢ : R; — Ro between root data R; = (X;, ®;, X/, ®/) (i =1,2) is
a Z-linear map

p: X1 — Xy
satisfying
(4.5.1) o(P1) € 02
and
(4.5.2) Va e ®; ¢’ (p(a)Y) =a"

, where ¢V : Xy — X7 denotes the adjoint of ¢ determined by

Vo€ X1, y€X) (2,¢"(y) = (p(2),y)
4.5.2 Lemma. (i) If p: Ry — Ro and ¥ : Ra — R3 are frugal morphisms, then ¢ o ¢ : X1 — X3 defines a
frugal morphism R1 — Ra, and (o )Y = ¥ o)V (as Z-linear maps). In particular, root data form the
objects of a category whose morphisms are frugal morphisms.

(ii) For every frugal morphism ¢ : R4 — Ra, restriction defines an injection

@‘Zq)lc%‘bg
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(#ii) Given a frugal morphism ¢ : R1 — Ra of root data, there exists a morphism
®o0 : Wo(R1) — Wo(R2)
of groups determined by
(4.5.3) ©o(5a) = S4(a) Ya € dy
Moreover, the maps ¢ and @V are equivariant with respect to g in the sense that
p(wex) =po(w)ep(r) and @’ (po(w)ey)=wep’(y)
forallz € Xy and y € Xy
Proof. ad (i): It follows from the definitions that (1) o ¢)¥ = ¥ o 9V. Moreover, clearly (p(®1)) C ®3 and
@ (Y ((e(a))) = ¢ (p(a)") =a” Vae @

Since the identity idx : X — X is obviously a frugal morphism, it follows that this defines the structure of a
category.

ad (ii): Follows immediately from eq. and the fact that the map o — «V is a bijection between roots
and coroots.

ad (iii): First of all, we have

(p(a), p(B)") = (a, 9" (¢(B)")) = (@, BY)
and therefore also
(4.5.4) ord(s,(a)Sp(s)) = ord(sass)

for all a,, 8 € ®;. Chosing a root basis Ay C @4, the pair (Wy(R1), {sa : @ € A1}) is a Coxeter group, and by
the characterization of Coxeter groups via generators and relations it follows from eq. that there exists
a unique morphism

@Yo - Wo(Rl) — WQ(RQ)

satisfying eq. (4.5.3)) for all « € A;. But, since
wsqw ™! = Swia) Yw € Wo(R1), a€ @

and every « € ¥ is Wy(R1)-conjugate to some o € Ay up to a rational multiple, and parallel roots define the
same element of the Weyl group, it follows that eq. holds for all a € ®;.

Finally, the equivariance of ¢V follows formally from the equivariance of ¢, and it suffices to check the
equivariance of ¢ on the generators w = s,, for which they follow from explicit computation

The fundamental example of a frugal morphism is the following:

4.5.3 Lemma. Let Ry and Ry be root data with bases Ay C &1 and Ay C Py, and assume that Ry is reduced
and satisfies X1 = Z (®1). Then, every map

p: A — Py
satisfying
(4.5.5) Va, B € Ay (p(a),¢(B)") = (@, ")

extends uniquely to a frugal morphism
p:R1 — Ro
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Proof. (Cf. [Bou07, Ch. VI, §1.5, Cor. of Prop. 15]) From eq. (4.5.5)) it follows that
ord(s,(a)Sp(s)) = ord(sasp) Vo, € Ay

Therefore, by the characterization of Coxeter groups in terms of generators and relations it follows that there
exists a unique group homomorphism

o : Wo(R1) — Wo(R2)

satisfying o(sa) = S,(a) for all @ € A;. Moreover, since the Z-module is spanned by @1, it follows that A; is
a basis of it. Hence, the map ¢ extends uniquely to a Z-module homomorphism

(pIX1—>X2

, and by assumption this morphism satisfies ¢(a) € @5 for all & € Ay. Now, since Ry is reduced, every S € &,
can be written in the form f = w e o with o € A;. But,

P(sa 0 z) = p(z — (z,0") ) = p(z) — (z,0") p(a)
= p(x) — (p(x), p(alpha)) o(c)
= Sp(a) ® @(x)

for all x € X; and « € Ay, which shows that ¢(®;) C &5 and that ¢ : X; — X5 is equivariant with respect to
o. Here we have used that

(4.5.6) ((x),0()") = (2,0")

for all x € X; and a € Aj, which follows by linearity from the assumption that this equation holds for all
T € A

Moreover, eq. also holds for x € X; and all o € ®;. To see this, note first that for every root datum
‘R the bijection o — «¥ between roots and coroots respects the action of the Weyl group, i.e.

(4.5.7) w(a)Y = (w") Ha") Vaed, weWy(R)

(see [DG70l, Exposé XXI, Proposition 1.2.9] for a proof of this). Now, given any a € ®, use the reducedness of
R1 to write a = w(B) with 8 € A;. Tt then follows that

(@), p(@)”) = {p(@), p(w(B))") = (¢(x), (vo(w)(@(B)))")

for all x € X;. But since we can rewrite eq. equivalently as
(p(x),0(a)") = (2,0") & (2,07 (p(@)")) = (z,a)
, the validity of this equation for all x € X; implies that
0’ (p(@)) =a”

for all o € ®1, showing that eq. (4.5.2]) holds. We have therefore shown that the linear extension ¢ : X7 — Xs
of ¢ : Ay — ®5 is a frugal morphism of root data. Uniqueness is clear. O

Until now, the fact that the Weyl group Wy(R) is a Coxeter group didn’t enter, except in proofs. But of
course, this aspect is very important, and so we need to make up a new definition:

4.5.4 Definition. A root datum together with a choice of a root basis A C ® is called a based root datum.
Given based root data R; = (X;, ®;, X', ®),A;) (i = 1,2), a frugal morphism

@ : Ri— Ro
is called basic if it preserves the chosen root bases, i.e. if

V(A1) C Ay
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4.5.5 Lemma. Given a basic frugal morphism
p:R1 — Ro
between based root data R; = (X;, ®;, XY, @Y, A;), the morphism
©o0 : Wo(R1) — Wo(R2)

defined in lemma is a morphism of Cozeter groups for the canonical structures of Cozeter groups on
Wo(Ri), i.e.

@o(S(A1)) € S(A2)
where

S(A;) ={sa:a €A}
Moreover, @q is isometric, i.e. it preserves the length functions
Vw € Wo(R1) £(po(w)) = £(w)
and (cf. lemma restricts to an isomorphism
o : (Wo(R1), S(A1)) — ((vo(S(A1))), ¢o(S(A1)))
of Cozeter groups.

Proof. Omitted. O
4.5.6 Lemma. Given based root data R; = (X;, ®;, X/, ®),A;) (i =1,2), such that X1 = Z (®1), every map
A — Ay
satisfying eq. extends uniquely to a basic frugal morphism

p:R1 — Ro

Proof. Follows immediately from lemma O

4.6 The theory of Fly-modules

The goal of this section is to review the theory of FIy -modules, and to construct examples associated to the
classical families Ay, By, Cy, Dy of root systems.

The theory of FI-modules (without y/) goes back to Church, Ellenberg and Farb |[CEF15|, and relates to
the earlier theory of representation stability of Church and Farb |[CF13]. Both theories are aimed at providing
a framework in which to establish stability properties for families (G,,)nen of groups that naturally embed
G, — Gpy1 into each other, the most notable example being the family G,, = 5, of symmetric groups.

A representative example of the kind of stability phenomena studied is homological stability. A family
(Gn)nen as above is called (co-)homologically stable with respect to a coefficient group A, if for every fixed
k € IN and all sufficiently large n, the natural map

Hy(Gn, A) — H"Gpy1, A)  (vesp. H*(Gny1, A) — H*(Gy, A))

induced by G,, — G, 41 is an isomorphism. For example, the family of symmetric groups is homologically and
cohomologically stable for all finite abelian groups A by a theorem of Nakaoka [Nak60].

The newer theory of FI-modules algebraizes these stability phenomena, at least for the family (S, )ncn, by
turning them into finiteness properties of the name-bearing FI-modules, more precisely the property of being
finitely generated. Later, the theory of FI-modules was generalized by Wilson [Will4] into the theory of FIyy-
modules, which extends the former by allowing the symmetric groups .S,, to be replaced by the Weyl groups of
any of the classical families Ay, By, Cy, and Dy of root systems.

4.6.1 Definition (|Will4, 1.1]). The category@ FIpc is the (nonfull) subcategory of the category of finite sets
with objects
n:={keZ:1<|k|<n}

28We will write FIp = FIc = FIg¢ for convenience.
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for every natural number n € {0,1,2, ...}, and with morphisms
Hompi,,(n,m) = {f € Homget(n,m) : f injective, f(—a) = —f(a) Va € n}
The category FIp is the subcategory of FIgc with the same objects and
Hompgi, (n,m) = {f € Hompi,.(n,m) : #{i:i >0, f(i) <0} even}
The category F14 is the subcategory of FIp with the same objects and
Hompgy, (n,m) = {f € Hompr, (n,m) : Vii>0= f(i) > 0}

The categories FIx (X € {A, B,C,D}) relate to the corresponding families of root systems X, via the
identifications
Endpr, (£4+1) ifX=A

Wo(Xy) >~
0(Xe) {EndFIX(z) if X € {B,C,D}

These identifications are canonical (even natural), once we have numbered the simple roots of the families X,
coherently. So let us do this.

4.6.2 Remark. In the following, we will describe the root system X, for X € {A, B,C, D} and ¢ a natural
number (> 0 for type A and > 1 for the other ones). In particular, this means (see [Bou07, Ch. VI, §1.1])
giving a Q-vector space V; and a subset ®, C V,. Moreover, we also want to describe a set A, of simple roots
together with a (coherent) numbering. Let us therefore agree that, if we write

] = ...,02 = ...,...,0p = ...

, that this means that Ay = {aq,...,as} with the numbering implied in the notation. Also, ej,es,... denote
the standard basis vectors of the standard vector space relevant to the given context. For convenience, we will
also describe the Weyl group W, = Wy(X,) as a subgroup of GLg(V;) as well as the Cartan matrix

C = (Cij)i<ij<e with Cij = (. o)

each case.
(i) Type A:
Vi={ee@™:) x,=0}
Op={e;—ejitj, 1<ij<l+1}
Q; = €41 — €4
We = S¢r1 (permuting the basis vectors)
2 -1 0 o ... 0 0
-1 2 -1 0 0 0
o -1 2 -1 0 0
¢= 0o 0 -1 2 0 0
0 0 0 0 1 2
(ii) Type B:
V,=Q°

Oy ={te;:1<i<(l}U{te;fte;:i#j 1<i<j</t}
ar=ejand a; =e; —e;_1 for2<3 </
Wy = {£1}* x S, with {£1}¢ acting by multiplication

2 -1 ... 0 0 0 O
2 2 ... 0 0 0 O

2 -1 0 O
-1 2 -1 0

o -1 2 -1
0o 0 -1 2

coc oo
cooco-
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(iii) Type C:
V=@
Bp= {2, 1<i< O U{de;te;ij 1<i<j<(l}
ar=2e;and a; = e; —e;_q for 2 <i </
W, = {+1}* x S, with {#1}* acting by multiplication
2 2 ... 0 0 0 O

-1 2 0O 0 0 0
cC=10 0 2 -1 0 0
0 O -1 2 -1 0
0 O o -1 2 -1
0 O o 0 -1 2
(iv) Type D:
V=@
Oy ={te;tej:i#j, 1<i<j<[t}
ar=e;+egand oy =e; —e;q for2<i </
We={(e:)i e {£1} : [[ei =1} = S
2 0 -1 0 0 O
0o 2 -1 0 0 O
-1 -1 2 -1 0 O
c=]10 0 -1 2 0 o0
0O 0 0 0 2 -1
0O 0 0 0 -1 2
Via the identification
O~ {de;:1<i< )
we therefore have an equality
Wiy ifX=A
4.6.1 End L) =
( ) ndgr, (£) {Wg it X e{B,C,D}

as subgroups of the permutation group of £.

4.6.3 Definition ([Will4] Definition 1.2]). For X € {A, B,C, D}, an FIx-module with coefficients in a ring k
is a functor
FIx — Mod(k)

Because of eq. (4.6.1)), every FIx-module M gives rise to a sequence M, := M(n) of representations of
W,—1 (type A) resp. of W, (type B,C, D). Moreover, for every n > 0, the inclusion

nCn+1

of sets defines a canonical element I,, € Hompy, (n,n + 1), and more generally, for n > m > 0 the inclusion
m C n defines a canonical element I, ,, € Hompr, (m,n), which is also the composition

Imp =1In_101lh_90---0lpi10... 1y
In particular, the sequence M, of representations comes equipped with maps
¢n = M(1,): My, — My
and these maps are equivariant (in the obvious way) with respect to the canonical inclusion
Endgi, (n) — Endpr,(n+1)

A sequence (M, ¢,) with these properties is also called a consistent sequence. Not every such sequence
(M,,, ¢y,) comes from an FIx-module, however there is the following lemma:
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4.6.4 Lemma ([Will4] Lemma 3.4]). A consistent sequence (M, ¢n) of representations of Endpi, (n) is ob-
tained from an Flx-module if and only if for all n > m > 0 the stabilizer

Hypn:={0c € Endpi,(n) : 00, = Lnyn} < Endpr, (n)
acts trivial on the image ¢ n(My) C My, of the map
P = Pn © Pn_10- 0 Pmy1 0 Pm
Let us now show that, for a fixed type X and varying ¢, the root lattices
Qe=2Z% CVy

and coroot lattices
Ql =23 C V'

of the root system X, form an FIx-module. Here, V¥ = Homg(V;, Q) denotes the dual vector space and
o)/ C V,Y denotes the set of dual roots (which is determined by the roots; see [Bou07, Ch. VI, §1.1]).

4.6.5 Lemma. Let X € {A, B,C,D}. For ' > ¢, the map of sets
YN RRAVES WAVY
o; — Oy

s isometric, i.e. it respects the Cartan matrices in the sense that

(e (@), 00,0 (B)Y) = (a, BY) Va,B e g

Moreover, its linear extension to a map of Z-modules

Yoot Qe — Qu

18 equivariant with respect to Wy < Wy, and

e (Qe) C Qo

is invariant under the action of Ipyq1 041 (type A) resp. I ¢ (types B,C, D). Therefore, the consistent sequence
(Qe=1,pe—1.¢) (type A) resp. (Qe, e0+1) (types B,C, D) defines an FIx-module Q) over Z.

Proof. The isometry follows immediately from the description of the Cartan matrices (to be honest, it’s probably
more immediate from the Dynkin graphs; see the diagrams provided in appendix E[) The equivariance of ¢ ¢
follows from lemma since the linear extension ¢ ¢ : QQy — Qg is a basic frugal morphism (for the ‘adjoint’
root data of types X, and Xy) by lemma Now, the invariance of

Voo (Qe) =Z{e; : 1 <i</{} CQp

under the action of Ip4q 41 in type A resp. Iy in the other types is clear, since this group fixed the vectors
e;, 1 <i < €+ 1 of the ambient vector space Q! for type A resp. the vectors e;, 1 < i < £ of the ambient
vector space QY for types B,C, D, and the roots «;, 1 < ¢ < ¢ in both cases lie in the subspace spanned by
these vectors. O

4.6.6 Remark. To avoid confusion, we denote by Q(n) the degree n piece of the FIx-module @, and by Q,
the root lattice in X,. Note that Q(£) = Q-1 in type A, but Q(¢) = Q for the other types.

4.6.7 Corollary. For fized type X € {A,B,C,D} and varying ¢, the coroot lattices Q) together with the
transition maps

v v
Qi = Qitq
af — af

form an FIx-module.

Proof. The same proof as for lemma [4.6.5 works; however, this also follows from the fact that the coroot lattice
is the root lattice in the dual root system (B and C are dual, whereas A and D are self-dual). O
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The main ‘slogan’ of the theory of FIx-modules is that periodicity should be equivalent to the property of
being finitely generated. Let us therefore recall this important notion.

4.6.8 Definition ([Will4] Definition 3.13]). Given an FIx-module M and a subset
sc ] M.
n>0

the span of S—denoted by span,,(S)—is the minimal FI X—submodul@ of M containing S. This module is
also called the FIy-submodule generated by S.
An FIx-module M is called finitely generated, if there exists a finite subset S C ano M, such that

M = span,;(5)

More specifically, M is said to be finitely generated in degree < m if S can be chosen to lie in [ M,.

n<m

The above ‘abstract’ notion of being finitely generated is equivalent to another, more concrete one, which
we are going to explain now.

4.6.9 Definition ([Will4] Definition 3.7]). For a given m > 0, there exists an FIx-module M (m), where
M(m),, := k[Homg1, (m,n)] (free module over k)

with the action of Endgr,, (1) being given by post-composition, and the transition map induced by the natural
map

Hompgy,, (m,n) — Hompr, (Mm,n + 1)
fr—1Iyof
The fundamental property of the modules M (m) is the following:
4.6.10 Proposition ([Will4l Proposition 3.11]). For every m > 0, the ‘forgetful’ functor

Fun(FIx,Mod(k)) — Rep(Endgi, (m))
M — M,,

admits a left adjoint, given by V — M (m) Ok [Endpr  (m)] V', where

(M(m) ®kEnder, (m)) V)n = M(M)n @k(BEndgr (m)] V

with M(m) being a right-k[Endgr, (m)]-module in the obvious way. In particular, for every FIx-module M we
have a canonical bijection
Hompun(FIX ,Mod(k)) (M(m), M) ~ Mm

Using this lemma, one deduces:

4.6.11 Proposition (|[Will4, Proposition 3.15]). An FIx-module M is finitely generated in degree < m if and
only if there exists a (degree-wise) surjection

m

@M(n)@k" —- M

n=0
for some integers k, > 0.

This characterization of being finitely generated is more useful, since allows one to define the notion of being
finitely presented in a straight-forward way:

4.6.12 Definition ([Will4, Definition 3.18]). An FIxy-module M is called finitely presented with generators
in degree < g and relations in degree < r, if there exists a right exact sequence

@;:0 M(”)@k” — @Z:o M(”)QB% — M ——0

for some integers k,,, k!, > 0.

nsy'vn

29The notion of FIx-submodule is the obvious one.
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There is also a notion of degree, at least when k is a field (and in any case for X = A):

4.6.13 Definition (Cf. [NSI8 1.2]). Let k£ be a field. An FIy-module is said to be of degree m, if the
function
n — dimy, M,

agrees with a (necessarily unique) polynomial of degree m, for sufficiently large n.

We come now to the main goal of this section, which is to prepare the ground for applying [NS18, Theorem
1.6] to the FI4-module QV.

4.6.14 Proposition. The FIx-modules Q and QV (over Z) are finitely generated with generators in degree
< 2 and their base change Q @z k, Q¥ @z k is of degree 1 for every field k. Further, for type A the FI -modules
Q and QV is finitely presented with generators in degree < 2 and relations in degree < 2.

Proof. By duality, it suffices to prove everything for ). Now,
rkz Qp = { = tkz Q}

hence the claim regarding the degree is clear. Moreover for ¢ > 2, Q. is generated as a Z[W;]-module by
a1 € Q1 = Q(2) for type A, and by as € Q2 = Q(¢) for the other types. Hence, the map of FIx-modules

(4.6.2) M@2) - Q

sending the canonical element ide € Hompr, (2,2) C M(2)s to the mentioned generator is surjective for all
degree ¢ > 2, and hence it follows that @ is finitely generated in degree < 2. Assume now that X = A. We can
identify Hompr, (2,n) with the set of pairs (7, j) of distinct integers 1 < ¢,5 < mn, ¢ # j. An arbitrary element
of M(2),, is therefore of the form

> Aijlig)  with \j €Z
1<ij<n, i%j

It lies in the kernel of eq. (4.6.2)) if and only if

n

0= Z )\m’(ei — Gj) = Z(Z /\i,j - )\j,i)ei
2%

i=1 ji
which is equivalent to
(4.6.3) Vi > Xig= A
J#i J#i
It follows that the kernel is generated as a Z-module by expressions of the form
D i (i5) + X0, 9)
J#i

with \; j,\j; € Z, j € {1,...,n} — {i} satisfying eq. (4.6.3). But, by applying eq. (4.6.3|) with j instead of i for
some j € {1,...,n} — {i}, it follows that we must have

M =D Nk = Ak = Aij
k£ k]
Hence the kernel is generated as a Z-module by expressions of the form
(i,4) + (4,4)
hence as a Z[S,]-module by the I ,,-invariant element
(1,2) +(2,1) € M(2);2"

Since M(2),, ~ Indi"_'n k (see the remark following [Will4, Definition 3.7]), it follows that for n > 2, the
Z[Sy]-module homomorphism

M(2)n — M(2)n
sending the canonical generator of M(2), =~ Indifln to (1,2) + (2,1) maps surjectively onto the kernel of

eq. (4.6.2) in degree n, hence the morphism
M(2) — M(2)

of FI4-modules sending the generator ida € Hompy, (2,2) to (1,2) + (2,1) maps surjectively onto the kernel of
eq. (4.6.2) in degrees > 2. O
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4.7 The DeConcini-Salvetti resolution

Throughout this section (W, S) denotes a Coxeter group with S countablﬂ Moreover, we assume that a total
ordering S = {s1, S2, ...} has been chosen.

The goal of this section is to recall a free resolution CS, of the trivial Z[W]-module Z found by DeConcini
and Salvetti. Its usefulness for concrete computations rests on the fact that the rank (for #5 < co) grows only
polynomially in #S

sy s = (5 T1) —osh

whereas the rank of the standard resolution grows polynomially in #W
rkzw) Pr = (#W)*

For example, in the case W = S,, of symmetric groups the growth rates would be (n—1)* and (n!)* respectively.
This resolution was originally |CS00| only explicitly stated for finite Coxeter groups, even though it was
remarked [CS00, p. 215] that the construction would carry over with minor modifications to the finitely
generated case (#S < o), without providing details however. The definition in the general finitely generated
case was given later in [MSV12] 2.5] (see also [Sal02]).
We will now state the resolution in the countably generated case, noting that it is easily reduced to the
finitely generated by considering W as the union W = J;—, (s1,..., Sn).

4.7.1 Definition. (Cf. [MSV12| 2.5].) For k € Z, let CS}, be the free Z[W]-module over the set
(4.7.1) Fio i ={'= Ti)iem,i>1 : S2T1 2T 2 ..., #I'=Fk, #(T1) <oo}
of descending flags of cardinality k of subsets I'; of S generating finite subgroups (I';) of W, where the cardinality
of a flag I is defined by
#T = #T; =k

i>1
In particular, #I' < co implies that T'; = @) for 4 > 0. Note also that F = for k < 0.

For k € Z, define the differential
6k : CSk — Csk,1

on basis elements by

(4.7.2) ()= > > > (—1)T:imB) g[rimf)

i>1 Tel; r;—{r}
#U>#0 1 ) 5€WFi
BT Tiy1B8 C Ti—{7}

where I'“™# ¢ Fj,_; is defined by

r; if j<i
7,8 ._ e

(4.7.3) yr=q0—{r} ifj=i
Br;B ifj >

where

(4.7.4) al,i, 7, B) =i L(B)+ Y _#T; + puTs,m)+ Y _o(B,T))
j<i j>i

with

pwlyr)=#{sel;:s <7}
the number of elements of I'; smaller or equal than 7 in the fixed ordering of S and
o(B,T;) == #{(x,y) €T; xT; : 2 <yand f'z3 > B~ yB}
the number of inversions of the map I'; — I'; — {7} given by = — S~ 'z3. Finally,

Wi =g e () s vh e (i = {r})  Ugh) > Ug)}

denotes the set of minimal coset representativeﬂ of the group (T';) with respect to the special subgroup
(L = {7}

30The reader may assume that W is finite, since we only need the resolution in that case. Stating it in greater generality is useful
however, since this allows one to treat e.g. the infinite symmetric group S := Un>1 Sp directly.

31By the theory of Coxeter groups [Bou07, Ch. IV, Exercises §1, Ex. 3|, every such coset contains a unique element of minimal
length.




128 4 NORMALIZERS OF TORI

4.7.2 Notation. A flag I' € F;, with I'; = () for ¢ > n will also be denoted by the expression
2y 2--- 20,
and the basis element of CSy corresponding to I' will be denoted alternatively by

[F] or [F12F223Fn]

For example,

[S]=[920]=[S2020]

all denote the same basis element in CSs, corresponding to the flag I' with T'; = S and T'; = () for ¢ > 0. Also,

=[]

both denote the (unique) canonical basis element of CSy ~ Z[W].

4.7.3 Lemma. The chain complex CS of definition[4.7.1] together with the augmentation map
€:C§ —Z

given in degree zero by

eo(gl]) = elg), g€ZW]

, where ¢ : Z|W]| — Z denotes the augmentation map of the group algebra, is a (free) resolution of the complex
Z (concentrated in degree zero).

Proof. This is proven in [CS00, Theorem 3.1.7] in the finite and in [MSV12, Theorem 8] in the finitely generated
case; the infinite case is easily reduced to this. For example, to prove that it is exact, given an element x € CSy,
with O (x) = 0, there exists a finite subsets S’ C S such that the formula for di(x) only involves flags T with
S'DTy. O

In we described how the map
H*(G',M'") — H*(G, M)

induced by a morphism (¢g,¢1) : (G,M) — (G',M') of the category D (see remark [4.4.5) has a simple
description when using the standard resolution to compute the cohomology groups. A similar situation holds
for the DeConcini-Salvetti resolution, at least when one restricts to morphisms of Coxeter groups:

4.7.4 Lemma. Let (W, S) and (W', S") be Coxeter groups with S and S’ countable, together with total orderings
on S and S’. Moreover, let

wo: W — W'

be a monotonous isometric morphism of Coxeter groups, i.e. a homomorphism of groups such that po(S) C S’
and the induced map

(,D()|S S = S/
is strictly monotonous (i.e. s <t < po(s) < o(t)), and such that the lengths are preserved (‘isometry’), i.e.
Yw e W £(po(w)) = (w)

Then there is a morphism
f:CS — 5(CS)

of chain complexes of Z[W]-modules, where CS and CS’ denote the DeConcini-Salvetti complexes of (W, S) and
(W', 8") (and the chosen total orderings) respectively, compatible with the augmentations defined in lemma
given in degree k on basis elements by

fr(M12T2 2.0 = [po(T'1) 2 1(I'2) 2 ... ]

Proof. Omitted. O
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4.7.5 Corollary. If (pg, 1) : (W, M) — (W', M') is a morphism of the category D of remark such that
wo: W —= W' is as in lemma then the functoriality map
(¢o,01)* : H¥(W',M') — H*(W, M)
is induced by the map
Homz[w/] (CS;C, MI) — Homz[W] (CSk, M)

on cochains sending a cochain « to the cochain o given by

o' (1 2T2 2...]) = pi(a([po(T1) 2 ¢o(T2) 2...]))
4.7.6 Remark. Given a morphism ¢ : W — W’ between Coxeter groups (W,S) and (W' S’) satisfying
»(S) C 5, the condition
Yw e W Lp(w)) = L(w)
is equivalent to
Vs, t € S ord(p(st)) = ord(st)
Moreover, if these conditions are satisfied, then ¢ is necessarily injective and induces an isomorphism of W with
the parabolic subgroups (¢(S)) C W’ of W'.

We can use the resolution CS to compute the cohomology group H?(Wy, XV ®z IF3) for the Weyl group Wy
of a root system (X, ®, XV, ®") as an abstract group. But in order to determine when eq. splits, we
also need to know [¢,] as an element of this group. Hence, we need to explicitly compute a comparison map
between the standard resolution and CS, which we will do now.

4.7.7 Lemma. The map
(4.7.5) fo:CS¢ — P,

of chain complexes of Z|W]- modules between the DeConcini-Salvetti complex CS (definition [{.7.1) and the

standard resolution P (definition for W that is given by the recursion eq. (4.4.5) of lemma ‘4.4.3, the
contracting chain homotopy h of deﬁmtwnm and by requiring that

So(l) =1]
is given up to degree 2 by (for notations see remark and notatz’on

fi(l{s}]) = [s] = [1] s€S

fo({s} 2 {s}] = [s,s] - [ 1+ 1, s] = [1,1] sES
m(s,t)—

E({st)= > (—1) ([prod(t, 5; k), s] — [prod(t, 5; k), 1]
k=0
—[prod(s, t; k), t] + [prod(s,t; k), 1]) s, t€8, s<t

Proof. First, we explicitly compute the differential S on basis elements using eq. (4.7.2). In degree one, a
basis element is of the form [I'] with I' € F; of the form I'y = {s} and I'; = () for ¢ > 0. It follows that

(4.7.6) oM =Y (=1 TEPgIrtef] = s -]
pe{l,s}
in this case (here 7 = s, I'; = {s} and eri"f{T} = W{@s} = {1, s}). In degree two there are two kinds of basis
elements, the ‘degenerate’ ones of the form [['] with T'; = {s} =5 and T'; = @) for ¢ > 1, for which
(4.7.7) B = Y (1) BRBIHF] = [{s}] + s[{s}]
Be{1,s}

and the ‘non-degenerate’ ones of the form [I'] with I’y = {s,t}, I'; =0 for i > 0 and s,t € S with s < ¢ (recall
that we fix a total ordering of S), for which

Z Z (_1)(1(1“,1,7—,[5)5[111,7-,[3]

Te{s,t} ﬁeW{{;f}}’{*}

= > DT+ Y (DT[]

{t} {s}
[fGW{g 0 BGW“ 1}

m(s,t)—1 m(s,t)—1

= Y (DFprod(s,R){ + Y (=1)Fprod(t, s k)[{s}]

k=0 k=0

(4.7.8)
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where we have used that the minimal coset representatives are given by

W{{;};} = {prod(s,t; k) : 0 < k < mf(s,t) — 1} and W{{ i} = {prod(t,s; k) : 0 < k < mf(s,t) — 1}

with
prod(s,t; k) := ...sts

k factors

and m(s,t) = ord(st) < oo equal to the order of st.
Using the recursion eq. (4.4.5)) and the definition eq. (4.7.2) of the differential of CS, it follows from eq. (4.7.6)

that
Fi([{s}]) = ho(fo(B75[{s}])) = ho(fo(s[) = 1)) = Ro(s[] = []) =[] = [1]
From eq. and eq. it follows that

F2([{s} 2 {s}]) = i (£1055[{s} 2 {s}]) = ha(fu(s[{s}] + [{s}]))
= ha(s([s] = [1]) + [s] = [1]) = [s, 8] = [, 1] + [1, 8] = [1,1]

and

(s,t)—1

F([{s.}]) = m(£(05°[{s, 8}])) = 1( ( * (prod(t, s; k)[{s}] - prod(svt;lf)[{t}])))

k=0

m(s,t)—1
= hy ( > (=1)F (prod(t, s; k)([s] — [1]) — prod(s, t; k)([t] - [1])))
= (=1)* ([prod(t, s; k), s] — [prod(t, s; k), 1] — [prod(s, t; k), ] 4 [prod(s, t; k), 1])
4.7.8 Corollary. Given a Z[W]-module M, the induced map

[ - Homgzwy(Pe, M) — Homzy(CSe, M)

on cochains is given in degree two by

f5(@)([{s} 2 {s}]) = é(s,8) — d(s, 1) + ¢(1,5) — #(1,1) ses
m(s,t)—1
(4.7.9) B@{s ) = Y (—1)* (g(prod(t, s;k),s) — ¢(prod(t, s; k), 1)
k=0
—¢(prod(s,t; k), t) + ¢(prod(s, t; k), 1)) s, te s, s<t

In particular, if the 2-cocycle ¢ satisfies
(4.7.10) Vw,w' € W l(ww') = b(w) + L(w') = ¢(w,w') =1
then f*(¢) is given by

f2(@)([{s} 2 {s}]) = (s, 9)

(.71 BOWUst) =0 stes s<t

Proof. Equation (4.7.9)) follows directly from lemmaand the definitions. To see that eq. (4.7.11f) holds, note
first that ¢ is normalized, i.e. ¢(1,w) =0 = ¢(w, 1) for all w € W; this follows immediately from eq. (4.7.10).
Moreover,

L(prod(s,t; k) -t) =k +1=4L(prod(t,s; k) -s) VO<k<m(st)—1

and therefore
¢(prod(s,t;k),t) = 0 = ¢(prod(t, s;k),s) VO <k <m(st)—1

Equation (4.7.9) then follows. O
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4.7.9 Corollary. Let (X,®, XV, ®V) be a root datum and Wy its Weyl group. Fiz a root basis A C ® and a
total ordering A = {o, ..., a4} of the simple roots, and let (Wy,S) = (Wo,{Says---,5a,}) be the corresponding
Cozeter group and CS the DeConcini-Salvetti complex associated to (Wy,S) and the total ordering of S.

The 2-cocycle f3(pu) € Z2(Wo, XY @z IF3) C Homzw,)(CS2, XV ®@z IF3) induced by the standard 2-cocycle
¢, defined in eq. s given by

50 ([{sa} 2 {sa})) =a"®1 a€A
f3(du)([{5a,55}]) =0 a,BeEAN a<fp

Proof. Follows immediately from corollary noting that eq. (4.7.10) is satisfied by remark by re-
mark 1.2l and the fact that

(4.7.12)

XSy Sa) = $a Va €A
by definition of X (see definition [1.7.1)). O

4.7.10 Corollary. Given a basic frugal morphism (see deﬁm’tion

0 (X1, @1, XY, 0, A1) — (X2, Po, Xo, 05, A))
between based root data, the map
(4.7.13) (po, V)"« H*(Wo(R2), Xy @z Fa) — H*(Wo(R1), Xy ®z IF2)

induced by the pair (o, ") (belonging to the category D defined in Temark preserves the canonical classes
[bui] € HX(Wo(Ri), XY @z IF5). Here,

@0 : Wo(R1) — Wo(R2)
denotes the morphism defined in lemmal[{.5.9 and ¢V : Xy — X denotes the adjoint of ¢ : X1 — Xo.

Proof. First, note that by lemma the pair (¢o,¢") really belongs to the category D, i.e. ¢V is equivariant
with respect to ¢g. Moreover, by lemma the morphism g is isometric, i.e. preserves the length functions
of the Coxeter groups. Also, the restriction

(,D‘ : (bl — (I>2

is injective by lemma hence we may chose a total ordering of As and endow A; with the ordering induced
by identifying it with the subset ¢(A;) C As. With these ordering, the maps g is hence a monotonous
isometric morphism of Coxeter groups, and by corollary the map eq. is explicitly described in
terms of cochains of the DeConcini-Salvetti-complexes. Moreover, a (canonical) DeConcini-Salvetti-cochain
representing the class [¢,] is explicitly described in corollary It therefore follows that the image of [¢,, 2]
under eq. is represented by the cocycle f determined by (where a, 8 € Ay)

F([{sa} 2 {s5a}]) = (9" @id)(du2([{v0(sa)} 2 {@0(5a)}]))
= (¢ @1d)(¢u2([{Sp(0)} 2 {50 }])

(¢¥ @id)(p(a)’ @ 1)

(@ (p(a)) @1

o’ @1 =du1([{sa} 2 {s5a}])

(¢¥ @id)(du2([{@o(sa); vo(s5)}]))

= (¢ @1d)(¢u2([{54(a): So(3) }])

= (9" ®id)(0)

= 0= ¢u1([{50,55}])

(p(a)V) = ¥ which holds since ¢ is frugal (see eq. (4.5.2))). Therefore it
f1 = [¢pu.1], and hence the claim follows. O

f({sars5})

where we have used the equality ¢
follows that f = ¢, 1, in particular

\Y%
[
4.8 Discussion of the computational results

We have computed the cohomology groups H*(Wy, XV) and H*(Wy, XV ®@zIFy) = H*(Wy, XV) for k =0,1,2,3
and all sublattices Q¥ C XV C PV of all irreducible reduced root systems of rank ¢ < 8. We have also
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determined, for each such XV, whether the class [¢,] € H?(Wj, XV) vanishes, and—if it doesn’t—whether or
not this class lies in the image of the comparison map

comps : HQ(WO,XV) Rz Fo — H2(W0,ﬁ)

coming from the Kiinneth theorem (see eq. ) The detailed results of these computations are given in the
appendix (appendix [A]).

Let us discuss some conclusions to draw from these computations (in particular, what these imply for the
question of the splitness of eq. ) First of all, it turned out that in all examples computed, the class [¢,]
never lies in the image of comp, unless it is already zero. In particular:

4.8.1 Observation. For the lattices XV considered in appendix [A] the splitting of eq. (4.0.1)) is independent
of the ring k. That is, this sequence either splits for all rings, or it never splits except in the trivial case where
2=0in k.

Proof. This follows from eq. (4.2.6). O

That the splitness of eq. turns out to be independent of the ground ring k£ may not be surprising
morally, given the rigid behaviour of semisimple groups in general. But, this is far from being obvious! Indeed,
before the final resolution of this question for all fields by Adams and He in [AH17], this question had been
decided separately in the case of fields of positive characteristic by Galt in several articles (|Gall5], [Gall4],
|Gall7a], |Gall7b]) using delicate computations.

4.8.2 Observation. We have
(4.8.1) H*(Wy, PY)=0

for all irreducible reduced root systems of rank £ < 8, except for A; and the ones of type B (for which always
HY(Wy, PV) ~ Z/2Z)).

In particular for the former root systems, eq. implies that for every sublattice Q¥ C XV C PV, the
long exact sequence in cohomology induced by the short exact sequence

0 XV P PV/XV — 0

gives a canonical isomorphism

~

PY/XY = HY (W, XV)

Regarding the question of the splitness of eq. (4.0.1)), i.e. the vanishing of the class [¢,] we find in accordance
with |[AH17] that

4.8.3 Observation. For simple root systems up to rank 8, the class [¢,] € H?(Wy, XV) vanishes precisely in
the following cases (where G denotes the corresponding split almost-simple semisimple group):

(i) For type Ay (¢ > 1), when the order of PV/XV (isomorphic to the center of G) is odd or if £ = 3 and
XY = QY +Q for the unique subgroup Q < PV/QV =~ Z/AZ of order 2 (corresponding to G = SLy/{+£}).

(ii) For type By (£ > 2), when XV = PV (corresponding to G = SO(2¢ + 1)).
(iii) For type Cp (£ > 2), when £ =2 and X" = PV (corresponding to G = PSp,).
(iv) For type Dy (£ > 3), when £ is odd and XV = QY + § for a nonzero subgroup

Q< PY/QY = <A7> ~Z/4Z
(corresponding to G = SO(2¢) and G = PSO(2/)). Or, when ¢ is even, and XV = Q" + for a subgroup

Q< PY/QY = <A;_1,A7> ~Z7/27 5 7)2Z

of the form Q = <AEV71> or Q= <TZ> (both corresponding to G = SO(2()) or of the form Q = P¥/QV
(corresponding to G = PSO(2¢)).

Moreover, when £ = 4 also when XV = QY+ with Q = <A§/ + AX> (corresponding to G = Semispin(8)),

because in this case all proper sublattices QV € XV C PV are conjugate under the action of the automor-
phism group of the Dykin diagram (corresponding to the isomorphism SO(8) ~ Semispin(8) provided
by triality).



4.8 Discussion of the computational results 133

(v) For type Gs.

Unfortunately, computations can only ever a finite number of cases, but there are infinitely many irreducible
root systems. The question therefore becomes, can we infer any information about an infinite number of cases
from finitely many?

To answer this question, let’s follow the time-honored tradition of putting things you don’t understand into
tables, and let’s group together all the first cohomology groups H' (W, Q") of the coroot lattices of the root
systems Xy, X € {A,B,C,D}, 1 </{<8:

e A B C D
12 - - -
2 3 2 2 -
3 4 2 2 4
4 5 2 2 2,2
5 6 2 2 4
6 7 2 2 2,2
7 8 2 2 4
8 9 2 2 2,2

Table 2: The invariants of H'(Wy, Q") for the classical root systems.

Here we list in each row the invariants of the finite abelian groups H!(Wy, QV), i.e. the entry 2,2 stands for
the group Z2Z @ Z/2Z. Clearly, all the columns except the first one exhibit periodicity. Let’s now look at the
first cohomology groups of the reductions QV = Q ®z IFa, describing now each group via its dimension as an
IFo-vector space:

S
>
vs]
Q
o

0 N O Ot s W N
O N O N O N O
N W N W N W N
W W W w w w N
=N RN e N

Table 3: The IFo-dimensions of H'(Wy, QV) for the classical root systems.

This time, we see that all columns exhibit periodicity (with period at most two) eventually. Moreover, the
same periodicity can also be observed for the higher cohomology groups:

e A B C D
1 1 - - -
2 0 3 3 -
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Table 4: The IFo-dimensions of H?(Wy, QV) for the classical root systems.

Y4 A B C D
1 1 — —
2 0 4 4 —
3 3 8 10 3

4 0 9 14 17
5 5 15 18 8

6 0 10 19 19
7 6 17 20 10
8 0 10 20 19

Table 5: The IFa-dimensions of H3(Wy, Q) for the classical root systems.

At least for the family Ay, this periodicity phenomenon is explained by the theory of FI-modules and the

following theorem of Nagpal and Snowden:

4.8.4 Theorem. [Let M be a finitely generated FI-module over a field k of characteristic p.] Suppose
that M is generated in degrees < g with relations in degrees < r and has degree §. Let q be the smallest

power of p such that § < p. Then

dimy H' (S, M) = dimy H' (Snsq, Mntq)

holds for all n > max(g + r, 2t + ).
(INS18, Theorem 1.6])

In proposition [1.6.14] we have shown that the root and coroot lattices of the families Ay, By, Cy, Dy naturally
form finitely generated FIy -modules. Moreover, we have shown that the coroot lattices of A, form a finitely
presented FI-module generated in degrees < 2 with relations in degrees < 2 having degree § = 1. Therefore,

we have shown that

4.8.5 Theorem. The dimension

dk(g) = dim||:2 Hk(Sg_,_l, QZ Rz |F2)

of the first cohomology group of the mod 2 reduction of the coroot lattice Q) of the root system Ay is given in

degrees k=1 by
ifl=1

1
di(0) =<0 if£>2, and { even
2 if£>2, and { odd
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in degree k = 2 by

1 ife=1
0 ife=2
dy() =<2 ift=3
0 #fl>4, and l even
3 ifl>4, and { odd
and in degree k = 3 by
1 ife=1
0 ife=2
3 ifl=3
ds(() =<0 ift=4
5 ife=5
0 if€>6, and l even
6 if£>06, and { odd

Proof. The bound of theorem in this case is (t = k in our notation)
max(g+ 7,2k +0) =max(2+2,2k+1) =2k +1
and 1 = § < p = 2. Therefore dj(¢) satisfies
dip(0) =dp(£+2) forl+1>2k+1

The claim then follows from table [3] table d] and table 5} Note, that in the cases k = 2,3 the bound provided
by the theorem of Nagpal and Snowden is optimal. O

From the theorem, the following corollary follows formally.

4.8.6 Corollary. For k =1,2,3 and { even, the group

H*(Se41,QY)
has no 2-torsion.

Proof. By the Kiinneth theorem, for every prime p we have a natural identification

H*(Sp, 1, QZ)(p) ~ H"(Sp41, Qly,(p))

Moreover, again by the Kiinneth theorem, we have a natural injection
H"(Sp41, QY () ®zp) Z/PZ ~ H*(Se11, Q) ®z Z/pZ)

Since the Z(;,)-module Hk(Sg+1,QX(p)) is finitely generated (as Sy4q is finite and Q) is a finitely generated
Z-module), it follows from Nakayama’s lemma that

H(S041,Qf ®2 Z/pZ) =0 = H"(Se11, Q) ) =0
Since we know from theorem that the left hand side vanishes for p = 2 and ¢ even, the claim follows. [J

What about the other families? Unfortunately, there is (yet) no analogue of theorem for FIyy-modules
of the other types, even though table 3] table @] and table [5] highly suggest that it should exist.

Also, what about the other lattices XV, especially the coweight lattice P¥Y? We know from lemma [4.6.5
that the coweight lattices of the classical families—being the duals of the root lattices—form FIj;-modules.
Furthermore, the first cohomology group of the coweight lattices clearly exhibits the same periodicity:
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Table 6: The IFa-dimensions of H'(Wy, PV) for the classical root systems.

In the second and third cohomology groups, the periodicity is still discernible even though less clearly.

~
>
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Table 7: The IFy-dimensions of H2(Wy, PV) for the classical root systems.

£ A B C D
1 1 — — —
2 0 4 4 —
3 2 10 5 2
4 0 14 7 11
5 2 18 6 4
6 0 19 6 8
7 1 20 4 3
8 0 20 4 4

Table 8: The IFo-dimensions of H?(Wy, PV) for the classical root systems.

Unfortunately, there is also no analogue of theorem for FI°’-modules, let alone FI})-modules. Moreover—
now coming back to our original question of the splitness of eq. —even theorem is clearly insufficient
insofar as it only show that certain cohomology groups are isomorphic without providing an actual isomorphism.
In particular, we can’t hope to use theorem to establish the vanishing/non-vanishing of the class [¢,], de-
spite the fact that not only the cohomology groups H2(Wy, XV ®z IFy) clearly become periodic but also the
coefficients of the class [¢,] expressed as a linear combination of the generating cocycles given in appendix
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Given the naturality of [¢,] under basic frugal morphisms (corollary |4.7.10]), we therefore conjecture the follow-
ing:

4.8.7 Conjecture. Given a type X € {A, B,C, D}, let ¢y : Q¢ — Qey1 denote the canonical embedding between
the root lattices of the root systems Xy and Xyy1. Then, for types A, B, and D, the restriction map

H?*(Wo, Q) ®z F2) — H*(Wo, Q) ®z IF2)

(induced by the composition ¢ o o), : Q) 5 — Q) ) is an isomorphism for { sufficiently large.
Furthermore, for type C the restriction map

H*(Wo, Q41 @z F2) — H* (W, Q) ®z IF2)
(induced by ¢} : QZ+1 — Q) ) is an isomorphism for { sufficiently large.

This conjecture gains further plausibility by the fact that the theorem of Nakaoka (|[Nak60]), which is cited
in the beginning of [NS1§|, states that the restriction map

Hk(Sg_;,_l,A) — Hk(Sg,A)

(for A a finite abelian group with trivial action) is an isomorphism of sufficiently large ¢. Moreover, despite the
fact that the periodicity result of Nagpal and Snowden provides no explicit isomorphism, their proofs do involve
a specific connection V defined in terms of the restriction map (cf. [NSI18, Proposition 4.7]). This question is
also acknowledged by Nagpal and Snowden in their introduction [NS18| 1.6] (despite their claim that their main
theorem [NS18, Theorem 1.2] generalizes Nakaoka’s theorem).

A Computational Results
A.1 User’s guide

Before listing the computational results, let us explain how they can be reproduced as well as the form in which
they are presented.

A.1.1 Reproducing the results

For as long as entropy allows, the most convenient way to reproduce the computational results is by downloading
the software from the author’s git repository hosted on GitHub.com, by running

git clone https://github.com/mr—infty/crd.git
cd crd

If that fails, I'm afraid you have to type in the listings in appendix [B| by hand. In any case, once you have all
necessary files, you should edit the file Makefile and in the line

SAGE = /Applications/SageMath/sage

replace /Applications/SageMath/sage with the path to your Sage executable (which you should have
already installed); for example, if Sage is globally available from your command line, then

SAGE = sage
should work. Once you have edited Makefile correctly, you should run
make compute

in the command line, wait one day, and then have the results as KTEX files in your working directory (they
follow the naming scheme cohomology-of _<X>_<1>.tex). You can include these files in another KTEX files
using the command \include{<name-of-the-file>}, but make sure that you have imported the packages
tabu, longtable, bm, float, tikz, and booktabs. Also, you should have defined WTEX macros \Z and \F
producing the symbols Z and IF.

If the computation fails, then you probably have a different version of Sage installed (I tested it with versions
8.1 and 8.2). In this case, please feel free to open a new issue on my GitHub page or write me an email at
zero@fromzerotoinfinity.xyz.
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A.1.2 Description of root systems

For a simple root systems Xy, where X is any of the letters A, B,C, D, E,F,G and 1 < £ < 8 denotes the
rank (= the number of simple roots) of the root system, there is a separate section named ‘Root system X,
The beginning of this section describes the Dynkin diagram of this root system—together with a labelling of
its nodes by positive integers—and its fundamental group PY/QV, which is the quotient of the coweight lattice
PV by the root lattice Q¥ [

The nodes of the Dynkin diagram are in bijection with a set A of simple roots of the root system, and the
labelling of the Dynkin diagram therefore gives a numbering A = {aq,...,as} of the simple roots. The dual
basis AY, ..., A} of the simple roots (determined by AY (a;) = d; ;) gives a Z-basis of P¥, and a set of generators
of PV /QV is described in terms of these ‘fundamental coweights’ AY. More precisely, if it is written that

PY/QV ~Z)dZ® ... Z)dZ
generated by x1,...,2,, € P¥Y mod Q"

this should be interpreted as saying that the map

m
EBZ@Z-—>PV, €, — I;
i=1

induces an isomorphism

@ ze) /(@ dize) = PY/QY

=1

A.1.3 Description of the cohomology groups of sublattices XV

After the description of the Dynkin diagram and the fundamental group of this root system follow the compu-
tations of the cohomology groups for all the sublattices Q¥ C XY C PV as well as for the trivial coefficients Z
and IF5, given in separate subsections.

The coroot lattice XV = QV and the coweight lattice XV = PV are referred to by name, the other sublattices
XV are denoted by the subgroups € of the fundamental groups to which they correspond under the bijection

{QY C XV C sublattice} — {subgroups Q < PV/Q"}
XVi—Q=XY/Q"

These subgroups are denoted by the coefficients of their generators in the given generators x1, ..., z,, of PV /QV,
i.e.

Q= <(,ufl,17"'7/141,m)a ERE (Mn,la"'vlj’n,m)>

denotes the subgroup generated by the elements Zj iz (i=1,...,n).
For every sublattice XV, the corresponding subsection describes the cocycle ¢, (defined in remark ,
the cohomology groups H*(Wy, XV) and H* (W, XV) for k = 0,1,2,3, and the comparison map

compy, : H*(Wy, XV) @z IFy — H*(Wy, XV)
coming from the Kiinneth sequence (see eq. (4.2.5)) for the case k = 2). Here (and later) we use the abbreviation
XV = XY@z,

More precisely, the integral cohomology groups H*(Wy, XV) are described by tables with three columns, where
the first column contains the integer k, the second column contains an abelian group isomorphic to H*(Wy, XV),
written in the form Z/d1Z & ... Z/d,Z, and the third column contains a list of cocycles whose classes generate
H*(Wp, XV) and which corresponds with the second column in the sense that, if ¢y, ..., ¢, is the list of these
cocycles (from top to bottom), then the map

é(l/dil)ei — H*(Wy, XV)
: ei — [¢i]

32gee [Bou07, Ch. VI, §1.9], where they are denoted P(RY) and Q(R"), for the definitions of PV and QV
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is a well-defined isomorphism of abelian groups. More precisely, the cocycles given in the third column are
cocycles (of degree k) of the cochain complex

Homz[wo] (CS., XV)

induced by the DeConcini-Salvetti resolution CS, (see definition [4.7.1)) of the Weyl group Wy of X, for the total
ordering™] of the simple reflections
S ={Says--»Sa,} T Wp

induced by the numbering of the simple roots given by the Dynkin diagram (i.e. sa, < sq; iff i < j). Recall
that CSy, is the free Z[Wy]-module over the set F, of flags I' = (I';);>1 in S of cardinality k, i.e.
SOT12T32..., and Y #Ii=k
i>1
Consequently, it follows that
Homz[WO] (CS., Xv)k = HomZ[WO] (CSk, Xv) ~ Homget (F, XV)

i.e. degree k cochains identify with maps of sets F, — X V. Since F}, is finite, we can also identify degree k
cochains also with formal sums

Z ar [FL ar € XV

I
the corresponding map of sets being I' — ar. We use this identification to denote the generating cochains
¢i € Homgzw,(CSe, X V) by such formal sum, where we use an abbreviated notation for the flags I'. For

example,
4AY[1,2 2 1] + (—4A¥)[1,2 D 2]

would denote the cochain of degree 3 given by the formal sum
z[[] + 2'[I]
where x, 2" € XV are the elements given in terms of the basis AY,..., A} of P¥ D XV by
r=4Ay, 2 = —4A}
and where I', TV € F3 are the flags

I': T1={55%s0}
" T7 = {5a:,5a,}

FQ = {Sal}
I‘I2 = {socz}

The cohomology groups H k(WO,Y\/) of the reduction XV = XV ®z IFy are described in a similar vein, using a

0
0

J v

OT
OT

w> w

table of three columns, but there are some small differences. First, since H ’“(Wo,yv) is an IFs-vector space, it
suffices to denote its dimension (in the second column), which we abbreviate as

R*(XV) := dimg, H* (W, XV)

In the third column, we again give a list of generating cocycles denoted using the abbreviated formal sum
notation x1[['1] + x2[I'2] + .... However, the expressions for the ‘coefficients’ z; strictly speaking don’t denote
elements of XV but rather elements of XV: this is of course to be understood as defining an element of XV by
specifying a lift under the projection pr: XV — XV. For example, the expression

(2AY 4+ AY)[1,3,5 2 3] + AY[2,3 D 2,3]
would denote the degree 4 cochain given by z[T'] + «'[I"] with

and

I': Fl:{sansasvsas} 2 F2:{3a3}

D I3=0
r: Fllz{sazvsaa} 2 FIQZ{SOQ»SO&:;} 2> T 0

ws w
U v

Beware here that although pr is the reduction modulo two, we cannot conclude that
pr(2A) +A3) = pr(A3)

because the summands in the expression 2A} + Ay don’t have to lie in XV.

33Recall from section that the DeConcini-Salvetti resolution depends on a Coxeter group (W, S) as well as a choice of a total
ordering on S.
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A.1.4 Description of the comparison maps comp, : H*(Wy, XV) @z [Fy — H*(Wy, XV)

This concludes the description of the form in which the cohomology groups H*(Wy, XV) and H*(Wy, XV) are
presented in each subsection. The comparison map

compy, : H*(Wy, XV) @z IFy < H*(Wy, XV)

is described at the end of each subsection, by exhibiting the matrix of comp, relative to the lists of generating
cocycles of H¥(Wy, XV) and H*¥(Wj, XV) that are given.

More precisely, if ¢1, ..., d, is the list of generators of H*¥(Wy, XV) and 1, ...,,, is the list of generators
of H¥(Wy, XV), then comp,, is described by the matrix A with m rows and n columns determined by

compy (i) = Y Ajith
j=1

A.1.5 Description of the cocycle ¢, € Z?(Wy, XV)

The cocycle ¢,, is described in the beginning of each subsection, in the following way. If the cocycle ¢, happens
to vanish (this can happen), this is indicated. If ¢, # 0 but its class [¢,] = O vanishes, then a cochain 7 of
degree 1 exhibiting ¢,, as its coboundary

¢y = 0T

is described (using the conventions for describing cochains detailed above).
Finally, if [¢,] # 0, then the class [¢,] € H*>(Wy, XV) is described in terms of its basis expansion relative to
the generating cocycles 11, . .., %, of H?(Wy, XV) described earlier. For example,

[¢u] = (17 1, 1,0, 1)

would mean that
[Pu] = Y1 + b2 + U3 + 15

Moreover whenever [¢,] # 0, is is explicitly stated whether this class lies in the image of the comparison
map comps, or not, and if it doe@ a preimage in H?(Wpy, XV) is described.

A.1.6 Description of the cohomology of W, with trivial coefficients

Lastly, after the subsections describing the cohomology groups (and ¢, and comp;) for all sublattices XV,
follows a subsection that describes the cohomology groups H* (W, Z) and H*(Wj, IF;), using the same notations
conventions as for the groups H*(Wp, XV).

A.1.7 Redundancy in the computational results

The computational results presented below contain some redundance that we have decided to keep for conve-
nience’ sake.

First, since the computation of the zeroth cohomology group is elementary (for H*(Wy, XV)) or even trivial
(for the others, as HO(Wy, XV) = 0, H*(Wy,Z) = Z and H°(Wy, IF3) = IF3), it would not be necessary to list
them. Second, by the duality theory for Tate cohomology |[Bro82, VI.7], it follows that the groups H?*(Wy, Z)
are dual to the second homology groups Ho(Wy, Z), which in turn are dual to the Schur multipliers H?(Wy, C*),
and these have been computed for all finite reflection groups by Ihara and Yokonuma [IY65].

Third, the cohomology groups H*(Wj, IFy) with trivial modular coefficients are easily computed from coho-
mology with trivial integer coefficients using the Kiinneth theorem. Fourth, for the root system Ga the Weyl
group Wy is a dihedral group of order 12, and the cohomology groups H¥(D,,,Z) of the dihedral groups D,,
with integer coefficients are known |[Han93| Proof of Theorem 5.2].

Fourth and final, because of the presence of the automorphism group of the Dynkin diagram, it can happen
that some sublattices Q¥ C X\, Xy’ C PV are isomorphic as Wy-modules, in the sense that there is a group
automorphism g : Wy — Wy and a Z-linear isomorphism ¢; : X\ — X,/ such that

o1(po(w) e z) =wepi(x) Ywe Wy Vo € XY

In other words, the pair (¢g, ¢1) is an object of the category D defined in remark and therefore induces
an isomorphism

H*(Wo, XY') = H*(Wy, X3))

34This case actually never happens.
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, which by remark is given in terms of standard cochains (in degree k) by

Homge, (Wi¥, X)) = Homge (WiF, X)

Al
(410 ¢ p1opop*

Such pairs (¢, ¢1) of isomorphisms between sublattices are provided by the automorphism group of the Dykin
diagram, as follows.
First, the automorphism group of the Dynkin diagram can be identified with the group

Q= {u € Autge(A) : Va,B€ A (ua),u(B)) = (a, 8Y)}

i.e. the subgroup of the group permutations of the set A of simple roots that preserve the Cartan matrix. By
linear extension, every u € {2 gives rise to a Z-linear automorphism of the root lattice @), by permutation of its
basis A. This automorphism is compatible with the action of Wy in the sense that (cf. [DG70, Exposé XXI,
Lemma 6.7.1])

(A.1.2) Uwosou ™ =S, Vo€

By duality, the group Q also acts on the coweight lattice PV = Homgz(Q,Z), and this action preserves the
coroots lattice Q¥ C PY. Concretely, if A = {a,..., o} and AY,..., A} denotes the corresponding dual basis
of PV (i.e. <ozi7 A;’> = 0;,j), then we can identify Q with a subgroup Autse({1,...,¢}) (ie. u(a;) = ay()), and
the action of 2 on PV is determined by

u(A) = AZ(i)

For every sublattice Q¥ C XV C PV and every u € (~2, we then have a pair (¢, 1) as above, providing an
isomorphism between XV and the sublattice u(X"), given by

wo(w) =utowou, ¢ (z):=u(x)

Moreover, from eq. (A.1.2)) it follows that g is an automorphism of Coxeter groups (i.e. it preserves S), and
from corollary [£.7.10] induced isomorphism

H2(Wy, XY @z Fy) = H*(Wy,u(X") @z IF)

preserves the canonical classes [¢,]. In particular, the canonical class in H2(Wy, XV ®z IF3) vanishes iff the
canonical class in H2(Wy,u(X") ®z IF2) vanishes.

As an example, consider the root system X, = D,;. Then A = {ay, a2, a3,a4}, and Q identifies with
Autget ({1, 3,4}). It is then not hard to see that Q acts transitively on the three proper sublattices Q¥ C XV C
PV (corresponding to the exceptional isomorphism SO(8) ~ Semispin(8) given by triality).

A.2 Root system A;

Dynkin diagram

PV/Q¥ ~Z7/2Z

Fundamental gro
ncamental group generated by A} € P¥ mod QY

A.2.1 Cohomology of coroot lattice XV = QV

[¢u] = (1)

does not lie in the image of comp,

k HY(Wy,X") generating cocycles
0 0
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k HX(Wy,X") generating cocycles

1 z/27 2AY[1]
2 0
3 z/2Z7 2AY[12121]

k h¥XV) generating cocycles

0 1 2AY]

1 1 2AY[1]

2 1 2AY[1 D 1]

3 1 2AY[1D1D1]

A.2.2 Cohomology of coweight lattice XV = PV

¢u =0

k HX(Wy,X") generating cocycles

0 0

1 z/2Z AY[1]

2 0

3 z/27 AY[1D21D1]

k h*(XV) generating cocycles

1 AYT)
1 1 AY[1]
2 1 AY[1D1]
3 1 AY[1D1D1]




A.3 Root system A,

A.2.3 Cohomology with trivial coefficients

143

k H*(W,,Z) generating cocycles
0 /A I

1 0

2 z/2Z7 [1D1]

3 0

k  h*(Fy)  generating cocycles

1 1 [1]
2 1 [1D1]
3 1 1D2121]

A.3 Root system A,

Dynkin diagram

Fundamental group

PY/Q¥ ~7/3Z

generated by Ay € P¥ mod QY

A.3.1 Cohomology of coroot lattice XV = QV

¢ = OT with 7= (AY + AY) [1] + (A + AY) [2]

k HX(Wy,X") generating cocycles
0 0

1 7/37 (AY —24Y) [2]

2 0

3 0

k h¥XV) generating cocycles

0 0

1 0
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k h*(XVY) generating cocycles

A.3.2 Cohomology of coweight lattice XV = PV

¢, = OT with 7 = A}/[l] + A; [2]

k HX(Wy,X") generating cocycles

0 0
1 0
2 0
3 Z/3Z AY[1,2 D 2]

k h*(XV) generating cocycles

0 0
1 0
2 0
3 0

comp, () ( O 0

A.3.3 Cohomology with trivial coefficients

k Hk (Wo,Z) generating cocycles
0 y/A 1
1 0

2 z/27 1D1]+(-1)[222]+[1,2]
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k H*(W,,Z) generating cocycles
3 0

k  h¥(Fy)  generating cocycles

0 1 1]

1 1 (1] +[2]

2 1 121]+[222]

3 1 [12121]+[22222]

A.4 Root system Aj

Dynkin diagram

PV/Q¥ ~Z/4Z

Fundamental grou
group generated by AY € PY mod QY

A.4.1 Cohomology of coroot lattice XV = QV

[¢u] = (1,0)

does not lie in the image of comp,

k HX(Wy,X") generating cocycles

0 0

1 Z/AZ (AY —2A) [3]

2 z)2Z AAY[1 D 1]+ (—4AY) [2 D 2] +4AY[1,2] + (—2AY) [3 D 8] + (—2AY +4AY) [1,3] +
(—2AY +6AY — 6AY) [2,8]

3 z/2Z 4AY[1,8 D 1] +2AY[1,8 D 8] + (—2AY + 243 — 2AY) [1,2,3]

k hX(XV) generating cocycles
0 1 4AY ]

1 2 (AY +24¥) [1]
4AY[1] + 4AY[2] 4 4AY [3]
2 2 (AY +2AY) [1 2 1]+ (AY + AY +3AY) [1,2] + (AY +2AY) [1,3]

4AY[1 D 1] +4AY[2 D 2] +4AY[3 D 3]
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k h*(XVY) generating cocycles
3 3 (AY +2A) [1 212 1]+ (AY + AY) [1,2 D 1] + (A3 +6AY) [1,2 D 2] + 4A¥[1,3 D 3] +

(AY +AY) [1,2,3]
4AY[1D1D1]+4A¥[2D2D 2] +4AY[3D3 D 3]

(AY +6AY)[3 23 28] +4AY[1,8 2 8]+ (AY +2A¥) [2,8 D 2] + (AY + AY) [2,3 2 8] +
(AY +AY) [1,2,3]

k 0 1 2

om0 () ()

_ O =W

A.4.2 Cohomology of lattice XV corresponding to Q = ((2))

Pu

= Or with 7 = (A} + AY) [1] + (AY + 2AY) [2] + (AY + AY) [3]

k HX(Wy,XY) generating cocycles

0 0
1 z/27
2 z/27

(A3 —2AY) [3]

2A¥[1 D 1]+ (—2AY) [2 D 2]+ 2A¥[1,2] + (—AY) [8 D 8] + (—AY +2AY) [1,3] +
(=AY +3AY - 3AY) [2,8]

3 Z2ZOZ)2Z (20 - AY)[1,8 23]+ (—AY + AY — AY) [1,2,3]

2AY[1,8 2 1] + AY[1,8 2 3] + (—AY + Ay — AY) [1,2,3]

k h¥XV) generating cocycles
0 1 2A¥ (]
1 2 AY[1] + 2AY [2] + 2AY [3]
2AY [1] + 2AY [2] + 2A4 [3]
2 3 AY[1 2 1]+ 2082 D 2] + (AY + AY + AY) [1,2] + 24 [3 D 3]
2AY[1 D 1]+ 2AY[2 D 2] + 2AY[3 D 3]
AY[1,3]
3 4 AY[12121]+20Y[2222 2]+ (AY +AY) [1,2 D 1] + (AY +2A¥) [1,2 D 2] +2A¥[3 23 D 3] +

(AY +AY) [1,2,3]
2AY[1 D12 1]+2A¥[2D2D2]+2AY[3D3 D 3]
A3[1,2 D 1] +2A5[1,2 D 2] + AJ[1,2,3]

AY[1,8 2 1] +2AY[1,8 2 3] + (AY + AY + AY) [1,2,3]
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kK 0 1 2 3
10

comp, () (! 1 bo
P 1 0 10
0 1

A.4.3 Cohomology of coweight lattice XV = PV

¢ = Or with 7= AY[1] + (A] + AY) [2] + AY[3]

k HY(Wy,X") generating cocycles

0 0

1 0

2 Z/2Z Ay 2 1]+ (=AY) [2 2 21+ AY[1, 2]+ (—AY) [3 2 3]+ (AY — AY + AY) [1,8] + (AY — AY) [2,8]
3 Z/AZ AY[1,8 2 1]+ (=AY + AY) [1,8 2 3] + (—A¥) [2,8 2 2] + (—AY +AY) [2,8 D 8] +

(—AY +AY - AY) [1,2,3]

k hk (XV) generating cocycles

0 0
1 1 AY 1]+ AY[2] + AY[3]
2 2 A1 2 1]+ AY[2 D 2]+ AY[8 23] + (AY + AY) [1,8] + (AY + AY) [2,3]
AY[1,2]
3 2 Af[1D121]+A5[22222]+AY[32323]+A{[1,3D 1] +AJ[1,3 D3] +A[2,3D2] +

(AY +AY) [2,3 2 3] + AY[1,2,3]

AY[1,83 21]+AY[1,8 2 3] + (AY + AY + AY) [1,2,3]

A.4.4 Cohomology with trivial coefficients

k H*(W,,Z) generating cocycles

0 y/A 0

1 0

2 z)2Z 121+ (-1)[222]+[1,2]+(-1)[32 3]
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k HX(W,,2Z) generating cocycles

3 z/27Z [1,3D1]+[1,3 23]+ (-1)[1,2,3]

k  h¥(IF;)  generating cocycles

0 1 i
1 1 (1] + [2] + [3]
2 2 1D1]+[2D2]+[3 D3]
(1,3]
3 3 [1D2121]+[22222]+[32323]

(1,3 21]+[1,3 2 3]

(1,2,3]

A.5 Root system A,

O O
1 2

w O
= O

Dynkin diagram

PY/QY ~7/5Z

Fundamental gro
ncamental group generated by AY € P¥ mod QY

A.5.1 Cohomology of coroot lattice XV = QV

¢, = OT with 7=
(AY +6AY) [1] + (AY + Ay + 8AY) [2] + (AY + 3AY) [3] + (AY + 3AY) [4]

k HX(Wy,X") generating cocycles
0 0

1 Z/57 (AY —2AY) [4]

2 0

3 0

k h¥XV) generating cocycles
0 0

1 0
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k

h*(XY)

generating cocycles

A.5.2 Cohomology of coweight lattice XV = PV

Pu

= Or with 7 = AY[1] + (A + AY) [2] + (A + AY) [3] + AY [4]

k HX(Wg,XY)

generating cocycles

0 0

1 0

2 0

3 0

k h¥XV) generating cocycles
0 0

1 0

2 0

3 0

A.5.3 Cohomology with trivial coefficients

k HX(W,,Z) generating cocycles

0 y/A 1

1 0

2 z)2Z P21+ (D[222]+[1,2]+(-1)[3 23]+ (-1)[4 2 4]

3 Z/22 (1,3 21]+[1,3 23]+ (=1)[1,2,3] + (-1) [1,4 D 1]+ (~1) [1,4 2 4] +
(71) [254 2 2] + (71) [21 2 4] + [13 354] + [273 4]




150 A COMPUTATIONAL RESULTS
k  h*(Fz)  generating cocycles
0 1 1]
1 1 (1] + [2] + [3] + [4]
2 2 [121]+[222]+[323]+[424]
(1,3] + [1,4] + [2, 4]
3 3 12121]+[22222]+[32323]+[42424]

[1,321]+[1,3 28]+ [1,4 2 1]+ [1,4 2 4] +[2,4 2 2] +[2,4 2 4]

[1,2,3] +[2,3,4]

A.6 Root system Aj;

Fundamental group

Dynkin diagram

O O
1 2

w O
=~ O
O

PY/QY ~Z/6Z
generated by AY € PY mod QY

A.6.1 Cohomology of coroot lattice XV = QV
[¢u] = (1,0,0)
does not lie in the image of comp,
k HX(Wy,X") generating cocycles
0 0
1 Z/6Z (AY —24Y) [5]
2 z/)27 6AY[1 D 1]+ (—6AY) [2 2 2] + 6AY[1,2] + (—6AY ) [8 2 3]+ (—6AY) [4 D 4] + (-3AY) [5 2 5] +
(=3AY +6AY) [1,5] + (3AY — 6AY) [2,5] + (3AY — 6AY) [8,5] + (—3A¥ +9AY — 9AY) [4,5]
3 ZNRZLOL/2Z  (A] —2AY)[1,5 2 1]+ (—AY —10AY) [2,5 D 2] + (—6AY) [2,5 2 5] + (—AY —4AY) [1,2,5] +
(=AY —10AY) [8,5 2 8] + (—AY + 2Ay — 7AY) [3,5 2 5] + (6AY — 6AY) [2,4,5] +
(AY +4AY — 4AY +4AY) [3,4,5]
6AY[1,3 D 1]+ 6AY[1,3 D 8] + (—6AY) [1,2,3] + (—6AY) [1,4 D 1] + (—6AY) [1,4 D 4] +
(—6AY) [2,4 2 2] + (—6AY) [2,4 D 4] + 6AY[1,3,4] + 67} [2,8,4] + (—6AY) [1,5 D 1] +
(=3AY) [1,5 2 5] + (—6AY) [2,5 2 2] + (—3AY) [2,5 2 5] + (—6AY) [3,5 2 8] +
(=3AY) 18,5 2 5] + (—3AY +6AY) [1,8,5] + (—3AY + 9AY — 9AY) [1,4,5] +
(=3AY +9AY —9AY) [2,4,5] + (3AY — 3AY + 3AY) [3,4, 5]
k h¥XV) generating cocycles
0 1 6AY[]
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k hX(XVY) generating cocycles
1 2 (AY +2A¥) [1]
6AY [1] + 6AY [2] + 6AY [3] + 6AY [4] + 6AY [5]
2 3 (AY +208) [1 2 1] + (AY + AY +3AY) [1,2] + (AY + 10AY) [2,5] + (AY +8AY) [3, 5]
6AY[L D 1] +6AY[2D 2] +6AY[3 D 3]+6AY[4D 4] +6AY[5D 5]
6AY [1,3] +6AY[1,4] + 6AY [2,4] + 6AY [1,5] + 6AY [2, 5] + 6AY[3, 5]
3 5 (A +208) [1 212 1]+ (AY +AY) [1,2 2 1] + (A + AY +5AY) [1,2 D 2] + (AY +2AY) [1,2,8] +

(AY +10AY) [2,5 2 2]+ (AY + 10AY) [3,5 2 8] + (Ay +8AY) [3,5 2 5] + (AY +2AY) [1,3,5] +
(AY +AY) [2,8,5] + (AY + AY +7AY) [3,4, 5]
6AY[1D21D1]+6AY[2D2D2]+6AY[3D32D3]+6AY[4D42D4]+6A)[52D52D5]

(AY +20%) [1,8 2 1] + (AY + AY + AY +6AY) [1,2,8] + (AY + AY) [1,3,4] + (AY +4AY) [1,3,5]

(AY
6AY[1,3 D 1] +6AY[1,3 D 3] +6AY[1,4D 1] +6AY[1,4D
52

+6AY[2,4 D 2] +6AY[2,4D 4] +
6AY[1,5 D 1] +6AY[1,5 D 5]+ 6AY[2,5 D 2] + 6AY[2, )

4]
5] + 6A7 [3, 533]+6AV[3 5]

6AY[1,2,38] + 6AY[2,3,4] +6AY[3,4,5]

k 0 1 2 3
10
1 1 0 0
compy, () (0) 1 0 1
0 1
0 1

A.6.2 Cohomology of lattice XV corresponding to Q = ((3))

¢u = Or with 7= (A} +4AY) [1] + (Ay + AY + 2AY) [2] + (AY + Ay +2AY) [3] +
(A +A5) [4] + (A + AS) [5]

k HX(Wy,X") generating cocycles

0 0

1 Z/37 (AY —2AY) [5]

2 0

3 z)27 3AY[1,3 2 1] +3AY[1,3 2 8] + (—3AY) [1,2,3] + (—=3AY) [1,4 D 1] + (-3AY) [1,4 D 4] +
(- 3A5) [2,4 2 2] + (—3AY) [2,4 D 4] + 3AY[1,3,4] + 3AY[2,3,4] + (-AY) 1,6 D 1] +
(-AY) [1,5 2 5] + (—AY) [2,5 2 2] + (—A¥) [2,5 2 5] + (—AY —4AY) [3,5 2 3] +
(=AY —2AY) [3,5 2 5] + (—AY + AY — 2AY +3AY) [1,3,5] + (—AY + AY —2AY) [2,3,5] +
(=AY +3AY = 3AY) [1,4,5] + (—AY +3AY — 3AY) [2,4,5] + (AY +2A% — 2AY +2AY) [3,4, 5]

k h¥XV) generating cocycles

0

0
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k h*(XVY) generating cocycles
1 0
2 1 (AY +AY) [1,8] +3AY [1,4] + 3AY [2,4] + (AY + AY) [8,4] + AY[1,5] + AY[2,5] + (A +4AY) [3,5] +
A5[4,5]
3 2 AY +20Y) (1,3 2 1] + (AY + AY + AY +3AY) [1,2,3] + (AY + AY) [1,3,4] + 3AY[2,8,4] +

AY
AY
AY
A
A
Ag

(
(
(
(
(
(
(

+4AY) [2,3,5] + (AY +4AY) [3,4,5]

+AY)[1,8 2 1] +3AY[1,8 2 3] + AY[2,3 D 2] + (AY +4AY) [2,3 D 3] +

+AY +AV)[1,2,3]+3A5V[1,4Q1]+3A§[1,4Q4]+3A5V[2,4Q2]+3Ag[2,4g4]+

+A5) [1,3,4] + AY[2,3,4] + AY[1,5 D 1] + AY[1,5 D 5]+ AY[2,5 D 2] + AY[2,5 D 5] +

+4AY) [8,5 2 8] + (AY +4AY) [8,5 2 5] + (AY + AY + AY) [1,8,5] + (AY + AY +2AY) [2,3,5] +
+AY +AY) [1,4,5] + (AY + AY + AY) [2,4,5] + (AY +4AY) [3,4,5]

A.6.3 Cohomology of lattice XV corresponding to Q = ((2))

[(;Su] = (17170)

does not lie in the image of comp,

k HX(Wy,XY) generating cocycles

0 0

1 z/)27 (AY —2AY) [5]

2 z/)2Z 20Y[1 2 1]+ (—2AY) [2 D 2] + 2AY[1,2] + (—2AY) 32 3] + (—2AY ) [4 D 4] + (-AY) [5 2 5] +
(=AY +28Y) [1,5] + (AY — 2AY) [2,5] + (AY — 2AY) [3,5] + (—AY +3AY —3AY) [4,5]

3 ZN2ZOZ)2Z  (AY —2AY)[1,5 2 1]+ (—AY —2AY) [2,5 2 2] + (—2AY) [2,5 2 5] + (—AY) [1,2,5] +
(=AY —2AY) [3,5 2 8] + (=AY +2AY — 3AY) [3,5 2 5] + (2AY — 2AY) [2,4,5] + A3 [3,4,5]
2AY[1,3 2 1] +2AY[1,3 2 3] + (—2AY) [1,2,3] + (—2AY) [1,4 2 1] + (—2AY) [1,4 D 4] +
(—2AY) [2,4 2 2] + (—2AY) [2,4 D 4] + 2AY[1,3,4] + 27} [2,8,4] + (—2AY) [1,5 2 1] +
(=AY) [1,5 2 5] + (—2AY) [2,5 2 2] + (—AY) [2,5 2 5] + (—2AY) [8,5 2 3] +
(-AY)[3,5 2 5] + (—AY +2AY) [1,8,5] + (—AY +3AY —3AY) [1,4,5] +
(=AY +3AY = 3AY) [2,4,5] + (AY — AY + AY) [3,4,5]

k h*(XV) generating cocycles

0 1 2AY)

1 2 AY[1] 4+ 2AY[2] + 2A7 [3] + 2AY [4] + 2AY [5]

2AY [1] + 2AY [2] + 2AY [3] + 2A7 [4] + 2AY [5]
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k hX(XVY) generating cocycles
2 3 A;[lg1]+2Ag[222]+(A1V+A2V+Ag)[1,2]+2A§[3Q3]+2A§[4;4]+2Ag[5;5]+

(AY +2AY) [2,5] + AY[3,5]

2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4] +2AY[5 D 5]

AY[1,8] + (AY + AY) [2,8] + 247 [1,4] + 247 [2,4] + (AY + AY) [3,4] + 2AY[1, 5] + 2AY[2, 5] + AY[3, 5]
3 5 AYID1D1]+20Y 22222+ (AY +AY) [1,2 2 1]+ (AY + AY + AY) [1,2 2 2] +

2AY[3 D3 D 3]+Ay[1,2,3]+2AY[4 D 4 D 4] +2A)[2,3,4] +2A)[5 D5 D 5]+(AX+2A§) [2,5 D 2]+
(AY +2AY) [3,5 2 8] + AY[3,5 D 5] + AY[1,3,5] + (AY + AY) [2,3,5] + (A + AY +AY) [3,4,5]

2AY[1D12D1]+2AY[2D22D2]+2AJ[3D232D3]+2AY[4D42D4]+2A/[52D5D5]

(AY +AY +4AY) [2D22 2]+ (AY +AY) [1,2 D 1]+ (AY + AY +AY) [1,2 D 2] +
(AY +AY +AY) [2,8 2 2] + (AY + AY +3AY) [2,8 D 3] + A [1,2,3] + 2AY[2,3,4] +
(AY +2AY) [2,5 2 2] + 2AY[3, 4, 5]

AY[1,3 D 1] +2A7[1,3 D 3] + (A{+Ag +A3V+2A5V) [1,2,3] +2AY[1,4 D 1] +2AY[1,4 D 4] +
2AY[2,4 2 2] +2A3[2,4 D 4] + (AY + AY) [1,8,4] + 2AY[1,5 2 1] + 2AY[1,5 D 5] + 2A3[2,5 2 2] +
2AY[2,5 D 5] +2AY[3,5 D 3] +2AY[3,5 D 5] + AY[1, 3, 5]

AY[1,8 2 1)+ (AY +AY) 2,8 2 2] + (AY +3AY) [2,3 2 8] + (AY + AY +2AY) [1,2,3] +

(AY +AY) [1,3,4] + (AY +3AY) [2,3,4] + (AY +2AY) [3,5 2 3] + AY[3,5 2 5] + (AY + AY) [1,3,5] +
(AY +AY) [2,3,5] + (AY +AY +AY) [3,4,5]

k 0 1 2 3
0 0
1 1 0 0
e 00 [
1 0

A.6.4 Cohomology of coweight lattice XV = PV

¢ = Or with 7 = AY[1] + (AY + AY) [2] + (AY + AY) [3] + (AY + AY) [4] + AY[5]

k HX(Wy,X") generating cocycles

0

w

0

z/27

AY[1,8 211+ AY[1,8 28]+ (-AY) [1,2,3] + (—AY) [1,4 D 1] + (—AY) [1,4 D 4] +

(-AY) (2,42 2]+ (—AY) [2,4 D 4] + AY[1,8,4] + A [2,8,4] + (—AY) [1,5 2 1] +

(-AY) [1,5 2 5] + (—AY) [2,5 2 2] + (—A¥) [2,5 2 5] + (—AY) [8,5 2 8] + (-AY) [3,5 2 5] +
(—AY + A =AY +AY) [1,8,5] + (—AY + AY) [2,8,5] + (AY — AY) [1,4,5] + (AY — AY) [2,4,5] +
AY[3,4,5]
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k h*(XVY) generating cocycles

0 0

1 0

2 1 AY[1,3] + AY[1,4] + AY[2,4] + AY[1,5] + AY [2,5] + AY[3, 5]

3 2 AY[1,3D 1]+ AY[1,3 D3] +AY[1,4 D 1]+ A [1,4 D 4] +AY[2,4 D 2] +AJ[2,4 D 4]+ Ay [1,5 D 1] +

AML5;Q+Ay152m+AMzsgm+AH&5;m+AH&5;m+@W+A§+Mjm&a+
(AY +AY +AY) [2,3,5] + (AY + AY +AY) [1,4,5] + (AY + AY +AY) [2,4,5]

AY[1,2,3] + AY[2,3,4] + AY[2,3,5] + AY[1,4,5] + AY [2,4,5] + AY[3,4, 5]

A.6.5 Cohomology with trivial coefficients

k HX(W,,Z) generating cocycles
/A I
1 0
2 727 21+ (-1)[222]+[1,2]+(-1)[32 3]+ (-1)[4 D2 4]+ (-1)[5 2 5]
3 z/2Z7 [1,321]+[1,323]+(-1)[1,2,3] + (—-1)[1,4 D 1] + (—1)[1,4 D 4] +
(1) [2,4 2 2] +(~1)[2,4 D 4] +[1,3,4] + [2,3,4] + (1) [1,5 D 1] + (=1) [1,5 2 5] +
(-1)[2,5 2 2]+ (~1)[2,5 D 5] + (—~1)[3,5 D 3] + (~1) [3,5 D 5] + [3,4, 5]
k  h¥(IFy)  generating cocycles
1 i
1 1 (1] + [2] + [3] + [4] + [5]
2 2 1D1]+[2D2]+[3D23]+[4D4]+[52D5]
[1,3] + [1,4] + [2,4] + [1,5] + [2, 5] + [3, 5]
3 4 [1D2121]4+[22222]+[32323]+[42424]+[525 2 5]
1,321]+[1,8238]+[1,421]+[1,424] +[2,4D 2] +[2,4D4]+[1,5 D 1]+ [1,5 D 5] +
(2,5 D 2]+ (2,52 5] +[3,5 23] +[3,5 D 5]

(1,2,3] +[2,3,4] + 3,4, 5]

(1,3,5]




A.7 Root system Ag 155

A.7 Root system Ag

@)
2 O
w O
)
SN,
>0

Dynkin diagram

PY/QY ~Z)7Z

Fundamental grou
group generated by Ay € PY mod QY

A.7.1 Cohomology of coroot lattice XV = QV

¢, = Ot with 7 = (A} + 8AZ) [1] + (AY + Ay + 10Ag) [2] +
(Ay + A3 +12A8) [8] + (A5 + Af + 14A¢) [4] + (A5 +5A¢) [5] + (A5 + 5A4) [6]

k Hk(Wg, XY) generating cocycles
0 0

1 Z/77 (A —2A¢) [6]

2 0

3 0

k h¥XV) generating cocycles

0 0
1 0
2 0
3 0

comp, () 0 0 0

A.7.2 Cohomology of coweight lattice XV = PV

¢y = OT with 7 =
AY[I] 4 (AY + AY) [2] + (A + AY) [8] + (A3 + AY) [4] + (A) + A) [5] + A¢[6]

k HX(Wy,X") generating cocycles

0 0

1 0

2 0
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k HYX(W,y,XY)

generating cocycles

3 0

k h*(XVY) generating cocycles
0 0

1 0

2 0

3 0

A.7.3 Cohomology with trivial coefficients

k HX(W,,Z) generating cocycles
0 y/A I
1 0
2 z/27 21+ (D222]+[1,2]+(-1)[B23]+(-1)[4 24+ (-1)[5 2 5] + (-1)[6 2 6]
3 z)2Z [1,321]+ (1,32 3]+ (-1)[1,2,3] + (-1)[1,4 D 1]+ (-1)[1,4 D 4] +
(-1)[2,4 2 2]+ (1) [2,4 2 4] +[1,3,4] + [2,3,4] + (-1) [1,5 2 1] + (-1) [1,5 2 5] +
(_1) [275 2 2] + (_1) [275 2 5] + (_1) [375 2 3] + (_1) [375 2 5] + [3747 5] +
(_1) [176 2 1] + (_1) [176 2 6] + (_1) [276 2 2] + (_1) [276 2 6] + (_1) [3’6 2 3] +
(_1) [3a6 2 6] + (_1) [4a6 2 4] + (_1) [456 2 6] + [47 5a6]
k  h¥(Fz)  generating cocycles
1 1l
1 1 [1] + [2] + [3] + [4] + [5] + [6]
2 2 121]+[222]+[3238]+[424]+[525]+[62 6]
(1,3] + [1,4] + [2,4] + [1,5] + [2, 5] + [3,5] + [1, 6] + [2, 6] + [3, 6] + [4, 6]
3 4 12121]+[22222]+[32323]+[42424]+[562525]+[62602 6]
[ ] [2,4D 2] +[2,4D 4]+ [1,5 D 1] +[1,5 D 5] +
1,6 1] +[1,6 2 6] +[2,6 D 2] +[2,6 D 6] +

(1,2,3] +[2,3,4] +[3,4,5] + [4,5, 6]

[1,3,5] 4 [1,3,6] +[1,4, 6] + (2,4, 6]
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A.8 Root system A;

Dynkin diagram

Fundamental group

O O O O O O O
1 2 3 4 5 6 7

PY/QY ~7Z/8Z
generated by AY € P¥ mod QY

A.8.1

Cohomology of coroot lattice XV = QV

[¢u] = (1707 O)

does not lie in the image of comp,

k

H%(Wy,X") generating cocycles

—_

[\

3

0
Z/87

z)27

722 02/22

(AY —207) [7]

8AY[1 2 1]+ (—8AY) [2 2 2] + 8AY[1,2] + (—8AY) [8 2 8] + (—8AY) [4 D 4] + (-8AY) [5 2 5] +
8AY) 6 2 6]+ (—4AY) [7 2 7] + (—4A¢ +8AY) [1,7] + (4AY — 8AY) [2,7] +
AN — 8AY) [3,7] + (4A¢ — 8AY) [4,7] + (4AY — 8AY) [5,7] + (—4AY + 12A) — 12AY) [6,7]

6

AY —2AV) [1,7 2 1]+ (=AY — 14AY) [2,7 D 2] + (—8AY) [2,7 2 7] + (—AY — 6AY) [1,2,7] +
—14AY) 8,7 2 8] + (—8AY ) [3,7 2 7] + (—AY — 14AY) [4,7 D 4] + (-8AY ) [4,7 2 7] +
—14AV) [5,7 2 5] + (—AY +2AY —9AY) [5,7 2 7] + (8AY — 8AY) [2,6,7] +

8AY —8AY) [3,6,7] + (8AY — 8AY) [4,6,7] + (AY +6AY — 6A{ + 6AY) [5,6,7]

(-

(

(

(=

(—A

(

8AY[1,3 2 1] +8AY[1,3 2 8] + (—8AY) [1,2,3] + (—8AY) [1,4 D 1] + (—8AY) [1,4 D 4] +
(—8AY) [2,4 2 2] + (—8AY) [2,4 D 4] + 8AY[1,3,4] + 8AY[2,3,4] + (—8AY) [1,5 D 1] +
(=8AY) [1,5 2 5] + (—8AY) [2,5 2 2] + (—8AY) [2,5 2 5] + (—8AY) [3,5 2 3] +

(—8AY) [3,5 2 5] +8A7[3,4,5] + (—8AY) [1,6 2 1] + (—8AY) [1,6 2 6] + (—8AY) [2,6 2 2] +
(—8AY) [2,6 2 6] + (—8AY) [3,6 2 3] + (—8AY) [3,6 D 6] + (—8AY) [4,6 D 4] +

(—8AY) [4,6 D 6] + 8AY[4,5,6] + (—8AY) [ 731]+( ANY) [1,7 2 7]+ (—8AY) [2,7 D 2] +
(—44¢) (—4n,

(-847) (

(—8a7) 1

(
(-

,J;I—'

(2,7 27+ (-8AY) [3,7 2 8] + ¢) 18,7 2 7]+ (—4Ay +8AY) [1,8,7] +

[4,7 2 4] + (—4AY) [4,7 2 7] + (4A¢ —8A7) [1,4,7] + (4A¢ — 8AY) [2,4,7] +

5,7 2 5] + (—4A) [5,7 2 7] + (4Ay —8AY) [1,5,7) + (47§ —8AY) [2,5,7) +

ANY — 8AY) [3,5,7] + (—4AY +12AY — 12AY) [1,6,7] + (—4AY + 12AY — 12AY) [2,6,7] +
ANY + 1208 —12AY) 3,6, 7] + (—4AY + 1247 — 12AY) [4,6,7] + (4AY — 4AY +4AY) [5,6,7]

B (XY)

generating cocycles

8A7 [l

(AY +24Y) [1]

8AY[1] + 8AY [2] + 8AY[3] + 8AY [4] + 8AY [5] + 8AY[6] + 8AY[7]

(AY +20Y) [1 2 1]+ (AY + AY +3AY) [1,2] + (A + 14AY) [2,7] + (AJ + 14AY) [8,7] +
(A +14AY) [4,7] + (AY + 12AY) [5,7]

SAY[L D 1] +8AY[2 D 2] +8AY[3 D 3] +8AY[4 D 4] +8AY[5 D 5] +8AY[6 D 6] +8AY[7T D T]

8AY[1,3] + 8AY[1,4] +8AY[2,4] + 8AY[1, 5] +8AY[2, 5] + 8AY [3, 5] + 8AY[1, 6] + 8AY [2, 6] + 8AY[3,6] +
8A7[4, 6] +8AY[1,7] + 8AY[2,7] + 8AY[3,7] + 8AY[4,7] + 8AY[5,7]
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k

bk (XY)

generating cocycles

(AY +20)[12121]+ (AY + A7) [1,2 2 1]+ (AY + AY +5A7) [1,2 D 2] + (A3 +2A7) [1,2,3] +
(A +140Y) [2,7 D 2]+ (A + 14AY) [3,7 2 8] + (A¢ + 14AY) [4,7 D 4] + (AY + 14AY) [5,7 2 5] +
(AY +120Y) [5,7 2 7]+ (AY + AY +6AY) [3,5,7) + (AY +3AY) [4,5,7] + (AY + Ay + 11AY) [5,6,7]
SAY[1D21D1]+8A¥[2D222D2]+8AY[3D232D3]+8AY[4D4D4]+8AY[5D52D5]+

8AY[6 D6 D6]+8AY[TDT7 DT

(AY +2AY) [1,8 2 1] + (AY + AY + AY +6AY) [1,2,8] + (AY + AY) [1,8,4] + (A + 14AY) [1,4,7] +
(A +14AY) [2,4,7] + (AY +12A7) [1,5,7) + (AY + 12AY) [2,5,7] + (AY + 10AY) [3,5,7]

8AY[1,3 D 1] +8AY[1,3 D 3] +8A7[1,4 D 1] +8AY[1,4 D 4] +8AY[2,4 D 2] +8AY[2,4 D 4] +
8AY[1,5 D 1] +8A7[1,5 D 5] +8A7[2,5 D 2] +8AY[2,5 D 5] +8AY[3,5 D 3] +8AY[3,5 D 5] +
8A7[1,6 D 1] +8AY[1,6 D 6] +8AY[2,6 D 2] +8AY[2,6 D 6] +8A7[3,6 D 3] +8AY[3,6 D 6] +
8AY[4,6 D 4] +8A7[4,6 D 6] +8AY[1,7 D 1] +8AY[1,7 D 7] +8A/[2,7 D 2] +8A[2,7 D 7] +
8A7[3,7 D 3] +8AY[3,7 D 7] +8AY[4,7 D 4] +8AY[4,7 D 7] +8A[5,7 D 5] +8AY[5,7 D 7]

8AY[1,2,3] + 8AY[2,3,4] + 8AY[3,4,5] + 8AY[4,5,6] +8AY[5,6,7]

8AY[1,3,5] + 8AY[1,3,6] + 8AY[1,4,

6] +8AY[2,4,6] + 8AY[1,3,7] +8AY[1,4,7] + 8AY[2,4,7] +
8AY[1,5,7] + 8AY[2,5,7] +8AY[3,5,7]

k 0 1 2 3
10
0 0
1 0 0 0
comp,, () 0 1 0 1
0 1
0 0

A.8.2 Cohomology of lattice XV corresponding to = ((4))

[qu} = (17070)

does not lie in the image of comp,

k HX(Wy,XY) generating cocycles

0 0

1 zZ/AZ (A —2AY) [7]

2 z)2Z ANY[1 D 1]+ (—4AY) [2 D 2] +4AY[1,2] + (—4AY) [3 2 8] + (—4AY) [4 2 4] + (—4AY) [5 2 5] +

(—4AY) 82 6]+ (—2A) [7 2 7] + (—2A¢ +4AY) [1,7] + (247 —4AY) [2,7] +
(20 —4AY) [3, 7] + (2A¢ — 4AY) [4,7] + (208 —4AY) [5,7] + (—2A% + 6A¢ — 6AY) [6,7]
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k HX(Wy,X") generating cocycles

3 ZNRZLOL)2Z (A —2AY)[1,7 2 1]+ (A —6AY) [2,7 D 2] + (—4AY) [2,7 2 7]+ (—AY — 2AY) [1,2,7] +
(—AY —6AY) [3,7 23] + (—4AY) [3,7 2 7] + (—AY —6AY) [4,7 D 4] + (—4AY) [4,7 D 7] +
(—AY —6AY) [5,7 2 5]+ (=AY +2AY —5AY ) [5,7 2 7] + (4A¢ — 4AY) [2,6,7] +
(4AY —4AY) 3,6, 7] + (4AY — 4AY) [4,6,7] + (AY +2AY — 2A¢ +2AY) [5,6,7]
4AY[1,8 2 1] +4AY[1,8 D 3] + (—4AY) [1,2,8] + (—4AY) [1,4 D 1] + (—4AY) [1,4 D 4] +
(—4AY) [2,4 2 2] + (—4AY) [2,4 D 4] + 4AY[1,3,4] + 4AY[2,3,4] + (—4AY) [1,5 D 1] +
(—4AY) [1,5 2 5] + (—4AY) [2,5 2 2] + (—4AY) [2,5 2 5] + (—4AY) [3,5 2 3] +
(—4AY) [8,5 2 5] +4AY[3,4,5] + (—4AY) [1,6 2 1] + (—4AY) [1,6 2 6] + (—4AY) [2,6 D 2] +
(—4AY) [2,6 2 6] + (—4AY) [3,6 2 3] + (—4AY) [3,6 D 6] + (—4AY) [4,6 D 4] +
(—4AY) [4,6 2 6] +4AY[4,5,6] + (—4AY ) [1,7 2 1] + (—2A%) [1,7 2 7] + (—4AY) [2,7 2 2] +
(—2A¢) [2,7 2 7]+ (—4AY) [8,7 2 3] + (—2A¢ ) [8,7 2 7] + (—2A¢ +4AY) [1,8,7] +
(—4AY) [4,7 2 4] + (—2AY) [4,7 2 7] + (24 —4AV) [1,4,7] + (2A¢ — 4AY) [2,4,7] +
(—4AY) [5,7 2 8] + (—2A%) [5,7 2 7] + (288 —4AY) [1,5,7) + (20 —4AY) [2,5,7) +
(208 —4AY) 3,5, 7] + (—2A8 + 67y — 6AY) [1,6,7] + (—2AY + 647 — 6AY) [2,6,7] +
(—2A¢ +6Ay —6AY) [3,6,7] + (—2A3 + 67y — 6AY) [4,6,7] + (245 — 2A¢ +2AY) [5,6,7]
k h¥(XV) generating cocycles
0 1 4AY)
1 2 (AY +24Y) [1]
ANY[1] + 4AY [2] + 4AY [3] + 4AY [4] + 4AY [5] 4 4AY [6] + 4AY [7]
2 3 (AY +20Y) [1 2 1]+ (AY + A +3AY) [1,2] + (A +6AY) [2,7] + (A +6AY) [3,7] +
(A +6AY) [4,7] + (AY +4AY) [5,7]
AAY[L D 1] +4AY[2 D 2] +4AY[3 D 3] +4AY[4 D 4] +4AY[5 D 5] +4AY[6 D 6] +4AY[7 D 7]
AY[1,8] 4+ 4AY [1,4] + 4AY [2,4] + (AlV + A¥) [3,4] +4AY[1,5] + 4AY [2, 5] + 4AY [3, 5] + 4AY[1,6] +
4AY[2,6] +4AY[3,6] +4A7 [4,6] + 4AY[1,7] + 4AY [2,7] + 4AY [3,7] + (Ag + 2A7V) [4,7] + AY[5,7]
3 6 (AY +24Y) 1]+ (AY +AY) [1,2 2 1] + (AY + AY +5AY) [1,2 D 2] + (AY +2AY) [1,2,8] +

1212
(A +6AY) [2,7 2 2] + (A +6AY) [3,7 2 8] + (A +6AY) [4,7 2 4] + (A{ +6AY) [5,7 2 5] +
(AY +40Y) [5,7 2 7] + (AY + AY +6AY) [3,5,7] + (AY +3AY) [4,5,7] + (AY + AY +3AY) [5,6,7]
AAY[1D1D1]+4AY[2D2D 2] +4AY[3D3 D3] +4AY[4D 4D 4] +4AY[5D 5D 5]+
4A{[6 26 2 6] +4A{[7T D7 D 7]
(AY +2AY) [1,3 2 1] + (AY + AY + AY +6AY) [1,2,8] + (AY + AY) [1,8,4] + (A +6AY) [1,4,7] +
(A +6AY) [2,4,7] + (AY +4AY) [1,5,7] + (AY +4AY) [2,5,7] + (AY +2AY) [3,5,7]

AY[1,3 2 1]+4AY[1,8 D 8]+ (AY +3AY) [2,8 2 2]+ (AY + AY) [2,8 2 3]+ (AY + AY +4AY) [1,2,8]+
AAY[1,4 D 1]+ 4AY[1,4 D 4] +4AY[2,4 D 2] +4AY[2,4 D 4] + (Alv +A¥) [1,3,4] +

(Ag +AY + 8A¥) [2,3,4]+4AY[1,5 D 1]+4AY[1,5 D 5]+4AY[2,5 D 2]+4AY[2,5 D 5]+4AY[3,5 D 3]+
4AY[3,5 D 5] +4AY[1,6 D 1] +4AY[1,6 D 6] + 4AY[2,6 D 2] +4AY[2,6 D 6] +4AY[3,6 D 3] +
4AY[3,6 D 6] +4A7[4,6 D 4] +4A7[4,6 D 6] +4A7[1,7 D 1] +4AY[1,7 D 7] +4A7[2,7 D 2] +
ANY[2,7 D 7]+ (AY +2AY) [3,7 D 8] +4AY[3,7 D 7] + (AY +2AY) [4,7 D 4] +4AY[4,7 D 7] +

(A +6AY) [1,4, 7]+ (A +6AY) [2,4, 7]+ (AY +2AY) [5,7 2 5] +AY [5,7 D 7]+ (AY +4AY) [1,5,7]+
(AY +4AY) [2,5,7] + (AY +4AY) [3,5,7] + (AY +3AY) [4,5,7] + (AY + AY +3AY) [5,6,7]

AY[1,2,3] +4AY[2,3,4] +4AY[3,4, 5] + 4AY[4, 5, 6] + 4AY[5,6,7]

AY11,8,5]+ (AY +3AY) [1,4,5] + (AY +3AY) [2,4,5] + 4AY[1,3, 6] + 4AY[1,4,6] + 44/ [2,4, 6] +
(AY +3AY) [1,5,6] + (AY +3AY) [2,5,6] + (AY + AY) [3,5,6] + 407 [1,3,7] + 447 [1,4,7] +
AAY[2,4,7] + (AY +2A7) [1,5,7) + (A +2AY) [2,5,7] + (AY +2AY) [3,5,7]
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SO OO O =
O R, R = O -

A.8.3 Cohomology of lattice XV corresponding to Q2 = ((2))

[qu] = (17170)

does not lie in the image of comp,

k HX(Wy,XY) generating cocycles

0 0
1 z/2Z (A —28Y) [7)
2 z/)2Z AY[1 2 1]+ (—2AY) [2 2 2] +2AY[1,2] + (—2AY) [8 2 8]+ (—2AY) [4 D 4] + (—2AY) [5 2 5] +

207) [6 2 6]+ (=AY) [T 2 7]+ (—A +20) [1,7] + (A — 2AY) [2,7] + (A — 2AY) [3,7] +
AY =207 ) [4,7] + (A —20Y) [5,7] + (=AY + 3AY — 3AY) [6,7]
3 Z)2Zo7/2Z

Ay —2AY) [1,7 2 1] + (A —2AY) [2,7 2 2] + (—2A¢) [2,7 2 7] + ( AY) [1,2,7) +

(2,72
A —20Y)[8,7 23] + (—2A¢ ) 18,7 2 7] + (=AY —2AY) [4,7 D 4] + (—2A¢) [4,7 2 7] +
{ —20Y) 5,7 2 5] + (—AY +2AY —3AY) [5,7 2 7] + (27

72AV) [2,6,7] +
20 — 2AY) [8,6,7] + (2A¢ — 2AY) [4,6,7] + A [5,6,7]

AY[1,83 D 1]+ 2AY([1,3 D 3] + (—2AY) [1,2,8] + (—2AY) [1,4 D 1] + (—2AY) [1,4 D 4] +
28Y) [2,4 2 2] + (—2AY) [2,4 D 4] + 2AY[1,3,4] + 2747 [2,8,4] + (—2AY) [1,5 D 1] +
[1,5 2 5]+ (—2AY) [2,5 2 2] + (—2AY) [2,5 2 5] + (—2AY) [3,5 2 3] +
[8,5 2 5]+ 2AY[8,4,5] + (—2AY) [1,6 D 1] + (—2AY) [1,6 D 6] + (—2A7) [2,6 D 2] +
[2,6 2 6]+ (—2AY) [3,6 2 3] + (—2AY) [3,6 D 6] + (—2AY) [4,6 D 4] +
[4,6 D 6] + 2AY[4,5,6] + (—2AY) [1,7 D 1] + (—AY) [1,7 2 7] + (-2A) [2,7 2 2] +
AY) 12,727+ (—2AY) [8,7 2 3] + (—AY) [8,7 2 7] + (—A¢ +2AY) [1,3,7] +
) 4,724+ (—AY) [4,7 2 7]+ (AY —2AY) [1,4,7] + (AY —2AY) [2,4,7] +
20Y) 5,7 2 5] + (—AY) [5,7 2 7] + (AY — 2AY) [1,5,7) + (A — 2AY) [2,5,7] +
AY —20Y) [3,5, 7] + (—AY +3AY —3AY) [1,6,7] + (—AY +3AY — 3AY) [2,6,7] +
AY +3AY = 3AY) [3,6,7] + (—AY +3AY —3AY) [4,6,7] + (AY — AY +AY) [5,6,7]

=

(-
(
(
(-
(-
(
(-
(-2
(-
(-
(-
(-
(-
(-
(
(-

k h¥XV) generating cocycles
0 1 2AY]

1 2 AY[1] 4 2AY[2] + 2AY [3] + 2AY [4] + 2AY[5] + 2AY [6] 4 2AY[7]

2AY[1] + 2AY [2] + 2AY [3] + 2AY [4] + 2AY [5] + 2AY[6] + 2AY [7]
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h*(XV) generating cocycles

AY[1 2 1] +207[2 D 2] + (AY + AY + AY) [1,2] + 2AY[3 D 3] + 247 [4 D 4] + 2AY[5 2 5] +
20Y[6 2 6]+ 2AY[7 D 7] + (AY +2AY) [2, 7] + (AY +2AY) [3, 7] + (AY +2AY) [4,7] + A{[5,7]

2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4] + 2AY[5 D 5] + 2AY[6 D 6] + 2AY[7 D 7]

AY[1, 3]+ (AY + AY) [2, 8] +2AY [1,4] +2AY [2, 4] + (AY + AY) [3,4] +2AY[1, 5] + 2AY [2, 5] + 2AY[3, 5] +
2AY[1,6] + 2AY[2,6] + 2AY[3,6] + 2AY [4,6] + 2AY [1, 7] + 2AY [2, 7] + AY[3, 7] + 2AY [4,7] + 2AY [5, 7]

AYI212D1]+287 (2222 2+ (AY +AY) [1,2 2 1] + (AY + AY +AY) [1,2 2 2] +

2AY[3 D3 D3]+ AY[1,2,3] +2AY[4 D 4 D 4] +2A7[2,3,4] +2A7[5 D 5 D 5] +2AY[3,4,5] +
2A7[6 26 2 6] +2AY[4,5,6] + 2AY[7 D 7 D 7]+ (AY +2AY) [2,7 D 2]+ (AY +2AY) [3,7 D 3] +
(A +20Y) [4,7 2 4] + (A +2AY) [5,7 2 5] + AY[5,7 2 7] + (AY + AY +2AY) [3,5,7] +

(AY +AY) [4,5,7] + (AY + A + AY) [5,6,7]
2A¥[1D1D1]+2AY[2D2D2]+2AY[83D3 D3] +2A¥[4D4D4]+2AY[5D5D5]+

2A7/[6 26 2 6] +2A/[7 272 7]

(AY +AY +4AY) [2222 2]+ (AY +AY) [1,2 2 1]+ (A + Ay +AY) [1,2 D 2] +

(AY + AY + AY) [2,8 D 2]+ (AY + AY +3AY) [2,3 D 3] + AY[1,2,3] + 247 [2,8,4] + 2AY[3,4,5] +
20 [4,5,6] + (AY +2AY) [2,7 D 2] + 2AY[5,6,7]

AY[1,3 2 1] +2AY[1,8 2 8] + (AY + AY + AY +2AY) [1,2,8] + 2AY[1,4 D 1] + 247 [1,4 D 4] +
207[2,4 2 2] + 2AY[2,4 D 4] + (AY + AY) [1,8,4] + 2AY[1,5 D 1] + 2A/[1,5 D 5] + 2AY[2,5 D 2] +
2AY[2,5 D 5] +2AY[3,5 D 3] +2AY[3,5 D 5] +2AY[1,6 D 1] + 2AY[1,6 D 6] +2AY[2,6 D 2] +
2AY[2,6 D 6] +2A7[3,6 D 3] +2A7[3,6 D 6] +2A7[4,6 D 4] +2A7[4,6 D 6] +2A7[1,7 D 1] +
2AY[1,7 D7)+ 2AY[2,7 D 2] +2AY[2,7 D 7] +2AY[3,7 D 3] +2AY[3,7 D 7] +2AY[4,7 D 4] +
20Y[4,7 2 7] + (AY +2AY) [1,4,7) + (A +2AY) [2,4,7] + 2AY[5,7 2 5] + 2AY[5,7 D 7] +
AY11,5,7)+ AY[2,5,7) + (AY +2AY) [3,5,7]

AY[1,8 2 1)+ (AY +AY) 2,8 2 2] + (AY +3AY) [2,3 2 8] + (AY + Ay +2AY) [1,2,3] +

(A +AY) [1,8,4] + (AY + AY +2AY) [2,8,4] + 247 [3,4,5] + 2A7[4,5,6] + (A +2AY) [3,7 2 3] +
(A +20Y) [4,7 2 4] + (AY +20Y) [1,4,7] + (A +2AY) [2,4,7]) + (AY +2AY) [5,7 2 5] +
AY15,7 2 7]+ AY[1,5,7) + AY[2,5,7] + AY[3,5,7) + (AY + AY) [4,5,7] + (AY + AY + AY) [5,6,7]

AY[1,3,5] + (AY + A¥) [2,3,5] +2AY[1,3,6] +2AY[1,4, 6] + 2AY[2,4, 6] + (/\1v + Ay) (3,5, 6] +
2A7[1,3,7] +2A7[1,4, 7] + 2A7 (2,4, 7] + 2A/[1,5, 7] + 2A7[2,5,7] + A [3,5, 7]

(@]
:
=)
>~
—

S—
Y
=
~~

—_
O OO ===
OO, PP, OO

A.8.4 Cohomology of coweight lattice XV = PV

Pu

= 07 with 7 = AY[1] + (A} + AY) [2] + (A + AY) [3] + (AY + A)) [4] +
(AL +AZ) [5] + (A5 + Ag) [6] + A [7]

k HX(Wy,X") generating cocycles

0

0
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k HX(Wy,X") generating cocycles

k h¥XV) generating cocycles

0
1 0
2 0
3 1 AY[1,8,5] + AY[1,8,6] + AY[1,4,6] + AY[2,4,6] + AY[1,3,7] + AY[1,4,7) + AY[2,4, 7] + AY[1,5,7] +
A5 [2,5,7] + AY[3,5,7]

A.8.5 Cohomology with trivial coefficients

k HX(Wo,Z) generating cocycles
/A I

1 0

2 Z/27 P21+ (-D[222]+[L,2]+(-D[B23]+(-1)[424] +(-1)[5 2
(-1)[626]+(-1)[727]

3 z)2Z (1,32 1]+ (1,32 3]+ (—1)[1,2,3] + (=1)[1,4 D 1]+ (-1)[1
(_1) [214 2 2] + (_1) [274 2 4] + [19 314] + [27 39 4] + (_1) [175
(=1)[2,5 2 2]+ (-1)[2,5 2 5] + (1) [3,5 2 3] + (—1) 2
(71) [13 6 2 1] + (71) [11 6 2 6] + (71) [21 6 2 2] + (71) [21 2
(-1)[3,6 2 6]+ (—1)[4,6 2 4] + (—1)[4,6 2 6] + [4,5,6] + (-
(-D[1,727+ (-1 [2,722]+(-1)[2,7 2 7]+ (-1)[3,7 2
(D[4,724]+(-D[4,727+(=1)[5,725]+(-1)[5,7 2

k  h*(Fy)  generating cocycles

0 1 I

1 1 (1] + [2] + [3] + [4] + [5] + [6] + [7]

2 2 1D1]+[2D2]+[83D23]+[4D4]+[6D5]+[626]+[72D7]

(1,3]+[1,4]+[2,4]+[1, 5] +[2, 5] +[3, 5] +[1, 6] +[2, 6] + 3, 6] + [4, 6] + [1, 7] +[2, 7] +[3, 7] +[4, 7] +[5, 7]
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k

h*(IFy)

generating cocycles

3

4

[12121]+[22222]+[32323

+
S
U
I
U
B,

+[52525]+[62626]+[72727

[1,3 1]+ (1,3 28] +[1,421] +[1,4 2 4] +[2,4 D 2] +[2,4 2 4] + [1,5 D 1] +[1,5 D 5] +
[2,5 2 2] +[2,5 2 5] +[3,5 23]+ 3,5 2 5] +[1,6 2 1] + [1,6 D 6] + [2,6 2 2] +[2,6 D 6] +
3,6 23]+ (3,6 2 6]+ [4,6 D 4] +[4,6 2 6] +[1,7 2 1] +[L,7 27+ (2,722 +[2,7 27 +
3,7 23] +[3,7 27+ [4,7 24 +[4,7 27 +[5,7 2 5] + [5,7 2 7]

(1,2,3] +[2,3,4] + [3,4,5] + [4,5,6] + [5,6, 7]

[1,8,5] +[1,3,6] +[1,4,6] +[2,4,6]+[1,3,7] +[1,4,7] +[2,4,7] +[1,5,7] + [2,5,7] + [3,5, 7]

A.9 Root system Ag

Dynkin diagram

Fundamental group

O O O O O O O O
1 2 3 4 5 6 7 8

PY/QY ~Z/)9Z
generated by Ay € P¥Y mod QY

A.9.1 Cohomology of coroot lattice XV = QV

¢, = Or with 7 = (A} + 10AY) [1] + (AY + AY + 12A¢) [2] +
(AY + Ay + 14AY) [3] + (AY + AY + 16AY) [4] + (AY + AY + 18AY) [5] +
(A5 + Ag +20A8) [6] + (A7 + TAS) [7] + (A7 + TA{) [8]

k HX(Wy,X") generating cocycles
0 0

1 z)9Z (AY —2A8) [8]

2 0

3 0

k hX(XV) generating cocycles

0 0

1 0

2 0

3 0
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A.9.2 Cohomology of lattice XV corresponding to Q = ((3))

by = Or with 7 = (AY +4AY) [1] + (AY + AY + 2AY) [2] + (AY + AY + 2AY) [3] +
(A3 +AJ +4A5) [4] + (AS + Ag +2A8) [5] + (A5 + Ag +2A8) [6] +
(A7 + A [7]+ (A + AQ) [8]

k HX(Wy,X") generating cocycles
0 0

1 Z/3Z (AY —2A¢) [8]

2 0

3 0

k h¥XV) generating cocycles

0 0
1 0
2 0
3 0

A.9.3 Cohomology of coweight lattice XV = PV

du = Or with 7= AY[1] + (A + AY) [2] + (A + AY) [3] + (A + AY) [4] +
(AY +A5) [B] + (A + Ag) [6] + (Ag + A7) [7] + A [8]

k HX(Wy,XY) generating cocycles

0 0
1 0
2 0
3 0

k h¥XV) generating cocycles

0 0
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k hX(XVY) generating cocycles

1 0
2 0
3 0

comp, () ( O 0

A.9.4 Cohomology with trivial coefficients

k H*(Wy,Z) generating cocycles
0 /A [
1 0
2 z/2z 121+ (-1)[222] +[1,2] + (~1)[3 2 8] + (~1) [4 2 4] + (~1) [5 2 5] +
(-1[626]+(-1)[727+(-1)[8 2 8]
3 z)2Z (1,3 21] 4+ (1,8 2 3]+ (—1)[1,2,8] + (1) [1,4 D 1] + (-1)[1,4 D 4] +
(_1) [274 2 2] +(_1) [274 2 4] + [17314] + [27374] +(_1) [175 2 1] +(_1) [1v5 2 5] +
(_1) [275 2 2]+(_1) [235 2 5]+(_1) [375 2 3]+(_1) [375 2 5]+ [37475] +
(71) [176 2 1]+(71) [176 2 6]+(71) [2»6 2 2]+(71) [2»6 2 6]+(71) [3’6 2 3]+
(-1)[3,6 2 6]+ (—1)[4,6 2 4] + (—1)[4,6 2 6] +[4,5,6] + (-1)[1,7 D 1] +
(71) [1172 7]+(71) [2172 2]+(71) [2’72 7]+(71) [3’72 3]+(71) [3’72 7]+
(-1)[4,7 24+ (-1)[4,7 2 7]+ (-1)[5,7 2 5] + (-1)[5,7 2 7] + [5,6,7] +
(71) [178 2 1]+(71) [178 2 8]+(71) [278 2 2]+(71) [278 2 8]+(71) [378 2 3]+
(=1)[3,8 28] +(-1)[4,8 D 4] + (~1)[4,8 D 8] +(-1)[5,8 2 5]+ (—1)[5,8 D 8] +
(_1) [678 2 6]+(_1) [638 2 8]"" [67738]
k hk(IF2) generating cocycles
0 1 i
1 1 [1] 4 [2] + [3] + [4] + [B] + [6] + [7] + [8]
2 2 [121]+[222]+[323]+[424]+[525]+[626]+[727]+[82 8]
(1,3] + [1,4] + [2,4] + [1,5] + [2, 5] + [3,5] + [1, 6] + [2,6] + [3, 6] + [4,6] + [1,7] + [2,7] + [3,7] +
(4,71 +[5,7] + [1,8] + [2,8] + [3,8] + [4,8] + [5, 8] + [6, 8]
3 4 12121]+[22222]+[32323]+[42424]+[52525]+[62626]+[72727]+
8282 8]
[1,3D21]+[1,3D23]+[1,4D1]+[1,4D4] +[2,4D2]+[2,4D4]+[1,5D1]+[1,5 D 5] +
(2,5 22]+[2,525]+[3,523]+[3,525]+[1,6 21]+[1,6 2 6]+[2,6 22]+[2,6 2 6]+
[3,6 23] +[3,6 26]+[4,624]+[4,626]+[1,721]+[1,7D7]+[2,722]+[2,727]+
3,7 238]+[3,727]+[4,7 2 4] +[4,7 2 7]+[5,7 2 5] +[5,7 2 7] +[1,8 D 1] +[1,8 D 8] +[2,8 D 2]+
[2,8 28] +[3,823]+[3,8 28] +[4,824]+[4,8 2 8]+[5,825]+[5,828]+[6,82 6]+[6,8 2 8]
(1,2,3] +[2,3,4] +[3,4,5] + [4,5,6] + [5,6,7] +[6,7, 8]
[1,3,5] + [1,3,6] +[1,4,6] + [2,4,6] + [1,3,7] +[1,4,7] + [2,4,7] + [1,5,7] + [2,5,7] + [3,5,7] +
[1,3,8] +[1,4,8] +[2,4,8] +[1,5,8] + [2,5,8] +[3,5,8] + [1,6, 8] + [2,6,8] + [3,6, 8] + [4,6, 8]
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A.10 Root system B,

A COMPUTATIONAL RESULTS

Fundamental group

O—=0

Dynkin diagram 1 2

PY/QV ~7/)2Z

generated by Ay € P¥ mod QY

A.10.1 Cohomology of coroot lattice XV = QV

[¢u] = (17170)

does not lie in the image of comp,

k HX(Wy,XY) generating cocycles
0
1 z)2Z (28Y — AY) [1]
2 z)27Z AY[1 2 1]+ (—24Y +2A) [1,2]
3 Z/2ZZ/2Z AY[1,2D1]
(28Y —A¥)[12121]
k h¥XV) generating cocycles
1 2AY)

1 2 2AY[1]

A3 [1]
2 3 2AY[1 D 1]

AF[1D1]

2AY[1,2]
3 4 2AY[1 21 2D1]

Af[12121]

2AY[1,2 D 1]

Ay[1,221]

= o o O

O O = =
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A.10.2 Cohomology of coweight lattice XV = PV

¢ = Or with 7 = AY[1]

k HX(Wy,XY) generating cocycles

0 0
1 z)27 (AY - AY) [2]
2 z/2Z AY[2 2 2]+ (=247 + AY) [1,2]

3 Z]2Z Z/2Z AY[1,2D 2]

(AY -A) 222272

k h¥XV) generating cocycles
0 1 AV

1 2 AY[2]
AF[2]

2 3 AY[2 D 2]
A7[22 2]
AY[1,2]

3 4 AY[2D2D 2]
AF[222D2 2]
AY[1,2 2 2]

AY[1,2 D 2]

k 0 1 2 3
1 0 1
1 0 1
comp,, () 1 0 1 0
L 0 0

A.10.3 Cohomology with trivial coefficients

k H*(W,,Z) generating cocycles
0 Y/ 0

1 0

2 720 & Z)27 2D 2]
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k HX(W,,2Z) generating cocycles

3 z/27Z [1,2D1]+[1,2 D 2]

k  h¥(IF;)  generating cocycles

A.11 Root system B3

O—O—=0

Dynkin diagram 1 2 3

PV/Q¥ ~Z/2Z

Fundamental gro
ncamental group generated by AY € P¥Y mod QY

A.11.1 Cohomology of coroot lattice XV = QV

[(bu] = (17 ]‘7 ]'707 ]')

does not lie in the image of comp,

k H*(Wj, X") generating cocycles
0
1 z)27 (2AY - 2AY) [3]
2 Z2Z & Z)2Z AY[8 23]+ (AY — 278 + AY) [2,3]

2AY[1 D 1]+ (—2AY) [2 D 2]+ 2AY[1,2] + (—2AY +2AY ) [1,3] + (4AY — 4AY) [2, 3]

w

Z)2L OL2Z S ZJ2Z  2A§[2,3 D 2] +2A5[2,8 D 8] + (4AY — 4AY + 2AY) [1,2, 3]
(2A1V ng) [1,3 D 3]

2AY[1,3 D 1] +2A3[1,3 D 8] + (44} — 4AY) [1,2,3]
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k hX(XVY) generating cocycles
0 1 2AY ]

1 3 AY[1] + 2A4 [2]
2AY [1] + 2AY [2]
A3 (3]
2 5 AY[1 D 1]+ 208 [2 D 2] + (AY + AY +AY) [1,2]
2A3[1 2 1] +2A5[2 D 2]
(AY +AY) [2 2 2]+ (AY + A +AY) [1,2]
AY[3 28]+ (AY +AY) [2,8]
2AY[3 D 3]
3 8 AY1D 1214242222 2]+ (AY +AY) [1,2 D 1] + (AY +2AY) [1,2 D 2]
2A¥[1 D 1D 1]+2A[2D2D 2]
(AY +AY) 222D 2]+ (AY +AY) [1,2 D 1] + (AY +2AY) [1,2 D 2]
AY[1,2 D 1]+ 2A¥[1,2 D 2]
AY[323 23]+ (AY +AY) (2,323

2AY[3 D3 D 3]

AF[1,3 D 1]
AJ[2,3 D 3]
k 0 1 2 3
0 0 1
01 0 0 1
1 0 0
1 0 0
1 01
comp; () 1 0 0 00 0
0 1 0
0 0 01 0
0 0 0
0 0 0

A.11.2 Cohomology of coweight lattice XV = PV

¢n = Or with 7 = (AY +AY) [1] + AY[2]

k H* (W, XY) generating cocycles

0 0

1 z)2Z (A = AY) 18]

2 222 o Z)2Z AY[3 28]+ (AY —2AY + AY) [2,3]

AY[121]+ (—AY) [2 2 2] + AY[1,2] + (—AY + AY) [1,8] + (24 — 2AY) [2, 3]
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k H* (W, XY) generating cocycles
3 227 o Z)2Z & (AY —AY) [2,3 23]
Z7/22 Z)2Z

AY[2,3 2 2]+ AY[2,3 2 8] + (2AY — 2AY + AY) [1,2,3]
AY[1,3 2 1]+ AY[1,3 D 3] + (2AY — 2AY) [1,2, 3]

(AY -AY)[82323]

k h¥XV) generating cocycles
0 1 A

1 3 AY[1] + AY[2]
A3 [8]
A3 (8]
2 6 AY[1 D1]+AY[2 D 2]
A7 [3 23]
AF[3 23]
AY[1,3]
AY[2,3]
AY[2,3]
3 10 AY[1D1D1]+Ay[2D222D2]
A7[323 23]
Af[32323]
AY[1,3D1]
AY[1,3 D 3]
AY[2,3 D 2]
AY[2,3 D 3]
AY[2,3 D 3]
A3[2,3 D 3]

A3[1,2,3]

o
jan]
—
[N
w

comp, () 1

== O OO
OO = OO

SO P OOOoOOoOOoOOo
H O, O, OOOOOo
DO DD DO O OO O
SO OO OO OO
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A.11.3 Cohomology with trivial coefficients

k H*(W,,Z) generating cocycles
0 /A 1

1 0

2 720 & Z)27 [323]

121+ (-1[222]+[1,2]

3 227 Z/2Z [2,83D2] +[2,3 D 3]

[1,3 D 1] +([1,3 D 3]

o

h¥(IF;)  generating cocycles

2 4 [1D1]+[2D2]
(3 23]
(1, 3]
(2, 3]
3 7 [12121]+[22222]
[32323]
(1,3 21]
[1,3 D 3]
(2,8 2 2]
(2,3 23]

(1,2,3]

A.12 Root system B,

Dynkin diagram

PY/QV ~7/2Z

Fundamental grou
group generated by Ay € PY mod QY
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A.12.1 Cohomology of coroot lattice XV = QV

[¢u] = (1,1,1,0)
does not lie in the image of comp,

k H*(Wo,XY) generating cocycles

0 0

1 z)27 (A =27y +AY) [3]

2 Z/)2Z 20 [1 2 1]+ (—2A¥) [2 D 2] + 2A¥[1,2] + (—AY — AY) [32 8] +

(=AY +2AY — AY) [1,8] + (=AY +3AY — 3AY +AY) [2,3] + (2AY — 2AY ) [3, 4]

w

ZPRZSZP2ZSZ/2Z (MY - AY)[3,4 2 3]
AY[1,8 2 1]+ AY[1,8 2 8]+ (-AY) [1,2,8] + (—2A¥ +2AY) [1,3,4]

20¥[1,3 D 1]+ (AY + AY) [1,8 D 3] + (=AY + AY — AY — AY) [1,2,3] +
(—2A% +2AY) [1,3,4]

k h¥XV) generating cocycles
0 1 2AY]

1 2 AY[1] + 2AY [2] + 2AY [3]
2AY [1] + 2AY [2] + 2A4 [3]
2 4 AY[1 D 1]+ 208 [2 D 2] + (AY + AY + AY) [1,2] + 2743 [3 D 3] + AY[1, 8]
2A3[1 D 1] + 2A3[2 D 2] + 2A4[3 D 3]
(A +2A5 +AY) [8 23] + AY[1,3] + (AY + AY + AY) [2,3]
2AY[1, 3]
3 9 AY[12121]+20Y[222D 2]+ (AY +AY) [1,2 2 1] + (AY +2A¥) 1,2 D 2] +2Ay[3 23 D 3] +
AY[1,8 28]+ (AY +AY) [1,2,3]
2A¥[1D21D1]+2AY[2D2D2]+2AY[3 232D 3]
AY[1,2 D 1] +2AY[1,2 D 2] + AY[1,2,3]

(AY +20Y +AY) 3232 3] +A{[1,3 D3]+ AY[2,3 D 2]+ (AY +3AY +AY) [2,3 D 3] +
(AY +AY) [1,2,3]

AY[1,8 2 1]+ 2AY[1,3 D 3] + (AY + AY + AY) [1,2,3]
2AY[1,3 D 1] +2A5[1,3 D 3]

(AY + 288 + AY) [1,8 2 8]+ (AY + AY + AY) [1,2,3]
2A¥[3,4 D 3]

AY[3,4 D 4]
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el
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7 N\
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= O O

OO R OO, F, OO
OO R OO HFHF|IW
OO OO OO OO

A.12.2 Cohomology of coweight lattice XV = PV

by = Or with 7 = (AY + AY) [1] + (AY + AY + AY) [2] + AY[3]

k H* (W, XY) generating cocycles

0 0

1 z/)2Z (AY = AY) 4]

2 Z/2Z & Z)2Z AY[4 2 4]+ (AY —2AY + AY) [3,4]
AY[L 2 1]+ (-AY) [2 2 2] + AY[1,2] + (—AY) [8 2 8] + (—AY + AY) [1,4] +
(MY — AY) [2,4] + (24Y —2AY) [3,4]

3 227 $ 227 & (AY —AY)[3,4 2 4]

227 Z)2Z & Z)2Z

AY[3,4 23] + AY[3,4 D 4] + (=AY +2AY — 2AY + AY) [2,3,4]
AY[1,4D1]+AY[1,4 D 4] + (-AY) [2,4 2 2] + (—AY) [2,4 D 4] + (—AY) [1,2,4] +
(AY —28% + AY) [1,8,4] + (—2AY +2AY) [2,3,4]
AY[1,4D 1]+ AY[1,4 D 4]+ (-AY) [2,4 D 2] + (—AY) [2,4 D 4] + (—AY) [1,2,4] +
(AY —28¥ + AY) [1,8,4] + (—2AY +2AY) [2,8,4]
(AY —AY)[42424]

k hk(W) generating cocycles

0 1 AYTl

1 3 AY 1] + AY[2] + AY[3]

Ag[4]

Afl4]
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k h*(XVY) generating cocycles

2 7 AY[1D1]+AY[2D2]+A)[3D3]
AF[4D 4]
Aj[4D 4]
AY[1,4] + AY[2,4]
AY[1,4] + AY[2,4]
AY[3,4]
AY[3,4]

3 14 Aj[12121]+A{[22222]+Af[3232 3]
AY[42424]
Ay[42424]
AY[1,4 D 1]+ AY[2,4D 2]
AY[1,4 2D 1]+AY[2,4D 2]
AY[1,4 D 4]+ AY[2,4 D 4]

AY[1,4 D 4] +AY[2,4 D 4]

A3[3,4 2 3]
AF[3,4 D 4]
AY[3,4 D 4]
Aj[3,42 4]
AY[1,3,4]
AY[2,3,4]
Ay [2,3,4]
k 0 1 2 3

000 00O

0 00 01

000 01

00010

(1) é 001 00

001 10

0 0 0

000 00O

comp,, () 1 0 1 0100 0

! (1) (1) 1 0 0 00

1 0 1 1.0 00

00000

001 10

010 00

010 00

A.12.3 Cohomology with trivial coefficients
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k H*(W,,Z) generating cocycles
0 z i

1 0

2 727 $Z2/27 [4D4]

[1D1]+(~1)[2 D 2] +[1,2] + (~1) [3 D 3]

3 Z2ZDZ/2Z DZ/2Z [3,42D 3] +[3,4D 4]
(1,4 D 1]+ (1,4 D 4]+ (~1)[2,4 D 2] + (—1)[2,4 D 4] + (~1) [1,2,4]
1,32 1]+ 1,32 3]+ (-1)[1,2,3]
k  h¥(Fz)  generating cocycles
0 1 I
1 2 [1] +[2] + [3]
(4]
2 5 121]+[222]+[323]
(1,3]
(4 2 4]
(1,4] + [2,4]
3, 4]
3 10 1D21D1]+[2D2222]+[323D 3]

1,8 21]+[1,8 D 3]
[1,2,3]

42424
(1,42 1] +[2,4 2 2]
(1,4 D 4] +[2,4 D 4]
(3,42 3]

(3,4 2 4]

(1,3,4]

[2,3,4]

A.13 Root system B;

O O O O——20
Dynkin diagram 1 2 3 4 5

PY/QV ~7)2Z

Fundamental grou
group generated by AY € PY mod QY
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A.13.1 Cohomology of coroot lattice XV = QV
[¢u] = (1,1,0,1,0,1,0)
does not lie in the image of comp,
k H*(Wo, XY) generating cocycles
0 0
1 Z/27 (28 —2AY) [5]
2 Z)2Z & Z)2Z AY[5 28]+ (A —2AY + AY) [4,5]
2AY[1 2 1]+ (—2AY) [2 D 2] +2AY[1,2] + (—2AY) B2 3] + (—2AY) [4 D 4] +
(—2AY +2AY) [1,5] + (28 — 2AY) [2,5] + (2AY — 2AY) [3,5] + (4AY —4AY) [4, 5]
3 Z2Z ®Z)2Z & 2AY[4,5 D 4] + 2AY[4,5 D 5] + (—2AY +4AY — 4AY +2AY) [3,4,5]
220 Z/2Z ®Z/)2Z
prezirez/ (AY —2A% +AY) 3,5 2 5]
2AY[1,5 D 1] +2AY[1,5 D 5] + (—2AY) [2,5 D 2] + (—2AY) [2,5 2 5] +
(—24) [1,2,5] + (—24) 3,5 2 3] + (—2AY) [3,5 2 5] +
(28 — 4AY +20Y) [1,4,5] + (—2AY +4AY — 2AY) [2,4,5] + (—4AY +4AY) [3,4,5]
AY[1,5 2 1]+ AY[1,5 2 5] + (—AY) [2,5 2 2] + (—AY) [2,5 2 5] + (—AY) [1,2,5] +
(—AY) [8,5 28]+ (—AY) [8,5 2 5] + (AY —2AY +AY) [1,4,5] +
(=AY +28Y — AY) [2,4,5] + (—2A¥ +2AY) [3,4,5]
2AY[1,3 2 1] +2A¥[1,8 D 8] + (—2AY) [1,2,3] + (—2AY) [1,4 D 1] +
(—2AY) [1,4 D 4] + (—2AY) [2,4 D 2] + (—2AY) [2,4 D 4] + 243 [1,3,4] +
2AY[2,3,4] + (=20 +2AY) [1,3,5] + (4AY — 4AY) [1,4,5] + (4AY — 4AY) [2,4, 5]
k h¥XV) generating cocycles
0 1 2AY]
1 3 AY[1] + 2AY [2] + 2AY[3] + 2AY [4]
207 [1] + 273 [2] + 2AY [3] + 2AY [4]
A{[5]
2 7 AY[1 D 1] +2AY[2 D 2] + (AY +AY +AY) [1,2] + 245 [8 D 8] + 247 [4 D 4] + 275 [2, 5] + 247 [3, 5]

2AY[1 D 1]+ 2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4]

AY[1,8] + (AY +AY) [2,8] + 247 [1,4] + 247 [2,4] + (AY + AY) [3,4] + 2AY[3, 5]

(A +AY) [ D 4]+ (AY + AY +AY) [3,4]

AY[5 2 5]+ (AY + AY) [4,5]

2AY[5 D 5]

Af[1,5] + A [2,5] + Ay [3,5]
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k hkXY)

generating cocycles

3

15

AY[1D1D1]+2AY[2D2D 2]+ (AY + )[1231]+(AV+A3+AV)[1232]+
2AY[3 23 D3] +AY[1,2,3] +2AY[4 D4 D 4] +2AY[2,3,4] + 2A7[2,5 D 2] + 2AY[3,5 D 3]

2AY[12121]+2AY[22222] +2A¥[8238 23] +24Y[4242 4]

(AY +AY +44Y) 222D 2] + (AY +AY) [1,2 D 1]+ (AY + Ay +AY) [1,2D 2] +
(AY + A + AY) [2,8 D 2]+ (AY + AY +3AY) [2,8 2 8] + AY[1, 2, 3] + 27} [2,8,4] + 2A3[2,5 D 2]

AY[1,2 2 1]+ AY[1,2 D 2] + (AY +AY) [2,4 D 2] + AY[3,4 D 8] + (AY +2AY) [3,4 D 4] +
(AY +AY) [2,8,4]

AY[1,8 2 1]+ 2AY[1,8 D 3] + (AY + AY + AY +2AY) [1,2,3] + 2AY[1,4 D 1] + 2AY[1,4 D 4] +
2AY[2,4 D 2] +2AY[2,4 D 4] + (AY + AY) [1,3,4]

AY[1,8 2 1)+ (A +AY) 2,8 2 2] + (AY +3AY) [2,3 2 8] + (AY + AY +2AY) [1,2,3] +
(AY +AY) [1,8,4] + (AY +3AY) [2,3,4] + 2AY[3,5 2 3]

(A +AY) 4242 4]+ (AY +AY +AY) [3,4 2 8] + AY[3,4 D 4]

(AY +AY) [1,4 D 4]+ AY[1,2,4] + (AY + AY + AY) [1,3,4] + 24 [2,4, 5]
AY[52525]+ (AY +AY)[4,5 2 5]

2AY[5 D 5 D 5]

AY[1,5 D 1] +2A7[2,5 D 2] + (AY + Ay +AY +2Ag) [1,2,5] +2AY[3,5 D 3]+ AY[1,3,5]
AY[1,5 D 1] +A)[2,5 D 2]+ A)[3,5 D 3]

AY[1,5 251+ AY[2,5 2 5] + AY[3,5 2 5] + (AY + AY) [1,4,5] + (AY + AY) [2,4,5]
AY[4,5 D 5]

AJ[3,4,5]

comp,,

—
—
—_
SO RO O OO
OO OO OO
O OO OO DO OO, OO O O OO
S OO OO H OO OO O OO oo
seoleolaleolalololalale =R 0 N Y
SO HHPHOOOOoOOoOOoO o +HOOoOOo
SO OO OO oo oo+ O+ OO

A.13.2 Cohomology of coweight lattice XV = PV

Pu

= Or with 7 = (A} + AY) [1]+(AY + AY + AY) [2]+(AY + AY + AY) [3]+A)[4]
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k H* (W, XY) generating cocycles

0 0

1 Z/27 (AY = AY) [8]

2 727 2)2Z AY[5 2 5]+ (AY —2AY + AY) [4,5]
AYL21]+ (—AY) (22 2] + AY[1,2] + (—AY) [B2 3] + (—AY) [4 2 4] +
(—AY +AY) 1,81+ (AY - AY) [2,5] + (AY — AY) [8,5] + (207 - 2AY) [4,5]

3 ZZSZN2ZOL)2ZS (A —AY)[4,5 2 5]

Z/27 & 7/27 & Z)2Z

AY[4,5 2 4]+ AY[4,5 D 5] + (=AY + 243 — 2AY + AY) [3,4, 5]
AY[1,5 2 1]+ AY[1,5 2 5] + (—AY) [2,5 2 2] + (—AY) [2,5 2 5] + (—AY) [1,2,5] +
(-AY) 8,5 2 8]+ (—AY) [3,5 2 5] + (AY —2AY +AY) [1,4,5] +
(=AY +2AY = AY) [2,4,5] + (—2A¥ +2AY) [3,4,5]
Mu£2u+ﬁﬁ£2a+bﬂmD52ﬂ+b%npﬁzm+t%buaﬂ+
(-AY) 8,52 3] +(=AY) 8,5 2 5] + (AY — 2AY + AY) [1,4,5] +
(=AY +2AY — AY) [2,4,5] + (—2A¥ +2AY) [3,4,5]
(AY —AY) 52525
AY[1,321] +AY[1,83 23] + (=AY) [1,2,8] + (—AY) [1,4 2 1] + (—AY) [1,4 2 4] +
(-AY) (2,42 2]+ (—-AY) [2,4 2 4] + AY[1,3,4] + AY[2,8,4] + (—AY + AY) [1,3,5] +
(2A4 - 2A5) [1,4,5] + (QAX - 2Ag) (2,4, 5]

k h*(XVY) generating cocycles

0 1 AS

1 3 AY (1] + AY[2] + AY[3] + AY[4]

A{[5]
AF[5]
2 8 A1 D1]+AY[2D2]+AY[32D3]+AY[4D4]

AZ[1,3] + A5 1, 4] + AF[2,4]

A{[5 2 5]

AJ[5 2 5]

A{[1,5] + Aj[2,5] + A{[3,5]

AF[1,5] + A [2,5] + AS[3, 5]

Ag[4,5]

A5[4,5]
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k hX(XVY) generating cocycles

3 18 AJ[12121]+AJ[22222]+AJ[32323]+AJ[424D4]
AY[1,3D 1] +AY[1,3D 3] +AY[1,4D 1] +AY[1,4D 4] +AY[2,4D 2] +AY[2,4 D 4]
AY[1,2,3] + AY[2,3,4]

Aj[5 252 5]

A{[5252 5]

AY[1,5D 1] +A)[2,5 D 2] +A)[3,5 D 3]
AY[1,5 2 1]+ AJ[2,5 2 2] + AJ[3,5 D 3]
AY[1,5 2 5]+ A)[2,5 2 5] + A{[3,5 D 5]
AY[1,5 2 5] + AJ[2,5 D 5] + AJ[3,5 D 5]
AY[1,3,5]

AY[4,5 D 4]

A3[4,5 2 5]

AY[4,5 D 5]

Ag[4,5 2 5]

AY[1,4,5] + AY[2,4, 5]
AY[1,4,5] + AY[2,4, 5]

AY[3,4,5]

AY[3,4,5]

comp,, () 1

_ = O OOk OO
OO R, OOOF

SO OO O HHMHF OO oo
H R, OO RO OODODODOODOOoOOoODoOOoOOo
OO R P OO R EFHFOODOOOoOOo
OO R PR OO0 RO OOoOOoOoOo
OO DD DD DDDODIODDDDODDODOODO —=HOOO
DO DD DODDODODODOHOOOOOOHKFRO

A.13.3 Cohomology with trivial coefficients
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k HX(W,,2Z) generating cocycles
0 z i

1 0

2 727 $Z2/27 [5D 5]

[1D1]+(~1)[2 D 2] +[1,2] + (~1) [8 D 3] + (—1) [4 D 4]

3 Z2ZDZ/2ZDZLZ/2Z [4,5D 4]+ [4,5 D 5]
1,5 21]+[1,5 2 5]+ (~1)[2,5 D 2] + (~1)[2,5 D 5] + (—1) [1,2,5] +
(-1)[8,5 23]+ (-1)[3,5 2 5]
[1,821]+[1,8 23]+ (-1)[1,2,3] + (1) [1,4 D 1] + (-1)[1,4 D 4] +
(-1)[2,4 D 2] + (1) [2,4 D 4] + [1,3,4] + [2,3,4]
k  h*(Fy)  generating cocycles
1 i
1 2 (1] + [2] + [3] + [4]
(5]
2 5 121]+[222]+[323]+[424]
(1,3] + [1,4] + [2,4]
(5 2 5]
[1,5] + [2,5] + [3, 5]
(4, 5]
3 11 12121]+[22222]+[32323]+[42424]

[1,321]+[1,323]+[1,4 D 1]+ [1,4 D 4]+ [2,4 D 2] +[2,4 D 4]
[1,2,3] +[2,3,4]

[52525]

[1,521]+[2,5 2 2] +[3,5 2 3]

[1,5 2 5]+ [2,5 2 5] +[3,5 2 5]

[1,3,5]

(4,5 2 4]

(4,5 2 5]

[1,4,5] + [2,4,5]

[3,4,5]
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A.14 Root system By

)
2O

O O O——0
Dynkin diagram 3 4 5 6

PY/QV ~7/2Z

Fundamental grou
group generated by AY € PY mod QY

A.14.1 Cohomology of coroot lattice XV = QV

[¢u] = (17 1,0, 1)

does not lie in the image of comp,

k HX(Wq,XY) generating cocycles

0 0

1 Z/2Z (AY =288 +AY) [5]

2 z)27Z 2AV[1 D1+ (—24Y) (22 2] + 24 [1,2] + (—2AY) [8 2 3] + (—2AY) [4 D 4] +

—AJ) 1525+ (—AY + 288 — AY) [1,5] + (AY — 24 + AY) [2,5] +
AY — 2AV +AY) [8,8] + (—A¥ +3AY = 3AY + AY) [4,5] + (2AY - 2A¢) [5, 6]

3 ZNRZSL2ZOZ/2Z (A} - A{)[5,6 2 5]

Y —2AY)[2,5 2 5] + (—AY) [1,2,5] + (—AY — 2AY — AY) [3,5 2 8] +
AV+2A3—3A4—2A6)[3 52 5]+ AJ[1,4,5] + (24 — 2AY +2AY) [2,4,5] +

(—A

(

(

(AY =20 = AY) [1,5 2 1]+ (—2AY) [1,5 D 5] + (—AY —2AY — AY) [2,5 D 2] +
(—2A

(-

(AY +3AY) [8,4, 5]+ (4AY — 4AY) [1,5, 6]+ (4AY — 4AY) [2,5, 6]+ (4AY — 4AY) [3,5, 6]

2AY[1,8 D 1] +2A¥[1,8 D 8] + (—2AY) [1,2,3] + (-2AY) [1,4 2 1] +

(—2A%) [1,4 D 4] + (—2AY) [2,4 2 2] + (—2AY) [2,4 2 4] + 2AY[1,8,4] +
2AY[2,3,4] + (—2AY) [1,5 2 1] + (—AY — AY) [1,5 2 5] + (—2AY) [2,5 2 2] +
(-AY = AY) (2,5 2 5]+ (—2AY) 8,5 2 3] + (—AY — A{) [3,5 2 5] +

(=AY +20Y — AY) [1,3,5] + (—AY +3AY — 3AY + AY) [1,4,5] +

(=AY +3AY = 3AY + AY) [2,4,5] + (AY — AY + AY + AY) [3,4,5] +

(20 —2A¢) [1,5,6] + (275 — 2A ) [2,5,6] + (247 — 2A¢) 3,5, 6]

k h¥(XV) generating cocycles
0 1 2AY]

1 2 AY[1] + 2AY [2] + 2AY [3] + 2AY [4] + 2AY [5]
205 [1] + 245 [2] + 2A5[3] + 275 [4] + 2A5[5]

2 4 AY[1 2 1]+2AY[2 D 2] + (AY + A + AY) [1,2] + 2AY[3 D 3] + 24 [4 D 4] + 2AY [5 D 5] +
(AY +287 +A) [2,5] + (A7 +AY) 3,5]
2A5[1 2 1]+ 2A5[2 D 2] + 2AJ[3 D 3] +2A5[4 D 4] + 2A;[5 D 5]

AY1,8]+ (AY +AY) [2,8] + 2AY [1,4] + 24 [2,4] + (AY + AY) [3,4] + 2AY [1, 5] + 24 [2, 5] +
(AY +A¢) [3,5]

(AY + 28 + AY) [5 2 5] + (AY + AY +2AY) [8,5] + (AY + AY + AY) [4,5]
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k h*(XVY) generating cocycles
3 10 Ay 121420y 222D 2]+ (AY +AY) [1,2 D2 1]+ (AY + AY +AY) [1,2 D 2] +
2AY[3 D3 D3] +AY[1,2,3] +2AY[4 D 4D 4] +2A)[2,3,4] +2AY[5 D 5 D 5] +
(AY + 288 + AY) [2,5 2 2]+ (AY +2AY + AY) [3,5 2 8] + (AY +AY) [3,5 2 5] + AY[1,3,5] +
(AY +AY) [2,8,5] + (AY + AY + AY + AY) [3,4,5] + 2AY[3, 5, 6]
2AY[12121]+2AY[22222]+2AY[323 23] +2AY[4 242 4] +2AY[5 25D 5]
(AY +AY +4AY) 222D 2] + (AY +AY) [1,2 D 1]+ (AY + Ay +AY) [1,2 D 2] +
(AY + Ay + AY) [2,8 D 2]+ (AY + AY +3AY) [2,3 D 3] + AY[1,2,3] + 2AY[2,8,4] +
(AY +20Y +AY) [2,5 2 2] + 2AY[3, 4, 5]
AY[1,3 2 1] +2AY[1,8 D 8] + (AY + AY + AY +2AY) [1,2,8] + 2A[1,4 D 1] +2AY[1,4 D 4] +
2AY[2,4 2 2] +2AY[2,4 D 4] + (AY + AY) [1,8,4] + 2AY[1,5 D 1] + 24 [1,5 D 5] + 2AY[2,5 D 2] +
2AY[2,5 D 5] +2AY[3,5 D 3] +2AY[3,5 D 5] + AY[1, 3, 5]
AY[1,3 2 1]+ (AY +AY) [2,3 D 2] + (AY +3AY) [2,3 2 3] + (AY + AY +2AY) [1,2,8] +
(AY + AY) [1,8,4] + (AY +3AY) [2,3,4] + (AY +2AY +AY) [3,5 2 8] + (AY +AY) [3,5 2 5] +
(AY +AY) [1,8,5] + (AY + AY) [2,8,5] + (AY + AY + AY + AY) [3,4,5] + 2AY[3,5,6]
(AY +20Y +AY) [5 25 2 5]+ (A + AY) [8,5 2 5] + AY[1,8,5] + (AY + AY) [2,3,5] +
AY[4,5 2 4] + (AY +3AY + AY) [4,5 2 5] + (AY + AY) [3,4,5] + 2AY[3, 5, 6]
(AY +28Y) [1,5 2 1] + (AY + AY + AY +2AY) [1,2,5] + (AY + AY) [1,3,5] +
(A¥ +AY + 2Ag) [1,4,5] + 2AY[2, 4, 5]
(AY + 288 +AY) 1,5 2 5]+ (AY +AY) [1,2,5] + (AY + AY) [1,8,5] + (AY + AY + AY) [1,4,5] +
(2AY + AY) [2,4,5] + 2AY[2, 5, 6] + 277 [3, 5, 6]
2AY[5,6 D 5]
AY[5,6 D 6]
k 0 1 2 3
0 1 0
01 0
0 1 1
1 0 0 1
com () 1 0 0 0 0
P 1 0 100
0 1 1 0
0 0 O
0 0 0
0 0 0
A.14.2 Cohomology of coweight lattice XV = PV
¢y = O with 7= (AY + AY) [1] + (AY + A + A) [2] + (A + A +AY) [3] +
(A3 + Ay +Ag) [4] + AS[5]
k H* (W, XY) generating cocycles
0 0
1 z)27 (A = AY) 18]
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k H* (W, X") generating cocycles
2 72 & Z)2Z A6 2 6]+ (AY —2AY + AY) [5, 6]
A D1+ (-AY) 2221+ AY[1,2] + (-AY) B2 3]+ (-AY) 4D 4] +
(=AY) 1525+ (—AY + AY) [1,6] + (AY — AY) [2,6] + (AY — AY) [3,6] +
(AY = AY) [4,6] + (20Y — 2A¢) [5, 6]
3 ZN2ZSZ2ZZ)2Z (A - AY)[5,6 2 6]
727 & 7)2Z & 7)27
A{[5,6 2 5]+ AY[5,6 D 6] + (—AY +2AY — 2AY + AY) [4,5,6]
AY[1,6 21] +AY[1,6 2 6]+ (—AY) [2,6 2 2] + (—AY) [2,6 2 6] + (—AY) [1,2,6] +
(-AY)[3,6 23]+ (—AY) [3,6 2 6] + (—AY) [4,6 D 4] + (—AY) [4,6 D 6] +
(AY —20Y + AY) [1,5,6] + (=AY +2AY — AY) [2,5,6] + (—AY +2AY — AY) [3,5,6] +
(—2AY +2AY) [4,5,6]
AY[1,6 2 1]+ AY[1,6 2 6]+ (—AY) [2,6 D 2]+ (—AY) [2,6 2 6] + (—AY) [1,2,6] +
(-AY) (8,6 23]+ (—AY)[3,6 2 6] + (—AY) [4,6 D 4] + (—AY) [4,6 2 6] +
(AY = 28Y + AY) [1,5,6] + (=AY +2AY — AY) [2,5,6] + (—AY + 243 — AY) [3,5,6] +
(—2AY +2AY) [4,5,6]
(A —A)[62626]
AZ[1,83 21] + A{[1,3 2 3] + (—AY) [1 2,8]+ (—AY) [1,4 2 1]+ (-AY) [1,4 D 4] +
(-AY)[2,4 221+ (—AY) [2,4 2 4] + AY[1,3,4] + AY[2,3,4] + (-AY) [1,5 D 1] +
(-AY) 11,5 25] + (—AY) [2,5 2 2] + (—AY) [2,5 2 5] + (—A¢) [3,5 2 8] +
(- ASV)[3535]+A6345]+( +A6)136]+(Ag— AY) [1,4,6] +
(AY = AY) (2,4, 6]+ (20 — 2A¢) [1,5,6] + (28 — 2AY) [2,5,6] + (243 — 2AY) [3,5, 6]
k hX(XY) generating cocycles
0 1 A
1 3 AL+ A [2] + A [8] + Ad [4] + Ag[5]
A6l
Agl6]
2 8 AJAD1+AJ[2D2]+AJ[B3D3]+AJ[4D4]+AY[5D 5]

AG[1,3] + Ag [1,4] + Ay [2,4] + A [1, 5] + A [2, 5] + A{[3, 5]

AS[6 D 6]

Ag6 2D 6]

AF[1,6] + AJ[2,6] + A[3,6] + A5 [4,6]

Ag[1,6] + Ag[2, 6] + A [3, 6] + A [4, 6]

A{[5,6]

Ag[5,6]
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k h*(XVY) generating cocycles

3 19 AY[12121]+AJ[22222]+A{[32323]+AJ[42424]+Ag[5252 5]

AY[1,3 D 1)+ AY[1,3 D 3]+ AY[1,4 D 1] + AY[1,4 D 4] + AY[2,4 D 2] + AY[2,4 D 4] +
ATL,5 2 1]+ AJ[1,5 2 5] + AJ[2,5 2 2] + AJ[2,5 2 5] + A 8,5 2 3] + A{[3,5 2 5]

AJ[1,2,3] + AS[2,3,4] + AJ[3,4,5]

Af[6 262 6]

Ad[6 262 6]

AY[1,6 D 1]+ AY[2,6 D 2] +AY[3,6 D 3]+ AJ[4,6 D 4]
AJ[1,6 D 1] +AJ[2,6 D 2] +AJ[3,6 D3] +A[4,6 D 4]
AJ[1,6 D 6] +AY[2,6 D6]+AY[3,6 D 6]+A)[4,6 D 6]
AJ[1,6 D 6] +AY[2,6 D 6]+ AJ[3,6 D 6] +AJ[4,6 D 6]
AY[1,3,6] + AY[1,4,6] + AY[2,4, 6]

AJ[1,3,6] + Ag[1,4,6] + AJ[2,4,6]

Aj[5,6 2 5]

Ay [5,6 2 6]

AY[5,6 D 6]

Ag[5,6 2 6]

AY[1,5,6] +AY[2,5,6] +AY[3,5,6]

AJ[1,5,6] + A [2,5,6] +AY[3,5, 6]

AY[4,5,6]

Ag[4,5,6]
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A.14.3 Cohomology with trivial coefficients
k H*(W,,Z) generating cocycles
0 y/A l
1 0
2 72 Z/2Z [6 D 6]
A21]+(-1)[222]+[1,2]+(-1)[3 23]+ (-1)[4 2 4]+ (-1)[5 2 5]
3 Z]2Z®Z/2Z DZ/2Z [5,6 D 5]+ [5,6 D 6]
1,6 21]+[1,6 2 6]+ (-1)[2,6 2 2]+ (-1)[2,6 2 6]+ (-1)[1,2,6] +
(-1)[3,6 23]+ (-1)[3,6 2 6]+ (—1)[4,6 2 4] + (-1
[1,321]+[1,3 23]+ (-1)[1,2,3] + (-1)[1,4 D 1] + (1) [1,4 D 4]
(=1)[2,42 2]+ (-1)[2,4 2 4] +[1,3,4] + [2,3,4] + (-1) [1,5 D 1] + (- 2 5]+
(=1)[2,522]+(-1)[2,5 2 5]+ (-1)[3,5 2 3] +(-1)[3,5 2 5] + [3,
k  h¥(FFy)  generating cocycles
0 1 0
L2 [+ R+B+ M+
6]
2 5 [1D1]+[2D2]+[83D3]+[4D4]+[52D5]
(1,3] +[1,4] + [2,4] + [1,5] + [2, 5] + [3, 5]
[6 2 6]
(1,6] + [2,6] + [3, 6] + [4, 6]
5, 6]
3 12 [1D21D1]4[2D22D22]+[3D023D23]+[4D24D4]+[525D 5]

1,8321] 41,32 38]+[1,4D1]+[1,4D4] +[2,4D 2] +[2,4D4]+[1,5 D 1] +[1,5 D 5] +
(2,5

D2]+[2,525]+[3,523]+[3,52 5]
(1,2,3] + [2,3,4] + [3,4, 5]
1,3,5]
6262 6]
(1,6 D 1] +(2,6 D 2] +[3,6 D 3] +[4,6 D 4]
[1,6 D 6] + (2,6 D 6] +[3,6 D 6] +[4,6 D 6]
(1,3,6] + [1,4, 6] + [2,4, 6]
(5,6 2 5]
(5,6 2 6]
(1,5,6] + [2,5, 6] + [3,5, 6]

4,5, 6]
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A.15

Root system B;

A COMPUTATIONAL RESULTS

Fundamental group

Dynkin diagram

O—O0—0O0—0—0—C=>0
12 3 4 5 6 7

PY/QY ~Z/)2Z
generated by AY € PY mod QY

A.15.1

Cohomology of coroot lattice XV = QV

(6]

= (1,1,0,1,0,1,0)
does not lie in the image of comp,

o

HX(Wo,XY)

generating cocycles

(\}

7/22 $7/)27

2220 7)2Z

0

z/27

722 2)27 & Z)2Z

(288 —2AY) [7]

AL 2 7]+ (AY — 208 + AY) [6,7]

2AY[1 2 1] + (—2AY) [2 2 2] + 2A7[1,2] + (—2AY) B2 8] + (—2AY) [4 2 4] +
(—2AY) [5 2 5] + (—2AY) [6 2 6] + (—2A¢ +2AY) [1,7] + (2A¢ — 2AY) [2,7] +
(208 = 2AY) 3, 7] + (2A¢ — 2AY) [4,7] + (2A8 — 2AY) [5, 7] + (40§ — 4AY) [6,7]

2AY[6,7 D 6] + 2A¢[6,7 D 7] + (—2AY +4AY — 4AY +2AY) [5,6,7]
(AY =208 +A{) [5,7 2 7]

2AY[1,7 2 1] + 2A8 [1,7 2 7] + (—2AY) [2,7 2 2] + (—2A¢) [2,7 2 7] +

(—20Y) [1,2,7] + (—207) 8,7 2 8] + (—2A8 ) [8,7 2 7] + (—2AY) [4,7 2 4] +
(—20) [4,7 2 7] + (—2AY) [5,7 2 5] + (—2AY) [5,7 2 7] +

(20 — 4AY +20Y) [1,6,7] + (—2A% +4A¢ — 2AY) [2,6,7] +

20Y +4AY —2AY) [3,6, 7] + (—2AY +4AY — 2AY) [4,6,7] + (—4AY +4AY) [5,6,7]

AL 7D+ AY[L, 727+ (-AY) 12,7 221+ (—AY) [2,7 2 7] + (—AY) [1,2,7] +
ALY 8,7 2381+ (-A) [3: 727+ (-A) [4,7 2 4]+ (-AY) [4,7 2 7] +

AY) 15,7 251+ (—AY) 15,7 2 7] + (AY — 2A¢ +AY) [1,6,7] +
AY + 20 — AY) [2,6,7] + (=AY +2A¢ — AY) [3,6,7] +

AY + 20 — AY) [4,6,7] + (—2AY +2A¢ ) [5,6,7]

(-

(-

(-

(-

(-

2AY[1,8 D 1]+2AY[1,8 D 8]+ (—2AY) [1,2, 8]+ (—2A7) [1,4 D 1]+ (-2AY) [1,4 D 4]+
(—2AY) [2,4 2 2]+ (—2AY) [2,4 D 4]+ 2AY[1,3,4] +2AY[2,3,4] + (—2AY) [1,5 D 1] +
(—2A¥) [1,5 2 5] + (—2AY) [2,5 2 2]+ (—2AY) [2,5 2 5] + (—2AY) [3,5 2 3] +

(- [8,5 2 5] + 2AY[3,4,5] + (—2AY) [1,6 2 1] + (—2AY) [1,6 D 6] +

(- [2,6 2 2] + (—2AY) [2,6 2 6] + (—2AY) [3,6 2 8] + (—2AY) [3,6 D 6] +

(- [4,6 D 4]+ (—2AY) [4,6 D 6] + 2AY[4,5,6] + (—2A¢ +2AY) [1,3,7] +

(28 = 2AY) [1,4,7) + (209 — 2AY) [2,4,7) + (208 — 2AY) [1,5,7] +

(28 —2AY) [2,5,7) + (20 — 2AY) [3,5,7) + (40§ — 4AY) [1,6,7] +

(42

ANY — 4AY) [2,6,7) + (407 — 4AY) [3,6,7] + (4A¢ — 4AY) [4,6,7]

k  h&XV)

generating cocycles

0

1

207 ]
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k hX(XVY) generating cocycles
1 3 AY[1] + 2AY [2] + 2AY [3] + 2A7 [4] + 2AY[5] + 2AY [6]
2A7 [1] 4 2A7 [2] + 2AY [3] + 2A7 [4] + 2AY [5] + 2A7 [6]
Ag[7]
2 7 A§[1Q1]+2A¥[292]+(A¥+A2V+A¥)[1,2]+2A¥[3;3]+2A¥[4Q4}+2A¥[595]+

2AY[6 D 6] + 2AY[2,7] + 2A7 [3,7] + 2AY [4,7] + 207 [5,7]
2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4] + 2AY[5 D 5] + 2AY[6 D 6]

AY[1,3] + (AY +AY) [2,3] + 2AY [1,4] + 2AY[2,4] + (AY + AY) [3,4] + 247 [1,5] + 2AY [2,5] +
2AY[3,5] + 2AY[1,6] + 2AY [2,6] + 2A [3, 6] + 2A7 [4, 6] + 2AY [3,7]

(AY +AY) [6 2 6] + (AY + AY +AY) [5,6]
A7 2 7]+ (A +AY) [6,7]
20 (7 2 7]

AGIL 7]+ AG 12, 7] + AG[8, 7] + Ag [4, 7] + A [5, 7]
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k h*(XVY) generating cocycles
3 17 AYID 121420722222+ (AY +AY) [1,2 D 1] + (AY + AY + AY) [1,2 D 2] +

2AY[3 D3 D3] +AY[1,2,3] +2AY[4 D 4 D 4] +2A7[2,3,4] +2AY[5 D 5 D 5] +2AY[3,4,5] +
2AY[6 D 6 D 6] +2A7[4,5,6] +2A7[2,7 D 2] +2AY[3,7 D 3] +2A7[4,7 D 4] + 2A7[5,7 D 5]

2AY[1 D1 D 1]+2AY[2 D2 D 2]+2AY[3 D3 D 3]+2A7[4 D4 D 4]+2AY[5 D5 D 5]+2A7[6 D 6 D 6]

(AY +AY +4AY) (2222 2]+ (AY + A7) [1,2 D 1]+ (AY + AY +AY) [1,2 D 2] +
(AY +AY +AY) [2,3 2 2] + (AY + AY +3AY) [2,8 D 3] + AY[1,2,3] + 2A7[2,3,4] + 2A/[3,4,5] +
2A7[4,5,6] + 207 [2,7 D 2]

AY[1,2 2 1]+ AY[1,2 2 2]+ (AY + AY) [2,6 D 2] + (AY + AY) [3,6 2 3] + (AY +AY) [4,6 D 4] +
AY[5,6 2 5] + (AY +2AY) [5,6 2 6] + (AY + AY) [4,5,6]

AY[1,8 2 1]+ 2AY[1,8 D 3] + (AY + AY + AY +2AY) [1,2,3] + 2A7[1,4 2 1] + 2A/[1,4 D 4] +
2AY[2,4 2 2] + 2AY[2,4 2 4] + (AY + AY) [1,8,4] + 2AY[1,5 D 1] + 2AY[1,5 D 5] + 2AY[2,5 2 2] +
2AY[2,5 D 5] +2A7[3,5 D 3] +2A7[3,5 D 5] +2AY[1,6 D 1] +2AY[1,6 D 6] +2AY[2,6 D 2] +
2AY[2,6 D 6] +2AY[3,6 D 3] +2A7[3,6 D 6] +2A7[4,6 D 4] +2AY[4,6 D 6] +2A7[1,4,7] +
2AY[2,4,7) + 2AY[1,5,7] + 2AY[2,5,7] + 2A7 [3,5,7]

AY[1,8 2 1]+ (A +AY) 2,8 2 2] + (AY +3AY) [2,3 2 8] + (AY + AY +2AY) [1,2,3] +
(AY +AY) [1,8,4] + (AY + AY +2AY) [2,8,4] + 2AY[3,4,5] + 2A7[4,5,6] + 2A7[3,7 D 8] +
2AY[4,7 D 4] +2AY[1,4,7] + 2AY [2,4,7] + 2AY[5,7 D 5] + 2AY[1,5,7] + 2AY[2,5,7] + 2AY[3,5,7]

AY[1,3,5]+(AY + AY) [2,3,5]+2AY[1, 3,6]+2AY[1, 4, 6]+2AY[2, 4, 6]+ (AY + AY) [3,5, 6]+2AY [3,5,7]
(AY +AY)[6 26 2 6]+ (AY +AY +AY) [5,6 2 5]+ AY[5,6 D 6]

(AY +AY) [1,6 2 6] + AJ[1,2,6] + (AY + AY + AY) [1,5,6] + 2A7[2,6,7] + 247 [3,6, 7] + 2AY[4,6,7]
AT2727)+ (AY +AY)[6,727]

NY[T D7D

AY[1,7 2 1] +2AY[2,7 D 2] + (AY + AY + AY +2AY) [1,2,7] + 2AY[3,7 D 3] + 20/ [4,7 D 4] +
20Y[5,7 2 5] + (AY + AJ +2AY) [2,5,7] + (AY + AY) [3,5,7]

AF[L,7 D 1]+ AF[2,7 D 2] + AJ[3,7 2 3] + A [4,7 D 4] + A [5,7 D 5]

AL 7D T+ AJ12,7 271+ AY[3,7 D 7]+ A [4,7 D T + A [5,7 2 71+ (AY + AY) [1,6,7] +
(AY +AY) (2,6, 7] + (AY + AY) [3,6,7] + (AY + AY) [4,6,7]

AY[1,3,7) + AY[1,4,7) + AY[2,4,7) + AY[1,5,7] + AY[2,5,7] + AY[3,5,7]
AY[6,7 2 7]

A{[5,6,7]
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A.15.2 Cohomology of coweight lattice XV = PV

¢, = Ot with 7 = (AY + A¥) 1] + (AY + Ag/ + A¥) [2] + (Ag + Ag + A¥) [3] +
(A + A + A7) [4] + (A + A + A7) [5] + Ag [6]

k H*X(Wq, XY) generating cocycles

0 0

1 zZ)2Z (A = AY) [7]

2 727 2)2Z AT 2 7]+ (AY — 208 + AY) [6,7]

A2+ (-AY) 2221+ AY[1,2] + (-AY) B2 3]+ (-AY) 4D 4] +
(-AY)[5 2 5]+ (—AY)[6 2 6] + (—AY + AY) [1,7] + (AY — AY) [2,7] +
(A = AY) 8,7+ (A — AY) [4, 7] + (A — AY) [, 7] + (208 — 2AY) [6,7]
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k H* (W, XY) generating cocycles
3 ZNRLSZNRZOL)2ZS (A —AY) 16,727
22 ©Z)2Z & Z)2Z

AY[6,7 2 6]+ AJ[6,7 D 7]+ (=AY + 24y — 2AY + AY) [5,6,7]

)
AL, 721+ A1, 727+ (-AY) 2,7 2 2]+ (—AY) [2,7 2 7] + (—AY) [1,2,7] +
(- AV)[3 728+ (-AY) 3,727+ (-AY) [4,7 2 4] + (-AY) [4,7 2 7] +
(-AY)[5,7 2 5]+ (—AY) [5,7 2 7] + (AY — 2A¢ + AY) [1,6,7] +
(=AY +20¢ = AY) (2,6, 7] + (—AY + 208 — AY) [3,6,7] +
(=AY +2A¢ — AY) [4,6,7] + (—2A8 +2A)) [5,6,7]

AY [1,791]+Ag[1,797]+(—A6v)[2,7;2]+(—Ag)[2,7;7]+(—Ag) [1,2,7] +
AY) 13,7 23]+ (—A¢) 13,7 2 7]+ (-A¢) [4,7 2 4] + (-A¢) [4,7 2 7] +

AY) I, 735]+( $) 15,7 27+ (AY —2AY +AY) [1,6,7] +

AY + 20 — AY) [2,6,7] + (=AY +2A¢ — AY) [3,6,7] +

AY +2AY — )[, , 7]+ (—2A5V+2Ag) [5,6,7]

AY 7A¥)[7Q7Q7]

AY[1,832 1]+ AY[1,8 D8]+ (-AY) [1,2,3] + (—AY) [1,4 D 1] + (—AY) [1,4 D 4] +
(2,42 2]+ (—AY) [2,4 D 4] + AY[1,3,4] + AY[2,3,4] + (-AY) [1,5 D 1] +
[1,5 2 5]+ (—AY) [2,5 2 2] + (—AY) [2,5 2 5] + (-AY) [3,5 2 3] +

[3,5 D 5] + AY [3,4,5]+(—A7V) [1,6 2 1]+ (—AY) [1,6 D 6] +

(2,6 2 2]+ (—AY) [2,6 2 6]+ (—AY) [3,6 2 3] + (—AY) [3,6 D 6] +

[4,6 D 4] + (—AY) [4,6 D 6] + AY[4,5,6] + (—A¢ +AY) [1,8,7] +

A = AY) [1,4,7] + (A — AY) [2,4,7] + (AY — AY) [1,5,7] + (AY — AY) [2,5,7] +
Ay = AY) 18,5,7] + (28 — 2AY) [1,6,7) + (273 — 2AY) [2,6,7) +
2AV—2A7)[3,6,7]+(2AV—2AV)[4,6,7]

>

NN N N L

A
A
A

— — 03

(
(-
(
(
(
(-
(-A
(-
(-
(-
(
(
(

k h¥XV) generating cocycles

0 1 AV
1 3 AY[1] 4 AY[2] + AY[3] + AY[4] + AY[5] + AY[6]
AJ[7]
A7 [7]
2 8 A7[121]+A[22D2]+A7[3 23] +A7[4 2D 4]+ AJ[5 D 5] + A7 [6 2 6]

AY[1,3] + AY[1,4] + AY[2,4] + AY[1,5] + AY[2,5] + AY[3,5] + AY[1,6] + AY[2,6] + AY[3,6] + AY[4, 6]
AT 2 7]

AT 2T]

AL, 7]+ AY[2, 7] + A3, 7] + AJ[4, 7] + A{[5, 7]

AV, 7]+ AY[2,7] + AY[3,7] + AY[4,7] + AY[5,7]

AY16,7]

A7[6,7]
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k

h*(XY)

generating cocycles

3

20

AY[121D1]+AY[222D2]+AY[32323]+AY[42424]+AY[52525]+Ay[6 262 6]
A7[1,3 2 1] +A7[1,3 D 3]+ A{[1,4 D 1]+ AJ[1,4 D 4] + A{[2,4 D 2] + A{[2,4 D 4] + A{[1,5 D 1] +
AY[1,5 D 5] +AY[2,5 D2]+AY[2,5 D 5] +AY[3,5 D3] +AY[3,525]+AY[1,6D1]+

A7[1,6 D 6] +A7[2,6 D2]+A;[2,6 D6]+A/[3,6 D3] +AY[3,6D6]+A/[4,6D 4]+ A)[4,6D 6]
AY[1,2,3] +AY[2,3,4] + AY[3,4,5] + A)[4,5,6]

AY[1,8,5] + AY[1,8,6] + AY[1,4,6] + AY[2,4,6]

AJI7T2727]

A[T2727]

AL, 7T D1 +AJ[2,7D 2] +AJ[3, 7D 3] +AJ[4,7 D 4] +AJ[5,7 D 5]

AY[1,7 D1+ AY[2,7 D 2] +AY[3,7 D3] +AY[4,7 D 4]+ AY[5,7 D 5]
AJ[L,7TDT+AS[2,7 D7 +AS[3, 7D 7] +AJ[4, 7D 7]+ AJ[5,7 D 7]

AL, 7 D7 +AY[2,7 D27 +AY[3, 7D 7] +AY[4, 7T D 7]+ AY[5,7 D 7]

AY[1,3,7] + AY[1,4,7] + AY[2,4,7] + AY[1,5,7] + AY[2,5,7] + A [3,5,7]

AY[1,8,7] + AY[1,4,7] + AY[2,4,7] + AY[1,5,7] + AY[2,5,7] + AY[3,5,7]

AZ[6,7 2 6]

AJ[6,7 2 7]

AJ16,7D 7]

AY[6,7D 7]

AJ[1,6,7] + AY[2,6,7] +AY[3,6,7] + AY[4,6,7]

AY[1,6,7] + AY[2,6,7] + AY[3,6,7] + AY[4,6,7]

AY[5,6,7]

A7[5,6,7]

compy, () 1

_ = O OO0+~ OOo

OO R PR OO O
OO OO O HMHF OO oo
i el e i e Bl N en B i e B e B s i o B ao i ao B an B e B e B e B e B an )
OO P OO0 OFrRrROOoOOoOo oo

OO OOOO0OOoOOoO O+, OOOOoOO OO
SO DDDOD DD DO OO OHHOOOO
DD O DD DODODOOHMHOODODODODOO -EFEO
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A.15.3 Cohomology with trivial coefficients

k HX(W,,Z) generating cocycles
0 y/A I
1 0
2 72 Z/2Z [727]
21+ D[222]+[1,2]+(-1)[B23]+(-1)[4 24]+ (-1)[5 2 5]+ (-1)[6 2 6]
3 Z/]2Z®Z/2Z2DZ/2Z [6,726]+[6,7D7]
1,721+, 727+ (-1)[2,7D2]+(-1)[2,7 D7+ (-1)[1,2,7]+(-1)[3,7 D 3]+
()B72ﬂ+ —1)[4,724]+ (-1)[4,7 D 7]+ (-1)[5,7 D 5] + (-1)[5,7 D 7]
[1’321]+[1»323]+(_1)[1»2a3]+(_1)[17421]+( 1)[17424]""
( 1)[27422]+(_1)[27424]+[17374]+[273a4]+(_1)[1,521]+(_1)[17525]+
(~1)[2,5 D 2] + (~1)[2,5 D 5] + (~1)[8,5 2 8] + (~1)[3,5 2 5] + [3,4,5] +
(-1)[1,6 2 1]+ (~1)[1,6 D 6] + (~1)[2,6 D 2] + (~1)[2,6 2 6] + (—1)[3,6 D 3] +
( 1)[33626]+(71)[4a624]+(71)[41626]+[ 3536]
k  h¥(Fy)  generating cocycles
1 i
1 2 (1] + [2] + [3] + [4] + [5] + [6]
[7]
2 5 121]+[222]+[323]+[424]+[525]+[62 6]
(1,3] + [1,4] + [2,4] + [1,5] + [2,5] + [3, 5] + [1, 6] + [2, 6] + [3, 6] + [4, 6]
[727]
1,77+ (2,71 + [3, 7] + [4, 7] + [5, 7]
[6,7]
3 12 12121]+[22222]+[32323]+[42424]+[52525]+[6262 6]

[1,321]+[1,323]+[1,4D1]+[1,4D 4] +[2,4D
[2,5 D 2] +[2,5 D 5]+[3,523]+[3,5 5] +[1,6 D
(3,6 23] +[3,6 2 6] +[4,6 2 4] +[4,6 2 6]

2] +([2,4D4]+[1,521]+[1,525
11+4[1,626]+[2,622]+[2,6 286
[1,2,3] +[2,3,4] + [3,4,5] + [4, 5, 6]

[1,3,5] +[1,3,6] + [1,4,6] + 2,4, 6]

[72727]

[1,721]+[2,722]+[3,7 D3] +[4,7 D 4] +[5,7 D 5]
[1,b7D7]+[2,727)+ (3,727 + (4,727 +[5,72D 7]

[1,3,7) +[1,4,7] + [2,4,7) + [1,5,7] + [2,5,7] +[3,5, 7]

(6,7 2 6]

(6,72 7]

[1,6,7] +[2,6,7] + [3,6,7] + [4,6,7]

[5,6,7]
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A.16 Root system Bg

Dynkin diagram

PY/QV ~7/2Z

Fundamental grou
group generated by AY € P¥ mod QY

O—O0—0O0—0—0—"0—C0C=>=0
1 2 3 4 5 6 7

A.16.1 Cohomology of coroot lattice XV = QV

193

(0]

= (1,1,0,1)
does not lie in the image of comp,

k HX(Wq,XY) generating cocycles

0 0

1 Z/2Z (A =207 + AY) [7]

2 z)27 2AY[1 2 1]+ (—2AY) [2 D 2] +2AY[1,2] + (—2AY) 32 3] + (—2AY) [4 D 4] +
(—2AY) [5 2 5] + (—2A7) [6 2 6] + (—A — AY) [7 2 7]+ (—A§ + 207 — AY) [1,7] +
(A =207 + AY) [2,7) + (AY — 287 + AY) [8,7] + (A — 2AY + A) [4,7] +
(AY —20Y + AY) [5,7] + (—AY +3AY — 3AY + AY) [6,7] + (2 — 2AY) [7, 8]

3 ZNRLOLNLOL)2Z (A —A{) (7,827
(A =20 —=AY) 1,72 1]+ ( 20Y) [1,7 2 7] + (—AY —20Y — AY) [2,7 2 2] +
(=288 —2AY) (2,7 2 7] + (—AY) [1,2,7] + (—A¢ —2AY — AY) [3,7 2 8] +
(- 2AV—2AV) 8,7 2 7] + (A —2AY — AY) [4,7 2 4] + (—2Ay - 2A]) [4,7 2 7] +
(—AY —2AY — AY) [5,7 2 5] + (=AY +2AY —3AY —2AY) [5,7 2 7] + AY[1,6,7] +
(2A¢ —2A¥ +20Y) (2,6, 7]+ (2A¢ — 2AY +2AY) [3,6, 7]+ (208 — 2AY +2AY) [4,6,7]+
(AY +3AV) [5,6,7] + (4AY — 4AY) [1,7,8] + (4AY — 4AY) [2,7,8] +
(4AY —4A) 3,7, 8] + (4AY — 4AY) [4,7,8] + (4A) — 4AY) [5,7, 8]
2AY[1,8 2 1]+2A7[1,8 2 8]+ (—2AY) [1,2,8]+ (—2AY ) [1,4 2 1]+ (—2AY) [1,4 D 4]+
(—2AY) [2,4 2 2]+ (—2AY) [2,4 2 4]+ 2AY[1,8,4] + 247 [2,8,4] + (—2AY) [1,5 D 1] +
(—2AY) [1,5 2 5] + (—2AY) [2,5 2 2] + (—2AY) [2,5 2 5] + (—2AY) [3,5 2 8] +
(—2AY) [3,5 2 5] + 2AY[3,4,5] + (—2AY) [1,6 D 1] + (—2AY) [1,6 2 6] +
(—2AY) 2,6 2 2] + (—2AY) [2,6 D 6] + (—2A7) [3,6 2 3] + (—2AY) [3,6 D 6] +
(—2AY) [4 62 4] + (—2AY) [4,6 D 6] + 2AY[4,5,6] + (—2AY) [1,7 D 1] +
(A = A) [, 727+ (—2AY) [2,7 2 2] + (—AY —AY) [2,7 2 7] +
(—2AY) [3,7 28] + (A —AY) [8,7 2 7] + (=AY +2AY — AY) [1,8,7] +
(—2AY) [4,7 2 4] + (—AY - AY) [4,7 2 7] + (AY — 2AY + AY) [1,4,7] +
(A =207 +AY) [2,4,7] + (—2AY) [5,7 2 5] + (—AY — AY) [5,7 2 7] +
(A =207 +AY) [1,5, 7] + (A — 2AY + AY) [2,5,7) + (AY — 2AY + AY) [3,5,7] +
(=AY +3AY = 3AY + AY) [1,6,7] + (=AY +3A¢ — 3AY + AY) [2,6,7] +
(—AY +3AY —3AY +A8) 3,6,7] + (—AY +3AY —3AY + AY) [4,6,7] +
(AY =AY+ AY + AY) [5,6,7] + (287 — 2AY) [1,7,8] + (247 — 2A¢) [2,7,8] +
(2AV —2AY) [3,7,8] + (2A¥ —2AY) [4,7,8] + (2AY — 2AY) [5,7, 8]

k hX(XVY) generating cocycles

0 1 2AY]
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k h*(XVY) generating cocycles

1 2 AY[1] + 2AY [2] + 2AY [3] + 2AY [4] + 2AY [5] + 2AY [6] + 2AY [7]
2AY [1] + 2AY [2] + 2AY [3] + 2AY [4] + 2AY [5] + 2AY [6] + 2AY [7]

2 4 AY[1 2 1]+2A7[2 D 2]+ (AY + AY + AY) [1,2]+2A7[3 D 8] +2A7[4 D 4] +2A7 [5 2 5] +2A7[6 2 6] +
207 (7 2 7]+ (A + 207 + AY) [2, 7]+ (A + 287 + AY) 13, 7]+ (A + 287 + AY) [4, 7]+ (AY + AY) [5,7]
2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4] + 2AY[5 D 5] + 2AY[6 D 6] + 2AY[7 D 7]
AY[1,8]+ (AY + AY) [2,8]+2AY [1,4] + 207 [2,4] + (AY + AY) [8,4] +2AY [1,5] + 24 [2, 5] + 2AY [3, 5] +
2AY [1,6]+2A7 [2, 6]+2AY [3, 6] +2AY [4, 6] +2A7 [1, 7]+ 247 [2, 7]+ (A + AY) [8,7]+2A [4, 7)+2AY [5, 7]
(A + 207 + A) [7 2 7]+ (AY + A +20Y) [5,7] + (AY + AY + AY) [6,7]

3 10 AY1 D212 1]42AY[2 222 2]+ (AY +AY) [1,2 D 1]+ (AY + AY +AY) [1,2 D 2]+2A7[3 23 D 3]+

AY[1,2,3] +2AY[4 D4 D 4] +2AY[2,3,4] +2AY[5 D 5 D 5] +2A7[3,4,5] +2AY[6 D 6 D 6] +
2AY[4,5,6] + 207 [7 2 7 2 7] + (A + 207 + AY) [2,7 D 2] + (AY + 207 + AY) [8,7 2 3] +

(A + 207 + AY) [4,7 2 4] + (A +2AY + AY) [5,7 2 5] + (AY + A{) [5,7 2 7] +

(AY +AY +207) [3,5,7) + (A + AY) [4,5,7] + (AY + AY + AY + AY) [5,6,7] + 24/ [5,7, 8]
2AY[12121]+2AY[22222]+2AY[3 23 23] +2AY[42424]+2A)[5 252 5] +

2AY[6 D6 D 6] +2A/[7TDT7 DT

(AY +AY +4A7) [2D22 2]+ (AY +AY) [1,2 D 1]+ (AY + AY +AY) [1,2 D 2] +

(AY +AY +AY) [2,3 2 2] + (AY + AY +3AY) [2,3 D 3] + AY[1,2,3] + 2A7[2, 3,4] + 2A/[3,4,5] +
2AY[4,5,6] + (AY +2A7 + AY) [2,7 2 2] + 2AY[5,6,7]

AY[1,3 D 1] +2A7[1,3 D 3] + (A1V+A§ +A§+2A¥) [1,2,3] +2AY[1,4 D 1] +2AY[1,4 D 4] +
2AY[2,4 2 2] + 2AY[2,4 2 4] + (AY + AY) [1,8,4] + 2AY[1,5 2 1] + 2AY[1,5 D 5] + 2A7[2,5 2 2] +
2AY[2,5 D 5] +2A7[3,5 D 3] +2A7[3,5 D 5] +2AY[1,6 D 1] +2AY[1,6 D 6] +2AY[2,6 D 2] +
2AY[2,6 D 6] +2A7[3,6 D 3] +2A7[3,6 D 6] +2AY[4,6 D 4] +2A7[4,6 D 6] +2AY[1,7 D 1] +
2AY[1,7 D 7] +2A7[2,7 D 2] +2A7[2,7 D 7] +2A7[3,7 D 3] +2A7[3,7 D 7] +2A7[4,7 D 4] +
20Y[4,7 D 7] + (AY + 28 + AY) [1,4,7] + (AY +2AY + AY) [2,4,7] + 247 [5,7 D 5] + 2AY[5,7 D 7] +
(AY +AY) 1,5, 7] + (AY +AY) [2,5, 7]+ (AY + 20 + AY) [3,5,7]

AY[1,3 2 1]+ (AY +AY) [2,3 D 2] + (AY +3AY) [2,3 D 3] + (AY + AY +2AY) [1,2,3] +

(AY +AY) [1,8, 4]+ (AY + AY +2AY) [2,3,4]+2AY[3,4,5]+2A7 [4,5, 6]+ (A +2AY + AY) [3,7 2 3]+
(A + 207 + AY) [4,7 D 4] + (A +2AY + AY) [1,4,7] + (AY + 207 + AY) [2,4,7] +

(AY +20Y +AY) [5,7 2 5] + (AY +AY) [5,7 2 7]+ (AY + AY) [1,5,7] + (AY + AY) [2,5,7] +

(AY +AY) (8,5, 7] + (AY + AY) [4,5,7] + (AY + A + AY + AY) [5,6,7] + 2AY[5,7, 8]

AY[1,8,5] + (AY + AY) [2,8,5] + 2AY[1, 3, 6] + 2A7[1,4,6] + 24/ (2,4, 6] + (A} + AY) [3,5,6] +
2AY[1,8,7] + 207 [1,4, 7] + 2AY[2,4,7] + 24 [1,5, 7] + 2AY[2,5,7] + (A + AY) [3,5,7]

(A +20Y + A ) 72727+ (AY +AY) 15,7 2 7] + (AY + AY +2A) [3,5,7) +
(A +AY) 4,5, 7] + AJ[6,7 2 6] + (AY +3AY + A{) [6,7 2 7] + (A + AY) [5,6,7] + 277 [5,7, 8]

(A +20Y +AY) 1,7 2 7]+ (AY + AY) [1,2,7] + (AY + A +2AY) [1,5,7] +
(AY + Ay +AY) [1,6,7] + (20 + AY) [2,6,7] + (20 + AY) [3,6,7] + (2AY + AY) [4,6,7] +
2AY[2,7,8] +2AY[3,7,8] +2AY[4,7,8] + 2AY[5,7, 8]

2AY[7,8 D 7]

AY[7,8 D 8]




A.16 Root system Bg 195

kK 0 1 2 3
0 1 0

01 0

01 1

1 00 1

1 0 000

comp, () (1) 0 00 0
0 100

00 0

00 0

00 0

A.16.2 Cohomology of coweight lattice XV = PV

¢n = Or with 7= (AY + A [1] + (AY + A + AY) [2] + (AY + AY + AY) [3] +
(A + A + AY) [4] + (A + A + AY) [B] + (A + Af + AY) [6] + A [7]

k H* (W, X") generating cocycles

0 0

1 z)2Z (AY = AY) 18]

2 72 & Z)2Z AY[8 28]+ (AY —2AY + AY) [7,8]

A2 1]+ (—AY) 222 +AY[L,2] + (-AY) 32 3] + (—AY) [4 2 4] +
(-AY) [525] + (~AY) [6 2 6]+ (—AY) [7 2 7]+ (—AY + AY) [1,8] +
(AY = AY) (2,8 + (AY — AY) [3,8] + (AY — AY) [4,8] + (AY — AY) [5,8] +
(AY = AY) [6,8] + (207 — 2AY) [7, 8]
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k

H* (W, XY) generating cocycles

3

ZPRZOL2LSZ)2Z® (A - AY)[7,8 2 8]

7222 2)27 & Z/2Z

AJ[7,8 D7)+ AY[7,8 D 8]+ (=AY +2A¢ — 2AY + AY) [6,7, 8]

AY[1,8 211+ AY[1,8 D 8]+ (-AY) [2,8 D 2]+ (—AY) [2,8 2 8] + (—AY) [1,2,8] +

(-AY) 13,8 28]+ (—AY) [3,8 2 8] + (—AY) [4,8 D 4] + (—AY) [4,8 D 8] +

(-AY) 5,8 25] + (—AY) [5,8 2 8] + (—AY) [6,8 2 6] + (—AY) [6,8 2 8] +

(Ag—2A¥+A8)[1 7,8] + (—AY + 207 — AY) (2,7, 8] + (—AY + 207 — AY) [3,7,8] +
A 4207 = AY) [4,7,8] + (=AY +2AY — AY) [5,7, 8] + (—2A¢ +2AY) [6,7, 8]

(-

AY[1,821]+AY[1,8 D 8]+ (—AY) [2,8 D 2] + (—AY) [2,8 D 8] + (—AY) [1,2,8] +
(—A7) (3,8 28]+ (~A7) [3,8 28] + (~A7) [4,8 2 4]+ (-A7) [4,8 2 8] +
(—A7) (5,8 251 + (~A7) [5,8 2 8] + (~A7) [6,8 2 6] + (~A7) [6,8 2 8] +

(A —20Y + AY) [1,7,8] + (—AY +2AY — AY) [2,7,8] + (—AY +2AY — AY) [3,7,8] +
(=AY +20Y — AY) [4,7,8] + (—AY +28Y — AY) [5,7,8] + (—2A¢ +2AY) [6,7, 8]
(A ng)[sgsgs]

AY 1
A

A
A

21+ A{[1,83 23] + (—-AY) [1,2,8] + (—AY) [1,4 2 1] + (-AY) [1,4 2 4] +
(2,42 2]+ (—AY) [2,4 2 4] + AY[1,3,4] + AY[2,3,4] + (-AY) [1,5 D 1] +
[1,5 2 5]+ (—AY) [2,5 2 2] + (-AY) [2,5 2 5] + (-AY ) [3,5 2 3] +

[8,5 2 5] + AY[3,4,5] + (—AY) [1,6 2 1] + (—AY) [1,6 2 6] +

(2,6 2 2]+ (—AY) [2,6 2 6]+ (—AY) [3,6 2 3] + (—AY ) [3,6 D 6] +

[4,6 D 4]+ (—AY) [4,6 2 6] +AY[4,5,6]+ (—AY) [1,7 2 1]+ (-AY) [1,7 2 7]+
2,722+ (—AY) [2,7 27+ (-AY) 3,7 28] + (-AY) [3,7 2 7] +

[4,7 2 4]+ (-AY) [4,7 2 7]+ (—AY) [5,7 2 5]+ (—AY) [5,7 2 7] +AY[5,6, 7] +
+AV) [1,3,8] + (AY — AY) [1,4,8] + (AY — AY) [2,4,8] + (AY — AY) [1,5,8] +
AY = AY) [2,5,8] + (A — AY) [8,5,8] + (AY — AY) [1,6,8] + (AY — AY) [2,6,8] +
AY — Ag) [3,6,8]+ (AY — AY) [4,6,8] + (2AY — 2AY) [1,7,8] + (2AY — 2AY) [2,7, 8] +
2AY — 2AY) [3,7,8] + (2AY — 2AY) [4,7,8] + (2AY — 2A{) [5, 7, 8]

>>

— — W

A

>
N0 0L 0L 0L O 0L BL

>

(-
(-
(-
(-
(-
(-
(-
(-
(
(
(

h*(XY)

generating cocycles

A

AJ[1] + A [2] + AS[3] + AZ [4] + AJ[5] + AJ [6] + AS[7]

A7 [8]

A [8]
A{[1D1]+AJ[222] +AJ[B2 3] +AJ[42D4] +AJ[5 D2 5] +AJ[6 26]+A{[72D7]

ASIL, 8] + Ag [1,4] + AJ[2,4] + AS[1, 5] + Ag [2, 5] + Ag[3, 5] + A{ [1, 6] + Ag[2,6] + A{[3, 6] +
Ag[4,6] + A1, 7] + Ag [2, 7] + A5 [3, 7] + Ag [4, 7] + Ag [5, 7]

A7[8 28]

A{[8 2 8]

AY[1,8] + AY[2,8] + AY[3,8] + AY[4, 8] + AY[5,8] + AY[6, 8]
AJ[1,8] + AY[2,8] + AJ[3,8] + AY[4, 8] + AY [5,8] + Ay [6, 8]
AJ[7,8]

Ag[7, 8]
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k hX(XVY) generating cocycles
3 20 AJ[1D1D1]+A[222D2]+A{[832323]+AJ[424D4]+AJ[52525]+AJ[62626]+
AJ[7T2727]
AZ[1,3 D 1] +AJ[1,8 D 3] + AJ[1,4 D 1]+ AJ[1,4 D 4] + A [2,4 D 2] + AJ[2,4 D 4] +
AJ[1,5D 1] +AJ[1,5 D 5] +AJ[2,5 D 2] +AJ[2,5 D5 +AJ[3,5 D3] +AJ[3,52D5]+
Ag[1,6 2 1]+ AJ[1,6 D 6] + AL[2,6 D 2] + AJ[2,6 D 6] + AJ[3,6 D 3] + AJ[3,6 D 6] +
AJ[4,6 D 4] +AY[4,6 D 6]+ AJ[1,7 D 1] +AJ[1, 7D 7] +AJ[2,7D 2] +AY[2,7D 7]+
AZ[3,7 23] + AS[3,7 2 7] + AS[4,7 D 4] + AL [4,7 D 7] + A [5,7 2 5] + A [5,7 2 7]

AY[1,2,8] + AY[2,3,4] + AY[3,4,5] + AY[4, 5, 6] + AY[5,6,7]

AJ[1,38,5] + AJ[1,38,6] + AJ[1,4,6] + AJ[2,4,6] + AJ[1,3,7] + AJ[1,4,7] + AJ[2,4,7] + AJ[1,5,7] +
AJ[2,5,7] + AJ[3,5,7]

A7[8 28D 8]
A{[8 28D 8]
AY[1,8 D11 +AY[2,8 D 2] +AY[3,8 D3] +AY[4,8 D4]+AY[5,8 D 5]+ AY[6,8 D 6]
AJ[1,8 D2 1] +AY[2,8 D 2]+ AJ[3,8 D3] +AF[4,8 D24]+AJ[5,82D5]+AJ[6,82D 6]
AY[1,8 D 8]+ AY[2,8 D8] +AY[3,8 D8] +AY[4,8 D8] +AY[5,8D 8]+ AY[6,8D 8]
AJ[1,8 D8] +AY[2,8 D8] +AY[3,8 D8] +Ay[4,8 D8] +AJ[5,8 D8] +Ay[6,82D 8]

AY[1,3,8] + AY[1,4,

8] + A7[2,4,8] + AY[1,5,8] + AY[2,5,8] + A/ [3,5,8] + AJ[1,6,8] + A/[2,6,8] +
A7[3,6,8] + A7 [4,6,8]

AJ[1,3,8] + AJ[1,4,8] + AY[2,4,8] + AJ[1,5,8] + A [2,5,8] + AJ[3,5,8] + AY[1,6,8] + AJ[2,6,8] +
AJ[3,6,8] + Ay [4,6,8]

AJ[7,8D 7]

Ag[7,8 2 8]

AY[7,8 D 8]

A{[7,8 2 8]

AJL,7,8] +AJ[2,7,8] + AJ[3,7,8] + A [4,7,8] + A [5,7, 8]

AJ[1,7,8] +AJ[2,7,8] +AY[3,7,8] + AJ[4,7,8] + A [5,7,8]

AY[6,7,8]

A{[6,7,8]
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kK 0 1 2 3
000000
00000 1
00000 1
000000
000010
000010

01 000100
00 001000

. 10 001100
0 0 000000
comp, () (1) 0 1 00000 1
01 00000 1
10 010000
10 100000
110000
000000
001100
001100
010000
010000

A.16.3 Cohomology with trivial coefficients

k HX(W,Z) generating cocycles
/A 1
1 0
2 Z27 $Z/27Z [8 D8]
121+ (-1)[222]+[1,2]+(-1)[323]+(-1)[4 24] +(-1)[5 2 5] +

3 Z/]2Z23Z/2Z2Z/2Z [7,8D7]+[7,82D 8]
(1,8 21]+[1,8 D 8]+ (-1)[2,8 2 2]+ (~1)[2,8 2 8]+ (-1)[1,2,8] +
(=1)[3,8 23]+ (-1)[3,8 2 8] +(~1)[4,8 2 4] + (-1) [4,8 2 8] + (1)
(-1)[5,8 2 8] + (~1)[6,8 2 6] + (~1)[6,8 D 8]
[173 2 1] + [173 2 3] + (_1) [17273] + (_1) [174 2 1] + (_1) [174 2 4] +
(71) [214 2 2] + (71) [274 2 4] + [19 314] + [27 3, 4] + (71) [175 Q 1] + (71) [175 2 5] +
(=1)[2,5 2 2]+ (-1)[2,5 2 5] + (~1)[3,5 2 3] + (~1) [3,5 2 5] +[3,4, 5] +
(71) [156 2 1] + (71) [116 2 6] + (71) [216 2 2] + (71) [216 2 6] + (71) [376 2 3] +
(=1)[3,6 26]+(~1)[4,6 2 4] +(~1)[4,6 2 6] +[4,5,6] + (~1)[1,7 2 1] +
(-D[L,727+ (-1 [2,7 22+ (-1)[2,7 27+ (-1)[3,7 23] + (1) [3,7 2 7] +
(-)[4,724 + (-1)[4,727) +(-1)[5,7 25|+ (-1)[5,7 2 7] + [5,6,7]

k  h*(Fy)  generating cocycles

1 i
1 2 (1] + (2] + [3] + [4] + [5] + [6] + [7]

(8]
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k  h¥(FFy)  generating cocycles

2 5 121]+[222]+[8323]+[424]+[525]+([626]+([727]
(1,3]+[1,4]+[2,4] +[1, 5] +[2, 5] +[3, 5] +[1, 6] +[2, 6] + 3, 6] + [4, 6] + [1, 7] +[2, 7] +[3, 7] +[4, 7] +[5, 7]
(8 28]
(1,8] + [2,8] + [3, 8] + [4, 8] + [5, 8] + [6, 8]
[7,8]

3 12 12121]+[22222]+[32323]+[42424]+[52525]+[62626]+[72727]
(1,82 1] +[1,82 3] +[1,4 D 1] +[1,4 D 4] +[2,4 D 2] +[2,4 D 4] +[1,5 D 1] +[1,5 D 5] +
[2,5 D2+ (2,525 +[3,523]+[3,525]+[1,6 D1]+[1,6 D6]+[2,6 D 2] +[2,6 D 6]+
(3,6 D3] +[3,6 D6]+[4,6 4] +[4,6 26]+([1,721]+[1,7 D7 +[2,7 2] +[2,7 27+
[3,723]+[3,7 27+ 4,724 +[4,7 27 +[5,7 5] +[5,7 D 7]

[1,2,3] + [2,3,4] + [3,4,5] + [4,5,6] + [5,6,7]

[1,8,5] +[1,3,6] +[1,4,6] + [2,4,6] + [1,3,7] + [1,4,7] + [2,4,7] + [1,5,7] + [2,5,7] + [3,5, 7]
8282 g

1,8 D1]+[2,8 22]+[3,823]+[4,824]+[5,825]+[6,8 D 6]

[1,8 D8] +[2,8 28] +[3,828]+[4,828]+[5,828]+[6,8 D 8]

(1,3,8] + [1,4,8] + [2,4,8] + [1,5,8] + [2,5,8] + [3,5,8] + [1,6,8] + [2,6,8] + [3,6,8] + [4,6,8]
[7,827]

[7,8 28]

[1,7,8] +[2,7,8] +[3,7,8] + [4,7,8] + [5,7, 8]

(6,7, 8]

A.17 Root system C)

Fundamental group

Dynkin diagram

O==0
1 2

PY/QY ~Z)2Z
generated by Ay € PY mod QY

A7

Cohomology of coroot lattice XV = QV

[Qbu] = (17 170)

does not lie in the image of comp,

k HX(Wy,XY) generating cocycles

0 0

1 z)2Z (AY —2AY) [2]

2 Z)2Z AY[2 2 2] + (—24Y +2A) [1,2]
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k HX(Wy,X") generating cocycles
3 Z/]2Z7Z/2Z AY[1,2D 2]

(AY —2A¥)[22222]
k h¥XV) generating cocycles
1 2AY ]

1 2 AY (2]

2A5[2]
2 3 AY[2 D 2]

205 [2 D 2]

2AY[1,2]
3 4 AY[2D2D2]

2AY[2D 2D 2]
AY[1,2 D 2]

2AY[1,2 D 2]

o~ OO
OO ==

A.17.2 Cohomology of coweight lattice XV = PV

¢u = Or with 7 = AJ[2]

k HX(Wy,XY) generating cocycles
0 0
1 z/)27 (AY = AY) [1]
2 Z/2Z AY[1 D 1]+ (=AY +2AY) [1,2]
3 Z]2Z Z/2Z AY[1,2D1]
(AY —Ay)[12121]
k h¥XV) generating cocycles
0 1 AYTl
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k hX(XVY) generating cocycles

1 2 AY[1]
A3 (1]

2 3 AY[1 D 1]
AF[121]
AY[1,2]

3 4 AY[1D1D1]
Af[12121]
AY[1,2 2 1]

AY[1,2D 1]

k 0 1 2 3
0 1
1 0 0 1
comp;, () 1 1 0 0
L 10

A.17.3 Cohomology with trivial coefficients

k HX (Wo,Z) generating cocycles
0 /A I
1 0
2 722 Z/2Z [2D2]
121]
3 7/2Z7 [1,2D1]+[1,2 D 2]

k  h¥(Fy)  generating cocycles

0 1 0

1 2 1]
(2]

2 3 [1D1]
(2 2 2]
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k  h¥(IFy)  generating cocycles

3 4 1D21D21]
[222D22]
[1,2D1]

(1,22 2]

A.18 Root system C}

O0—O==0

Dynkin diagram 1 2 3

PV/Q¥ ~7/2Z

Fundamental grou
group generated by AY € PY mod QY

A.18.1 Cohomology of coroot lattice XV = QV

[¢u] = (0,1,1,0,0,0)
does not lie in the image of comp,

k H* (W, XY) generating cocycles
0 0
1 Z/27 (AY —2A) [3]
2 727 o Z)2Z AY[3 28]+ (AY —2AY +2AY) [2,8]
2AY[1 2 1] + (—2AY) [2 2 2] + 2A3 [1,2] + (—AY +2AY) [1,8] + (2AY — 4AY) [2, 8]
3 Z2LDZL)2Z & (AY —AY) [2,3 23]
727 & 227

20y (2,3 2 2] + AY[2,3 2 8]+ (2AY — 24 +2AY) [1,2,3]
2A¥[1,3 2 1] + AY[1,3 D 3] + (2AY — 2AY) [1,2, 3]

(A —2A¥)[823 23]

k hk(W) generating cocycles

0 1 2A¥ (]
1 3 2A% [1] + 2AY [2]
A3 [8]

20 [3]
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k hX(XVY) generating cocycles

2 6 2A%[1 D 1] +2A¥[2 D 2]
AF[3 23]
2A¥[3 D 3]
2AY (1, 3]
AY[2,3]
2AY[2, 3]
3 10 2AY[1 D 1D 1]+2A5[2D2D 2]
AF[3232 3]

2A3[3 23 D 3]

2A¥[1,3 D 1]
2AY[1,3 D 3]
AY[2,3 2 2]
AY[2,3 2 3]
AS[2,3 D 3]
2AY[2,3 D 3]
2AY[1,2,3]
k O 1 2 3

00 00

0 0 0 1

0 1 00 0 1

0 1 0 00 10

0 0 00 00

comp; () ! 0 1 0100

1 10 100 0

1 0 1 100

00 00

01 00

A.18.2 Cohomology of coweight lattice XV = PV

[¢u] = (0707 1)

does not lie in the image of comp,

k HX(Wy,XY) generating cocycles

0 0
1 0
2 Z/2Z AY[1 2 1]+ (=AY) [2 2 2]+ AY[1,2] + (—AY) [8 2 8]+ (AY — AY + AY) [1,8] + (AY — 2AY) [2,3]
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k HX(Wy,X") generating cocycles
3 ZNRZOZ/2Z (A —AY)[2,3 23]

AY[1,8 2 1]+ (=AY + AY) [1,3 2 3] + (AY — AY) [1,2,8]

k h¥XV) generating cocycles

0
1 1 AY[1] + AY[2] + AY[3]
2 3 AY[1 2D 1]+ AY[2 D 2]+ AY[1,8] + AJ[2,3]
AY[3 23] + A1, 3]
AY[3 23]
3 5 AY[12121]+Af[222D2]+AY[1,3 2 1] +A5[2,3 D 2] + (AY +AY) [1,2,3]

AY[3D23D3]+Ay[1,3D 3]
AJ[32323]
AY[1,8 211+ AY[1,8 D3]+ (AY +AY) [1,2,3]

AY[2,3 2 2]+ (AY +AY) [1,2,3]

k 0 1 2 3
0 0
1 0 0
comp,, () () 1 10
0 0 1
0 0

A.18.3 Cohomology with trivial coefficients

k HX(W,,Z) generating cocycles
0 y/A 0

1 0

2 720 & Z)27 (3D 3]

121+ (-1)[222]+[1,2]

3 Z7/22 Z/2Z 2,32 2] +[2,3D 3]

(1,321]+[1,323]

k  h¥(Fy)  generating cocycles
0 1 1]
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k

h*(IFy)  generating cocycles

2 (1] + (2]
(3]

4 [121]+[222]

(3 2 3]
1,3]

(2, 3]

7 [1D2121]+[2D222 2]

323D 3
[1,321]
[1,3 D 3]
2,32 2]
2,32 3]

[1,2,3]

A.19 Root system C}

Dynkin diagram

Fundamental group

PY/QY ~Z/)2Z
generated by A} € P¥ mod QY

A.19.1 Cohomology of coroot lattice XV = QV
0] = (0,1,1,0,0,0,0)
does not lie in the image of comp,
k H*X(Wq,XY) generating cocycles
0 0
1 Z/)2Z (AY —2AY) [4]
2 727 2)2Z A4 2 4]+ (AY — 28y +2AY) [3,4]

20Y[1 2 1]+ (—2AY) [2 2 2]+ 2AY [1,2] + (—2AY) [8 2 8] + (—AY +2AY) [1,4] +
(AY —2AY) [2,4] + (245 —4AY) [3,4]
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k H* (W, XY) generating cocycles
3 Z)2L DZL)2Z (AY —AY)[8,424]
2/2282/222/22 2AY[3,4 D 3] + AY[3,4 D 4] + (—AY +2AY — 2AY +2AY) [2,3,4]
2AY[1,4 D 1] + AY[1,4 D 4] + (—2AY) [2,4 D 2]+ (-AY) [2,4 2 4] +
(—2AY) [1,2,4] + (AY — 23 +2AY) [1,3,4] + (—2A% + 2AY) [2,3,4]
AY[1,4 21+ AY[1,4 2 4]+ (-AY) [2,4 D 2] + (—AY) [2,4 2 4] + (—AY) [1,2,4] +
(Ag —2AY +2AZ) [1,3,4] + (—2A2V +2A§) [2,3,4]
(Ay —20Y) 42424
k h¥XV) generating cocycles
0 1 |
1 3 2AY [1] + 2AY [2] + 2AY [3]
Az [4]
271 [4]
2 7 2AY[1 D 1]+ 2A)[2 D 2] +2A)[3 D 3]
Af[424]
2A)[4 D 4]
AY[1,4] + AY[2,4]
2AY [1, 4] + 2AY [2, 4]
AY[3,4]
2A)[3,4]
3 14 2AY[1D1D1]+2A[2D2D2]+2A)[3D3D 3]

Af[424D4]

2A[4D 42D 4]

AY[1,4 D 1]+ AY[2,4 D 2]
2AY[1,4 D 1]+ 2A)[2,4 D 2]
AY[1,4 D 4] +AY[2,4 D 4]
2AY[1,4 D 4] +2AY[2,4 D 4]
A3[3,4 2 3]

A3 (3,42 4]

AY[3,42 4]

2AY[3,4 D 4]

2A)[1,3,4]

AY([2,3,4]

2A) (2,3, 4]
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comp,, () 1

_—_-0 0o oo
OO = OO

SO O0OO R OO0 OOoOOoCOO
_ OO R O OO0 00 oOo
D OH OO ODOOHEFEFOODODO| W
OO OO RO, OOO
S OO OO OO OO oo o+ O

A.19.2 Cohomology of coweight lattice XV = PV

[¢u] = (Oa 07 Oa 1)
does not lie in the image of comp,

k Hk(Wg, XY generating cocycles

0 0

1 0

2 z/27 A1 21+ (-AY) [2 221 + AY[1,2] + (—AY) [8 2 8] + (AY — AY + AY — AY) [1,3] +

(AY —AY) [2,3
3 ZNRZLOLNLOL/2Z (A —AY) (3,42 4]
AY(2,3 2 2]+ (=AY +2AY) 2,3 2 3]+ (=AY + AY — AY) [1,2, 3]+ (2A¥ — 4AY) [2,3,4]

AY[1,3 D 1]+ AY[1,8 2 8]+ (—AY) [1,2,3] + (—AY +24Y) [1,3,4]

k h¥XV) generating cocycles

0 0

1 1 AY[1] + AY[2] + AY[3]

2 4 AY[1 D 1]+ AY[2 D21+ AY[8 23]+ (AY + AY) [1,38] + (AY + AY) [2,3]
A3[1,2]
Aj[1,3]

AY[4 D 4]
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k h*(XVY) generating cocycles

3 7 AJ[12121]+A§[22222]+A{[3232D3]+A{[1,321]+A[1,3 23] +AJ[2,322]+
(AY +AY) [2,3 2 3] + AS[1,2,3] + AY[1,3,4]

AY[1,83 21] +AY[1,8 2 3] + (AY + AY + AY) [1,2,3]
AY[1,3D 1]+ AY[1,3 D 3] +AY[1,3,4]

AY[1,2,3]

Af[424D4]

AY[3,4 D 3] + AY[1,3,4]

AY[3,4 D 4]

k 0 1 2 3
0 0 0
0 0 0
(1) 0 0 1
comps 00 |3 [0 1
0 0 0 0
0 0 0

A.19.3 Cohomology with trivial coefficients

k HX(W,,Z) generating cocycles
0 V/A l

1 0

2 720 & Z)27 [4D4]

121+ (-1[222]+[1,2]+(-1)[3 2 3]

3 Z/2ZDZ/2ZDZ/2Z 3,42 3] +[3,4D 4]
[1,4D1]+[1,4 D 4] + (=1)[2,4 D 2] + (1) [2,4 D 4] + (—1) [1,2,4]
[1,321] 41,3 D3]+ (-1)[1,2,3]
k  h*(Fy)  generating cocycles
1 i
1 2 [1] + [2] + [3]
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k  h¥(FFy)  generating cocycles

2 5 121]+[2D2]+([3
(1,3]
[4D 4]
[1,4] + [2,4]

(3, 4]

> 3]

3 10 1D2121]+[22222]+[32323]

(1,32 1] +[1,3 D 3]
(1,2,3]

[424D24]

(1,42 1] +[2,4D 2]
(1,42 4] + (2,42 4]
3,4 D 3]

(3,4 D 4]

[1,3,4]

(2,3,4]

A.20 Root system Cj

Dynkin diagram

Fundamental group

O O O O—=—0
1 2 3 4 5

PY/QY ~Z)2Z
generated by AY € P¥ mod QY

A.20.1 Cohomology of coroot lattice XV = QY

[p.] = (0,0,1,1,0,0,0,0)
does not lie in the image of comp,
k H*(Wq, XVY) generating cocycles
0 0
1 z)2Z (AY —2AY) [5]
2 Z)2Z & Z)2Z AY[5 2 5]+ (Ay —2AY +2AY) [4,5]

2AY[1 2 1] + (—2AY) [2 2 2] +2AV[1 2] +(—20Y) I3

(=AY

+2AY) [1,5] + (AY —2AY) [2,5] + (A} —2AY

2 ]
3,5

(—2A¥)[42 4]+
+ (2AY —47Y) [4,

5]
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k H* (W, XY) generating cocycles
3 ZLSZNZOL)2ZS (A —AY)[4,5 2 5]
222 ®Z)27 ®Z/)2Z
Prez2rez/ 2AY[4,5 D 4] + AY[4,5 D 5] + (—AY +2AY — 2AY +2AY) [3,4, 5]

2AY[1,5 2 1] + AY[1,5 D 5] + (—2AY) [2,5 2 2]+ (-AY) [2,5 2 5] +
(—2A¥) [1,2,5] + (—2AY) 8,5 2 8] + (—AY) [8,5 2 5] + (AY — 2AY +2AY) [1,4,5] +
(=AY +2AY — 2AY) [2,4,5] + (—2AY + 2AY) [3,4, 5]
AY[1,5 21]+AY[1,5 2 5] + (—AY) [2,5 2 2] + (—AY) [2,5 2 5] + (—AY) [1,2,5] +
(-AY) (8,5 28]+ (—AY) [8,5 2 5] + (AY — 2AY +2AY) [1,4,5] +
(=AY +2AY — 2AY) [2,4,5] + (—2A3 +2AY) [3,4,5]
(AY —2AY) 5252 5]
2AY[1,3 D 1] +2AY[1,3 D 3] + (72Ag) [1,2,3] + (72/\;) 1,4 D 1]+
(72Ag) [1,4 D 4]+ (721\;) [2,4 D 2] + (72Ag) [2,4 D 4] +2AY[1,3,4] +
20Y(2,8,4] + (—AY +2AY) [1,8,5] + (20 — 4AY) [1,4,5] + (2AY — 4AY) [2,4, 5]

k h*(XY) generating cocycles

0 1 2AY1)

1 3 2AY [1] + 2AY[2] + 2AY [3] + 2AY [4]

A{[5]
2 [5]
2 8 2AY[1 D 1]+ 2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4]

2AY[1, 3] + 2AY[1,4] + 2AY[2, 4]

AY[5 2 5]

2AY[5 D 5]

A{[1,5] + A [2,5] + A{[3,5]

2AY[1, 5] + 2AY[2, 5] + 2AY[3, 5]

Ag[4,5]

2AY[4, 5]
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k hX(XVY) generating cocycles

3 18 2AY[1D1D1]+2AY[2D2D2]+2AJ[3D3D3]+2AY[4D 4D 4]
2AY[1,3 D 1] +2AY[1,3 D 3] +2A7[1,4 D 1] + 2AY[1,4 D 4] +2AY[2,4 D 2] +2AY[2,4 D 4]
2AY[1,2,3] +2AY[2,3,4]

Aj[5 252 5]

2AY[5 25 D 5]

AY[1,5D 1] +A)[2,5 D 2] +A)[3,5 D 3]
2AY[1,5 D 1] +2AY[2,5 D 2] +2AY[3,5 D 3]
AY[1,5 2 5]+ A)[2,5 2 5] + A{[3,5 D 5]
2AY[1,5 D 5] +2AY[2,5 D 5] +2AY[3,5 D 5]
2AY[1,3,5]

AY[4,5 D 4]

A3[4,5 2 5]

AY[4,5 D 5]

2AY[4,5 D 5]

AY[1,4,5] + AY[2,4, 5]

2AY (1,4, 5] + 247 [2, 4, 5]

AY[3,4, 5]

2AY[3,4,5]

—
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A.20.2 Cohomology of coweight lattice XV = PV

[¢u] = (07 1)

does not lie in the image of comp,
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k HX(Wy,X") generating cocycles

0

0

0

3 ZNRZOZ/2Z (A —AY)[4,5 2 5]

AY[1,82 1]+ AY[1,8 28]+ (-AY) [1,2,8] + (-AY) [1,4 2 1] + (—AY) [1,4 D 4] +
(-AY) (2,42 2]+ (—AY) [2,4 D 4] + AY[1,8,4] + AY[2,8,4] + (—AY) [1,5 2 1] +

(-AY) (1,5 25] + (—AY) [2,5 2 2] + (—AY) [2,5 2 5] + (—AY) [8,5 2 8] + (—AY) [3,5 2 5] +
(=AY +AY =AY + AY) [1,3,5] + (—AY +AY) [2,3,5]+ (AY — 2AY) [1,4,5]+ (A} — 2AY) [2,4,5]

k hk(W) generating cocycles

0 0
1 0
2 2 A1, 3]+ AY[1,4] + AY[2,4] + AY[1, 5] + AY [2,5] + AY[3, 5]
Aj[5 2 5]
3 6 AY[1,3 D 1] +AY[1,3 D 3] +AY[1,4 D 1]+ AY[1,4 D 4]+ AY[2,4 D 2]+ AY[2,4 D 4]+ AY[1,5 D 1]+
AY12,5 221+ AY[3,5 2 8]+ (AY + AY) [1,8,5] + (AY + AY + AY) [2,3,5] + AY[1,4,5] + AY[2,4, 5]
AY[1,2,3] + A [2,3,4] + AY[2,3,5]
Aj[5 252 5]
A3[1,5 2 5] + A3 [2,5 2 5] + A{[3,5 D 5] + A [1,3,5]
A{[1,5 2 5] + AJ[1,2,5] + Ay [2,4,5]
A3[4,5 2 5]
k 0 1 2 3
0 1
0 1
1 0
compy, () () () 0 1
0 0
0 0
A.20.3 Cohomology with trivial coefficients
k HX(W,Z) generating cocycles
0 y/4 0
1 0
2 Z27 $Z/27 [5D 5]

21+ (-D[222]+[1,2]+(-1)[3 23]+ (-1)[4 2 4]
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k H*(W,,Z) generating cocycles
3 ZNRZLBL2ZBZ/2Z (4,5 D 4] +[4,5 D 5]
1,5 21] 41,5 2 5]+ (-1)[2,5 2 2] + (1) [2,5 2 5] + (1) [1, 2,5] +
(=1)[8,5 23]+ (-1)[3,5 2 5]
[1,3 2 1]+[173 2 3]+(_1) [172a3]+(_1) [174 2 1]+(_1) [174 2 4]+
(_1) [274 2 2] + (_1) [274 2 4] + [13 314] + [27 3, 4]
k  h¥(IFy)  generating cocycles
0 1 1]
1 2 (1] + [2] + [3] + [4]
(5]
2 5 121]+[222]+([323]+[42 4]
[1,3] +[1,4] + [2,4]
(5 2 5]
[1,5] +[2,5] + [3, 5]
(4, 5]
3 11 12121]+[22222]+[32323]+[42424]

[1,3D1]+[1,8 28]+ [1,4 D 1] +[1,4 D 4] +[2,4 D 2] + (2,4 D 4]
[1,2, 3] —+ [2,3,4]

[52525]

[1,5D1]+[2,5 D 2]+[3,5 D 3]

[1,5 D 5] +[2,5 2 5] +[3,5 D 5]

[1,3,5]

4,5 2 4]

4,5 2 5]

[1,47 5] —+ [2,4, 5]

[3,4,5]

A.21 Root system Cjg

Fundamental group

Dynkin diagram

O
2O

O O O=—0
3 4

PY/QY ~Z/)2Z
generated by Ay € PY mod QY
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A.21.1 Cohomology of coroot lattice XV = QV
[p.] = (0,0,1,1,0,0,0,0)
does not lie in the image of comp,

k H*(Wo, XY) generating cocycles

0 0

1 Z/27 (A —2A¢) [6]

2 722 & Z)2Z AY[6 2 6] + (AY —2AY +2A¢) [5, 6]
2AY[1 2 1] + (—2A) [2 2 2] + 2AY [1,2] + (—2AY ) [3 2 3] + (—2A¢ ) [4 D 4] +
(—2A8) [5 2 5] + (—AY +2A¢) [1,6] + (A — 2A%) [2,6] + (AY —2A¢) [3,6] +
(AY —2A¢) [4,6] + (20 — 4AY) [5, 6]

3 Z2ZOL2ZSZ)2ZS (A —AY)[5,6 2 6]

222 Z/2Z ®Z/)2Z
[prer/2262/ 20 [5,6 2 5] + AY[5,6 D 6] + (—AY +2AY — 2AY +2AY) [4,5, 6]

20 [1,6 D 1] + AY[1,6 D 6] + (—2A¢) [2,6 D 2] + (—AY) [2,6 D 6] +
(—2AY) [1,2,6] + (—2A¢ ) [8,6 2 3]+ (—AY) [3,6 D 6]+ (—2Ay) [4,6 D 4] +
(—AY) [4,6 2 6] + (AY — 27 +2AY) [1,5,6] + (—AY + 247 — 2AY) [2,5,6] +
(=AY +2AY — 2AY) [3,5,6] + (—2AY +2AY) [4,5,6]
AY[1,6 211+ AY[1,6 D 6]+ (—AY) [2,6 D 2]+ (—AY) [2,6 D 6] + (—AY) [1,2,6] +
(-AY)[3,6 28]+ (—AY) [3,6 2 6] + (—AY) [4,6 2 4] + (-AY) [4,6 2 6] +
(AY = 2AY +2AY) [1,5,6] + (—AY +2AY — 2AY) [2,5,6] +
(=AY +2AY — 2AY) [3,5,6] + (—2AY +2AY) [4,5,6]
(AY —2A¢)[6 26 D 6]
2AY[1,8 2 1]+2A¢[1,3 2 3]+ (—2A¢) [1,2,8]+ (—2A¢ ) [1,4 2 1]+ (—2AY) [1,4 D 4]+
(- 2AV) (2,4 2 2]+ (—2AY) [2,4 D 4] +2A¢ (1, 3,4] + 27 [2, 3, 4] + (—2A¢ ) [1,5 2 1] +
(—2A8) [1,5 2 5] + (—2A¢) [2,5 2 2] + (—2A¢) [2,5 2 5] + (—2A¢) [3,5 2 3] +
(—2A8) [8,5 2 5] + 2A¢[3,4, 5] + (=AY +2A¢) [1,3,6] + (A — 2AY) [1,4,6] +
(AY = 2A8) [2,4, 6]+ (205 — 4AY) [1,5, 6]+ (205 — 4AY ) [2,5, 6]+ (247 — 4AY) [3,5, 6]

k hk(W) generating cocycles

0 1 2A¢ (]

1 3 2AY[1] 4 2AY [2] + 2AY [3] + 2A [4] + 2AY [5]

Ag[6]

21 [6]
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k hX(XVY) generating cocycles
2 8 2AY[1 D 1]+ 2AY[2 D 2] +2A¢[3 D 3] +2A[4 D 4] +2A[5 D 5]
2AY [1, 3] + 2AY [1,4] + 2A{ [2,4] + 2A{ [1, 5] + 2A¢ [2, 5] + 2A¢ [3, 5]
AJ[6 2 6]
2A¢[6 D 6]
AY[1,6] + AY[2,6] + AY[3,6] + AY[4, 6]
2A¢[1,6] + 2A¢[2, 6] + 2A¢[3, 6] + 2A¢ [4, 6]
AY[5,6]
2A¢[5, 6]
3 19 2A[1D21D1]+2A8[222D2]+2A§[3D23 23] +2A§[4D242D4]+2A[5 252D 5]

2A¢[1,83 D 1] +2AY[1,3 D 3] +2AJ[1,4 D 1] + 2AJ [1,4 D 4] +2A[2,4 D 2] +2AY[2,4 D 4] +
2A¢[1,5 D 1] +2A¢[1,5 D 5] +2AJ[2,5 D 2] + 2Ay[2,5 D 5] +2A¢[3,5 D 3] +2A [3,5 D 5]

2A¢[1,2,3] +2A¢[2, 3, 4] + 2A¢[3,4, 5]

AY[6 26 2 6]

2A¢[6 2 6 D 6]

AJ[1,6 D 1]+ AY[2,6 D 2]+ AY[3,6 D 3] +AY[4,6 D 4]
2AY[1,6 D 1]+ 2A¢[2,6 D 2] +2A{[3,6 D 3] +2Ay[4,6 D 4]
AY[1,6 D 6] +AY[2,6 D 6]+ AY[3,6 D 6]+AY[4,6 D 6]
2AY[1,6 D 6] +2A[2,6 D 6] +2AJ[3,6 D 6] +2Ay[4,6 D 6]
AY[1,3,6] + AY[1,4,6] + AY[2,4,6]

2A¢[1,3,6] +2A¢[1,4, 6] +2A¢[2, 4, 6]

Ay [5,6 2 5]

Ay [5,6 2 6]

A{[5,6 2 €]

2AY[5,6 D 6]

AY[1,5,6] +AY[2,5,6] + AY[3,5,6]

2AY[1, 5, 6] + 2A¢[2, 5, 6] + 2A¢[3, 5, 6]

AY[4,5,6]

2A¢[4, 5, 6]
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comp;, () 1
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A.21.2 Cohomology of coweight lattice XV = PV

[¢u] = (07 1)

does not lie in the image of comp,

k HX(Wy,XY) generating cocycles

0 0
1 0
2 0
3 ZN2ZoZ/2Z  (AY -AY)I[5,6 2 6]

(
AY[1,321] +AY[1,83 23] + (=AY) [1,2,8] + (—-AY) 1,4 D 1] + (-AY) 1,4 D 4] +

(-AY) (2,42 2]+ (-AY) [2,4 2 4] + AY[1,3,4] + AY[2,8,4] + (—AY) [1,5 D 1] +

(-AY) 1,5 28]+ (AS)[25 2]+ (—AY) [2,5 2 5] + (—AY) 8,5 2 8] + (—AY) [3,5 2 5] +
(AV+A3 AY +AY = AY) [1,3,5] + (—AY +AY) [2,8,5] + (A — AY) [1,4,5] +

(AY = AY) [2,4,5] + AY[3,4,5]

k h*(XV) generating cocycles

0 0
1 0
2 2 AL, 8] + AJ[1,4] + AF[2,4] + AJ[1,5] + A3 [2,5] + AY[3, 5]

AZ[6 2 6]
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h*(XV) generating cocycles

6 AY[1,83 2 1]+ AY[1,8 D8]+ AJ[1,4 D 1]+ AJ[1,4 D 4]+ AJ[2,4 D 2] +AJ[2,4 D 4]+ AJ[1,5 D 1] +
AY[1,5 D 5]+ AY[2,5 D 2]+ AY[2,5 D 5] +A)[3,5 D3] +AY[3,5 D 5]+ (A1V+A§+Ag) [1,3,5] +

(AY +AY +AY) [2,3,5] + (AY + AY +AY) [1,4,5] + (AY + AY +AY) [2,4,5]

AY[1,2,3] + AY[2,3,4] + AY[2,3,5] + AY[1,4,5] + AY[2,4,5] + AY[3,4, 5]

A [1,3,5]
AJ[62626]
AY[1,6 2 6] + Ag[1,2,6] + AY[2,5,6] + A [3,5,6]

Aj[5,6 D 6]

k 0 1 2 3
0 1

0 1

0 1

comp, () () O [;
0 0

0 0

A.21.3 Cohomology with trivial coefficients

k Hk(WO,Z) generating cocycles
0 /A I
1 0
2 720 L) [6 D 6]
21+ (-1)[222]+[L,2] +(-1)[3 23]+ (~1)[4 2 4] + (~1)[5 2 5]
3 ZNRZGLZ2ZHZ/2Z 5,6 D 5]+[5,6 D 6]
[1,6 D1] +[1,6 D 6]+ (-1)[2,6 D 2]+ (—1)[2,6 D 6]+ (—1)[1,2,6] +
(-1)[3,6 23]+ (-1)[3,6 2 6]+ (—1)[4,6 D 4] + (-1
(1,32 1) 4 (L3814 ()[L23]+ (D142 1]+ (1424l
(71)[2142 ]+( 1)[2 434]+[13314]+[2 ( 1)[1352 1]+(71)[13525]+
(=1)[2,5 2 2]+ (~1)[2,5 D 5] + (~1) [3,5 2 3] + (~1)[3,5 D 5] + [3,4,5]
k  h*(Fy)  generating cocycles
0 1 1]
1 2 [1] +[2] + [3] + [4] + [5]

(6]
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k  h¥(IFy)  generating cocycles

2 ) [121]4+[2D2]+[323]+[424]+[52 5]
[1,3] +[1,4] + [2,4] + [1,5] + [2,5] + [3, 5]
(6 2 6]
[1,6] + [2,6] + [3,6] + [4, 6]

[5, 6]

3 12 1D2121]+[22222]+[323D23]+[42424]+[525 2 5]

(1,3 1,83238]+[1,421]+[1,424] +[2,42 2] +([2,424] +[1,521]+[1,5 2 5] +
(2,52 2] +[2,5 2 5] +[3,5 2 3] +[3,5 2 5]

SN

(1,2,3] + [2,3,4] + [3,4, 5]

1,3,5]

6262 6]

(1,6 21]+[2,6 D 2] +[3,6 D 3] +[4,6 D 4]
[1,6 D 6] +[2,6 D 6] +[3,6 D 6] +[4,6 D 6]
(1,3,6] + [1,4, 6] + [2,4, 6]

[5,6 2 5]

[5,6 2 6]

[1,5,6] + [2,5,6] + [3,5, 6]

4,5, 6]

A.22 Root system C

O—O0—O0—0—0—C=<0
12 3 4 5 6 7

Dynkin diagram

PY/QV ~7/2Z

Fundamental grou
group generated by AY € P¥ mod QY

A.22.1 Cohomology of coroot lattice XV = QV

[¢u] = (07 07 17 1707 0’ 0’ 0)
does not lie in the image of comp,

k HX(Wq, XY) generating cocycles

0 0

1 Z/27 (A —24Y) [7]

2 727 o Z)2Z AT 2 7]+ (AY — 208 +2AY) [6,7]

2AY[1 2 1] + (—2AY) [2 2 2] + 2A7[1,2] + (—2AY) B2 8] + (—2AY) [4 2 4] +
(—2AY) [5 2 5] + (—2AY) [6 2 6] + (—A¢ +2AY) [1,7] + (Af — 2AY) [2,7] +
(A —20Y) [8, 7] + (MY — 2AY) [4,7] + (AY — 2AY) [5, 7] + (24 — 4AY) [6,7]
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k H* (W, X") generating cocycles
3 ZPRLSZNZOL)2ZS (A —AY) 16,727
ZNRLDL|2Z ®L/2Z
Prezrez/ 2AY[6,7 D 6] +AJ[6,7 DT+ (—A){-}—QAg’ — 27§ +2A¥) (5,6, 7]
2AY[1,7 2 1] + AY[1,7 2 7] + (—2AY) [2,7 2 2]+ (-A) [2,7 2 7] +
(—28Y) [1,2,7] + (—20) 13,7 28] + (—AY) 8,7 2 7] + (—2AY ) [4,7 2 4] +
(—AY) 4,7 27+ (—28Y) 5,7 2 5] + (—AY) [5,7 2 7]+ (AY — 2A¢ +2AY) [1,6,7] +
(—AY +2A¢ —2AY) [2,6,7] + (—AY + 248 —2AY) [3,6,7] +
(=AY + 208 — 2AY) [4,6,7] + (—2AY +2A) [5,6,7]
AT+ AY[L,7 27+ (-AY) 2,7 2 2]+ (—AY) [2,7 2 7] + (—AY) [1,2,7] +
(—A8) 38,7 28]+ (—A¢) 3,7 2 71+ (-AY) [4,7 2 4] + (-A) [4,7 2 7] +
(-AY) 15,72 5]+ (—AY) [5,7 2 7] + (AY — 2A¢ +2AY) [1,6,7] +
(=AY +2A8 —2AY) [2,6,7] + (—AY +2A¢ —2AY) [3,6,7] +
(=AY +2A¢ — 2AY) [4,6,7] + (—2AY +2A¢) [5,6,7]
(A —280Y)[72727]
2AY[1,3 D 1] +2AY[1,8 D 8] + (—2AY) [1,2,3] + (—2AY) [1,4 D 1] +
(—2AY) [1,4 D 4] + (—2AY) [2,4 D 2] + (—2AY) [2,4 D 4] + 2AY[1,3,4] +
2AY[2,3,4] + (—2A7) [1,5 2 1]+ (—2AY) [1,5 2 5] + (-2AY) [2,5 D 2] +
(—2AY) [2,5 2 5] + (—2AY) [3,5 2 8] + (—2AY) [3,5 D 5] + 2AY[3,4,5] +
(—2AY) [1,6 2 1] + (—2A) [1,6 2 6] + (—2AY) [2,6 D 2] + (—2AY) [2,6 D 6] +
(—2AY) 8,6 28] + (~2AY) [8,6 2 6] + (—2AY) [4,6 2 4] + (—24Y) [4,6 2 6] +
2AY[4,5,6] + (—A¢ +2AY) [1,8,7] + (AY — 2AY) [1,4,7] + (A — 2AY) [2,4,7] +
(A = 28Y) [1,5, 7]+ (A — 2AY) [2,5, 7]+ (A — 2AY) [3,5, 7]+ (2A¢ — 4AY) [1,6,7]+
(20 —4AY) [2,6,7) + (208 — 4AY) [3,6,7] + (2A¢ — 4AY) [4,6,7]
k h*(XV) generating cocycles
0 1 2AY]
1 3 2AY [1] + 2AY [2] 4+ 2AY [3] + 2AY [4] + 2AY [5] + 247 [6]
Ag[7]
207 (7]
2 8 2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] + 2AY[4 D 4] + 2AY[5 D 5] + 2A7[6 D 6]
2AY[1, 3] + 2AY [1,4] + 2AY[2, 4] + 2AY [1, 5] + 2AY [2, 5] + 2AY [3, 5] + 2AY[1, 6] + 2AY [2, 6] + 2AY[3,6] +
2AY[4, 6]
AG[7 2 7]
207 [7 D7)

AGIL 7]+ AG 12, 7] + AG[8, 7] + A [4, 7] + A¢ [5, 7]

2AY[1,7] + 2AY[2,7] + 2AY [3,7] + 2AY [4,7] + 2AY [5,7]

A5[6,7]

2AY[6,7]
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k h*(XVY) generating cocycles

3 20 2A7[1 212D 1]+2AY[2 22D 2]+2A7[83 D3 D 3]+2A7[4 D4 D 4]+2AY[5 D5 2 5]+2A7[6 D 6 D 6]

2A7[1,3 D 1] +2AY[1,3
2AY[1,5 D 1] +2AY[1,5
2AY[1,6 D 1] +2A7[1,6
2AY[4,6 D 4] +2A7[4,6

3] +2AY[1,4 D 1]+ 2AY[1,4 D 4] + 2AY[2,4 D 2] + 2AY[2,4 D 4] +
5] +2AY[2,5 D 2] +2AY[2,5 D 5] +2AY[3,5 D 3] +2AY[3,5 D 5] +
6] +2A7[2,6 D 2] +2A7[2,6 D 6] +2A7[3,6 D 3] +2A7[3,6 D 6] +
6]

2AY[1,2,3] +2AY[2,3,4] + 2AY[3,4, 5] + 2A7 [4, 5, 6]

2
2
2
2

2AY[1,3,5] 4+ 2AY[1,3,6] + 2AY[1,4, 6] + 2AY[2, 4, 6]

AJ[7T 2727

2N/ [T 2721

AJ[L, 7T D1+ AY[2,7 D 2] +A[3,7 D3] +AJ[4,7 D 4] + AJ[5,7 D 5]
2AY[1,7 D 1]+ 2AY[2,7 D 2] +2AY[3,7 D 3] +2AY[4,7 D 4] + 2AY[5,7 D 5]
AJ[L,7TDT+AS[2, 7T DT +AS[8, 7D 7] +AJ[4, 7D 7] +AJ[5,7D 7]
2AY[1, 7 D7)+ 2AY[2,7 D 7] +2AY[3,7 D 7] +2AY[4,7 D 7]+ 2AY[5,7 D 7]
AL, 3,7 + AJ[1,4,7] + A [2,4,7] + AS[1,5,7] + AL [2,5, 7] + AY[3,5, 7]
2AY[1,3,7] +2AY[1,4,7] + 2AY[2,4,7] + 2A7 [1,5,7] + 2AY [2,5,7] + 2A7[3,5,7]
A (6,7 2 6]

AJ[6,7 2 7]

Ag[6,7 2 7]

2AY[6,7 D 7]

AJ[1,6,7] + AY[2,6,7] + AY[3,6,7] + AY[4,6,7]

2AY[1,6,7] +2AY[2,6,7] + 2AY[3,6,7] + 2AY [4,6,7]

AY[5,6,7]
2AY[5,6,7]
kK 0 1 2 3

000000

00000 1

00000 1

000000

000010

000010

0 1 000100

0 0 001000

0 10 001100

0 0 000000

comp; () ! 01 00000 1

1 0 1 00000 1

10 010000

10 100000

110000

000000

001100

001100

01000 0

01000 0
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A.22.2 Cohomology of coweight lattice XV = PV

[pu] = (1)

does not lie in the image of comp,

k HX(Wy,X") generating cocycles
0 0

1 0

2 0

3 Z/)27 (A —AY) (6,72 7]

k h¥XV) generating cocycles

0 0

1 0

2 1 A7 D7)

3 4 AY[1,3,5] + AY[1,3,6] + AY[1,4,6] + AY[2,4,6] + AY[1,3,7] + AY[1,4,7] + AY[2,4,7] + AY[1,5,7] +

]
AY[2,5,7] + A [3,5,7]
AJ[7T2727]
AJ[L, 7T DT +AY[1,2,7] + AY[2,6,7] + AY[3,6,7] + AY[4,6,7]

AY[6,7 D7)

OO = O | W

A.22.3 Cohomology with trivial coefficients

k H*(W,,Z) generating cocycles
0 y/A 0

1 0

2 722 & Z)27 727

21+ (-1)[222]+[1,2]+(~1)[8 28]+ (-1) [4 2 4]+ (~1)[5 2 5] + (~1)[6 2 6]
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k HX(W,,2Z) generating cocycles
3 ZNRZBLZ)2ZHZ/2Z (6,72 6]+[6,7D17)

(1,7 21 +[1,7 2 7] +(=1) [2,7 2 2] +(~1) [2,7 2 7] +(~1) [1,2,7] + (~1) [3,7 D 3] +
71) [31 7 2 7] + (71) [41 7 2 4] + (71) [41 7 2 7] + (71) [51 7 2 5] + (71) [5»7 2 7]

—~

(1,3 21]+[1,8 23]+ (-1)[1,2,8] + (1) [1,4 D 1] + (-1)[1,4 D 4] +

(-1)[2,4 2 2]+ (1) [2,4 2 4] +[1,3,4] + [2,3,4] + (1) [1,5 2 1] + (-1) [1,5 2 5] +
(_1) [275 2 2] + (_1) [275 2 5] + (_1) [375 2 3] + (_1) [375 2 5] + [374 5] +

(_1) [176 2 1] + (_1) [176 2 6] + (_1) [276 2 2] + (_1) [276 2 6] + (_1) [3’6 2 3] +
(_1) [376 2 6] + (_1) [476 2 4] + (_1) [476 2 6] + [47 576]

k  h¥(Fz)  generating cocycles
1 i
1 2 (1] + [2] + [3] + [4] + [5] + [6]
(7]
2 5 121]+[222]+[323]+[424]+[525]+[62 6]
[1,3] +[1,4] + [2,4] + [1,5] + [2,5] + [3,5] + [1, 6] + [2, 6] + [3, 6] + [4, 6]
[(727]
1,7+ [2,7]+[3,7] + [4,7] + [5, 7]
(6,7]
3 12 12121]+[22222]+[323D23]+[42424]+[52525]+[626 2 6]

|+[1,421]+[1,4 D 4] + [
1+[3,523]+[3,5 2 5]+
]+1[4,6 2 4] +[4,6 2 6]

,422]+(2,424]+[1,5 1] +[1,5 2 5] +
,621]+[1,6 26] (2,6 22] +[2,6 26] +

W
S v w
UIvIU
LN =
+++
W
S W
IUIUIU
S W

[1,2,3] + [2,3,4] + [3,4,5] + [4, 5, 6]

[1,8,5] +[1,3,6] + [1,4,6] + [2,4, 6]

72727

1,7 D1]+[2,722]+[3,723]+[4,724]+[5,7 D 5]
1,727 +([2,727+[3,72 7+ [4,7 27 +[5,7 2 7]
[1,8,7] +[1,4,7] + [2,4,7] + [1,5,7] + [2,5,7] + [3,5, 7]
[6,7 2 6]

6,72 7]

[1,6,7] + [2,6,7] + [3,6,7] + [4,6,7]

5,6,7]




A.23 Root system Cg

A.23 Root system Cy

Dynkin diagram

Fundamental group

O—O0—0O0—0—0—"0—0C=<=0
1 2 3 4 5 6 7 8

PY/QY ~Z/)2Z
generated by Ay € PY mod QY

A.23.1 Cohomology of coroot lattice XV = QV

(0]

= (0,0,1,1,0,0,0,0)
does not lie in the image of comp,

223

k H*X(Wq, XY) generating cocycles

0 0

1 Z/2Z (AY —248) [8]

2 727 o Z)2Z AY[8 2 8]+ (AY —2AY +2A¢) [7, 8]

2AY[1 2 1] + (—2AY) [2 2 2] + 243 [1,2] + (—2AY ) 32 8] + (—2AY ) [4 D 4] +
(—2A%) [5 2 5] + (—2A¢) [6 2 6] + (—2AY ) [7 2 7] + (—AY +2A¢) [1,8] +
(A —208) [2,8] + (AY — 2AY) [3,8] + (AY — 2AY) [4,8] + (AY — 2AY) [5,8] +
(AY —208) [6,8] + (2AY — 4AY) [7, 8]
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k H* (W, XY) generating cocycles
3 ZNRLSZNZOL)2ZS (A —AY)[7,8 2 8]
22 ©Z)2Z & Z)2Z

2AY[7,8 D 7] + AY[7,8 D 8] + (—AY + 24 — 2AY +2AY) [6,7, 8]

2AY[1,8 D 1] + AY[1,8 D 8] + (—2AY) [2,8 D 2]+ (—-AY) [2,8 2 8] +

(—2A8) [1,2,8] + (—2AY) [3,8 2 8] + (—AY) [3,8 2 8] + (—2AY) [4,8 D 4] +
(-AY) 4,8 2 8] + (—2A{) [5,8 2 5] + (—AY) [5,8 2 8] + (—2A7) [6,8 D 6] +
(—AY) 16,8 2 8] + (AY — 2AY +2AY) [1,7,8] + (—AY +2AY —2AY) [2,7,8] +
(=AY + 207 — 208 [8,7,8] + (—A¢ +2AY —2AY) [4,7,8] +
(=AY + 207 — 288 [5,7,8] + (—2A¢ +2AY) [6,7, 8]

AY[1,8 21]+AY[1,8 D8] + (—AY) [2,8 2 2] + (—AY) [2,8 D 8] + (—AY) [1,2,8] +

(-AY) (8,8 23]+ (—AY) [3,8 2 8] + (—AY) [4,8 D 4] + (—AY) [4,8 D 8] +

(-AY) [5,8 2 5]+ (—AY) [5,8 2 8] + (—AY) [6,8 2 6] + (—AY) [6,8 D 8] +

(A =20 +2AY) [1,7,8] + (—AY +2AY —2A]) [2,7,8] +

(- A6 +20Y = 2AY) [3,7,8] + (=AY +2AY — 2A{) [4,7,8] +

(—AY +20Y —2AY) [5,7,8] + (—2A +2AY) [6,7, 8]

(AY —2A{) [8 282 8

2AY[1,3 2 1] +2AY[1,3 2 8] + (—2AY) [1,2,3] + (—2AY ) [1,4 D 1] +

(—2A8) [1,4 2 4]+ (—2AY) [2,4 D 2]+ (—2AY) [2,4 D 4] +2AY[1, 3, 4] +2A{[2,3, 4] +
(—2A¢) [1,5 2 1]+ (- 2A8V)[1 52 5]+ (—2A¥) [2,5 2 2] + (-2AY) [2,5 2 5] +
(—2A¢) [8,5 2 8] + (—2AY) [3,5 2 5] + 2AY[3,4,5] + (—2A¢) [1,6 D 1] +

(—2A8) [1,6 2 6] + (—2AY) [2,6 D 2] + (—2A¥) [2,6 2 6] + (—2AY) [3,6 2 3] +
(—2A¥) [3,6 2 6] + (—2AY) [4,6 2 4] + (—2AY) [4,6 2 6] + 2A{[4,5,6] +

(—2A8) [1,7 2 1]+ (-2A8) [1,7 2 7] + (—2A8) [2,7 2 2] + (—2AY) [2,7 2 7] +
(—208) [8,7 28] + (—2AY) 8,7 2 7] + (—2A%) [4,7 2 4] + (—2AY) [4,7 2 7] +
(—2A8) [5,7 2 8] + (—2AY) [5,7 2 7] + 2AY[5,6,7] + (—AY +2AY) [1,3,8] +

(A —2A8) [1,4 s] +(AY = 20Y) (2,4, 8]+ (AY — 2A) [1,5,8] + (AY — 2AY) [2,5,8] +
(A —2A8) [8,5,8] + (AY — 2AY) [1,6,8] + (AY — 2AY) [2,6, 8]+ (AY — 2AY) [3,6,8] +
(A —2AY) [4,6,8] + (2AY — 4AY) [1,7,8] + (247 — 4AY) [2,7,8] +

(28 — 4AY) [3,7,8] + (2AY — 4AY) [4,7,8] + (207 — 4A{) [5,7, 8]

k h¥XV) generating cocycles

0 1 2A¢ (]
1 3 2AY [1] + 2A¢ [2] + 2A¢ [3] + 2A3 [4] + 2Ag [5] + 2AY [6] + 2AY [7]
A7 (8]
274 (8]
2 8 2A3[1 D 1] + 2A¢[2 D 2] + 2A§[3 D 3] + 244 [4 D 4] + 2AJ[5 D 5] + 2AJ[6 D 6] + 2A[7 D 7]

2AY[1, 3] + 2A4 [1, 4] + 2AY [2, 4] + 2A¢ [1, 5] + 2AY [2, 5] + 2A4 [3, 5] + 2AY [1, 6] + 2A4 [2, 6] + 2AY [3,6] +
2AY[4,6] + 2A[1,7] + 2AJ [2,7] + 2AJ[3,7] + 2A¢ [4, 7] + 2A8 [5, 7]

A7[8 2 8]

27 [8 2 8]

AY[1,8] + AY[2,8] + AY[3,8] + AY[4, 8] + AY[5,8] + AY[6, 8]
2A8[1,8] + 2A¢[2, 8] + 2AY [3, 8] + 2AY [4, 8] + 2AY [5, 8] + 2AY [6, 8]
AJ[7, 8]

2AY[7, 8]
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k hX(XVY) generating cocycles

3 20 2AY[1D1D1]+2A8[2D22D2]+2AJ[323 D3] +2A[4D42D4]+2AJ[52D52D5]+
2A[6 D6 D 6] +2AJ[7TD 7D T
2AY[1,3 D 1] +2A[1,3 D 3] +2AJ[1,4 D 1] + 2A[1,4 D 4] +2A[2,4 D 2] +2A§[2,4 D 4] +
2A¢[1,5 D 1] +2AY[1,5 D 5] + 2A[2,5 D 2] + 2A§ [2,5 D 5] + 2AY[3,5 D 3] +2AY[3,5 D 5] +
2A¢[1,6 D 1] +2AY[1,6 D 6] + 2AJ[2,6 D 2] + 2AJ [2,6 D 6] +2AJ[3,6 D 3] +2A[3,6 D 6] +
2AY[4,6 D 4] +2AJ[4,6 D 6] +2AJ[1,7 D 1] +2AJ[1,7 D 7] +2AJ[2,7 D 2] +2A§[2,7 D 7] +
2A[3,7 D 3] +2AJ[3,7 D 7] +2AJ[4,7 D 4] +2AJ[4,7 D 7] +2AJ[5,7 D 5] +2A¢ [5,7 D 7]

2A% (1,2, 8] + 2A (2,3, 4] + 2AY[3,4, 5] + 2A [4,5,6] + 244 [5, 6, 7]

2A%[1,38,5] + 2A§[1, 3, 6] + 2AY[1,4,6] + 2Ag [2,4, 6] + 2AY (1,3, 7] + 2A% [1,4, 7] + 2A§ [2,4, 7] +
2AY[1,5,7] + 2AY[2,5,7] + 2A¢[3,5,7]

AY[82828]

2A4[8 28D 8]

AY[1,8 D 1] +AY[2,8 D 2]+ AY[3,8 D3] +AY[4,8 D4]+AY[5,8 D 5]+ AY[6,8 D 6]
2AY[1,8 D 1]+ 2AJ[2,8 D 2] +2AY[3,8 D 3] +2AY[4,8 D 4] + 2AY[5,8 D 5] +2A4 [6,8 D 6]
AY[1,8 D8] +AY[2,8 D8] +AY[3,8 D8] +A7[4,8 D8] +AJ[5,82D8]+AY[6,82 8]
2AY[1,8 D 8] +2AJ[2,8 D 8] +2AJ[3,8 D 8] +2Ay[4,8 D 8] +2AY[5,8 D 8] +2A5[6,8 D 8]

AY[1,3,8] +AY[1,4,8] +AY[2,4,8] + AY[1,5,8] + AY[2,5,8] + AY[3,5,8] + AY[1,6,8] + AY[2,6,8] +
A7[3,6,8] + A7 [4,6,8]

2AY[1,3,8] +2AY[1,4, 8] + 2AY[2, 4, 8]
2A5[2,6,8] +2A5[3,6, 8] + 275 [4, 6, 8]

+2A3[1,5,8] +2AY[2, 5, 8] + 2AY[3, 5, 8] + 2AJ[1,6,8] +
Ag[7,8 2 7]

Ag[7,8 2 8]

AY[7,8 D 8]

2AY[7,8 D 8]

AJ[1,7,8] +AS[2,7,8] +AY[3,7,8] + AJ[4,7,8] + A [5,7, 8]

2AY[1,7,8] +2AY[2,7,8] +2AJ[3,7,8] + 2A¢ [4,7,8] + 2A¢ [5,7, 8]

AY[6,7,8]

27y [6,7, 8]
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k 0 1 2 3
0000 0O
0 00 0 01
0 0 0 0 01
00 0 0 0 O
000 0 1O
000 0 10
0 1 0001 0O
0 0 0 01 0 0O
0 1 0 0 01 1 0 O
com () 1 0 0 0000 0O
Pk . 0 1 000001
0 1 0 00 0 01
1 0 01 0 0 0O
1 0 1 0 0 0 0 O
110 0 0 O
0 000 0O
0 01 100
0 01 100
01 0 0 0 O
01 0 0 0 O
A.23.2 Cohomology of coweight lattice XV = PV
[¢u] = (1)
does not lie in the image of comp,
k HX(Wy,X") generating cocycles
0 0
1 0
2 0
3 z/27 (A = AY)[7,8 28]
k hX(XV) generating cocycles
0 0
1 0
2 1 AY[8 D 8]
3 4 A7[1,3,5] + A7 [1,3,6] + A7[1,4,6] + A7[2,4,6] + AS[1,3,7] + A5 [1,4,7] + A [2,4,7] + AS[1,5,7] +
A{[2,5,7] + A/ [3,5,7]

AY[82828]
AY[1,8 D 8]+ AY[1,2,8] +AY[2,7,8] + AY[3,7,8] + AY[4,7,8] + AY[5,7, 8]

AY[7,8 D 8]
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comp, () () ()

OO = O| W

A.23.3 Cohomology with trivial coefficients

k H*X(W,,Z) generating cocycles

0 y/A 0

1 0

2 Z/27  Z/2Z [8 D8]
P21+ (-1)[222]+[1,2]+(-1)[3 23]+ (-1)[4 2 4]+ (-1)[5 2 5] +
(-1[626]+(-1)[727]

3 Z/]2Z23Z/22Z/2Z (7,827 +[7,82D 8]
[1,821]+[1,828]+(-1)[2,82 -1)[2,8 2 8]+ (-1)[1,2,8] +
(=1)[3,8 23]+ (-1)[3,8 2 8] + (- 824]+(-1)[4,8 28]+ (-1)[5,8 2 5]+
(=1)[5,8 28] +(-1)[6,8 2 6] + (— 8D 8]
[173 2 1]+[17323]+(_1) [17273]+(_1)[1a42 1]+(_1)[17424]+
(-1)[2,42 2]+ (-1)[2,4 D 4] +[1,3,4] +[2,3,4] + (-1)[1,5 D 1] + (1) [1,5 D 5] +
(-1)[2,5 2 2]+ (-1)[2,5 2 5] + (1) [3,5 2 8] + (-1)[3,5 2 5] + [3,4,5] +
(-1)[1,621]+(-1)[1,6 2 6]+ (-1)[2,6 2 2]+ (-1)[2,6 2 6]+ (-1)[3,6 D 3] +
(=1)[3,6 2 6]+ (-1)[4,6 2 4] + (—1)[4,6 D 6] + [4,5,6] + (—1)[1,7 2 1] +
L7227+ (-1[2,722]+(-1)[2,72 7]+ (-1)[3,7 23]+ (-1)[3,7 2 7] +
(-D[4,724+(-1)[4,727+(-1)[5,7 25]+(-1)[5,7 2 7] +[5,6,7]

k  h¥(Fy)  generating cocycles
0 1 I
1 2 (1] + [2] + [3] + [4] + [5] + [6] + [7]
(8]
2 5 M21]+[222]+[323]+[424]+[525]+[626]+[727]

[1,3]+[1,4]+[2,4]+[1,5]+[2, 5] +[3,5]+[1,6]+[2, 6] +[3, 6]+[4, 6] +[1, 7] +[2, 7] +[3, 7] +[4, 7] +[5, 7]

(8 28]
(1,8] + [2,8] + [3, 8] + [4, 8] + [5, 8] + [6, 8]

[7,8]
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k  h¥(IFy)  generating cocycles

3 12 [12121]+[22222]+[8323238]+[42424]+[52525/+[62626]+[72727]

[1,821]+1
(2,52 2] +[2
[3,6 D 3] +[3
[3,723]+[3

+[2,424]+[1,521]+[1,5 2 5] +
+[1,6 D 6]+ (2,6 D 2] +[2,6 D 6] +
+[1,727]+[2,722]+[2,72 7] +
+[5,72 7]

UIVIVIYU
IUIVIVIYU

N oot
SAEED

(1,2,3] + [2,3,4] + [3,4, 5] + [4,5,6] + [5,6,7]

(1,8,5] + [1,3,6] + [1,4,6] + [2,4,6] + [1,3,7] + [1,4,7] + [2,4,7] + [1,5,7] + [2,5,7] + [3,5,7]
(828028

(1,8 D 1]+ (2,8 D 2]+ (3,8 D3] +[4,8D4]+[5825]+[6,82 6]

(1,8 D8] +[2,8 28] +[3,8D8]+[4,828]+[58D8]+[6,8D 8]

(1,3,8] + [1,4,8] + [2,4, 8] + [1,5,8] + [2,5, 8] + [3,5,8] + [1,6,8] + [2,6, 8] + [3,6,8] + [4,6,8]
(7,8 27]

(7,8 28]

(1,7,8] + [2,7,8] + [3,7,8] + [4,7,8] + 5,7, 8]

[6,7,8]

A.24 Root system Dj

0<i23
1 2

PY/QY ~Z/AZ
generated by Ay € PY mod QY

Dynkin diagram

Fundamental group

A.24.1 Cohomology of coroot lattice XV = QV

[pu] = (0,1)

does not lie in the image of comp,

k HX(Wy,X") generating cocycles

0 0

1 Z/A7 (AY —24) [3]

2 z)27Z AAY[1 D 1] + (—4A¥) [2 D 2] + 4AY[1,2] + (—4AY) [3 2 8] + (—4AY +4AY +4A¥) [1,3] +
(4AY — 4AY) [2,8]

3 z/2Z 4AY[2,3 D 2] +4AY[2,3 D 8] + (—4AY +4AY +4AY) [1,2, 3]

k hX(XVY) generating cocycles
0 1 4AY ]
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k hX(XVY) generating cocycles

AY +AY) [1] + 4A¥ [2] + 4AY [3]
+20Y) [2]
AY +AY) (12 1] +4AY[2 D 2]+ (AY + AY +3AY) [1,2] + 4A¥[3 D 3] + (AY + Ay +3AY) [1,3]

+24Y) [2 2 2]+ (AY +AY +34Y) [1,2] + (A} +24Y) [2,3]

+AY)[12121]+4A¥[2 22D 2]+ (AY +2A¥) [1,2 D 1]+ (AY +5AY) [1,2 D 2] +
AY[3D3D 8]+ (AV+2A3)[1,321]+(A§+A§)[1,3Q3]
+20Y) (2222 2]+ (AY +2A¥) [1,2 D 1] + (AY +5AY) [1,2 D 2] +4AY[2,3 D 3] +
+AY) [1,2,3]

+6AY)[32823]+ (AY +2A¥) [1,8 2 1] + (AY + AY) [1,3 2 8] +4AJ[2,83 D 3] +
AV+AV) [1,2,3]

(
(At
(
(aY
3 3 (AY
(aY
(a2
(aY
(

(]
:
T
ES
—
S—
VR
= O
~_
N\
O =
N
== O W

A.24.2 Cohomology of lattice XV corresponding to Q = ((2))

¢u = Or with 7= (A} +2A35) [1] + (A3 + A3) [2] + (A7 + AY) [3]

k Hk(WO7 XY) generating cocycles

0 0

1 z)2Z (AY —2AY) [3]

2 Z)2Z 28 [1 2 1] + (—2AY) [2 2 2] + 2A¥ [1,2] + (—2A5) [8 2 8] + (—2AY + 24 +2A¥) [1,3] +
(205 —24Y) [2,3]

3 ZNRZOZ/2Z (A -2AY)[2,3 23]+ (AY - AY — AY) [1,2,3]

2AY[2,3 2 2] + 2A5[2,3 2 8] + (—2AY + 24 + 2AY) [1,2, 3]

k hk (XV) generating cocycles

o
—

2A510)

1 2 2AY [1] + 2AY [2] + 2AY [3]

(AY +2A¥) [2]
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k h*(XVY) generating cocycles

2 3 2AY[1 D 1]+ 2AY[2 D 2] +2AY[3 D 3]
(AY +28¥) [22 2] + (AY + A5 +AY) [1,2]
AY[2, 3]
3 4 2A¥[1D1D1]+2Ay[2D2D2]+2AY[3D3D 3]
(AY +20Y)[2222 2]+ AY[1,2 2 1] + (AY +3AY) [1,2 2 2] + (AY + AY) [1,2,3]
(AY +AY) [1,2 2 1]+ AY[1,2,3]

AY[2,3 2 2] +2AY[2,3 2 8]+ (AY + AY +AY) [1,2,3]

kK 0 1 2 3
. 00

0 11
comp, () (; 8 11
0 1

A.24.3 Cohomology of coweight lattice XV = PV

¢ = OT with 7 = (AY + AY) [1] + AY[2] + AY[3]

k HX(Wy,X") generating cocycles

0 0

1 0

2 z/2Z AY[1 2 1]+ (—AY) [2 2 21+ AY[1,2] + (—AY) [8 2 8]+ (—AY + AY + AY) [1,8] + (AY — AY) [2,3]
3 Z/A7 AY[2,8 2 2]+ AY[2,8 D8]+ (=AY + AY + AY) [1,2,3]

k h¥XV) generating cocycles

0 0
1 1 A3 [1] + A [2] + AY (3]
2 2 AY[12 1]+ AY[2 2 2]+ (AY + AY) [1,2] + AY[3 2 8] + (AY + AY) [2,3]
AY[1,2]
3 2 AY12121]+AY[22222]+A)[1,22 1]+ (AY +A¥) [1,2 2 2] +AJ[3 283 2 8] + AY[2,3 D 2] +

A3[2,3 D 3]+ AY[1,2,3]

AY[2,3 2 2]+ AY[2,3 28]+ (AY + AY +AY) [1,2,3]




A.25 Root system Dy 231

k 0 1 2 3

comp, 00 (5) ()

A.24.4 Cohomology with trivial coefficients

k H*(W,,Z) generating cocycles

0 YA I

1 0

2 z/2Z7 121+ (-1)[2D2]+[1,2] +(=1)[3 D 3] +[1,3]
3 z/2Z [2,3D 2] +[2,3 D3] +[1,2,3]

k  h*(Fy)  generating cocycles

0 1 i
1 1 (1] + [2] + [3]
2 2 [1D1]+[2D2]+[3 D3]
(2, 3]
3 3 1D21D1]+[2D2222]+[323D 3]

2,32 2] +[2,3 D 3]

(1,2,3]

A.25 Root system D,

Dynkin diagram

PV/QY ~Z/2Z & Z)2Z

Fundamental grou
group generated by A),AY € P¥Y mod QY

A.25.1 Cohomology of coroot lattice XV = QV

(9] = (1,1,1,1,0,0,1,0)
does not lie in the image of comp,

k H*(W,,X") generating cocycles

0 0
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k H* (W, XY) generating cocycles

1 727 & 227 (AY —2AY) [4]
(AY —24Y) [3]

2 727 /27 2AY[1 2 1] + (—2AY) [2 2 2] +2AY[1,2] + (—2AY ) 32 3] + (-AY) [4 2 4] +
(=AY +2AY) [1,4] + (=AY +3AY — AY —3AY) [2,4] + (AY —2AY) [3,4]

2AY[1 2 1] + (—2AY) [2 2 2] + 2A5[1,2] + (—AY) [3 2 3] + (—AY +2AY) [1,8] +
(=AY +3A5 = 3AY — AY) [2,8] + (—2AY) [4 2 4] + (=AY +2A) [3,4]

w

Z)2LSZ)2LSZ)2ZS  2AY[3,4 2 3]+ (—AY +4AY) [3,4 D 4] + (AY — 3AY + 3AY +3AY) [2,3,4]
Loz 02/22 AY[3,4 D8] +2AY[3,4 D 4] + (AY — AY + AY +AY) [2,3,4]

2AY[1,4 D 1] + AY[1,4 D 4] + (—AY + AY — AY — AY) [1,2,4]

2AY[1,4 D 1] + 2A¥[1,4 D 4] + (—2A¥) [1,2,4] + (AY —2AY) [1,8,4]
2AY[1,8 2 1] +2AY[1,8 2 8] + (—2AY) [1,2,3] + (—AY +2AY) [1,3,4]

2AY[1,8 2 1] + AY[1,8 2 3] + (—AY + AY — Ay — AY) [1,2,3]

k h¥(XV) generating cocycles

0 2 2AY]
20711
1 4 A+ (2A8 +2AY) [2] + (243 +2AY) [3] + (2A¥ +2AY) [4]

2AY [1] + 2AY[2] + 2AY [3] + 2A3 [4]
207 [1] + 2A) [2] + 2AY [3] + 2A) [4]
(AY +2AY) [3]
2 8 AY[1 2 1]+ (288 +2AY) [2 D 2] + (AY + AY + AY + AY) [1,2] + (247 +2AY) [8 2 3] + AY[1,8] +
(2AY +2AY) [4 2 4] + AY[1,4]
2A5[1 2 1]+ 2A3[2 D 2] + 2A5[3 2 3] + 2A3[4 D 4]
2A%[1 D 1] +2A)[2 D 2] + 2A/[3 D 3] +2A)[4 D 4]
(A +2AY) [8 2 3] + AY[1,3] + (AY + AY + AY + AY) [2,8] + AY[3, 4]
2AY[1, 3]
2A[1, 3]
(AY +2AY) [4 2 4] + AY[1,4] + (AY + AY + AY + AY) [2,4] + AY[3, 4]

2AY[1,4]
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k

h*(XY)

generating cocycles

3

17

AYI 21D 1]+ (28Y +2AY)[2222 2]+ (AY +AY +AY) [1,221] +
(AY +2A% +2AY) [1,2 D 2] + (2A¥ +2AY) [3 28 2 3] +2A)[1,3 D 3] +

(28Y +2AY) [4 24D 4] +2A3[1,4 D 4] + (AY + AY + AY) [1,2,4]
2AY[1 D12 1]+2A5[2222D2]+2Ay[3D3 D3] +2Ay[4D 4D 4]
2A{[12121]+2A{[22222] +2A[3 23 23] +2A§[42424]

AY[1,2 2 1] + (243 +2AY) [1,2 D 2] + AY[1,2,3] + AY[1,2,4]

(AY +2AY) 8282 38]+2AY[1,3 D8] + AY[2,3 D 2] + (A} +3AY +AY) [2,3 23] +
(AY + A + AY) [1,2,8] + (20 +2AY) [3,4 D 4] + (AY + AY + AY) [2,3,4]

AY[1,3 2 1] + (203 +2AY) [1,8 2 8] + (AY + AY + AY +AY) [1,2,3]
2AY[1,3 D 1] +2AY[1,3 D 3]

2AY[1,83 D 1] +2A)[1,3 D 3]

(AY +2A%) [1,8 2 8] + (AY + AY + AY +AY) [1,2,3]

(AY +AY +AY) [2,8 2 2] + AY[1,2,3] + A [2,3,4]

2AY[1,2,3]

(AY +20Y) [4 D424 +2AY[1,4 D 4]+ AY[2,4 D 2] + (AY + A +3AY) [2,4 D 4] +
(AY + A + AY) [1,2,4] + (28 +2AY) [3,4 D 4] + (AY + AY + AY) [2,3,4]

AY[1,4 2 1] + (203 +2AY) [1,4 D 4] + (AY + AY + AY +AY) [1,2,4]
2AY[1,4 D 1] +2AY[1,4 D 4]

(AY +2AY) [1,4 2 4] + (AY + A + AY +AY) [1,2,4]

AY[3,4 D8] +2AY[8,4 D 4] + (AY + AY + AY +AY) [2,8,4]

2AY[3,4 D 3] +2AY[3,4 D 4]

(AY +AY +AY) [1,2,3] +

k 0 1 2 3
0 011
0 011
0 011
1 0 1 1
10 0 0
AT
o oy e
comp () Lo 1l 1 0 0 O
k 1 0 0 0 00 0 0
1 1 1 0 00 0 0
(1)1 10 00
0 01 0
0 0 0O
1 0 1 1
1100
0 0 0O

DD O DD DD OO HHOREEFEFOOOOO

DD OO DO DODOOHOHRHROOOO OO
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A.25.2 Cohomology of lattice XV corresponding to Q = ((0,1))

¢, = Ot with 7=
(AY +AY) [1] + (AY + AJ +3A7) [2] + (A3 +2A7) [3] + (AY + AY) [4]

k H* (W, XY) generating cocycles

0 0

1 z)2Z (A —2AY) [4]

2 Z/)2Z 20Y[1 2 1]+ (—2AY) [2 D 2] + 2AY[1,2] + (—2AY) B2 8] + (-AY) [4 2 4] +

(=AY +2AY) [1,4] + (—AY +3AY — AY — 3AY) [2,4] + (AY — 2AY) [3,4]

w

ZPRZSZ2Z S Z/2Z  2AY[3,4 2 8] + (—AY +4AY) [8,4 D 4] + (AY — 3AY + 3AY +3AY) [2,3,4]
(20Y —AY) [1,4 2 4] + (=AY + AY — AY) [1,2,4]

20 [1,4 D 1]+ AY[1,4 D 4] + (—AY + AY — AY — AY) [1,2,4]

k h¥XV) generating cocycles
0 1 2AY]

1 2 AY[1] + 2AY [2] + 2A [3] + 2A) [4]
2A7 [1] + 2A7 [2] + 2A7 [3] + 2A) [4]

2 4 AY[1 D 1]+ 207 [2 D 2] + (AY + AY + AY) [1,2] + 247 [3 D 3] + 2AY [4 D 4]
2A5[1 2 1]+ 2A) [2 D 2] +2A{[3 2 3] + 2A)[4 D 4]
2A)[1, 3]
AY[1,4]

3 7 AY1212D1]+24Y (2222 2]+ (AY +AY) [1,2 D 1] + (AY + AY +2AY) [1,2 D 2] +
2AY[8 23 2 3]+ AY[1,2,3] + 2AY[4 D 4 D 4] + (AY +AY) [1,2,4]
2A{[12121]+2A{[22222] +2A{[323 23] +2A5[424D4]

(AY +AY +AY)[2222 2]+ (AY +AY) [1,2 D 1] + (AY + AY +2AY) [1,2D 2] +
(AY +AY)[2,3 2 2]+ AY[2,3 D 3] + AY[1,2,3] + AY[2,4 D 2] + (AY + AY +3AY) [2,4 D 4] +
2AY[3,4 D 4] + (AY + AY + AY) [2,3,4]

AY[1,2 2 1] +2A1[1,2 D 2] + AJ[1,2,3] + Ay [1,2,4]

24Y[1,8 2 8] + AY[2,8 2 2] + (AY + AY) [2,3 2 3] + (AY + AY + AY) [1,2,3] + 27 [3,4 D 4] +
(AY +AY +AY) [2,3,4]

AY[1,4 D 1]+ 2AY[1,4 D 4] + (AY + AY + AY) [1,2,4]

A§[1,2,4]
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A.25.3 Cohomology of lattice XV corresponding to = ((1,1))

¢y = OT with 7 =
(AY +20) [+ (AY + A5 +2A)) [2] + (A3 + AY) [B] + (A3 + AY) [4]

k H* (W, XY) generating cocycles

0 0

1 Z/2Z (AY —2AY) [4]

2 z)27Z 2AY[1 2 1] + (—2AY) [2 2 2] + 2AY[1,2] + (—2AY) 32 8] + (—2AY ) [4 D 4] +

(=AY +2AY) [1,4] + (=AY + 203 — 2AY) [2,4] + (24 — 2AY) [3,4]

w

ZPRZSZ2ZSZ)2Z  (AY —2AY) [3,4 2D 4]+ (AY — AY — AY) [2,3,4]
2AY[3,4 D 3] + 2A¥[3,4 D 4] + (AY — 2AY + 2AY +2AY) [2,3,4]

20Y[1,4 2 1] + AY[1,4 2 4] + (—AY + AY — AY — AY) [1,2,4]

k h¥XV) generating cocycles
0 1 2A% ]

1 2 2AY [1] + 2AY [2] + 2AY [3] + 2A) [4]

(AY +2AY) [3]

2 4 2AY[1 D 1]+ 2AY[2 D 2]+ 2A)[3 D 3] +2A)[4 D 4]
(AY +2AY) [8 2 3] + (AY + AY + AY) [2,3]
2A)[1, 3]

A3[3,4]
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k h*(XVY) generating cocycles

3 7 2AY[1D1D1]+2Ay[2D2D2]+2A)[3D3D3]+2A)[4D 4D 4]
(AY +2AY)[8 23 28]+ (AY + AY +AY) [2,8 D 2]+ (AY +3AY) [2,8 2 3]+ (A + AY + AY) [2,3,4]
2AY[1,8 D 1] + (AY + AY) [2,3 2 2] + AY[2,3 2 3] + (AY + AY + AY) [1,2,3] + AY[2,3,4]
AY[1,8 28]+ (AY +AY) 2,8 2 2] + AY[2,8 2 8] + AY[1,2,3] + AJ[2,3,4]
2AY[1,8 2 3] + (AY +AY) [2,3 2 2] + AY[2,3 2 8] + (AY + AY + AY) [1,2,8] + AY[2,3,4]
AY[3,4 2 3] +2AY[3,4 D 4] + (AY + AY + AY) [2,3,4]

AY[2,3,4]

k 0 1 2 3
0 00
1 1 1 0
0 0 0 0 1
o 00 L) Lo
0 010
01 0

A.25.4 Cohomology of lattice XV corresponding to Q = ((1,0))

¢, = OT with 7 =
(AY + A+ A 1]+ (A + A+ AY) [2] + (A + AS + AY) [3] + A [4]

k H* (W, XY) generating cocycles

0 0

1 z)2Z (A —2AY) [3]

2 Z/2Z 20 [1 2 1]+ (—2A¥) [2 2 2] + 2A¥[1,2] + (—AY) [8 2 8] + (—AY +2AY) [1,8] +

(—AY +3A8 —3AY — AY) [2,8] + (—2AY) [4 2 4] + (—AY +2AY) [3,4]

w

ZPRZSZP2ZSZ/2Z  AY[3,4 23] +2A3[3,4 D 4] + (AY — AY + AY +AY) [2,3,4]
(28 = AY) [1,8 2 8] + (—AY + AY — AY) [1,2,3]

2A3[1,3 D 1]+ AY[1,3 D 3] + (—AY + AY — AY — AY) [1,2,3]

k h¥XV) generating cocycles
0 1 2A¥ (]

1 2 AY[1] + 2AY [2] + 2A% [3] + 2A5 [4]

2AY [1] + 245 [2] 4 2AY [3] + 2A4 [4]
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k hX(XVY) generating cocycles

2 4 Ag[lg1]+2Ag[222]+(A1V+A2V+A§)[1,2]+2A3Y[3Q3]+2Ag[4;4]
2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4]
A3[1,3]
2AY[1,4]

3 7 AY[12121]+20)[2222 2]+ (A +AY) [1,2 2 1] + (AY +2AY +AY) [1,2 D 2] +
2AY[323 D3]+ (A1V+A§) [1,2,3] +2AY[4 D 4 D 4] +AY[1,2,4]
2AY[1D1D1]+2A5[2D2D2]+2Ay[3D3 D3] +2Ay[4 D 4D 4]

(AY +AY +AY)[2222 2] + (AY +AY) [1,2 2 1] + (AY +2AY + AY) [1,2 2 2] + AY[2,3 D 2] +
(AY +3AY +AY) 2,8 23] + (AY +AY) [2,4 2 2] + AY[2,4 D 4] + AY[1,2,4] + 2A)[3,4 D 4] +
(AY +AY +AY) [2,3,4]

AY[1,2 D 1] +2AY[1,2 D 2] + AJ[1, 2,3] + Ay [1,2,4]
AY[1,3 21] +2AY[1,8 2 3] + (AY + AY + AY) [1,2,8]
AY[1,2,3]

20Y[1,4 D 1] + AY[2,4 D 2] + (AY + AY) [2,4 D 4] + (AY + AY + AY) [1,2,4] + 27 [3,4 D 4] +
(AY +AY +AY)[2,3,4]

o
g
T
E
—
SN—
7\

— =
~_
O = O
OO OO+ OO
OO OO =W
O R OOOO

A.25.5 Cohomology of coweight lattice XV = PV

¢y = Or with 7= (AY + AY) [1] + (AY + AY + AY) [2] + (AY + AY) [3] + AY [4]

k HX (W, X") generating cocycles

0 0

1 0

2 722 & Z/27 A1 D1+ (-AY) 2221+ AY[1,2]+ (—AY) B2 3]+ (—AY —AY) [4 D 4] +

(AY =AY +AY) [L 4]+ (AY — AY) [2,4] + (AY — AY) [3,4]

AY[L2 1)+ (—AY) [2 2 2]+ AY[1,2] + (—AY = AY) B2 81+ (A} — AY +AY) [1,3] +
(AY —AY) (2,81 + (—AY) [4 2 4] + (A — AY) [3,4]
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k H* (W, XY) generating cocycles
3 Z)2L DZL)2Z (AY —2A¥)[3,4 2 4] + (AY — AY — AY) [2,3,4]
2220 2/2252/22 AY[2,4 D 2]+ (=AY +2A8 — AY) [2,4 D 4]+ (=AY + AY) [1,2,4] + (AY — AY) [2,3,4]
AY[1,4 2 1]+ AY[1,4 D 4]+ (-AY) [1,2,4] + (—AY) [8,4 2 3] + (—AY) [3,4 D 4] +
(=AY +AY = AY) [1,8,4] + (=AY [2,8,4]
AY[2,8 2 2]+ (=AY +2A8 — AY) [2,8 2 8]+ (=AY + AY) [1,2,3] + (A) — AY) [2,3,4]
AY[1,8 2 1]+ AY[1,8 28]+ (-AY) [1,2,8] + (—AY) [3,4 2 3] + (—AY) [3,4 D 4] +
(=AY +AY) [1,3,4] + (—AY) [2,3,4]
k h¥XV) generating cocycles
0 0
1 2 A+ AY[2]+ (AY +AY) [8] + AY[4]
AY 1]+ AY 2] + AY[8] + (AY +AY) [4]
2 7 AY[121]+AY[2 D21+ (AY +AY) [8 28]+ (AY +AY) [1,8] + (AY + AY) [2,3] + AY[4 D 4] +
(A +AY) [3,4]
AYI D1+ AY[2 221+ AY[8 23]+ (AY +AY) [4 D 4]+ (AY +AY) [1,4] + (A +AY) [2,4] +
(AY +AY) [3,4]
AY[1,2]
AY[1,2]
AY[1,3] + AY[3,4]
AY[2,3]
AY[1,4] + AY[3,4]
3 11 AYI2121]+A[22222]+ (AY +AY) 32823 +AY[1,8 2 1]+ (AY +AY) [1,8 23] +

AY[2,8 D21+ (AY + AY + AY) [2,8 2 3] + AY[1,2,3] + AY[4 D 4 D 4] + AY[3,4 D 3] +
(AY +AY) 13,4 2 4] + (A +AY) [1,38,4] + AY[2,3,4]

AY12121]+AY[22222]+A{[32323]+ (AY +AY)[42424]+A{[1,42 1]+
Ay +AY)[1,4 D 4]+ AY[2,4 D 2]+ (AY + A + AY) [2,4 D 4] + A [1,2,4] + AY[3,4 D 3] +
AY +AY) [3,4 2 4] + AY[2, 3, 4]

AY +AY +AY)[2,3 23]+ (AY + Ay +AY) [1,2,8] + AY[2,4 D 2] + (AY + AY +AY) [2,4 D 4] +
AY +AY +AY) [1,2,4]

(

(

(AY +AY +AY)[2222 2] +AY[1,2 D 1]+ (AY + AY + AY) [1,2 D 2] + AY[2,3 D 2] +
(

(

AY[1,2 21]+AY[1,2 D 2] + (AY + AY + AY) [1,2,3]

AY[3 238238 +AJ[2,3 2 2]+ (AY + Ay + AY) [2,8 2 8]+ (AY + AY) [1,2,8] + (AY + AY) [2,3,4]
AY[1,8 2 1]+ (AY +AY) [1,8 2 3] + (AY + AY + AY) [1,2,8] + AY[1,3,4]

AY[1,8 211+ AY[1,8 D8]+ (AY + AY) [1,3,4]

AY[1,4 21+ AY[1,4 D 4] + (AY + AY) [1,8,4]

AY[1,4 2 1)+ (AY +AY) [1,4 2 4] + (AY + AY + AY) [1,2,4] + AY[1,3,4]

AY[3,4 28] +AY[3,4 D 4]+ (AY + AY) [1,3,4]

AY[3,42 3]+ (AY +AY) 3,42 4] + AY[1,3,4] + (AY +AY +AY) [2,3,4]




A.25 Root system Dy 239

k 0 1 2 3
0 00 0O
0 00 0O
0 1 01 100
10 10 0 0O
0 0 11 1 1 1
compy, () () 0 0 000 0O
0 0 0 0 0 01
0 0 001 0O
0 0 0 00 0O
0 01 01
0 00 0O
A.25.6 Cohomology with trivial coefficients
k H*(Wy,Z) generating cocycles
0 Y/A I
1 0
2 z)27 121+ (-1)[222]+[1,2]+(-1)[32 3]+ (-1)[4 D 4]
3 Z]2ZDZ/2Z DZLZ/2Z [3,4D 3] +[3,4D 4]+ [2,3,4]
[1,421]+[1,4D4]+(-1)[1,2,4]
[1’321]+[19323]+(71)[172’3]
k  h¥(Fy)  generating cocycles
0 1 0
1 1 [1]+ [2] + [3] + [4]
2 4 121]+[222]+[323]+[424]
(1,3]
(1,4]
(3,4]
3 8 12121]+[22222]+[32323]+[42424]

(1,32 1] +[1,3 D 3]
(1,2,3]
[1,4D1]+[1,4 D 4]
(1,2,4]
(3,4 D3] +[3,4 D 4]
[1,3,4]

[2,3,4]
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A.26 Root system Dj

5
1 2 3 24

PY/QY ~Z/AZ
generated by AY € PY mod QY

Dynkin diagram

Fundamental group

A.26.1 Cohomology of coroot lattice XV = QV

[¢u] = (0707 170)
does not lie in the image of comp,

k H*(Wy,XY) generating cocycles

0 0

1 zZ/A7 (A —2AY) [5]

2 zZ)2Z AAY[1 2 1] + (—4AY) [2 D 2] +4AF[1,2] + (—4AY) B2 8] + (—4AY ) [4 2 4] +

(—4AY) [5 2 5] + (—2AY +4AY) [1,5] + (2AY — 4AY) [2,5] +
(—2AY +4AY —4AY) [3,5] + (44 — 4AY) [4, 5]

w

ZPRZSZ2Z S Z/2Z  4AJ[4,5 2 4] +4AY[4,5 D 5] + (28 — 4AY + 4AY +4AY) [3,4,5]

(A —2A%) [1,5 2 1] + (—AY — 6AY) [2,5 D 2] + (—4AY) [2,5 2 5] +
(—AY —2AY) [1,2,5] + (=AY — AY) [3,5 2 3] + (—AY + Ay —2AY) [3,5 2 5] +
(AY +2AY —2AY +4AY +2AY) [2,3,5] + (—2AY + 24 +2AY) [3,4,5]

4AY[1,3 D 1] +4AY[1,3 D 8] + (—4AY) [1,2,3] + (—4AY) [1,4 D 1] +

(—4AY) [1,4 2 4] + (—4AY) [2,4 D 2] + (—4AY) [2,4 D 4] + 47} [1,8,4] +

47y [2,8,4] + (—4AY) [1,5 2 1]+ (—2AY ) [1,5 2 5] + (—4AY) [2,5 D 2] +
(—2A¥) [2,5 2 5] + (2A8 — 2A¥ +2AY +2AY) [1,8,5] +

(28 — 20 +2AY +2AY) [2,3,5] + (20 —4AY) [1,4,5] + (2AY — 4AY) [2,4, 5]

k h*(XV) generating cocycles

0 1 4AY ]

1 2 AY[1] +4AY [2] + 4A7 [3] + 4AY [4] + 4AY [5]

(AY +247) [4]

2 4 A§[121]+4Ag[222]+(A1V+A2V+2A5V) [1,2] +4AY[3 D 3] +4AJ[4 D 4] +4A7[5 D 5]

AY[1,3] + (AY +2AY) [2, 8] +4AY [1, 4] + 4AY[2,4] + (AY +2AY) [3,4] + 4AY[1,5] + 4AY[2, 5] +
(AY +24Y) [3,5]

)
(AY +2A%) [4 2 4] + (AY + AY +3AY) [3,4] + (AY +2AY) [4,5]
)

(AY +20Y) [1,4] + (AY +24Y) [2,4] + A [3,4]
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k hX(XVY) generating cocycles

3 8 AY1D2121]+4AY 222D 2]+ (AY +2AY) [1,2 D 1]+ (AY + AY +2AY) [1,2 D 2] +
4AY[3 D3 D 3]+ AY[1,2,3] +4AY[4 D 4D 4] +4AY [2 3,4] +4AY[5 D 5 D 5] +4AY[2,3, 5]
AAY[1D1D1]+4AY[2D2D 2] +4AY[3D3 D3] +4AY[4D 4D 4] +4A)Y[5 D5 D 5]

AY[1,3 2 1] +4AY[1,8 D 8] + (AY + AY + AY +4AY) [1,2,8] + 4AY[1,4 D 1] +4AY[1,4 D 4] +
40y (2,4 D 2] + 4AY[2,4 D 4] + (AY +2AY) [1,8,4] +4AY[1,5 D 1] + 4AY[1,5 D 5] + 4AY[2,5 D 2] +
47y (2,5 2 5] + (AY +2AY) [1,8,5]

Y +20Y)[424 24+ (AY +AY +3AY)[3,4 23] + (AY + AY)[3,4 D 4] + 4AY[4,5 D 5] +
AY +AY +3AY) [3,4,5]

(2

(43

(AY +28%) [1,4 2 1] + (AY +2AY) [2,4 2 2] + (AY + AY) [8,4 2 3] + (AY +4AY) [3,4 2 4] +
(AY +2AY) [2,3,4] + (AY +2AY) [3,4,5]
(3

(

(

AY +20Y) [1,4 D 4]+ (AY + AY) [1,2, 4]+ (AY + AY +3AY) [1,8,4]+ (A +2AY) [1,4, 5]+4AY [2, 4, 5]

AY +6AY)[5 25 2 5] + (AY +AY +3AY) [3,5 2 3] + (AY +5AY) [3,5 2 5] + 473 [4,5 2 5] +
AY +AY +3AY) [3,4,5]

A7 [3,4,5]

e)

:

=)

>

—
SN—
Y
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N———
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SO OO O =

A.26.2 Cohomology of lattice XV corresponding to Q = ((2))

by = Or with 7= (A} +2AY) [1] + (AY + AY + 2AY) [2] + (AY + Ay +2AY) [3] +
(A 4+ A5) [4] + (A + AS) [5]

k H*(Wq, XVY) generating cocycles

0 0

1 z)2Z (A —2AY) [5]

2 Z/)2Z 2AY[1 2 1] + (—2AY) [2 2 2] + 2A3[1,2] + (—2A% ) [3 2 8] + (—2AY) [4 2 4] +

(—20Y) [5 2 5] + (—AY +2AY) [1,5] + (AY — 2AY ) [2,5] + (=AY +2AY —2AY) [3,5] +
(28 —2AY) [4, 5]
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k H* (W, XY) generating cocycles
3 Z)2L DZL)2Z (AY —2AY) [4,5 2 5] + (AY — AY — AY) [3,4,5]
727 & Z/2Z

2AY[4,5 D 4] + 2AY[4,5 D 5] + (Ay — 2AY + 2AY +2AY) [3,4, 5]

(AY —24%) [1,5 2 1)+ (—AY —24Y) (2,5 2 2] + (-24%) [2,5 2 5] + (=AY [1,2,5] +
(=AY = AY)[8,5 28] + (—AY + Ay — 2AY) [3,5 2 5] + (AY +2AY) [2,3,5] +
(—2Ag +2AY + 2A5V) [3,4, 5]

2AY[1,8 2 1] +2A¥[1,8 2 8] + (—2AY) [1,2,3] + (—2A) [1,4 2 1] +

(—2A%) [1,4 D 4] + (—2AY) [2,4 2 2] + (—2AY) [2,4 D 4] + 2AY[1,3,4] +
2AY[2,3,4] + (—2AY) [1,5 2 1]+ (—AY) [1,5 2 5] + (—2AY) [2,5 2 2] +

(-AY) (2,5 2 5] + (AY — AY + AY + AY) [1,8,5] + (AY — AY + AY + AY) [2,3,5] +
(AY —2AY) [1,4,5] + (AY —2AY) [2,4, 5]

k h¥(XV) generating cocycles

0 1 2AY)

1 2 2AY [1] + 2A7 [2] + 2AY [3] + 2AY [4] + 2AY [5]

(AY +2AY) [4]

2 b) 2AY[1 D 1]+ 2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4] +2AY[5 D 5]
2AY[1, 3] + 2AY[1,4] + 2AY [2,4] + 2A7 [1, 5] + 247 [2, 5]
(A5 +245) [4 2 4]+ (A + A + AY) [3,4]
(AY +28Y) [1,4] + (AY +2AY) [2,4] + AY[8, 4]
AY[4,5]
3 10 2AY[1D1D1]+2AY[2D2D2]+2A[3D3D3]+2AY[4D4D4]+2A/[5D5D5]

3] +2AY[1,4 D 1] +2AY[1,4 D 4] +2AY[2,4 D 2] +2A)[2,4 D 4] +

2AY[1, 331]+2A5[ 3
52 5] +2AY[2,5 D 2] +2AY[2,5 D 5]

2
2AY[1,5 D 1] +2AY[1,5 D
2AY[1,2,3] +2AY[2,3,4] + 2AY[2, 3, 5]
42424+ (AY +AY +AY) [8,4 23]+ (AY +3AY) [8,4 D 4]+ (AY + AY + AY) [3,4,5]

AV+2Ag) [1,4 2 1]+ (AY +2AY) [2,4 D 2] + (AY + AY) [3,4 2 8] + AY[3,4 D 4] +
AY +2AY) [2,3,4] + AY[3,4, 5]
A

AY +20Y) [1,4 D 4] + (AY + AY) [1,2,4] + (AY + AY +AY) [1,8,4] + (AY +2AY) [2,4, 5]

(A3
(
(
(A
(AY +2AY) [2,4 2 4] + (AY + AY) [1,2,4] + (AY +AY) [3,4 28] + AJ[3,4 D 4] +
(AY +AY +AY) [2,8,4] + (AY +2AY) [2,4,5] + AY[3,4, 5]

AY[4,5 2 4] +2AY[4,5 D 5] + (AY + AY + AY) [3,4,5]

AY[1,4,5] + AY[2,4, 5]

AJ[3,4,5]
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A.26.3 Cohomology of coweight lattice XV = PV

¢y = OT with 7 =
AY[A] 4 (AY + AS) [2] + (Ay + AY) [B] + (A + AY) [4] + (A + AF) [5]

k HY(Wy,X") generating cocycles

0 0
1 0
2 0
3 ZRZOZ/2Z (MY —2AY)[4,5 2 5]+ (AY — AY — AY) [3,4,5]

AY[1,8 21+ AY[1,8 28]+ (—AY) [1,2,3] + (—AY) [1,4 2 1] + (-AY) [1,4 2 4] +
(-AY)[2,4 2 2]+ (—AY) [2,4 2 4] + AY[1,3,4] + AY[2,3,4] + (—AY) [1,5 2 1] +

(-AY) [1,5 2 5] + (—AY) [2,5 2 2] + (—AY) [2,5 2 5] + (—AY) [8,5 2 8] + (—AY) [3,5 2 5] +
(“AY + A — AY + AY + AY) [1,8,5] + AY[2,8,5] + (AY — AY) [1,4,5] + (AY — AY) [2,4,5]

k hk (XV) generating cocycles

0 0
1 0
2 2 AY[1,3] + AY[1,4] + AY[2,4] + AY[3,4] + AY [1,5] + AY[2, 5]
AY[3,4]
3 4 AY[1,221] +AY[1,2 D 2] + AY[2,4 D 2] + AY[3,4 D 8] + (AY + AY) [3,4 D 4] + AY[2,3,4] +

(AY +AY) [3,4,5]

AY[1,8 2 1]+ AJ[1,3 D 3] + A¥[2,3 D 2] + AY[2,3 D 8]+ (AY + AY) [1,2,3] + AJ[1,4 D 1] +
AJ[1,4 D 4] +AY[2,4D 2] +AY[2,4 D 4] +AY[1,3,4] + AY[2,3,4] + AY[1,5 D 1] + AY[1,5 D 5] +
AY[2,5 2 2]+ A)Y[2,5 D 5]+ AY[3,5 D3] +A{[3,5 D 5]+ (Ag +A5V) [1,3,5] + AY[2,3,5] +

(AY +AY) [1,4,5] + (AY + AY) [2,4,5]

AY[1,2,3] + A [2,3,4] + A{[2,3,5]

AY[1,3,4]
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comp, () () ()

oo O
O~ = O

A.26.4 Cohomology with trivial coefficients

k HX(W,,Z) generating cocycles
0 y/A 0
1 0
2 z/27 121+ (-1)[22 2]+ [1,2]+ (~1)[32 3] + (~1) [4 2 4] + (~1) [5 2 5]
3 Z7/2 Z/2Z [4,5 D 4] +[4,5 D 5] + [3,4, 5]
[173 2 1] + [1»3 2 3] + (_1) [1’233] + (_1) [174 2 1] + (_1) [174 Q 4] +
(_1) [274 2 2] + (_1) [274 2 4] + [1a 374] + [27 3, 4] + (_1) [1a5 2 1] + (_1) [175 2 5] +
(_1) [21 5 2 2] + (_1) [21 52 5] + [19 31 5] + [27 39 5]
k  h¥(FFy)  generating cocycles
1 (l
1 1 (1] + [2] + [3] + [4] + [5]
2 3 [1D1]4+[2D22]+[323]+[424]+[52D 5]
(1,3] + [1,4] + [2,4] + [1,5] + [2, 5]
[4,5]
3 6 1D2121]+[22222]+[32323]+[42424]+[52525]

[1,321]+[1,323]+[1,421] +[1,4D4] +[2,422]+[2,424]+[1,521] +[1,5 2 5] +
(2,52 2]+[2,5 2 5]

(1,2,3] +[2,3,4] +[2,3,5]
(4,52 4] +[4,5 2 5]
(1,4,5] + [2,4, 5]

(3,4, 5]
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A.27 Root system Dy

Dynkin diagram

Fundamental group

6
O O O
1 2 3 4 )

PY/)QV ~Z/2Z ©7Z)2Z
generated by AJ, Ay € PY mod Q"

A.27.1 Cohomology of coroot lattice XV = QV

(6]

= (1,1,1,0,0,1,0,1)
does not lie in the image of comp,

245

k Hk(WO, XY generating cocycles
0 0
1 727 $Z2/27 (AY —2A¢) [6]
(AY —2AY) [5]
2 Z2Z o Z)2Z 200 [1 2 1] + (—2A¢) [2 D 2] + 2A¢[1, 2] + (—2AY ) [3 2 3] + (—2AY ) [4 D 4] +

(—2AY) 52 5]+ (—AY) [6 2 6] + (=AY +2AY) [1,6] + (AY — 2AY) [2,6] +
(AY —2AY) [3,6] + (=AY +3AY — AY —3A) [4,6] + (AY — 2AY) [5,6]

2AY[1 D 1] + (—2AY) [2 2 2] + 2AY[1,2] + (—2AY) B2 8] + (—2AY) [4 D 4] +
(=AY) 152 5]+ (=AY +2AY) [1,5] + (AY — 2AY) [2,5] + (AY —2AY) [3,5] +
(=AY +3AY —3AY — AY) [4,5] + (—2AY ) [6 D 6] + (—AY +2AY) [5, 6]
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k

H* (W, XY) generating cocycles

3

ZP2ZOL)2LSL)2ZD  20[5,6 2 5] + (—AY +4AY) [5,6 2 6] + (AY — 3AY +3AY +3AY) [4,5, 6]

7222 2)27 & Z/2Z

AY[5,6 2 5]+ 2AY[5,6 2 6] + (AY — AY + AY + A{) [4,5,6]

AY = 2AY) [1,6 D 1]+ (=AY — 2A¢) [2,6 D 2]+ (—2AY) [2,6 D 6]+ (—AY) [1,2,6] +
—AY —2AY) [3,6 2 3] + (—AY +2AY —3AY) [3,6 D 6] + (2AY — 2AY) [2,4,6] +
AY +24Y) [3,4,6]

AY —2AY) [1,5 2 1]+ (=AY —2AY) [2,5 2 2] + (—2AY) [2,5 2 5] + (—AY) [1,2,5] +
—AY —2AY) [3,5 2 8] + (—AY +2AY —3AY) [3,5 2 5] + (2A) — 2AY) [2,4,5] +
AY +2A{) 3,4, 5]

AY[1,32D1] +2AY[1,3D 3
—20Y) [1,4 2 4]+ (—2AY
—2AY) (1,5 2 1] + (
—2AY) [3,5 2 3] + (-2
—AY)[1,6 2 6]+ (—2AY) [2,6 D 2] + (—AY) [2,6 2 6] + (—2AY) [3,6 D 3] +
—AY) 3636]+( AY +2AY) [1,3,6] + (—AY +3AY — AY — 3AY) [1,4,6] +
—AY +3AY — AY —3A¢) [2,4,6] + (AY — AY + AY + AY) [3,4,6] +

AY = 2AY) [1,5,6] + (AY — 2A) [2,5,6] + (A} — 2AY) [3,5,6]

+(—20) [1,2,8] + (—2A¢) [1,4 D 1] +
2,42 2]+ (—2AY) [2,4 D 4]+ 2A¢[1,3,4] +2A)[2,3,4] +
5]+ (—2AY) 2,5 2 2] + (—2A¢ ) [2,5 2 5] +

4
5
52 5]+ 2Ay[8,4,5] + (—2AY) [1,6 2 1] +

1,52
3,52

\
4
\Y
4

2AY[1,3 2 1] +2AY[1,3 D 3] + (—2AY) [1,2,3] + (—2AY) [1,4 D 1] +

(—2AY) [1,4 D 4] + (—2AY) [2,4 D 2] + (—2AY) [2,4 D 4] + 2AY[1,3,4] +
2AY[2,3,4] + (—2AY) [1,5 2 1]+ (—AY) [1,5 2 5] + (—2AY) [2,5 2 2] +

(=AY) (2,5 2 5]+ (—2AY) [3,5 2 8] + (=AY ) [3,5 2 5] + (=AY +2AY) [1,3,5] +
(=AY +3AY = 3AY — AY) [1,4,5] + (=AY +3AY — 3AY — AY) [2,4,5] +

(A =AY + AY + AY) [3,4,5] + (—2AY) [1,6 2 1] + (—2AY) [1,6 D 6] +

(—2A¥) [2,6 2 2] + (—2AY) [2,6 2 6] + (—2AY) [3,6 2 8] + (—2AY) [3,6 2 6] +
2AY[3,4,6] + (—AY +2AY) [1,5,6] + (—AY +2AY) [2,5,6] + (—AY +24Y) [3,5, 6]

k hk(W) generating cocycles

0

2

2A5)

2A60)

AY[]+ (288 +2A8) [2] + (2% + 248 ) [8] + (2AY +2AY) [4] + (2AY +2AY) [5] + (2AY + 2A¢ ) [6]
2AY[1] + 2A7 [2] + 2AY [3] + 2A7 [4] + 2AY [5] + 2AY [6]
208 [1] + 2A¢ [2] + 2A¢ [3] + 28 [4] + 27 [5] + 244 [6]

(AY +24AY) [5]
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k

h*(XY)

generating cocycles

2

8

AL D 1]+ (207 +2A¢) [2 D 2] + (AY + AY + AY +AY) [1,2] + (247 +2A¢) [3 2 3] +
(28 +2A¢) [4 2 4] + (2AY +2A¢) [5 2 5] + (AY +2AY) [2,5] + (AY +2A¢) [3,5] +
(28 +2A¢) [6 2 6] + (AY +2AY) [2,6] + (AY +2AY) [3,6]

2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4] + 2AY[5 D 5] + 2AY[6 D 6]
2A¢[1 D 1]+ 2A8[2 D 2] +2AY[3 D 3] +2A¢[4 D 4] +2A¢[5 D 5] + 2A{[6 D 6]

AY[1,8] + (AY + AY + AY) [2,8] + (2% +2A¢ ) [1,4] + (2AY + 248 ) [2,4] + (AY + AY + AY) [3,4] +
(203 + 20 ) [1, 5] + (2AY + 2A¢ ) [2, 5] + (AY + 24 ) [8,5] + (205 + 2A¢ ) [1,6] + (275 +2A¢ ) [2,6] +
(AY +24) [3, 6]

2AY[1, 3] + 2AY [1,4] + 2AY [2,4] + 2AY [1, 5] + 247 [2, 5] + 2AY [3, 5] 4+ 2AY [1, 6] 4+ 2AY[2, 6] + 2AY[3, 6]
(AY +20Y) [5 2 5] + (AY + AY + 207 +2AY) [3,5] + (AY + AY + AY + AY) [4,5] + A{[5, 6]
(AY +20Y) [1,8] + (AY +2AY) [2,5] + (AY +2AY) [3, 5]

(AY +2A8) [6 2 6] + (AY + AY + 24 +2A¢) [3,6] + (AY + AY + AY + AY) [4,6] + A{[5,6]
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k hkXY)

generating cocycles

3

19

AY[1D121]+ (28Y +2AY) [22 2D 2]+ (AY +AY +AY) 1,22 1] +

(A +AY +AY +A) [1,2 D 2] + (247 +2A¢) [3 23 2 8] + AY[1,2,8] + (2AY +2AY )[4 D4 D 4] +
(28 +2A¢) [2,8,4] + (28Y +2A¢) [5 25 2 5]+ (AY +2AY) [2,5 D 2] + (AY +2AY) [3,5 2 8] +
(AY +2A¢) [8,5 2 5] + AY[1,3,5] + (AY + AY + AY) [2,8,5] + (A + AY + AY +3A¢) [3,4,5] +
(28Y +2A¢) [6 26 2 6]+ (AY +2AY) [2,6 D 2] + (AY +2A) [3,6 D 8] + (AY +2AY) [3,6 D 6] +
AY[1,8,6] + (AY + AY + AY) [2,8,6] + (AY + AY +3AY + AY) [3,4,6] + (24 +2A) [3,5, 6]

2AY[1 D1 D 1]+2AY[2 D2 D 2]+2AY[3 D3 D 3]+2AY[4 D4 D 4]+2A/[5 D5 D 5]+2A7[6 D 6 D 6]
2A¢[1 21D 1]+2A§[2 D 2D 2]+2AJ[83 D3 D 3]+2A[4 D4 D 4]+2A¢[5 D5 D 5]+2A{[6 D 6 D 6]

(AY +AY +4AY +4A8) [2 22 2 2] + (AY +AY +AY) 1,2 2 1]+ (A + AY + AY +AY) [1,2 2 2] +
(AY +AY +AY +AY) [2,8 2 2]+ (A + AY +3AY +3AY) [2,8 2 3] + AY[1,2,3] +

(20Y +2A¢) [2,8,4] + (AY +2AY) [2,5 2 2] + (248 +2AY) [3,4,5] + (AY +2A¢) [2,6 2 2] +

(2A§ +2Ag) (3,4, 6]

AY[1,3 2 1] + (208 +2A%) [1,8 2 8] + (AY + AY + AY +2AY +2A¢) [1,2,3] +

(28 +2A%) [1,4 2 1] + (2AY +2A¢ ) [1,4 D 4] + (2AY +2A¢) [2,4 D 2] + (2 +2AY) [2,4 D 4] +
(AY + AY + AY) [1,8,4] + (207 +2AY) [1,5 2 1] + (2AY +2A¢) [1,5 2 5]+ (243 +2A¢) [2,5 2 2] +
(2% +2AY) [2,5 2 5] + (2AY +2A¢) [3,5 2 8] + (2AY +2A¢) [3,5 2 5] + AY[1,3,5] +

(28 +2A%) [1,6 2 1] + (2AY +2A¢) [1,6 2 6] + (2AY +2A) [2,6 D 2] + (27 +2AY) [2,6 2 6] +
(20% +2AY) [3,6 2 8] + (2AY + 2A¢) [3,6 2 6] + A{[1,3,6]

AY[1,8 2 1)+ (AY +AY + AY) [2,8 2 2] + (AY +3AY +3A¢) [2,3 2 8] +

(AY +AY + 207 +208) [1,2,8] + (AY + AY + AY) [1,8,4] + (AY +3AY +3AY) [2,3,4] +

(AY +2AY) [3,5 2 8] + (AY +2AY) [8,5 2 5] + (AY + AY) [1,8,5] + (AY + AY + AY) [2,3,5] +

(AY +AY +AY +3AY) [3,4,5] + (AY +2AY) [3,6 2 8] + (AY +2AY) [3,6 D 6] + (AY + AY) [1,3,6] +
(AY +AY +AY) [2,3,6] + (AY + AY +3AY + AY) [3,4,6] + (247 +2A¢) [3, 5, 6]

1] +2AY[1,3 D 3] +2AY[1,4 D 1] +2AY[1,4 D 4] + 2A)[2,4 D 2] + 2AY[

Y[1,3D 2,4 D 4]
2A5[1,5Q1]+2Ag[1,5Q5]+2Ag[2,5g2]+2Ag[2,5Q5]+2Ag[3,5Q3]+2A§[3,5Q5]+
J[1,6 D 1] +2AY[1,6 D 6] +2AY[2,6 D 2] +2AY[2,6 D 6] +2A7[3,6 D 3] +2A7[3,6 D 6]

2AY[1,2,3] +2AY[2,3,4] + 2AY[3,4,5] + 2AY[3, 4, 6]

(AY +2AY) [5 25 2 5] + (A +2A) [8,5 2 5] + AY[1,3,5] + (AY + AY + AY) [2,3,5] +
AY[4,5 2 4] + (AY +3AY + AY) [4,5 2 5] + (AY + AY + AY) [8,4,5] + (2AY +2AY) [5,6 D 6] +
(AY +2AY) [3,5,6] + (AY + AY + AY) [4,5,6]

(AY +2AY +2AY) [1,5 D 1] + (AY + AY + AY +2AY +2A¢) [1,2,5] + (A + AY) [1,8,5] +
(AY +AY +2AY +2A7) [1,4,5] + (2AY +2AY) [2,4, 5]

(AY +2A¥) [1,5 2 1] + (AY +2AY) [2,5 2 2]+ (AY +2AY) [3,5 2 3] + (AY +2A¢) [3,5 D 5] +
AY[1,8,5]+ (AY + AY + AY) [2,8,5] + (AY + AY +3AY + AY) [3,4,5] + (AY +2A¢) [3,5, 6]

+ 208 +2A¢ ) [1,5 2 5] + (AY +2AY) [8,5 2 5] + AJ[1,8,5] + (AY + AY + AY) [2,3,5] +
AV+AV+A6) [4,5 D 4] + (AY + AY +2AY +2A¢) [4,5 2 5] + (A + AY + AY) [3,4,5] +
AY +2A8) [8,5,6] + AY[4,5, 6]

AY +208) [1,5 2 5] + (AY + A + AY) [1,2,5] + (A + AY) [1,8,5] +
AY 4+ AY + AY + AY) [1,4,5] + 24 [2,4,5] + AY [1,5,6] + 24 [2, 5, 6] + 244 [3, 5, 6]

(A3
(
(
(
(

2AY[1,3,5]

(AX+2A6V) [626D6]+ (A§+2Ag) [3,6 D 6]+ AY[1,3,6] + (A1V+Ag+Ag) [2,3,6] +
AY[4,6 2 4] + (A + AY +3A7) [4,6 2 6] + (AY + AY + AY) [3,4,6] + (2AY +2AY) [5,6 2 6] +
(AY +2AY) [3,5,6] + (AY + AY + AY) [4,5,6]

AY +20Y +2A) [1,6 D 1] + (AY + AY + AY +2AY +2A¢) [1,2,6] + (A +AY) [1,8,6] +
AY +AY +20Y +2AY) [1,4,6] + (247 +2AY) [2,4, 6]

(AY +24¢) [1,6 D 6]+ (AY +AY + AY) [1,2,6] + (A5 +AY) [1,3,6] +
(AY +AY +AY +AY) [1,4,6] + 20 [2,4,6] + AY[1,5,6] + 2AY [2, 5, 6] + 2AY [3, 5, 6]

AY[5,6 2 5]+ 2AY[5,6 2 6] + (AY + AY + AY + A [4,5,6]

2AY[5,6 D 5] +2AY[5,6 D 6]
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k hX(XVY) generating cocycles
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A.27.2 Cohomology of lattice XV corresponding to Q = ((0,1))

[qu] = (]‘7 17070)

does not lie in the image of comp,

k H*(W, XVY) generating cocycles

0 0

1 z)27Z (AY —2A) [6]

2 z)27 200 [1 2 1] + (—2A¢) [2 2 2] + 2A¢[1,2] + (—2AY ) B2 3] + (—2AY ) [4 D 4] +

(—2AY) 152 5] + (—AY) [6 2 6] + (—AY +2AY) [1,6] + (AY — 2AY) [2,6] +
(AY —2A¢) [3,6] + (=AY +3AY — AY —3AY) [4,6] + (A} —2AY) [5, 6]

3 ZNRZLOLN2LSL)2Z  2A{[5,6 2 5]+ (—AY +4AY) [5,6 2 6] + (AY — 3AY +3AY +3AY) [4,5,6]

(AY —2A¢) [1,6 2 1] + (—AY —2AY) [2,6 D 2] + (—2AY) [2,6 D 6] + (—AY) [1,2,6] +
(=AY —2AY) 3,6 2 8] + (=AY +2AY — 3AY) [3,6 2 6]+ (2AY — 2A¢) [2,4,6] +
(AY +2AY) [3,4,6]

2AY[1,3 D 1] +2A¢[1,8 D 8]+ (—2AY ) [1,2,3] + (—2A¢) [1,4 D 1] +

(—20Y) [1,4 2 4]+ (—2AY) [2, +(—20Y) [2,4 2 4] +2AY[1, 3, 4] + 20 [2,3,4] +
(—20) [1,5 2 1] + (—2AY) [1,5 2 5] + (—2AY) [2,5 2 2] + (—2AY) [2,5 2 5] +
(—20Y) [3,5 2 3] + (—2AY) [3, ]+ 2AY[3,4,5] + (—2A7) [1,6 D 1] +

(-AY)[1,6 2 6]+ (—2A¢) [2,6 D 2] + (—AY) [2,6 D 6] + (—2A¢) [3,6 2 3] +

(—AY) (8,6 2 6] + (—AY +2A) [1,8,6] + (=AY +3AY — AY —3A¢) [1,4,6] +

(-
(

\Y
4
\
4

AY +3AY — AY = 3AY) [2,4,6] + (AY — AY +AY +AY) [3,4,6] +
AY = 2AY) [1,5,6] + (AY — 2A¢) [2,5,6] + (AY — 2A¢) [3,5,6]
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k h*(XVY) generating cocycles

0 1 2A¢ 1]

1 2 AY (1] + 2A¢ [2] 4 2A¢ [3] + 2A¢ [4] + 2A¢ [5] + 2A [6]
20 [1] + 248 [2] + 2AY [3] + 2A¢ [4] + 2A [5] + 24 [6]

2 4 AY[1 2 1]+20¢[2 2 2] + (AY + AY + A¢) [1,2] + 2A¢[3 2 3] + 247 [4 D 4] + 2A¢[5 2 5] +
20 [6 2 6] + (AY +2A¢) [2,6] + AY[3, 6]
201 D 1]+ 2A¢[2 D 2] +2AY[3 D 3] + 2A[4 D 4] + 2A[5 D 5] + 2A[6 D 6]
AV, 8]+ (AY +AY) [2, 8] + 248 [1, 4] + 24§ [2, 4] + (AY + AY) [8, 4] + 2A¢ [1, 5] + 24§ [2, 5] +
2A¢[3,5] + 2A¢[1,6] + 2A¢[2, 6] + A [3, 6]
(AY +2A¢) [1,5] + (AY + A¢) [4,5] + A{[5, 6]

3 9 AY1D121]+20[2222 2]+ (AY +AY) [1,2 2 1]+ (AY + AY + AY) [1,2 D 2] +

2A¢[3 D23 D3] +AY[1,2,3] +2A[4 D 4 D 4] +2AJ[2,3,4] + 2A{[5 D 5 D 5] +2A[3,4,5] +
2Ag[62626]+(AZ+2Ag) [2,622]+(AX+2A§) [3,6 D 3] +AY[3,6 D 6]+ AY[1,3,6] +
(AY +AY) [2,3,6] + (AY + AY +AY + AY) [3,4, 6]

2AY[1 D1 D 1]+2A¢[2 D2 D 2]+2A[3 D3 D 3]+2A§[4 D4 D 4]+2A[5 D5 D 5]+2AJ[6 D 6 D 6]

(AY +AY +4A8) 222221+ (AY + A7) [1,2 D 1]+ (AY + AY +AY) [1,2 D 2] +
(AY +AY +AY) [2,3 2 2] + (AY + AY +3AY) [2,8 2 3] + AY[1,2, 3] + 248 [2, 3,4] + 2A¢[3,4,5] +
(AY +2A¢) [2,6 2 2] + 2A¢[3, 4, 6]

AY[1,2 2 1]+ AY[1,2 D 2] + AY[2,5 2 2] + AY[3,5 2 8] + AY[4,5 D 4] + (AY + A{) [4,5 2 5] +
AY13,4,5] + 27 [5,6 2 6] + (AY + AY + A{) [4,5,6]

AY[1,3 D 1] +2A)[1,3 D 3] + (AY+A§+A§+2A§) [1,2,8] +2AY[1,4 D 1] +2A¢[1,4 D 4] +
2AY[2,4 D 2] +2A¢[2,4 D 4] + (AY+A§) [1,3,4] +2AY[1,5 D 1] +2A[1,5 D 5] + 2A{[2,5 D 2] +
2A¢[2,5 D 5] +2A¢[3,5 D 3] +2AJ[3,5 D 5] +2Ay[1,6 D 1] +2A[1,6 D 6] +2A[2,6 D 2] +
2A¢[2,6 D 6] +2A¢[3,6 D 3] +2A][3,6 D 6] + A} [1,3,6]

AY[1,8 2 1]+ (A +AY) 2,8 2 2]+ (AY +3A¢) [2,3 2 8] + (AY + AY +2AY) [1,2,3] +

(AY +AY) [1,3,4] + (AY + AY +3A¢) [2,8,4] + 277 [8,4,5] + (AY +2A¢) [3,6 D 8] + AY[3,6 D 6] +
(AY +AY) [1,3,6] + (AY +AY) [2,3,6] + (AY + AY + AY +AY) [3,4,6]

AY[1,2,8] + AY[2,8,4] + (AY + AY) [2,8,5] + (AY + AY) [1,4,5] + (AY + AY) [2,4,5] +
(AY +3AY) [3,4,5] + AY[3,4,6] + AY[1,5,6] + AY[2,5,6] + 24 [3, 5, 6]

(AY +24¢) [1,5 2 5] + (AY + AY) [4,5 2 4] + (AY + AY) [4,5 2 5] + 2A{[5,6 2 6] +
(AY +AY + AY +AY) [4,5,6]

AY[1,8,5] + (AY + AY) [2,8,5] + (AY +2A¢) [3, 5, 6]
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A.27.3 Cohomology of lattice XV corresponding to Q =

251

(1, 1))

¢y = Or with 7 = (AY +2A) [1] + (AY + AY +2A) [2] + (AY + Ay +2A) [3] +
(Ag + AY +2A¢) [4] + (Ag + Ag) [5] + (A5 + Ag) [6]

k H*(Wq, XY) generating cocycles

0 0

1 z/)2Z (AY —2A¢) [6]

2 Z/)2Z 2AY[1 2 1] + (—2A¢) [2 2 2] + 2A¢ [1,2] + (—2A¢ ) B2 8] + (—2Ay ) [4 2 4] +
(—2A8) [5 2 5] + (—2AY) [6 2 6] + (—AY +2AY) [1,6] + (AY — 2A¢) [2,6] +
(AY —2A8) [3,6] + (—AY + 24 — 2A¢) [4,6] + (245 — 2AY) [5, 6]

3 2272 ® )27 & (AY —20Y) [5,6 2 6] + (AY — AY — A{) [4,5,6]

Z/22 & 2/22 27y [5,6 2 5] + 2AY[5,6 D 6] + (Ay — 2AY + 24 +2A¢ ) [4,5,6]

(AY = 2AY) [1,6 2 1]+ (—AY — 2A¢) [2,6 D 2] + (—2AY) [2,6 D 6]+ (—AY) [1,2,6] +
(—AY —2AY) [3,6 23] + (—2AY ) [3,6 2 6] + (—AY — AY) [4,6 D 4] +
(—AY +AY —2AY) [4,6 2 6] + (2AY — 2A¢) [2,4,6] + (AY +2AY) [3,4,6] +
(—2AY +2AY +2A¢) 4,5, 6]
2 [1,8 D 1] + 2AY[1,3 D 3] + (—2A¢) [1,2,8] + (—2A¢) [1,4 D 1] +
(—2AY) 1,4 2 4]+ (—2A¢ ) [2,4 D 2]+ (—2AY) [2,4 D 4] +2A¢[1, 3, 4] +2A) [2,3,4] +
(—2AY) 1,5 2 1] + (—2A¢) [1,5 2 5] + (—2A¢) [2,5 2 2] + (—2AY) [2,5 2 5] +
( 2Ag) [3,5 D 3] ( 2Ag) [3,5 D 5] + 2AY[3,4,5] + (szg) [1,6 D 1]+
(=AY) [1,6 2 6] + (—2AY) [2,6 2 2] + (—AY) [2,6 2 6] + (—2A¢) [3,6 2 3] +
(—AY)[3,6 2 6]+ (—AY +2AY) [1,3,6] + (—AY +3AY — AY — 3AY) [1,4,6] +
(=AY +3AY — AY —3AY) [2,4,6] + (AY — AY + AY + AY) [3,4,6] +
(AY —2A) [1,5,6] + (AY — 2AY) [2,5,6] + (AY — 2AY) [3,5, 6]

k hX(XVY) generating cocycles

0 1 2A¢ 1]

1 2 20 [1] + 248 [2] + 2AY [3] + 2A¢ [4] + 2A [5] + 24 [6]

(AY +208) [5]
2 5 201 D 1] +2A¢[2 D 2] + 2A[3 D 3] + 2A[4 D 4] + 2A[5 D 5] + 2A[6 D 6]

2A¢[1,3] + 2A¢[1,4] + 2A¢[2, 4] + 2AY[1, 5] + 2AY [2, 5] + 2AY [3, 5] + 2AY [1, 6] + 2Ay [2, 6] + 2A{ [3, 6]

(AY +20) [5 2 5] + (AY + AY + AY) [4, 5]

(AY +2A¢) [1,8] + (AY +24%) [2,

A{[5,6]

5] +

(AY +249) [3,

5] + AY

[4, 5]
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k h*(XVY) generating cocycles
3 11 2AY[1 D1 D 1]+2A¢[2 D2 D 2]+2A[3 D3 D 3]+2A5[4 D 4D 4]+2A[5 D5 D 5]+2AJ[6 D 6 D 6]

2A[1,3 D 1] +2A[1,3 D 3] +2AJ[1,4 D 1] + 2AY[1,4 D 4] +2A[2,4 D 2] + 2A§[2,4 D 4] +
200 [1,5 D 1]+ 2A¢[1,5 D 5] +2AJ[2,5 D 2] + 2A[2,5 D 5] +2AJ[3,5 D 3] +2A{[3,5 D 5] +
2A¢[1,6 D 1] +2A[1,6 D 6] +2AJ[2,6 D 2] +2Ay[2,6 D 6] +2A[3,6 D 3] +2A[3,6 D 6]

2A¢ (1,2, 8] + 2A¢ (2, 3, 4] + 2A¢[3,4, 5] + 2A{ [3, 4, 6]

(AY +2A8) [5 25 2 5]+ (AY + Ay + AY) [4,5 2 4]+ (AY +3AY) [4,5 2 5] + (AY + AY + AY) [4,5,6]

(AY +2A) [1,5 2 1] + (AY +2A%) [2,5 D 2] + (AY +2AY) [3,5 2 8] + (AY +AJ) [4,5 2 4] +
AY[4,5 2 5] + (AY +2A¢) [3,4,5] + A [4,5,6]

(AY +20) [1,5 2 8] + (AY + AY) [1,2,5] + (AY + AY + A{) [1,4,5] + 27 [2,4,5] +
(AY +2AY) [2,5,6] + (AY +2AY) [3, 5, 6]

(AY +2AY) [8,5 2 5]+ (AY + AY) [2,3,5] + (AY + AY) [4,5 D 4] + AY[4,5 D 5] +
(AY + A + A{) [8,4,5] + (AY +2A¢) [3,5,6] + A [4,5,6]

2A¢[1,3,5]

AY[5,6 2 5] + 24 [5,6 2 6] + (AY + AY + A{) [4,5,6]

Aj[1,5,6] + A [2,5,6] + A (3,5, 6]

AY[4,5,6]

=
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A.27.4 Cohomology of lattice XV corresponding to Q = ((1,0))

(6]

= (1,1,0,0)
does not lie in the image of comp,

k H*(W, XY) generating cocycles

0 0

1 z/2Z (AY —2AY) [5]

2 z)2Z 20¥[1 2 1] + (—2AY) [2 D 2] + 2AY[1,2] + (—2AY ) [3 2 3] + (—2AY) [4 D 4] +

(=AY) 15 2 5]+ (=AY +2AY) [1,5] + (AY —2AY) [2,5] + (A —2AY) [3,5] +
(=AY +3AY —3AY — AY) [4,5] + (—2AY) [6 2 6] + (—AY +2AY) [5,6]
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k H* (W, XY) generating cocycles

3 ZNRLOL2LOL/2Z  A][5,6 D 5]+ 2A[5,6 D 6]+ (AY — AY + AY +AY) [4,5,6]

(AY —2A¥) [1,5 2 1] + (—AY —2AY) [2,5 D 2] + (—2AY) [2,5 2 5] + (—AY) [1,2,5] +
(=AY —2AY) [3,5 2 8]+ (—AY +2AY — 3AY) [3,5 2 5] + (2AY — 2AY) [2,4,5] +
(AY +2A¢) [3,4,5]

2AY[1,8 2 1] +2A¥[1,8 D 8] + (—2AY) [1,2,3] + (-2AY) [1,4 D2 1] +

(—2A¥) [1,4 D 4] + (—2AY) [2,4 2 2] + (—2AY) [2,4 2 4] + 2AY[1,8,4] +
2AY[2,3,4] + (—2AY) [1,5 2 1] + (—AY) [1,5 2 5] + (—2AY) [2,5 2 2] +
(=AY)[2,5 2 5]+ (—2AY) [8,5 2 8] + (—AY) [3,5 2 5] + (—AY +2AY) [1,8,5] +
(=AY +3AY = 3AY — AY) [1,4,5] + (=AY +3AY — 3AY — AY) [2,4,5] +

(A =AY + AY + AY) [3,4,5] + (—2AY) [1,6 2 1] + (—2AY) [1,6 2 6] +

(—2A%) [2,6 2 2] + (—2AY) [2,6 2 6] + (—2AY) [3,6 2 8] + (—2AY) [3,6 2 6] +
2AY[3,4,6] + (=AY +2AY) [1,5,6] + (—AY +24Y) [2,5,6] + (—AY +2AY) [3,5,6]

k h¥XV) generating cocycles

0 1 2AY]
1 2 AY[1] + 2AY [2] + 2A7 [3] + 2A7 [4] + 2AY [5] + 2AY [6]
2AY [1] 4 2A7 [2] + 2AY [3] + 2A7 [4] + 2AY [5] + 2AY [6]
2 4 A§[1;1]+2Ag[292]+(AY+A2V+A5V)[1,2]+2A§[3;3]+2A§[4Q4}+2Ag[595]+

(AY +2AY) [2,5] + AY[8,5] + 245 [6 D 6]
2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4] + 2AY[5 D 5] + 2AY[6 D 6]

AY[1,8]+ (AY +AY) [2,8] + 207 [1,4] + 247 [2,4] + (AY + AY) [3,4] + 2AY [1, 5] + 24 [2, 5] +
AY[3,5] + 2AY[1, 6] + 2AY [2, 6] + 2AY [3, 6]

(AY +2AY) [1,6] + (AY + AY) [4,6] + A{[5, 6]
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k h*(XVY) generating cocycles

3 9 AYID1D1]+20Y 222D 2]+ (AY +AY) [1,2 D 1]+ (AY + AY +AY) [1,2 D 2] +
2AY[3 D3 D3] +AY[1,2,3] +2AY[4 D 4D 4] +2A)[2,3,4] +2AY[5 D 5 D 5] +
(AY +2A¥) [2,5 2 2] + (AY +2AY) [8,5 2 8] + AY[3,5 2 5] + AY[1,8,5] + (A} + AY) [2,8,5] +
(AY +AY + A +AY) [3,4,5] + 245 [6 2 6 2 6] + 2AY[3, 4, 6]
2AY[1 21D 1]+2AY[2 D2 D 2]+2AY[83 D3 D 3]+2AY[4 D4 D 4]+2AY[5 D5 D 5]+2A;[6 D 6 D 6]
(AY + Ay +4AY) [2 222 2]+ (AY +AY) [1,2 D 1]+ (AY + AY +AY) [1,2D 2] +
(AY + Ay + AY) [2,8 D 2]+ (AY + AY +3AY) [2,3 D 3] + AY[1,2,3] + 277 [2,8,4] +
(AY +2AY) [2,5 2 2] + 277 [3,4, 5] + 2AY[3, 4, 6]
AZ[1,2 21] + AJ[1,2 2 2] + AY[2,6 D 2] + AY[3,6 D 3] + AJ[4,6 D 4] + (AY + AY) [4,6 D 6] +
AY[3,4,6] +2AY[5,6 D 6] + (AY + AY + AY) [4,5,6]
AY[1,8 2 1]+ 2AY[1,3 D 3] + (AY + AY + AY +2AY) [1,2,3] + 2AY[1,4 D 1] + 2A)[1,4 D 4] +
2Ag[2,422]+2Ag[2,424]+(AY+A§) [1,3,4] +2AY[1,5 D 1] +2AY[1,5 D 5] +2AY[2,5 D 2] +

2AY[2,5 D 5] +2AY[3,5 D 3] +2AY[3,5 D 5] + AY[1,3,5] +2A7[1,6 D 1] + 2AY[1,6 D 6] +
2AY[2,6 D 2] +2A7[2,6 D 6] +2A7[3,6 D 3] +2AY[3,6 D 6]

AY[1,8 2 1)+ (A +AY) 2,8 2 2] + (AY +3AY) [2,3 2 8] + (AY + AY +2AY) [1,2,3] +
(AY +AY) [1,8,4] + (AY +3AY +AY) [2,8,4] + (AY +2AY) [3,5 2 8] + AY[3,5 2 5] +
(AY +AY) [1,8,5] + (AY +AY) [2,8,5] + (AY + AY + AY + A [3,4,5] + 247 [3, 4, 6]

A¢11,2,8] + A{[2,8,4] + A{[3,4,5] + (AY + AY) [2,3,6] + (AY + AY) [1,4,6] + (AY + AY) [2,4,6] +
(AY +3AY) [3,4,6] + AY[1,5,6] + AY[2,5, 6] + 24 [3, 5, 6]

AY[1,3,6] + (AY +AY) [2,3,6] + (A +2AY) [3,5,6]

2AY[5,6 D 5] +2AY[5,6 D 6]
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A.27.5 Cohomology of coweight lattice XV = PV

¢u = Or with 7= AY[1] + (A} + AS) [2] + (Ay + A3) [8] + (AS + A)) [4] +
(A5 + A8) [8] + (AY + AY) [6]

k H*(Wy,XY) generating cocycles
0 0
1 0
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k HY(W,, XV enerating cocycles
(Wo,XY) g g cocy
3 ZNRZOZNLSL)2Z (A —20Y) (5,6 2 6]+ (AY — AY — AY) [4,5,6]
AZ[1,8 211+ AJ[1,8 28]+ (-AY) [1,2,3] + (—AY) [1,4 D 1] + (—AY) [1,4 D 4] +
(—A¢) [2,4 D 2]+ (—AY) [2,4 2 4] + AJ[1,3,4] + AJ[2,3,4] + (-A{) [1,5 D 1] +
(-AY) [1,5 28]+ (—AY) [2,5 2 2] + (-AY) (2,5 2 5] + (—AY ) [3,5 2 3] +
(-AY) (8,5 2 5] + A{[3,4,5] + (—AY — AY) [1,6 2 1] + (—AY — AY) [1,6 D 6] +
(—A¥ —AY) (2,6 2 2]+ (—AY — AY) [2,6 2 6] + (—AY — AY) [3,6 2 3] +
(—AY = AY)[3,6 2 6] + (—AY + AY — AY + AY) [1,3,6] + (—AY + AY) [2,3,6] +
(AV AY) [1,4,6] + (AY = AY) [2,4,6] + (AY + AY) [3,4,6] + (AY — AY) [1,5,6] +
(AY = AY) [2,5,6] + (AY — AY) [3,5, 6]
AY[1,8 2 1]+ AY[1,8 28]+ (-AY) [1,2,8] + (—AY) [1,4 2 1] + (—AY) [1,4 D 4] +
(-AY) (2,42 2]+ (—AY) [2,4 2 4] + AY[1,8,4] + A} [2,8,4] +
(Ag_ §) 11,5 21+ (—AY — AY) [1,5 2 5] + (—AY —AY) [2,5 2 2] +
(—A§ = AY) (2,5 28]+ (-AY —AJ) [3,5 2 8]+ (~A) — AY) [3,5 2 5] +
(- AV+Av AY +AY) [1,8,5] + (=AY + AY) [2,3,5] + (AY — AY) [1,4,5] +
(AY = AY) [2,4,5] + (AV+AV) (8,4,5] + (—AY) [1,6 2 1]+ (-AY) [1,6 D 6] +
(-AY) [2,6 2 2]+ (—AY) [2,6 2 6] + (—AY) [3,6 2 3] + (—AY) [3,6 D 6] +
AY[8,4,6] + (AY — AY) [1,5,6] + (AY — AY) [2,5,6] + (AY — A{) [3,5,6]
k h¥(XV) generating cocycles
0 0
1 0
2 3 AY[1, 8]+ AY[1,4] + AY [2,4] + (AY + AY) [1,5] + (AY +AY) [2,5] + (AY +A) [3,5] + AY[1,6] +
Ag[2,6] + A5 [3, 6]
AY11,8] + AY[1, 4] + AY [2,4] + AJ[1,5] + A [2,5] + AY[3,5] + (AY + AY) [1,6] + (AY + AY) [2,6] +
(AY +AY) [3,6]
Ag[4,5]
3 8 Ag[l,zg1]+Ag[1,2Q2]+AX[2,5;2]+AX[3,5Q3]+A§[4,5Q4]+(A§+Ag) [4,5 D 5]+

AY[3,4,5] + (AY + AY) [4,5,6]

AJ[1,321]+AY[1,3 D3]+ AY[1,4 D 1] +AY[1,4 D 4] + AY[2,4 D 2] + AY[2,4 D 4] +

(AY +AY) [1,5 2 1]+ (AY +AY) [1,5 2 5] + (AY +AY) [2,5 2 2]+ (AY +AY) [2,5 2 5] +
(AY + A¢) [8:5 28]+ (AY + AY) [8,5 2 5] + (AY + AY + AY) [1,8,5] + (AY + AY +AY) [2,3,5] +
(AY + AY + AY) [1,4,5] + (A + AY + AY) [2,4,5] + AY[1,6 D 1] + AY[1,6 D 6] + AY[2,6 D 2] +
AY[2,6 D 6]+AY[3,6 D 3] +AY[3,6 D 6]+ (AY + AY) [1,5,6]+ (AY + AY) [2,5,6]+ (AY + AY) [3,5,6]

Ag[1,321]+AV[1333]+AV[1431]+AV[1434]+AV[2432]+AV[2434]+AV[1 5D 1]+
AJ[1,5 2 5]+ AJ[2,5 D 2] + AJ[2,5 D 5] + AJ[3,5 2 8] + AY[3,5 D 5] + (AY + AY) [1,6 D 1] +
(AY +AY) [1,6 2 6]+ (AY + AY) [2,6 D 2]+ (AY + AY) [2,6 D 6] + (AY + AY) [3,6 2 3] +

(AY + AY) [8,6 2 6]+ (AY + AY + AY) [1,8,6] + (AY + AY + AY) [2,8,6] + (AY + AY + AY) [1,4,6] +
(A + AY + AY) [2,4,6] + (AY + AY) [1,5,6] + (A + AY) [2,5,6] + (A + AY) [3,5, 6]

AY[1,2,3] + AY[2,8,4] + AY[2,8,5] + AY[1,4,5] + AY[2,4,5] + (A} + AY) [3,4,5] + AY[3,4, 6]
AJ[1,2,3] + AJ[2,3,4] + AJ[3,4,5] + AY[2,3,6] + Ay [1,4,6] + Ay [2,4,6] + (A1v + A5V) (3,4, 6]
AY[1,3,5] + AY[1,5,6] + AY[2,5,6] + AY[3,5, 6]

AJ[1,4,5] + A{[2,4,5]

AJ[1,3,6] + AJ[1,5,6] + AJ[2,5,6] + A{[3,5, 6]
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k 0 1 2 3
1 0 0
0 0 1
01 0
0 0 1
compy O () () 01 0
0 0 O
0 0 O
0 0 O

A.27.6 Cohomology with trivial coefficients

k HX(W,,Z) generating cocycles
/A (l
1 0
2 z/27 21+ (-D222]+[1,2]+(-D[323]+(-1)[424]+(-1)[5 2 5]+ (-1)[6 2 6]
3 722 »7Z/2Z [5,6 D 5] +[5,6 D 6] + [4, 5, 6]
(1,83 21]+[1,3 2 3]+ (-1)[1,2,3]+(-1)[1,4 D 1]+ (-1)[1,4 D 4] +(-1)[2,4 D 2] +
(-1)[2,4 D 4] + [1,3,4] + [2,3,4] + (=1) [1,5 D 1] + (=1)[1,5 D 5] + (-1)[2,5 D 2] +
(-1)[2,5 2 5]+ (-1)[3,5 2 3]+ (-1) [3,5 2 5] +[3,4,5] + (1) [1,6 D 1] +
(=1)[1,6 2 6]+(-1)[2,6 2 2]+(-1)[2,6 2 6]+(—1)[3,6 2 3]+(—1) [3,6 D 6]+[3,4, 6]
k  h*(Fy)  generating cocycles
0 1 0
1 1 [1] + [2] + [3] + [4] + [5] + [6]
2 3 121]+[2D22]+[8323]+[424]+[525]+[62 6]
[1,3] +[1,4] + [2,4] + [1,5] + [2, 5] + [3,5] + [1,6] + [2, 6] + [3, 6]
[5,6]
3 8 [1D2121]+[22222]+[32323]+[42424]+[52525]+[62602 6]
(1,3 D 1]+[1,3 D 3] +[1,4 D 1]+[1,4 D 4]+[2,4 D 2] +[2,4 D 4] +[1,5 D 1]+[1,5 D 5] +[2,5 D 2]+
[2,5 D 5]+[3,523]+[3,5 25/ +[1,6 D 1]+[1,6 D 6]+[2,6 D 2]+[2,6 2 6]+[3,6 D 3]+[3,6 D 6]

[1,2,3] +[2,3,4] + [3,4,5] + [3,4, 6]
[1,3,5]
[1,3,6]
[5,6 D 5] +[5,6 D 6]
[1,5,6] + [2,5,6] + [3,5, 6]

[4,5,6]
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A.28 Root system Dy

Fundamental group

7
O—O—O0—0 o<z
1 2 3 4 5 6

Dynkin diagram

PY/QY ~Z/AZ
generated by AY € PY mod QY

A.28.1 Cohomology of coroot lattice XV = QV

[¢u] = (07 07 17 O)
does not lie in the image of comp,

k H*(Wo, XY) generating cocycles

0 0

1 Z/47Z (A —20) [7]

2 Z/)27Z AAY[1 D 1]+ (—4AY) [2 D 2] + 4AY[1,2] + (—4AY) [3 D 3] + (—4AY) [4 D 4] +
(—4AY) [5 2 5] + (—4AY) [6 2 6] + (—4AY ) [7 2 7] + (—2AY +4AY) [1,7] +
(28Y —4AY) [2,7) + (2AY — 4AY) [3,7] + (2AY —4AY) [4,7] +
(—2AY +4AY —4AY) [5,7] + (40 — 4AY) [6,7]

3 ZPRLOLN2LSL)2Z  4AY[6,7 2 6] +4AY[6,7 D 7] + (2AY — 4AY + A + 4AY) [5,6,7]
(AY —20Y) [1,7 2 1]+ (—AY —6AY) [2,7 D 2] + (—4AY) [2,7 2 7] +
(=AY —2AY) [1,2,7] + (—AY — 6AY) [8,7 2 8] + (—4AY) [3,7 2 7] +
(—AY —6AY) [4,7 D 4] + (—4AY) [4,7 2 7] + (—AY — AY) [5,7 2 5] +
(=AY +AY —28Y) [5,7 2 7] + (4AY —4AY) [2,5,7] + (4AY —4AY) [3,5,7] +
(AY +20Y — 2AY +4AY +2AY) [4,5,7] + (—2AY + 248 +2AY) [5,6,7]
4AY[1,8 2 1]+4AY[1,3 2 3]+ (—4AY) [1,2,8]+ (—4AY) [1,4 D 1]+ (—4AY) [1,4 D 4]+
(—4AY) [2,4 2 2] + (—4AY) [2,4 D 4] +4AY[1,8,4] + 4AY[2,8,4] + (—4AY) [1,5 D 1] +
(—4AY) [1,5 2 5] + (—4AY) [2,5 D 2] + (—4AY) [2,5 2 5] + (—4AY) 3,5 D 3] +
(—4AY) [3,5 2 5] + 4AY[3,4,5] + (—4AY) [1,6 D 1] + (—4AY) [1,6 D 6] +
(—4AY) [2,6 2 2] + (—4AY) [2,6 2 6] + (—4AY) [3,6 2 3] + (—4AY) [3,6 D 6] +
(—4AY)[4,6 D 4] + (—4AY) [4,6 D 6]+4AV[4 5,6] + (—4AY) [1,7 2 1] +
(=20Y) [1,7 2 7]+ (—4AY) (2,7 2 2] + (—2AY) [2,7 2 7] + (—4AY) [3,7 2 3] +
(—20¥) [3,7 27+ (- 2A5V+4A7) [1,8,7] + (—4AY) [4,7 D 4] + (—2AY ) [4,7 2 7] +
(28Y —4AY) [1,4,7) + (28Y — 4AY) [2,4,7) + (—2AY +6AY — 2A¢ — 6AY) [1,5,7] +
(—2AY +6AY — 2A¢ — 6AY) [2,5,7] + (—2AY + 6AY — 2y —6AY) [3,5,7] +
(28Y — 207 +2A¢ +2AY) [4,5,7] + (20 —4AY) [1,6,7] + (2AY — 4AY) [2,6,7] +
(28Y —4AY) [3,6,7) + (2AY — 4AY) [4,6,7]

k h¥XV) generating cocycles

0 1 4A7 ()

1 2 AY[1] 4+ 4AY[2] + 4AY [3] + 4AY [4] + 4AY [5] + 4AY [6] + 4AY[7]

(AY +207) [6]
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k h*(XVY) generating cocycles

2 4 Ag[121]+4A¥[292]+(A¥+A2V+2A¥) [1,2] +4A7[3 D 3] +4AY[4 D 4] +4AY[5 D 5] +
4AY[6 D 6] +4AY[7 D 7]

AY[1,8]+ (AY +2AY) [2,3] +4AY[1,4] + 4AY [2,4] + (AY +2AY) [3,4] + 4AY[1,5] + 4AY[2,5] +
4AY[3,5] +4AY[1,6] +4AY[2,6] +4AY[3, 6] + 4AY[4, 6] + 4AY [1,7] + 4AY [2,7] + 4AY [3, 7] + 4AY [4,7]

(AY +24Y) [6 2 6] + (AY + Ay +3AY) [5,6] + (AY +24Y) [6,7]

(AY +247) [1,6] + (AY +2AY) [2,6] + (AY +2AY) [3,6] + (AY +2AY) [4,6] + A [5, 6]

3 10 AY12121]+4AY[222 D 2]+ (AY +2AY) [1,2 D 1]+ (AY + AY +2AY) [1,2 2 2] +
AANY[3 D3 D3] +AY[1,2,3] +4AY[4 D 4 D 4] +4A7[2,3,4] +4AY[5 D 5 D 5] +4AY[3,4,5] +
4A7[6 D6 D 6] +4AY[4,5,6] +4AY[7 D7 D 7] +4A7[4,5,7]

AAVY[1 D12 1]4+4A7[22222]+4A7[323 D3] +4A7[424 D 4] +4A/[525 2D 5]+
4A7[6 26 2 6] +4A7[72727]

AY[1,8 D 1] +4AY[1,8 D 3] + (AY + AY + AY +4AY) [1,2,3] + 4AY[1,4 D 1] +4A7[1,4 D 4] +
4A}/[2,422]+4A¥[2,4Q4]+(A1V+2A¥) [1,3,4] +4AY[1,5 D 1] + 4AY[1,5 D 5] + 4AY[2,5 D 2] +
4AY (2, 535]+4A7[3 5D 3] +4AY[3,5 D 5] +4AY[1,6 D 1] +4AY[1,6 D 6] + 4AY[2,6 D 2] +

4A7 (2, 636]+4A7[3 6 D 3] +4A7[3, 636]+4AV[4 634]+4AV[4 6D 6] +4AY[1,7 D 1]+
4AV[ Q7]+4A7[ 7D ]+4AV[2 7 D 7]+ 4A7[3,7 D 3] +4A7[3, 727]+4AV[ ,7 D4+
4NY[4,7 D 7]

AY[1,3,5] + (Ay + 2A¥) [2,3,5] +4AY[1,3,6] +4AY[1,4, 6] + 4AY[2,4, 6] + (Ay + 2A¥) [3,5,6] +
ANY[1,3,7] +4AY[1,4,7] + 4AY[2,4,7] + (Alv + 2A¥) (3,5, 7]

U

AV+2AV)[63636]+(AV+A6 +3AY)[5,6 2 5]+ (AY +AY)[5,6 2 6] +4AY[6,7 D 7] +
Y+ A +30Y) [5,6,7]

A
+20Y) [1,6 2 1] + (AY +2AY) [2,6 D 2] + (AY +2AY) [3,6 2 3] + (AY +2AY) [4,6 D 4] +
A +AY) [5,6 2 5]+ (AY +4AY) [5,6 2 6] + (AY +2AY) [4,5,6] + (AY +24Y) [5,6,7]

AY[2,6,7] +4A7[3,6,7] +4AY[4,6,7]
AY +20Y) [1,3,6] + (AY +2AY) [1,4,6] + (AY +2AY) [2,4,6] + AY[1,5,6] + AY[2,5,6] + AY[3,5,6]

AY +6AY) [T 2727+ (AY + AY +3AY) [5,7 2 5] + (Af +5AY) [5,7 2 7] +4A7[6,7 D 7] +

(
(
(A3
(
(AY +2AY) [1,6 2 6] + (AV+A7) [1,2,6] + (AY + AY +3AY) [1,5,6] + (AY +2AY) [1,6,7] +
4
(
(
(AY +AY +3AY) [5,6,7]

AY[5,6,7]

Q

:

i)

N

—
—
7/ N
— O
N—

O O O

O O oo, OO OO
OO OO OO OoOOoOO | W
S OO OO OO =
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A.28.2 Cohomology of lattice XV corresponding to Q = ((2))

Pu

= Or with 7 = (A + 2A7) [1] + (AY + A +2A7) [2] + (A + Ay +2A7) [3] +
(A + AY +207) [4] + (A + A5 + 2A7) [5] + (Ag + AY) [6] + (Ag + AY) [7]

o

H*(Wq, XY) generating cocycles

—_

[\

0
z/)2Z (AY —2AY) [7]

Z/)2Z 2AY[1 2 1] + (—2AY) [2 2 2] + 247 [1,2] + (—2AY) [3 2 8] + (—2AY) [4 2 4] +
(—2AY) [5 2 5] + (—2AY) [6 2 6] + (—2A¢ ) [7 2 7] + (—AY +2AY) [1,7] +
(A —28Y) [2,7] + (A — 2AY) [8,7) + (AY — 2AY) [4, 7] + (—AY + 24 — 2AY) [5,7] +
(20y —2AY) [6,7]

ZP2L L2 & (AY —2A8) [6,7 2 7] + (AY — AY — AY) [5,6,7]
Zroz/22 2AY[6,7 2 6] + 2A¢[6,7 2 7] + (AY — 2AY + 20 +2AY) [5,6,7]

(AY —28Y) [1,7 2 1]+ (=AY —2AY) [2,7 2 2]+ (—2AY) [2,7 2 7] + (—AY) [1,2,7] +
(—AY —2AY) [8,7 28] + (—2AY) [8,7 2 7] + (—AY —2AY) [4,7 2 4] +

(—208) [4,7 2 7] + (A = AY) [5,7 2 5] + (—AY + AY —2A¢) [5,7 2 7] +

(28 —2AY) [2,5,7) + (285 — 2AY) 3,5, 7] + (A¥ +2AY) [4,5,7] +

( 2AY + 27y +2AV) [5,6,7]

2AY[1,8 D 1]+ 2AY[1,3 D 3] + (—2AY) [1,2,8] + (—2AY) [1,4 D 1] +

(—2AY) 1,42 4] + (—2AY) [2,4 D 2] + (—2AY) [2,4 D 4] + 247 [1,8,4] +
20Y(2,8,4] + (— 2A7)[1 5D1] ( 2AY) [1,5 2 5] + (—2AY) [2,5 2 2] +
(—2AY) 2,5 2 5] + (—2A (—2AY) 3,5 2 5] + 2AY[3,4,5] +
(—2AY) [1,6 2 1] + (- 2A¥) (—2AY) [2,6 2 2] + (—2AY) [2,6 2 6] +
(—2AY) 3,6 2 3] + (—2AY) 3636] (—2AY) [4,6 2 4] + (—2AY) [4,6 2 6] +
2AY[4,5,6] + (—2AY) [1,7 2 1] + (-AY) [1,727]+(72A¥) (2,7 D 2]+

(-AY) [2,7 27+ (—24Y) [3 733]+( V) 8,727+ (—AY +2AY) [1,3,7] +
(—2AY)[4,7 2 4]+ (-AY) [4 7D7]+(AV—QAV)[1,4,7]+(A},/—2A¥)[2,4,7]+
(=AY +3AY =AY = 3AY) [1,5,7) + (=AY +3AY — A —3AY) [2,5,7] +

(=AY +3AY — AY —3AY) [3,5, 7]+(A4 AY +AY +AY) [4,5,7] +

(AY —20Y) [1,6,7] + (AY — 2AY) [2,6,7] + (AY — 2AY) [3,6,7] + (AY — 2AY) [4,6,7]

hk

(XV) generating cocycles

1 2AY]

2 2AY[1] + 2AY [2] 4+ 2AY[3] + 2AY [4] + 2AY [5] + 2AY[6] + 2AY [7]

(AY +20Y) [6]

5 2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4] + 2AY[5 D 5] + 2AY[6 D 6] + 2AY[7 D 7]

2AY[1, 3] 4+ 2AY [1,4] + 2AY[2,4] + 2AY [1, 5] + 2AY [2, 5] + 2AY [3, 5] + 2AY [1, 6] + 2AY [2, 6] + 2AY[3,6] +
2AY[4,6] + 2A7 [1,7] + 207 [2,7] + 207 [3,7] + 2A7 [4,7]

(AY +2A7) [6 2 6] + (AY + Ay + AY) [5,6]
(AY +24Y) [1,6] + (AY +2AY) [2,6] + (AY +2AY) [3,6] + (AY +2AY) [4,6] + A [5, 6]

AJ[6,7]
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k h*(XVY) generating cocycles

3 12 2A¥[1 212 1] +2A7[22222] +2A7/[323 23] +2A/[4D242D4]+2A/[5252D 5] +
2A7[62626]+2A7[72727
2AY[1,3 D 1] +2AY[1,3 D 3] +2AY[1,4 D 1] +2AY[1,4 D 4] + 2AY[2,4 D 2] +2AY[2,4 D 4] +
2AY[1,5 D 1] +2A7[1,5 D 5] +2A7[2,5 D 2] + 2A7[2,5 D 5] +2A7[3,5 D 3] +2A7[3,5 D 5] +
2A¥[1,6Q1]+2A¥[1,6Q6]+2A¥[2,6;2]+2A¥[2,6;6]+2A¥[3,6Q3]+2AV[3,626]+
2A7[4,6 D 4] +2AY[4,6 D 6] +2AY[1,7 D 1] +2AY[1,7 D 7] +2A7[2,7 D 2] + 2AY[2,7 D 7] +
2AY[3,7 D 3] +2A7[3,7 D 7] +2A7[4,7 D 4] +2A7[4,7 D 7]

2AY[1,2,3] +2AY[2,3,4] + 2AY[3,4,5] + 2A7 [4,5,6] + 2AY [4,5,7]
2AY[1,3,5] +2AY[1,3,6] + 2A7[1,4,6] + 2A7 [2,4,6] + 2AY [1,3,7] +2A7 [1,4,7] + 207 [2,4, 7]
AY +20Y)[6 26 2 6]+ (AY + Ay +AY) [5,6 2 5]+ (AY +3AY) [5,6 2 6]+ (AY + Af + AY) [5,6,7]

AY +20Y) [1,6 2 1] + (AY +2AY) [2,6 D 2]+ (AY +2A7) [3,6 2 3] + (AY +2AY) [4,6 D 4] +
¢ +AY)[5,6 2 5]+ AY[5,6 2 6] + (AY +2A) [4,5,6] + AY[5,6,7]

AY +20Y) [1,6 2 6] + (AY +AY) [1,2,6] + (AY + A +AY) [1,5,6] + 247 [2,5, 6] + 2A7[3,5,6] +

A

)

AY +20Y) [2,6,7] + (AY +2AY) [3,6,7] + (AY +2AY) [4,6,7]

AY +20Y) [1,3,6] + (AY +2AY) [1,4,6] + (AY +2AY) [2,4,6] + AY[1,5,6] + AY[2,5,6] + A [3,5,6]
A

(AY +2AY) [4,6 2 6] + (A + AY) [3,4,6] + (A + AY) [5,6 2 5] + A{[5,6 2 6] +
(AY + A + AY) [4,5,6] + (AY + 277 ) [4,6,7] + A [5,6,7]

AY16,7 2 6] +2AY[6,7 2 7] + (AY + AY +AY) [5,6,7]

AJ[1,6,7] + A [2,6,7] + A5 [3,6,7] + AJ[4,6,7]

A{[5,6,7]

O = OO

DD O DODDDDODO OO OO
_— O, OO0OOoOO0O OO OoOOo
S OO OO H OO OO
SO O O OO~ FO

A.28.3 Cohomology of coweight lattice XV = PV

¢n = Ot with 7 = AY[1] + (AY + AY) [2] + (AY + AY) [3] + (AY + AY) [4] +
(AL +A5) [5] + (Ag + A7) [6] + (Ag + A7) [7]

k HX(Wy,XV) generating cocycles
0 0

1 0
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k HX(Wy,X") generating cocycles
2 0

w

Z/2Z (A —208) [6,7 2 7] + (AY — A — AY) [5,6,7]

k h¥XV) generating cocycles

0 0

1 0

2 1 AY[5,6]

3 3 AJ[1,2D 1] +A{[1,2D 2] +AY[2,6 D2] +AY[3,6 D3] +AY[4,6 D 4]+ AY[5,6 D 5]+

(AY +AY) [5,6 2 6] + AY[4,5,6] + (A{ + AY) [5,6,7]

AJ[1,8,5] + AY[1,8,6] + AY[1,4,6] + AY[2,4,6] + AY [1,5,6] + Ay [2,5,6] + AY[3,5,6] + AY[1,3,7] +
A[1,4,7] 4+ A¢[2,4,7]

AY[1,5,6] + AY[2,5,6] + AY[3,5,6]

A.28.4 Cohomology with trivial coefficients

k H*(Wy,Z) generating cocycles

0 Y/A l

1 0

2 z)27 121+ (1) [222]+[1,2]+(-1)[3 23]+ (-1)[4 2 4]+ (-1)[5 2 5] +

3 227 Z/2Z 6,7 > 6] +[6,72D7]+[5,6,7]
[173 2 1]+[17323]+(_1) [17273]+(_1)[1,42 1]+(_1)[17424]+
(71) [274 2 2] + (71) [274 2 4] + [13 314] + [27 3, 4] + (71) [1’ 5 2 1] + (71) [1’ 5 2 5] +
(=1)[2,5 2 2]+ (-1)[2,5 2 5] + (~1)[3,5 2 3] + (~1)[3,5 2 5] +[3,4, 5] +
(-1)[1,6 2 1]+ (~1)[1,6 D 6] + (~1)[2,6 D 2] + (~1)[2,6 D 6] + (~1)[3,6 D 3] +
(=1)[3,6 26] +(~1)[4,6 2 4] +(~1)[4,6 2 6] +[4,5,6] + (~1)[1,7 2 1] +
(- [L,7 27+ (-1)[2,7 2 2]+ (-1)[2,7 D 7]+ (-1)[8,7 2 8] + (-1) [3,7 D 7] +
(-D[4,724]+(-1)[4,727]+[4,5,7]

k  h¥(Fy)  generating cocycles

0 1 i

1 1 (1] + (2] + [3] + [4] + [5] + [6] + [7]
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k  h¥(IFy)  generating cocycles

2 3 [1D1+[222]+[823]+[424]+[525]+[626]+[727]

(1,3] + [1,4] + [2,4] + [1, 5] + [2, 5] + (3, 5] + [1,6] + [2, 6] + [3, 6] + [4, 6] + [1, 7] +[2,7] + [3,7] + [4,7]

(6,7]
3 7 12121]+[22222]+[32323]+[42424]+[52525]+[62626]+[72727]
(1,321]+[1,3 23] +[1,4 2 1] +[1,4 2 4] +[2,4 2 2] +[2,4 2 4] +[1,5 2 1] + 1,5 2 5] +
2,52 2] +[2,5 D 5] +[3,5 D 3] +[3,5 D 5] + [1,6 D 1] + [1,6 D 6] + [2,6 D 2] + [2,6 D 6] +
(3,6 D3] +[3,626]+[4,624]+[4,62D6]+[1,7D1]+[1,7D7]+[2,7D2]+[2,7D 7]+
8,723]+ 3,727 +[4,724]+[4,727]
(1,2,3] +[2,3,4] +[3,4,5] + [4,5,6] + [4,5,7]
(1,8,5] +[1,3,6] +[1,4,6] + [2,4,6] + [1,3,7] + [1,4,7] 4+ [2,4,7]
6,726]+[6,727]
(1,6,7] +[2,6,7] +[3,6,7] + [4,6,7]
[5,6,7]
A.29 Root system Dyg
8
O O O O O
Dynkin diagram 1 2 3 4 5 6 7
PY/Q"V ~Z/2Z ¢ Z/2Z
Fundamental group /@ / / v v v v
generated by Ag,A; € PY mod Q
A.29.1 Cohomology of coroot lattice XV = QV
[¢] = (1,1,1,0,0,1,0,1)
does not lie in the image of comp,
k H*(Wy, XVY) generating cocycles
0 0
1 220 L)X (A —2A8) [8]
(A —247) [7]
2 722 6 7)2Z 2AY[1 2 1] + (—2A¢) [2 2 2] + 2A[1,2] + (—2AY) B2 8] + (—2AY) [4 D 4] +

(—2A8) [5 2 5]+ (—2A¢) 6 2 6] + (—2AY) [T 2 7]+ (-AY) B 2 8] +
(=AY +2A¢) [1,8] + (AY —2AY) [2,8] + (A — 2AY) [3,8] + (A — 2A¢) [4,8] +
(A — 208 [5,8] + (=AY +3A§ — AY —3AY) [6,8] + (AY — 2AY) [7, 8]

2AY[1 2 1] + (—2AY) [2 2 2] + 2A7[1,2] + (—2AY) 32 8] + (—2AY) [4 2 4] +
(—20Y) [5 2 5]+ (—2A7) [6 D 6] + (—AY) [T 2 7] + (—A§ +2A7) [1,7] +

(A —28Y) [2, 7] + (AY — 2AY) [3, 7] + (AY — 2AY) [4,7) + (A§ — 2AY) [5,7] +
(=AY +3A¢ = 3AY — AY) [6,7] + (—2AY) [8 2 8] + (—A{ +2AY) [7, 8]
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k H* (W, X")

generating cocycles

3 Z)2L0L)2LSL)2T
Z)2Z & 7)27 & 7)2Z

2AY[7,8 2 7] + (—AY +4AY) [7,8 2 8] + (AY — 3A¢ +3AY +3AY) [6,7, 8]

AJ[7,8 D7)+ 2A0[7,8 2 8] + (AY — AY + AY + A{) [6,7,8]

(A —2A8) [1,8 D 1]+ (=AY — 2AY) [2,8 D 2]+ (—2A¢) [2,8 2 8]+ (—AY) [1,2,8] +
(—AY —2AY) (8,8 23] + (—2AY) 3,8 2 8] + (—AY —2AY) [4,8 D 4] +

(—2AY) [4,8 2 8] + (—AY —2AY) [5,8 2 5] + (—AY +2AY —3AY) [5,8 D 8] +

(208 - 2AY) [2,6, 8]+ (2A¢ — 2AY) [3, 6, 8]+ (248 — 2AY) [4,6,8]+ (AY +2AY) [5,6, 8]
(

(-

(-

(

A = 2AY) [1,7 2 1]+ (=AY —2AY) [2,7 2 2]+ (—2A¢ ) [2,7 2 7] + (—AY) [1,2,7] +
A —20Y) (8,7 28]+ (—2A¢) [3,7 2 7] + (—A¢ —2AY) [4,7 2 4] +
2A6) [4,7 2 7] + (A —2AY) [5,7 2 5] + (—AY + 275 —3A¢) [5,7 2 7] +

20y — 20Y) [2,6, 7]+ (2A¢ — 2AY) [3, 6, 7]+ (248 — 2AY) [4,6, 7]+ (AY +2AY) [5,6, 7]

203 (1,8 D 1] + 2A¢[1,3 D 3] + (—2AY) [1,2,8] + (—2A¥) [1,4 D 1] +
(—2Ay) 1,42 4] + (2A8)2432 (—2AY) [2,4 2 4] + 2A¥[1, 3, 4]
20y [2,8,4] + (—2A) [1, (A)[1,535 (—2AY) [2,5 2 2]
(—28Y) [2 535+(2A (—2AY) 3,5 2 5] + 2Ay[3, 4, 5]
(—2Ay) (1,6 2 1] + (—2A (—2AY) 2,6 2 2] + (—2A¢) [2,
(2A8)3633+(2A (2A8V)4634] (—28Y) [4,

A5) ¥)

+ (- (-

+ (- + (-

+ (-

W< 0L 0L
S—
._.
(=]
V]
=)
+

1,72 ( 1,72 ( 2AY) [2,7 2 2] +
2Ag) 733 1+ (—20Y) 8,7 2 7] + (—2A¢) [4,7 2 4] +
20Y) [5,7 2 5] + (—2AY) [5,7 2 7] + 2A{[5,6,7] +

AY) [, 838]+( 20Y) [2, 822]+(—A§)[2,828]+
AY) 13,8 2 8]+ (—Af +2A¢) [1,3,8] + (—2AY) [4,8 D 4] +
—AY) [4, 838]+(AV—2A8)[148]+(A6—2A8)[248]+( 2AY) [5,8 2 5] +
—AY) [5,8 2 8] + (AY —2AY) [1,5,8] + (A — 2AY) [2,5,8] + (AY —2AY) [3,5,8] +
—AY +3AY — AY —3AY) [1,6,8] + (=AY +3A¢ — AY — 3AY) [2,6,8] +

—AY +3AY — AY = 3AY) [3,6,8] + (=AY +3A¢ — AY — 3AY) [4,6,8] +

AY = A+ AY + AY) [5,6,8] + (AY —2AY) [1,7,8] + (A — 2A¢) [2,7,8] +

AY = 20Y) [8,7,8] + (AY — 2AY) [4,7,8] + (A{ — 2AY) [5,7, 8]

+ (—2A¥) [1,2,3] + (—2AY) [1,4 2 1] +

—2A ) (2AV)[2,5Q2]+
)3535]+2A [3,4,5] +
)[2,6 2 2]+ (—2AY) [2,6 2 6] + (—2AY) [3,6 D 3] +
)[4,6 2 4]+ (—2AY) [4,6 D 6] + 2AY[4,5,6] +
1727]+(2AV)[2732]+( AY) 2,72 7]+
(8,7 27+ (A +2AY) [1,8,7] + (—2AY) [4,7 2 4] +
AV)[147]+(A6—2AV) 247]+( 2A¥)[5,725]+

(—2AY) [2,5 2 5] +
(-2AY) 1,6 2 1] +

] + (ng +3AY — 3A¥ AY) 12,
AV+3AV—3AV As) T+ (=AY +3AY —3AY — AY) [4,
AY — A6+A7+A8) 567]+( 20Y) [1,8 2 1] + (—2AY) [1 ,838]
—2AY) [2, +(—20Y) [2,8 2 8] + (—2AY) 3,8 2 8] + (—2AY) [3,8 2 8] +
2AV)[4824] +(—2AY) [4,8 D 8] + (—2AY) [5,8 D 5] + (—2AY) [5,8 2 8] +
AY[5,6,8] + (=AY +2AY) [1,7,8] + (=AY +2AY) [2,7,8] + (—Af +2AY) [3,7,8] +
—AY +20Y) [4,7,8] + (=AY +2AY) [5,7, 8]

k hkXY)

generating cocycles

0 2 2AY]

288 (]
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k h*(XVY) generating cocycles
1 4 AY[] + (2AY +2AY) [2] + (287 + 248 ) [8] + (2AY +2AY) [4] + (247 +2AY) [5] + (247 +2A8) [6] +
(28Y +2A) [7] + (247 +24Y) [8]
2AY [1] + 2AY [2] + 2AY [3] + 2A7 [4] + 2AY [5] + 2AY [6] + 2AY [7] + 2A5 [8]
20 [1] + 243 [2] + 2AY [3] + 2A¢ [4] + 2A¢ [5] + 243 [6] + 2AY [7] + 2A4 [8]
(A +20Y) 7]
2 8

AY[L D 1]+ (207 +2A8) [2 D 2] + (AY + AY + AY +AY) [1,2] + (287 +2AY) [3 2 3] +

(287 +2AY) [4 2 4] + (207 +2A8) [5 2 5] + (247 +2AY) [6 D 6] + (247 +2AY) [T 2 7] +

(A +287) [2,7] + (AY +2A7) [3,7) + (AY +20Y) [4,7) + (AY +2AY) [5,7] + (2AY + 277 ) [8 2 8] +
(A +208) [2,8] + (AY +2A) [3,8] + (AY +2AY) [4,8] + (AY +2AY) [5, 8]

2AY[1 2 1]42AY[2 D 2] +2AY[3 2 8]+ 2AY [4 D 4] +2AY[5 2 5]+ 2AY[6 D 6] +2AY[7 2 7]+ 24 [8 D 8]

2AY[1 D 1]4+2AY[2 D 2] +2AY[3 D 3]+2AJ[4 D 4] +2AJ[5 D 5]+2AY[6 D 6]+2A5 [7 D 7] +2AY[8 D 8]

AY[1,3] + (AY + AY + AY) [2,8] + (207 +2AY) [1,4] + (2A¥ +20¢) [2,4] + (AY + AY + AY) [3,4] +
(28 +2AY) [1,5] + (2AY +2A¢) [2,5] + (2AY +2A¢) [3,5] + (277 +2AY) [1,6] +

(207 +2AY) [2,6] + (2AY + 247 ) [3, 6] + (247 +2AY) [ + (207 +20) 1,7 +

(28Y +20¢) [2, 7]+ (AY +2A¢) [3, 7] + (207 +28Y) [4, (2A¥ +2A¢) [5,7] + (207 +2AY) [1,8] +
(2AY +2A¢) [2,8] + (A +2AY) [3,8] + (247 + 247 ) [4, 8] + (247 +2AY) [5, 8]

2A7[1,3] + 2AY 1,
2A7[4,6] +2AY[1,
2AY[4, 8] + 2A7 [5,

]+ 2AY[3,5] + 2AY[1, 6] + 2AY [2, 6] + 2AY[3,6] +

4] +2A7 [2,4] +2A7[1,5] +2A7[2,5
7] , 7]+ 2AY [5,7] + 2A7 [1, 8] + 2AY [2, 8] + 2AY [3, 8] +

+2AY[2,7] 4+ 207 [3,7] +2AY [4
8]
(A +207) [T 2 7]+ (AY + A + 287 +2AY) [5, 7] + (AY + A + AY + AY) [6,7] + AJ[7, 8]
(A +207) [1,7] + (AY + 207 ) [2, 7] + (A +207) [3,7) + (A¢ +2AY) [4,7] + (AY +24Y) [5,7]

(A +2A8) [8 2 8] + (AY + Ay + 287 +2AY) [5,8] + (AY + AY + AY + AY) [6,8] + AJ[7, 8]
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k

h*(XY)

generating cocycles

3

19

AY[12121]+ (207 +2AY) [2222 2] +

AY +AY +AY +AY) [L,22 2]+

+(AY +AY +AY) [1,221] +

( 2AY +2A¢) [3 28 D3]+ AY[1,2,8] + (247 +2AY) [4 D4 D 4] +
(28Y +2A¢) [2,8,4] + (247 +2AY) [5 2 5 2 5] + (247 + 247 ) [3,4,5] + (2AY +2AY) [6 2 6 2 6] +
(287 +2A¢) [4,5,6] + (287 + 20 ) [T 27 2 7] + (A +2AY) [2,7 2 2] + (AY +2AY) [3,7 2 8] +
(A +20Y) [4,7 2 4] + (AY +2AY) [5,7 2 5] + (AY +2A8) [5,7 2 7] +
(A

(

(

(

—_— e — T

S+ AY + 207 +208) [8,5,7) + (AY + AY + AY) [4,5,7) + (A + Ay + AY +3AY) [5,6,7] +

207 +2A7) [8 28 D 8]+ (A +2AY) [2,8 D 2] + (AY +2A) [3,8 D 8] + (A +2AY) [4,8 D 4] +
AY +208) [5,8 2 5] + (AY +2AY) [5,8 D 8] + (AY + AY +2AY +2AY) [3,5,8] +

AY +AY +AY) [4,5,8] + (AY + AY +3AY + AY) [5,6,8] + (247 + 248 [5, 7, 8]

2AY[12121]4+2AY[2D22D2]+2AY[3 23 23] +2A7[4 D4 24]+2AY[5252D5] +
2AY[6 D6 D 6] +2A7[7TD 7D 7| +2A7[8 D 8D 8]

2A8[1 212 1] +2A4[2 22 2 2] +2A4[3 2 3 2 8] +2A{[4 24 2 4] +24{[5 2 5 2 5] +

2AY[6 D6 D 6] +2AJ[TD 7D 7] +2AJ[8 D 8D 8]

(AY + A +48Y +4AY) (2222 2] + (AY +AY +AY) [1,2 2 1] + (AY + AY + AY +AY) [1,2 D 2] +
(AY + Ay + AY + AY) [2,8 D 2]+ (AY + AY +3AY +3A) [2,3 2 3] + AY[1,2,3] +

(28 +2AY) [2,8,4] + (2AY + 24 ) [3,4,5] + (27 +2AY) [4,5,6] + (AY +2AY) [2,7 D 2] +

8
(28 +28Y) [5,6, 7] + (AY +2AY) [2,8 2 2] + (2AY +2A{) [5, 6, 8]

AY[1,8 D 1]+ (2AY +2AY) [1,8 2 3]+ (AY + AY + AY +2AY +2AY) [1,2, 3]+ (247 +2A¥) [1,4 D 1]+
28Y + 207 ) [1,4 D 4] + (28 + 248 ) [2,4 D 2] + (207 +2A8) [2,4 D 4] + (AY + AY +AY) [1,8,4] +
28 +2A¢) [1,5 D 1]+ (24 +2A¢) [1,5 2 5] + (247 +2A8) [2,5 2 2] + (2AY +2AY) [2,5 2 5] +
20Y + 20 ) [3,5 2 8] + (247 +2AY) [3,5 2 5] + (247 +2AY) [1,6 2 1] + (2AY +2AY) [1,6 D 6] +
20Y + 20 ) [2,6 D 2] + (24 +2AY) [2,6 D 6] + (247 +2A7) [3,6 2 3] + (2AY +2AY) [3,6 D 6] +
AY +2A8) [4,6 D 4] + (2AY +2AY) [4,6 2 6] + (2AY + 2AY (
) ( (
) ( (
)

N

[1,7 2 1] + (2AY +2AY) [1,7 2 7] +

N — N e

N

(

(

(

(

(

(28Y +2A) [2,7 2 2+ (28 + 247 ) [2,7 2 7] + (247 +2A8) [8,7 2 8] + (2AY +2AY) [8,7 2 7] +
(287 +2A) [4,7 D 4] + (207 +2AY) [4,7 2 7] + (A +2AY) [1,4,7] + (AY +2AY) [2,4,7] +

(287 +2A) [5,7 2 5] + (28 +2AY) [5,7 2 7] + (AY +2A%) [1,5,7] + (AY +2A) [2,5,7] +

(AY +24Y) [8,5,7] + (2A7 +2A%) [1,8 D 1] + (2AY +2AY) [1,8 D 8] + (247 +2AY) [2,8 D 2] +
(287 +2A¢) [2,8 2 8] + (20 +2AY) [3,8 2 8] + (247 + 247 ) [3,8 2 8] + (2AY +2AY) [4,8 D 4] +
(207 +2A¢) [4,8 D 8] + (A +2AY) [1,4,8] +
(287 +2A¢) [5,8 2 8] + (AY +2AY) [1,5,8] +

(A +248) [2,4,8] +
(AY +24Y) [2,5,8] +

(28 +2A) [5,8 2 5] +
(AY +24Y) [3,5,8]

AY[1,321]+ (AY + AY + AJ) [2,8 D 2]+ (AY +3AY +3AY) [2,3 2 3] +

(AY +AY + 207 +2A8) [1,2,8] + (AY + AY + AY) [1,8,4] + (AY + AY + 207 +2A8) [2,3,4] +
(207 +2AY) 3,4, 5] + (207 + 24 ) [4,5,6] + (A¢ +2AY) [3,7 2 3] + (Af +2AY) [4,7 2 4] +
(A +20Y) [1,4, 7] + (A +2AY) 2,4, 7] + (AY +2AY) [5,7 D 5]+ (AY +2A¢) [5,7 2 7] +
(AY +20) [1,5, 7] + (AY +2AY) [2,5,7) + (AY +2AY) [8,5, 7] + (AY + AY + AY) [4,5,7] +
(Av +AY +AY +3AY) [5,6,7] + (A +2A7) [3,8 2 3] + (A +2A) [4,8 D 4] +

(A +2A¢) [1,4,8] + (A +2AY) [2,4,8] + (AY +2AY) [5,8 D 5]+ (AY +2AY) [5,8 D 8] +
(AY +20Y) [1,5,8] + (AY +2AY) [2,5,8] + (AY +2AY) [3,5,8] + (AY + AY + AY) [4,5,8] +
(Av +AY +3AY + A{) [5,6,8] + (207 +2AY) [5,7, 8]

2AY[1,3 D 1] +2AY[1,3 D 3] +2AY[1,4 D 1] + 2AY[1,4 D 4] + 2AY[2,4 D 2] +2AY[2,4 D 4] +
2A7[1,5 D 1] +2AY[1,5 D 5] + 2AY[2,5 D 2] + 2A7[2,5 D 5] + 2A7[3,5 D 3] +2AY[3,5 D 5] +
2AY[1,6 D 1] +2A7[1,6 D 6] +2A7[2,6 D 2] +2A7[2,6 D 6] +2A7[3,6 D 3] +2A7[3,6 D 6] +
2AY[4,6 D 4] +2AY[4,6 D 6] +2AY[1,7 D 1] +2AY[1,7 D 7]+ 2AY[2,7 D 2] +2AY[2,7 D 7] +
2AY[3,7 D 3] +2A7[3,7 D 7] +2A7[4,7 D 4] +2A7[4,7 D 7] +2A/[5,7 D 5] +2A7[5,7 D 7] +
2AY[1,8 D 1] +2A7[1,8 D 8] +2A7[2,8 D 2] +2AY[2,8 D 8] +2A7[3,8 D 3] +2A7[3,8 D 8] +
2A7[4,8 D 4] +2A7[4,8 D 8] +2A7[5,8 D 5] + 2A7[5,8 D 8]

2AY[1,2,3] + 2AY [2,3,4] + 2AY[3,4, 5] + 2AY[4,5, 6] + 2AY[5,6,7] + 2AY[5, 6, 8]
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k h*(XVY) generating cocycles

AY[1,3,5] + (AY + AY + AY) [2,3,5] + (2AY +2AY ) [1,3,6] + (20 +2AY) [1,4,6] +
(2AY +2A¢) [2,4,6] + (AY + AY + Ag) [3,5,6] + (2AY +2AY) [1,3,7] + (2AY +2AY) [1,4,7] +
(28Y +2A¢) [2,4,7) + (287 +2AY) [1,5, 7] + (287 +2A8) [2,5, 7] + (AY +2AY) [3,5,7] +
(28Y +2A) [1,3,8] + (207 +2A) [1,4,8] + (247 + 247 ) [2,4,8] + (247 +2A¢) [1,5,8] +
(2A¥ +2A§) (2,5,8] + (A6 +2AV) (3,5, 8]
2AY[1,8,5] +2AY[1,3,6

7

8

1,3
2AY[1,5,7] + 2AY[2, 5,
2A7[2,5,8] +2A7[3,5

]+ 2A7 (1, , 6] +2A7[2,4,6] + 207 [1,3,7] + 247 [1,4, 7] + 2A7 (2,4, 7] +
1+ 2A7[3,5,7] +2A7[1,8,8] + 2A7[1,4,8] + 2A7 [2,4, ]+2AV[ 5,8] +
]

9
(A +20Y) [T 272 7]+ (AY +2AY) [5,7 2 7]+ (AY + AY +2AY +2AY) [3,5,7] +

AY +AY +AY) [4,5,7] + AY[6,7 2 6] + (AY +3AY +AY) [6,7 2 7] + (AY + AY + AY) [5,6,7] +
20 + 20 ) [7,8 2 8] + (A +2AY) [5,7,8] + (AY + AY + A{) [6,7, 8]

A +20Y) 1,7 2 1] + (A +20Y) [2,7 2 2] + (A +2AY) [3,7 2 3] + (A +2AY) [4,7 D 4] +
A +20Y) [5,7 28] + (AY +2AY) [5,7 2 7] + (AY + AY +2AY +2AY) [8,5,7] +
AY +AY +A) [4,5, 7]+ (AY + AY +3AY + AY) [5,6,7] + (A +2A¢) [5,7, 8]

A + A +AY) [4,5, 7] + (AY + AY + AY) [6,7 2 6]+ (AY + AY +2AY +2A{) [6,7 2 7] +
AY + A +AY) [5,6,7] + (A +2A{ ) [5,7,8] + A{[6,7, 8]

(AY +20Y +2AY) [1,7 2 7] + (AY +2AY) [5,7 2 7] + (AY + AY +2AY +2AY) [3,5,7] +
(A +20Y) [1,7 2 7]+ (AY + AY +AY) [1,2,7] + (AY + Ay +2AY +2AY) [1,5,7] +

(AY +AY +AY +AY) [1,6,7] + 24 [2,6,7] + 247 (3,6, 7] + 207 [4,6,7] + A [1,7,8] + 24 [2,7,8] +
2AY[3,7,8] +2AY[4,7,8] + 2AY[5,7, 8]

(A +20Y) [1,3,7] + (A +2AY) [1,4,7]) + (AY +2AY) [2,4,7] + (AY +2A{) [1,5,7] +

(AY +2A¢) [2,5, 7] + (AY +2AY) [3,5,7]

(A +2A8) [8 28 28]+ (AY +2AY) [5,8 D 8]+ (AY + AY +2AY +2AY) [3,5,8] +

(AY +AY + AY) [4,5,8] + AY[6,8 D 6] + (AY + AY +3AY) [6,8 D 8] + (AY + AY + A{) [5,6,8] +
(28 +2A) [7,8 2 8]+ (A +2AY) [5,7,8] + (AY + AY + A{) [6,7, 8]

(AY +24Y) [1,8 2 8] + (AY +AY +AY) [1,2,8] + (AY + A§ + 207 +2AY) [1,5,8] +

(AY + A + A7 +AY) [1,6,8] + 247 (2, 6,8] + 247 [3,6,8] + 24 [4,6,8] + AJ[1,7, 8] + 247[2,7,8] +
2AY[3,7,8] +2AY[4,7,8] + 2AY[5,7, 8]

AJ17,8 2 7] +2AY[7,8 D 8] + (AY + Ay + A +AY) [6,7, 8]

2AY[7,8 D 7]+ 2A7[7,8 D 8]
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A.29.2 Cohomology of lattice XV corresponding to Q = ((0,1))

(6]

= (1,1,0,0)
does not lie in the image of comp,

267

k H* (W, XY) generating cocycles

0 0

1 z)2Z (A —2A) [8]

2 z)27Z 2AY[1 2 1] + (—2A¢) [2 2 2] + 2A¢[1,2] + (—2AY) B2 8] + (—2AY ) [4 D 4] +

(—2A¢) [5 28]+ (—2A¢) 6 2 6] + (—2A%) [T 2 7]+ (-AY) 8 2 8] +
(=AY +2A¢) [1,8] + (AY — 2AY) [2,8] + (A — 2AY) [3,8] + (Af — 2A¢) [4,8] +
(A — 208 [5,8] + (=AY +3A§ — AY —3AY) [6,8] + (AY — 2AY) [7, 8]
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k

H* (W, X") generating cocycles

3

ZRZSZP2ZDZLZ)2Z 28[7,8 2 7]+ (—AJ +4AY) [7,8 2 8] + (AY — 3A{ +3AY +3AY) [6,7, 8]

(A —2AY) [1,8 D 1]+ (—AY —2AY) [2,8 D 2] + (—2AY) [2,8 2 8] + (—AY) [1,2,8] +
(—AY —2A) [3,8 28]+ (—2AY ) [3,8 2 8] + (—A —2AY) [4,8 D 4] +

(—2A¢) [4,8 2 8] + (—AY — 2AY) [5,8 2 5] + (—AY +2AY —3A¢) [5,8 2 8] +

(288 — 2AY) 2,6, 8]+ (20 — 2AY) [3,6,8]+ (2 — 2AY) [4,6,8]+ (AY +2AY) [5,6, 8]

243 [1,8 D 1]+ 2A3[1,3 2 8] + (—24Y) [1,2,3] + (—2AY) [1,4 2 1] +
(—2A8) [1,4 2 4] + (—2AY) [2,4 2 2] + (—2AY) [2,4 2 4] + 2A{[1,8,4] +
20y [2,8,4] + (—2A¢) [1,5 2 1] + (—2AY) [1,5 2 5] + (—2AY) [2,5 2 2] +
(—2A¢) [2,5 2 5] + (—2AY) [8,5 2 3] + (—2AY) [3,5 2 5] + 2A{[3,4,5] +
(—2A¢) [1,6 2 1] + (—2A¢) [1,6 2 6] + (—2AY ) [2,6 D 2] + (—2AY) [2,6 D 6] +
(—2A¢) [8,6 2 8] + (—2AY) [3,6 2 6] + (—2AY) [4,6 D 4] + (—2AY) [4,6 2 6] +
20 [4,5,6] + (—2A¢) [1,7 D 1] + (=24 ) 1,7 2 7] + (—2AY) [2,7 2 2] +
20Y) [2,7 2 7] + (—2AY) [8,7 2 8] + (—2A¢) [3,7 2 7] + (—2A¢) [4,7 2 4] +
20) 14,7 2 7] + (—2AY) [5,7 2 5] + (—2A¢) [5,7 2 7] + 2A{[5,6,7] +
20Y) [1,8 D 1] + (—AY) [1,8 2 8] + (—2AY) [2,8 D 2] + (—AY) [2,8 D 8] +
20Y) [3,8 2 8] + (—AY) [3,8 2 8] + (—AY +2AY) [1,3,8] + (—2A) [4,8 D 4] +
) [4,8 2 8] + (A —2AY) [1,4,8] + (A — 2AY) [2,4,8] + (—2A¢) [5,8 D 5] +
) [5,8 2 8] + (A —2A¢) [1,5,8] + (A — 2AY) [2,5,8] + (AY — 2AY) [3,5,8] +
Y+ BAY — AY —3AY) [1,6,8] + (—AY +3AY — AY —3AY) [2,6,8] +
Y+ 3AY — AY —3AY) [3,6,8] + (—AY +3A — AY —3AY) [4,6,8] +

— A +AY +AY) [5,6,8] + (AY —2AY) [1,7,8] + (A — 2AY) [2,7,8] +
—2A) [3,7,8] + (A — 2AY) [4,7,8] + (AY —2A) [5,7, 8]

A

(-
(-
(-
(-
(-
(-A
(-
(-
(a3
(A8

vV
6
Vv
6

A
AY

h*(XY)

generating cocycles

288 [)

AY[1] + 2A8 [2] + 2A3 [3] + 2A3 [4] + 2AY [5] + 2A8 [6] + 2A¢ [7] + 2A4 [8]

20 [1] + 243 [2] + 2AY [3] + 2A¢ [4] + 2A¢ [5] + 2A3 [6] + 2AY [7] + 2A¢ [8]

AY[1 D 1]+2AY[2 D 2+ (AY + AY + AY) [1,2]+2A¢[3 D 8] +2AJ[4 D 4] +2A¢ [5 D 5] +2Ay[6 D 6] +
20 [7 2 7] +2AY[8 D 8] + (AY +2AY) [2,8] + (AY +2AY) [3,8] + (AY +2AY) [4,8] + A{[5,8]

2AY[1 D 1]4+2AJ[2 D 2] +2AY[3 D 3]+2A4[4 D 4] +2A¢[5 D 5]+2A[6 D 6]+2A¢ [7 D 7]+2AY[8 D 8]
AY[L, 8]+ (AY +AY) [2, 8] + 203 [1, 4] + 247 [2, 4] + (AY + AY) [3, 4] + 2AY[1, 5] + 2A{[2, 5] +

2AY[3, 5] + 2AY [1, 6] + 2AY [2, 6] + 2AY [3, 6] + 2AY [4, 6] + 2A% [1, 7] + 2AY [2, 7] + 2A [3, 7] + 2AY [4, 7] +
2A8[5,7] + 2A8 [1, 8] + 2A5[2, 8] + AJ[3, 8] + 2A4 [4, 8] + 2A4 [5, 8]

(AY +2A) [1,7] + (AY + A{) [6,7] + AS[7, 8]
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k hX(XVY) generating cocycles

3 9 AYID1D1]+2A¢ 222D 2]+ (AY +AY) [1,2 2 1] + (AY + AY + AY) [1,2 D 2] +
2AY[3 23 D3] +AY[1,2,3] +2A[4 D4 D 4] +2A§[2,3,4] + 2AJ[5 D 5 D 5] + 2AJ[3,4,5] +
2AJ[6 D 6 D 6] +2Ay[4,5,6] +2AJ[7 D7D 7] +2AY[5,6,7] +2AJ[8 D 8 D 8] +
(A +2A8) [2,8 2 2] + (AY +2AY) 3,8 2 3] + (A +2A¢) [4,8 D 4] + (AY +2AY) [5,8 D 5] +
AY[5,8 2 8]+ (AY + AY +2AY) [3,5,8] + (AY + AY) [4,5,8] + (AY + A + AY + AY) [5,6,8]

2AY[1
2AY[6

] +2AY[2 D

o1 D2D2]+2AY[3D3D3]+2A5[4D4D4]+2AJ[5D5D5]+
D6]+2AJ[7TD 7

21
6 7]+ 20{[8 28 2 8]

2
2

(AY +AY +4A¢) 222D 2] + (AY +AY) [1,2 D 1]+ (AY + AY +AY) [1,2 D 2] +
(Ag +AY +Ag) (2,3 D 2] + (Ag + AY +3A§) [2,3 D 3] + AY[1,2,3] + 2AY [2, 3,4] + 2AY[3,4,5] +
2AY [4, 5, 6] 4+ 2AY [5,6, 7] + (Ag +2A§) (2,8 D 2] +2AY[5,6,8]

AY[1,2D 1] +AY[1,2 D 2] +AJ[2,7 D 2] +AJ[3,7 D3] +AJ[4,7 D 4]+ AJ[5,7 D 5] +
AY[6,7 2 6]+ (AY + AJ) [6,7 2 7] + A[5,6,7] + 273 [7,8 D 8] + (AY + AY + AY) [6,7,8]

AJ[1,83 2 1] +2A8[1,8 D

(AY + AY + AY +20]) [1,2,3] + 243 [1,4 D 1] + 2A[1,4 D 4] +

3]+
20y (2,4 2 2] + 2AY[2,4 D 4] + (AY + AY) [1,8,4] + 2A¢[1,5 D 1] + 2A{[1,5 D 5] + 2A¥[2,5 D 2] +
2A%[2,5 D 5] +2AY[3,5 D 3] +2AY[3,5 D 5] + 2A¥ [1, 631]+2AV[1 636]+2A8[2 6D 2]+
2AY[2,6 D 6] +2AJ[3,6 D 3] +2AJ[3,6 D 6] +2AJ[4,6 D 4] +2AJ[4,6 D 6] +2A¢[1,7 D 1] +
2A§[1,7;7]+2AV[2,792]+2A8[2 727 +2AJ[3 723]+2AV[3,7Q7]+2Ag[4,7;4]+

2AY[4,7 D 7]+ 2A¢[5,7 D 5] +2AJ[5,7 D 7] +2A[1,8 D 1] +2A[1,8 D 8] +2A¢[2,8 D 2] +
2A§[2,8;8]+2Ag[3,8Q3]+2A§[3,8Qs]+2Ag[4,824]+2Ag[4,8Qs]+(A6V+2Ag) [1,4,8] +
(A +2A8) [2,4,8] + 2A{[5,8 D 5] + 2A{[5,8 D 8] + A} [1,5,8] + A} [2,5,8] + (Af +2AY) [3,5,8]

AY[1,8 2 1)+ (AY +AY) 2,8 2 2]+ (AY +3AY) [2,3 2 8] + (AY + AY +2AY) [1,2,3] +

(AY +AY) [1,8,4] + (AY + AY +2AY) [2,8,4] + 273 [3,4,5] + 2A3[4,5,6] + 2A{[5,6,7] +

(A +2A8) [3,8 2 8] + (AY +2AY) [4,8 D 4] + (AY +2A8) [1,4,8] + (AY +2AY) [2,4,8] +

(A +2A8) [5,8 2 5] + AY[5,8 D 8] + AY[1,5,8] + AY[2,5,8] + AY[3,5,8] + (AY + AY) [4,5,8] +
(A + AY + AY +A) [5,6,8]

AY[1,8,5]+ (AY + AY) [2,8,5] + 2AY[1, 3, 6] + 2A¢[1,4,6] + 2A{[2,4,6] + (AY + AY) [3,5,6] +

2AY[1,3,7] +2AY[1,4,7] + 2A¢[2,4, 7] + 2A§ [1, 5, 7] + 2A4 [2,5, 7] + 2A4 [3,5, 7] + 2AY[1, 3, 8] +
2A8 (1,4, 8] + 24 [2,4, 8] + 2AY[1, 5, 8] + 2A§ [2,5, 8] + A [3, 5, 8]

(AY +20¢) 1,7 2 1]+ (AY + A + AJ) [1,2,7] + (AY + AY) [1,6,7] + 24 [2,6,7] + 2AY[3,6,7] +
2A5[4,6,7] + A [1,7,8] + 27 [2,7, 8] + 2A{[3,7, 8] + 2A3[4, 7, 8] + 2A{[5, 7, 8]

(AY +208) [1,7 2 7] + (AY + AY) [6,7 2 6] + (AY + A{) [6,7 2 7] + 2A{[7,8 D 8] +
(A + Ay +AY +A]) [6,7,8]
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A.29.3 Cohomology of lattice XV corresponding to Q = ((1,1))

Pu

= Or with 7 = (A} 4+ 2AY) [1] + (AY + AY + 2AY) [2] + (AY + AY + 2AY) [3] +
(AY + AY 4 208) [4] + (A + A +2A8) [5] 4 (AY + A¢ +2A¢) [6] +
(A7 + A [7]+ (AT + AQ) [8]

Hk(W()a XV)

generating cocycles

y/A

0
z/27

z/27

22 Z)2Z @

722 ©7/2Z

(A —2A8) [8]

2AY[1 2 1]+ (—2AY) [2 2 2] +2AY[1,2] + (—2AY ) 32 3] + (—2AY) [4 D 4] +
(—2A8) [5 2 5] + (—2A¢) [6 2 6] + (—2AY ) [7 2 7]+ (—2AY) [8 2 8] +

(=AY +2A¢) [1,8] + (AY — 2AY) [2,8] + (A — 2AY) [3,8] + (A — 2AY) [4,8] +
(A — 208 [5, 8] + (—AY + 27 — 2AY) [6,8] + (247 — 2AY) [7, 8]

(AY —20Y) [7,8 2 8]+ (AY — AY — AY) [6,7,8]

2AY[7,8 2 7] + 2AY[7,8 D 8] + (AY — 2AY + 24 +2AY) [6,7, 8]

A = 2A8) [1,8 D 1]+ (=AY — 2AY) [2,8 D 2]+ (—2A¢) [2,8 D 8]+ (—AY) [1,2,8] +
A —2AY)[3,8 23] + (—2A) [3,8 2 8] + (—Ay —2A]) [4,8 D 4] +
2AV) [4,8 2 8] + (—AY —2AY) [5,8 2 5] + (—2A¢) [5,8 2 8] +
—AY) (6,8 2 6]+ (—AY + Ay —2AY) [6,8 D 8] + (24 —2AY) [2,6,8] +
2AV —2AY) [3,6,8] + (208 — 2AY) [4,6,8] + (AY +2AY) [5,6,8] +
20y + 20 +2A¢) [6,7, 8]

AY[1,8 2 1] +2AY[1,8 2 3] + (—2AY) [1,2,8] +
20Y) [1,4 2 4] + (—2AY) [2,4 2 2] + (—24Y)
A{12,8,4] + (—2A8) [1,5 2 1] + (—2AY) [1,5 2 5]
2AY) (2,5 2 5] + (—2AY) [3,5 2 8] + (—2AY) [3,5 2 5] + 2AY[3,4,5] +
—2A¢) [1,6 2 1]+ (—2AY) [1,6 2 6] + (—2AY) [2,6 2 2] + (—2AY) [2,6 2 6] +

(- ) I+

)

(-

(-

(

(-

(-

(=

(

(-

(- (-
2 )
(- (-
( (- s
(2A8)3633+()2Ag [3,6 D 6]+ (—2A) [4,6 2 4] + (—2AY) [4,6 D 6] +
(- (-
(- (-
(- (-
(-

(-

(-

(-

(-

(A

(A¢

(—2A8) [1,42 1] +

(2,4 D 4] +2A¥[1,3,4] +
5]+ (—24Y) 2,5 2 2] +
3,
[2,

2AY) [2,7 D 7] + (—2A 37D3+ 3737 2Av 4,7 D 4] +
8
4,727+ (—-2A8)[6,7D 5]+ 2A)57D7]+2A8[567]+

M 2A
)1 §
)[1,8 21]+ (-A¢) [1,8 2 8] + (—2AY) [2,8 D 2] + (—AY) [2,8 2 8] +
)1 )

2

2

)
)L

A[4,5,6] + (—2AY) [1,7 D 1] + (—2A¢) [1,7 D 7]+ (—2A¢) [2,7 2 2] +
)L

2A )

Vv
8
Vv Vv
8 8
2AY
2AY) [3,8 2 3] + (—AY) [3,8 2 8] + (—AY +2AY) [1,3,8] + (—2A) [4,8 D 4] +
AY)[4,8 2 8]+ (AY —2AY) [1,4,8] + (A — 2AY) [2,4,8] + (—2AY) [5,8 2 5] +
AY) [5,8 2 8]+ (A —2AY) [1,5,8] + (A — 2AY) [2,5,8] + (A{ — 2AY) [3,5,8] +
AY +3AY — AY = 3AY) [1,6,8] + (—AY +3A¢ — AY —3AY) [2,6,8] +

AY +3AY — A —3AY) [3,6,8] + (—AY +3AY — AY —3AY) [4,6,8] +

A6+A7+A8) [5,6,8] + (AY —2AY) [1,7,8] + (A{ — 2A¢) [2,7,8] +
—21Y) [3, + (A —20Y) [4,7,8] + (AY — 2AY) [5,7, 8]

vV
6
vV
6

k  h&XV)

generating cocycles

0

1

288 (]

20 [1] + 243 [2] + 2AY [3] + 2A¢ [4] + 2A4 [5] + 243 [6] + 2AY [7] + 2A4 [8]

(A +2A¢) [7]
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k hX(XVY) generating cocycles

2 5 2AY[1 D 1]+2AF[2 D 2] +2AY[3 D 3]+2A4[4 D 4] +2AJ[5 D 5]+2A[6 D 6]+2A¢ [7 D 7]+2AY[8 D 8]
2AY [1, 3] + 2Ag [1, 4] + 2AY [2, 4] + 2A¢ [1, 5] + 2AY [2, 5] + 2A¢ [3, 5] + 2AY [1, 6] + 2A¢ [2, 6] + 2AY [3,6] +
2AY[4,6] + 2A8 [1, 7] + 2AY [2, 7] + 2A [3, 7] + 2AY [4, 7] + 2A¢ [5, 7] + 2AY [1, 8] + 2A¢ [2, 8] + 2AY[3, 8] +
2AY [4, 8] + 2AJ[5, 8]
(AY +208) [T 2 7] + (A +AY +AY) [6,7]
(A +288) [1, 7]+ (AY + 247 [2, 7]+ (AY +2AY) [8, 7]+ (A +2A8) [4, 7]+ (A + 2AY) [5, 7]+AY[6, 7]
Ag[7.8]

3 12 2AY[1D1D1]+2A§[2D2D2]+2AJ[3D3 D3] +2A[4D4D4]+2AJ[5D5D5]+
2A8[6 262 6] +2A{[7T 272 7] +2A4[8 282 8
2AY[1,3 D 1] +2AJ[1,3 D 3] +2AJ[1,4 D 1] +2AY[1,4 D 4] + 2AY[2,4 D 2] +2A§[2,4 D 4] +
2AY[1,5 D 1] +2AJ[1,5 D 5] +2AJ[2,5 D 2] + 2AJ[2,5 D 5] +2AJ[3,5 D 3] +2A¢ [3,5 D 5] +
2AY[1,6 D 1] +2AJ[1,6 D 6] +2AJ[2,6 D 2] +2AJ[2,6 D 6] +2AJ[3,6 D 3] +2A¢[3,6 D 6] +
2A3[4,6 D 4] +2Ag 4,6 D 6] +2Ay[1,7 D 1] +2AJ[1,7 D 7] +2AY[2,7 D 2] +2AJ[2,7 D 7] +
2AY[3,7 D 3] +2A8 3,7 D7) +2AJ[4,7 D 4] +2A[4,7 D 7] +2AJ[5,7 D 5] +2AY[5,7 D 7] +
2A¢[1,8 D 1] +2A8 [1,8 D 8] +2Ay[2,8 D 2] +2AJ[2,8 D 8] +2Ay[3,8 D 3] +2AJ[3,8 D 8] +
2A[4,8 D 4] +2AJ[4,8 D 8] +2AJ[5,8 D 5] + 2AJ[5,8 D 8]

2A8[1,2,3] + 245 (2, 3, 4] + 24§ (3,4, 5] + 2A{ [4, 5, 6] + 2A{[5, 6, 7] + 2A{[5,6, 8]
2A¥[1,3,5] + 2A§[1, 3, 6] +2AY[1,4,6] + 2Ay [2,4, 6] + 2AY[1, 3,
2A¢[1,5,7] + 2A4 [2,5, 7] + 2AY[3,5, 7] + 2A4 [1,3, 8] + 2AJ[1, 4,
2A8 (2,5, 8] + 244 [3, 5, 8]

(A +20{)[T27 27+

7] +2AY[1,4,7) + 20§ (2,4, 7] +
8] + 204 [2,4,8] +2A¢[1,5,8] +

+ (A +AY +AY) [6,7 2 6]+ (AY +3A¢) [6,7 D 7]+ (AY + AY + AY) [6,7,8]
(A +2A
(A +2A

1,721+
[5,7 D 5]+

+2A¢)[2,7 2 2]+
v+A8) , 726 +AY[6

)
{) (Ad (A +2A) [8,7 2 3] + (A +2A¢) [4,7 D 4] +
{) (A 727+ (A +2A¢) [5,6,7] + A{[6,7,8]

(A +20Y) (1,7 27+ (A + AY) [1,2, 7] + (A + AY + AY) [1,6,7] + 24 [2,6,7] + 2A¢[3,6,7] +
20y [4,6,7] + (AY +2A{) [2,7,8] + (A +2AY) [8,7,8] + (AY +2A) [4,7,8] + (AY +2AY) [5,7, 8]

1,3,7 +
2,5,7] +

(AY +208) 15,7 271+ (AY + AY) [4,5,7] + (AY + AY) [6,7 2 6] + AY[6,7 D 7] +
(AY + A +AY) [5,6,7] + (A +2AY) [5,7,8] + AJ[6,7, 8]

(A +2AY)
(A +24Y)

(A +288) [1,4, 7] + (AY +28Y) [2,4,7] + (AY +2A¢) [1,5,7] +
(AY +20Y) [8,5,7]) + AY[1,6,7] + AY[2,6,7] + AY[3,6,7] + AY[4,6,7]

[
[
AJ[7,8 2 7] + 20y [7,8 2 8] + (Af + AY + AY) [6,7, 8]

AJ[1,7,8] + AJ[2,7,8] + AJ[3,7,8] + A [4,7,8] + A{[5, 7, 8]

AY[6,7,8]

O = O O =

OO DD DO DODOHOO OO
RO, OO OoOOoO kOO oOo
S OO OO, OO O OoOoO
S OO O OO O




272

A.29.4 Cohomology of lattice XV corresponding to Q =
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((1,0))

(6]

= (1,1,0,0)
does not lie in the image of comp,

k H* (W, XY) generating cocycles

0 0

1 Z/27 (A —2AY) [7]

2 z)27Z 20Y[1 2 1]+ (—2AY) [2 D 2] + 2AY[1,2] + (—2A7) 32 8] + (—2AY) [4 D 4] +

3 Z)2ZeZ)2067)2Z

(—2AY) [5 2 5]+ (—2A7) [6 D 6] + (—AY) [T 2 7] + (—A§ +247) [1,7] +
(A —20Y) [2,7] + (MY — 2AY) [3, 7] + (AY — 2AY) [4,7] + (A —2AY) [5,7] +
(=AY +3A¢ = 3AY — AY) [6,7] + (—2AY) [8 2 8] + (=AY +2AY) [7,8]

A[7,8 2 7] + 20 (7,8 D 8] + (AY — AY + AY +AY) [6,7,8]

Ay = 20Y) [1,7 2 1] + (—AY —2AV) [2 732] (—20) 2,727+ (-
—AY —2AY) [8,7 2 3] + (—2A¢) [3, +(-AY —20Y) [4,7 2 4] +

28Y) [4,7 2 7] + (—AY — 20Y) [5, 735]+( AY 20y —3AY) 5,72 7] +
20 — 207 ) [2,6, 7]+ (20 — 2AY) [3,6, 7]+ (248 — 2AY) [4,6, 7]+ (AY +2AY) [5,6,7]

Ag) [1,2,7] +

3D 1] +2AY]1, 333]+( 2AY) [1,2,3] + (—2AY) [1,4 2 1] +

)[1,4 2 4]+ (—20Y) [2,4 D 2]+ (—2AY) [2,4 D 4] + 277 [1,8,4] + 277 [2,3,4] +

)[1,5 2 1]+ (—2AY) [1,5 2 5] + (—2AY) [2,5 2 2] + (—2AY) [2,5 D 5] +

) [8:5 28]+ (—2AY) [8,5 2 5] + 2AY[3,4,5] + (—2AY) [1,6 D 1] +

)[1,6 2 6]+ (—2AY) [2,6 D 2] + (—2AY) [2,6 2 6] + (—2AY) [3,6 D 3] +

) [8,6 2 6]+ (—2AY) [4,6 2 4] + (—2AY) [4,6 2 6] + 2A7[4,5,6] +

) (—5)

) + (-
A\/

A7 (1,
207
2AY
2AY
2AY
2AY
Vv
7
Vv
7

(
(
(-
(
(-
(-
(-
(-
(-
(2A
(-
(-
(-
(-
(A
(
(-
(-
(-

2A

— — S —

1,72 1]+ (—AY) [1,7 2 7] + (—2AY) [2,7 2 2] + (—AY) [2,7 2 7] +
(8,7 28]+ (—AY) [3,7 2 7] + (—AJ +2AY) [1,8,7] + (—2AY) [4,7 D 4] +
AY) 14,7 271+ (A — 2AY) [1,4,7] + (AY — 2AY) [2,4,7] + (—2AY) [5,7 2 5] +
AY) (5,72 7 (Av —2AY) [1,5,7] + (Af —2A) [2, 7] (A —2AY) [8,5,7] +
A5 +3AY —3AY — AY) [1,6,7] + (=AY +3AY — 3AY — AY) [2,6,7] +
+3AY —3AY — )[3 6,7+ (—AY +3AY —3AY — AY) [4,6,7] +
A+ AY +AY)[5,6,7)+ (—2A7) [1,8 2 1] + (—2AY) [1,8 D 8] +
AY)[2,8 2 2]+ (—2AY) [2,8 D 8] + (—2AY) [3,8 D 8] +
2AY) [4,8 D 4] + (—2AY) [4,8 D 8] + (—2AY) [5,8 D 5] +
AY[5,6,8] + (—AY +2AY) [1,7,8] + (—AY +2AY) [2,7,8] +
( AY +2A¥) (5,7, 8]

2A

AX
2 (—2AY) 3,8 2 8] +
(72A’\7/) [578 2 8] +
(ng +2A¥) [3,7,8] +

A +20Y) [4,7,8] +

k hkXVY)

generating cocycles

0 1 2AY]

A (1] + 2A7 [2] 4 2A7 [3] + 2AY [4] + 2A7 [5] + 2AY [6] + 2AY [7] + 2AY[8]

207 [1] + 205 [2] + 2AY [3] + 2A7 [4] + 2A7 [5] + 2AY [6] + 2AY [7] + 2A7 [8]
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k hkXY)

generating cocycles

AY[1 D 1]+2A7[2 D 2]+ (AY + AY + AY) [1,2]+2A7[3 D 3] +2A7[4 D 4] +2A7[5 D 5]+ 2AY[6 D 6] +
20Y[7 2 7]+ (A +20Y) [2,7] + (AY +2AY) [3, 7] + (AY +2AY) [4,7] + AY[5,7] + 2AY[8 2 8]

2AY[1 D 1]4+2AY[2 D 2]+2AY[3 D 3]+2A7[4 D 4] +2A7[5 D 5]+2AY[6 D 6]+2A7[7 D 7]+2AY[8 D 8]

AY[1,8] + (AY +AY) [2,8] + 2AY [1,4] + 247 [2,4] + (AY + AY) [3,4] + 247 [1, 5] + 24 [2, 5] +
2AY[3,5] + 2AY[1,6] + 2AY [2, 6] + 2AY [3,6] + 2AY [4,6] + 2AY [1,7] + 207 [2,7] + AY[3, 7] + 2AY [4,7] +
2A7[5,7] + 2A7[1,8] + 2AY[2, 8] + 2AY[3, 8] + 2AY[4, 8] + 2AY[5, 8]

(AY +24Y) [1,8] + (AY + AY) [6,8] + A [7, 8]

AY12121]+247 (2222 2]+ (AY +AY) [1,2 2 1] + (AY + AY + AY) [1,2 2 2] +

2AY[3 D3 D3]+ AY[1,2,3] +2AY[4 D 4 D 4] +2A7[2,3,4] +2A7[5 D 5 D 5] +2AY[3,4,5] +
2AY[6 26 2 6] +2AY[4,5,6] + 2AY[7 D 7 D 7]+ (AY +2AY) [2,7 D 2]+ (AY +2AY) [3,7 D 3] +
(A +20Y) [4,7 2 4] + (A +20Y) [5,7 2 5] + AY[5,7 2 7] + (AY + AY +2AY) [3,5,7] +

(AY + AY) [4,5,7] + (AY + A + AY + AY) [5,6,7] + 2AY[8 D 8 D 8] + 27/ [5,6, 8]
2A¥[1D1D1]+2A¥[2D2D2]+2AY[3D3 D3] +2A¥[4D4D4] +2AY[5D5D5]+

2A7[6 26 D6]+2A7[7TD7D 7] +2A7[8 D8 D8]

(AY +AY +4AY) 222D 2] + (AY +AY) [1,2 2D 1]+ (AY + Ay +AY) [1,2 D 2] +

(AY +AY +AY) [2,8 2 2] + (AY + AY +3AY) [2,8 2 3] + AY[1,2,3] + 2A7[2,3,4] + 2AY[3,4,5] +
2AY[4,5,6] + (Ag +2A¥) [2,7 D 2] +2AY[5,6,7] + 2AY[5,6, 8]

AZ[1,2 2 1]+ AJ[1,2 D 2] + AJ[2,8 D 2] + AJ[3,8 D 3] + A [4,8 D 4] + Ag[5,8 D 5] +
A{16,8 2 6]+ (AY + AY) [6,8 2 8] + A{[5,6,8] + 2AY[7,8 D 8] + (AY + AY + A) [6,7, 8]

AY[1,3 D 1] +2AY[1,3 D 3] + (A1V+A§ +A§+2A¥) [1,2,3] +2AY[1,4 D 1] +2AY[1,4 D 4] +
2AY[2,4 D 2] +2AY[2,4 D 4] + (AY + AY) [1,8,4] + 2A/[1,5 2 1] + 2AY[1,5 D 5] + 2A7[2,5 2 2] +
2AY[2,5 D 5] +2A7[3,5 D 3] +2A7[3,5 D 5] +2AY[1,6 D 1] +2AY[1,6 D 6] +2AY[2,6 D 2] +
2AY[2,6 D 6] +2A7[3,6 D 3] +2A7[3,6 D 6] +2A7[4,6 D 4] +2A7[4,6 D 6] +2A7[1,7 D 1] +
2A7[1,7 D 7]+ 2AY[2,7 D 2] + 2AY[2,7 D 7] +2AY[3,7 D 3] + 2A7[3,7 D 7] +2AY[4,7 D 4] +
20Y[4,7 2 7]+ (AY +20Y) [1,4, 7]+ (AY +2AY) [2,4,7)+2AY[5,7 2 5]+ 2AY[5,7 D 7] + A} [1,5,7] +
AY12,5,7)+ (AY +2AY) [8,5,7] + 2AY[1,8 D 1] + 2A/[1,8 D 8] + 2AY[2,8 D 2] + 2AY[2,8 D 8] +
2AY[3,8 D 3] +2AY[3,8 D 8] +2AY[4,8 D 4] +2AY[4,8 D 8] +2AY[5,8 D 5] +2AY[5,8 D 8]

AY[1,83 2 1]+ (AY + AY) [2,8 D 2] + (AY +3A7) [2,8 2 3] + (AY + AY +2AY) [1,2,3] +

(Alv +A¥) [1,3,4] + (Ag +AY + 2A¥) (2,3, 4] + 2AY[3,4,5] + 2AY[4,5,6] + (Ag + 2A¥) (3,7 23]+
(A +20Y) [4,7 D 4] + (AY +20Y) [1,4,7] + (A +2AY) [2,4,7] + (AY +2AY) [5,7 2 5] +

AY[5,7 2 7+ AY[1,5,7] + AY [2,5,7) + AY [3,5,7] + (AY + AY) [4,5,7] +

(AY +AY + AY + AY) [5,6,7] + 247 [5,6, 8]

AY[1,8,5]+ (AY + AY) [2,8,5] + 2AY[1, 3, 6] + 2A7[1,4,6] + 24/ [2,4,6] + (A} + AY) [3,5,6] +
2AY[1,3,7] + 2AY[1,4,7] + 2AY[2,4,7] + 2AY[1,5,7] + 2AY [2,5,7] + AJ[3,5,7] + 2AY[1,3,8] +
2AY[1,4,8] +2A7[2,4,8] + 2A7[1,5,8] + 2A7 2,5, 8] + 2A7 [3, 5, 8]

(AY +20Y) [1,8 2 1] + (AY + AY + AY) [1,2,8] + (AY + AY) [1,6,8] + 2AY[2,6,8] + 2A7[3,6,8] +
2AY[4,6,8] + AJ[1,7,8] +2AY[2,7,8] + 2AY[3,7,8] + 2A7[4,7,8] + 2AY [5,7, 8]

2A7[7,8 D 7] +2A/[7,8 D 8]
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A.29.5 Cohomology of coweight lattice XV = PV

¢n = Or with 7 = AY[1] + (AY + AY) [2] + (AY + AY) [3] + (A + AY) [4] +
(AY +AY) [B] + (A + Ag) [6] + (A7 + AZ) [7] + (A7 + A) [8]

k HX(Wy,XY) generating cocycles

0 0
1 0
2 0
3 727 (A —20Y) [7,8 2 8] + (A — AY — A{) [6,7,8]

k h*(XY) generating cocycles

0 0

1 0

2 1 AJ[6,7]

3 4 AY[1,2D 1] +AY[1,2 D 2] + A [2,7 D 2] +AJ[3, 7D 3] + AJ[4,7 D 4]+ AJ[5,7 D 5] +

AY[6,7 2 6]+ (AY +AY) [6,7 2 7]+ AY[5,6,7] + (AY + AY) 6,7, 8]

AY[1,8,5] + AY[1,8,6] + AY[1,4,6] + AY[2,4,6] + (AY + AY) [1,8,7] + (AY + AY) [1,4,7] +
(AY +AY) [2,4,7) + (A +AY) (1,5, 7]+ (AY + AY) [2,5,7] + (AY +AY) [3,5,7] + AY[1,3,8] +
A7[1,4,8] + A7 [2,4,8] + A7 [1,5,8] + A7 [2,5,8] + A/[3,5, 8]

AY[1,3,5] + AY[1,3,6] + AY[1,4,6] + AY[2,4,6] + AY[1,3,7] + AY[1,4,7] + AY[2,4,7] + AY[1,5,7] +
A{12,5,7) + A{[3,5,7) + (AY + AY) [1,3,8] + (AY + AY) [1,4,8] + (AY + AY) [2,4,8] +
(A +AY) [1,5,8] + (AY + AY) [2,5,8] + (AY + AY) [3,5,8]

A{[1,6,7] + A{[2,6,7] + A{[3,6,7] + A{[4,6,7]
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comp, () () ()

O OO | W

A.29.6 Cohomology with trivial coefficients

k H*X(W,,Z) generating cocycles
0 /A I
1 0
2 z/27 121+ (-1)[222) +[1,2]+(-1)[82 3]+ (-1)[4 2 4] + (-1)[5 2 5] +
(-1D[626]+(-1)[727]+(-1)[8 2 8]
3 227 Z/2Z [7,8 D 7] +[7,8 D 8]+[6,7,8]
[133 2 1]+[1a33 3]+(71)[1a253]+ 71) [1742 1]+(71) [11424]4’(71) [2342 2]+
(-1)[2,4 2 4] +[1,8,4] + [2,3,4] + (-1)[1,5 D 1] + (1) [1,5 D 5] + (-1)[2,5 D 2] +
(-1)[2,5 2 5]+ (-1)[3,5 2 3] + (-1)[3,5 2 5] +[3,4,5] + (-1)[1,6 D 1] +
(-1)[1,6 2 6]+ (-1)[2,6 2 2]+ (-1)[2,6 2 6]+ (-1)[3,6 2 3]+ (~1)[3,6 D 6] +
(-1)[4,6 2 4] +(—1)[4,6 D 6] +[4,5,6] + (—1)[1,7 D 1]+ (-1)[1,7 D 7] +
(-D[2,722]+(-1)[2,72 7]+ (-1)[3,7 23] + (-1)[8,7 2 7] + (-1)[4,7 D 4] +
(_1) [4772 7]+(_1) [5572 5]+(_1) [5772 7]"" [5a6=7] +(_1) [178 2 1] +
(71) [178 2 8]+(71) [278 2 2]+(71) [2»8 2 8]+(71) [3»8 2 3]+(71) [3»8 2 8]+
(-1 [4,824]+(-1)[4,8 28] +(-1)[5,8 2 5]+ (-1)[5,8 2 8] +[5,6,8]
k  h¥(Fz)  generating cocycles
0 1 1]
1 1 [1] 4+ [2] + [3] + [4] + [5] + [6] + [7] + [8]
2 3 [1D1]+[222]+[328]+[424]+[525]+[626]+[727]+[82 8]
[1,3] + [1,4] + [2,4] + [1,5] + [2,5] + [3,5] + [1,6] + [2,6] + [3,6] + [4,6] + [1,7] + [2,7] + [3,7] +
[4,7]+[5,7] + [1,8] + [2,8] + [3,8] + [4, 8] + [5, §]
[7,8]
3 7 [12121]+[22222]+[32323]+[42424]+[52525]+[62626]+[72727]+
[8 D8 D8]
[1,321]+[1,3 23] +[1,4 D 1]+ [1,4 D 4] +[2,4 D 2] +[2,4 D 4]+ [1,5 2 1] +[1,5 D 5] +
[2,5622]+[2,525]+(3,523]+[3,525]+[1,6 21]+[1,6 2 6]+[2,6 2D 2] +[2,6 2 6]+
(3,6 23] +[3,6 26]+[4,6 24]+[4,626]+[1,721]+[1,727]+([2,722]+[2,727]+
38,723]+[3,7D27]+[4,724]+[4,7D7 +[5,72D5]+[5, 727 +[1,8D1]+[1,8 D8]+
[2,822]+[2,8 28] +[3,823]+[3,828]+[4,824]+[4,828]+5,825]+[5,82 8§]
[1,2,3] +[2,3,4] +[3,4,5] + [4,5,6] + [5,6,7] + [5,6, 8]
[1,3,5] + [1,3,6] +[1,4,6] + [2,4,6] + [1,3,7] + [1,4,7] + [2,4,7] + [1,5,7] + [2,5,7] + [3,5,7] +
(1,3,8] +[1,4,8] +[2,4,8] +[1,5,8] + [2,5,8] +[3,5, 8]
(7,8 2 7] +[7,8 2 8]

1,7,8]+[2,7,8] +[3,7,8] +[4,7,8] + [5,7, 8]

[6,7,8]
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A.30 Root system Fjs

~O—C0O
S
= O

O O
1 3

O

Dynkin diagram

PY/Q¥ ~7/3Z

Fundamental grou
group generated by Ay € PY mod Q"

A.30.1 Cohomology of coroot lattice XV = QV

[pu] = (1)

does not lie in the image of comp,

k HY(Wy,X") generating cocycles

0 0

1 VARY/A (AY —2A¢) [6]

2 0

3 z)27Z 3AY[2,5 2 2] +3AY[2,5 2 5] + (—3AY) [2,4,5] + (—AY) [5,6 2 5] + (—AY) [5,6 2 6] +

(=AY +2AY = 3AY +3AY) [2,5,6]

k h¥XV) generating cocycles

0 0
1 0
2 1 +AY) [1,8] + (AY +3A) [3,5] + (AY +2AY) [4,5] + (AY +4AY) [2,6] + (AY +4A¢) [3,6] +

A\/
AY +4AY) [4,6] + A [5, 6]
A\/

+AY) 1,82 1]+ (AY +AY) [1,8 28] + (AY +3AY) [8,5 2 8] + (AY +2AY) [4,5 D 4] +
AY +2A0¢) [4,5 2 5] + (AY +4A) [2,6 2 2] + (AY +4AY) [3,6 2 3] + (AY +4AY) [4,6 D 4] +
A{[5,6 2 5]+ AY[5,6 D 6] + (AY +4A¢) [4,5,6]

(
(
3 2
(

AY[1,8,4] + (AY +4A¢) [2,3,4] + (AY +2AY) [2,4,5] + AY[3,4,5] + (AY +2A¢) [4,5, 6]
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A.30.2 Cohomology of coweight lattice XV = PV

= (1)

does not lie in the image of comp,

k HX(Wy,X") generating cocycles

0 0

1 0

2 0

3 Z/2Z A{[2,5 2 2] + AJ[2,5 2 5] + (—AY) [2,4,5] + (—AY) [5,6 D 5] + (—AY) [5,6 D 6] +
(—AY +AY =AY +AY) [2,5,6]

k h¥XV) generating cocycles

0 0

1 0

2 1 AY[1,8] + (AY +A{) [3,5] + AY[4,5]

3 2 AY[1,3 D 1]+ AY[1,8 2 8]+ (AY +AY) [3,5 2 8] + AY[4,5 D 4] + A [4,5 D 5]

AY[1,3,4] + AY[2,3,4] + AY[2,4,5] + AY[3,4,5] + AJ[4,5, 6]

A.30.3 Cohomology with trivial coefficients

k H*(Wy,Z) generating cocycles

0 Y/A I

1 0

2 z/)2z [12 1]+ (-1)[22 2]+ (~1)[82 3] +[1,8] + (~1) [4 2 4] + (~1)[5 2 5] + (~1) [6 D 6]

3 z)2Z (1,2 21]+[1,22 2]+ (-1)[2,83 2 2] + (~1)[2,3 2 3] + (—1)[1,4 D 1] +
(_1) [154 2 4] + [13254] + [1’3$ 4] + (_1) [27354] + (_1) [175 2 1] + (_1) [175 2 5] +
(71) [215 2 2] + (71) [215 2 5] + (71) [3»5 2 3] + (71) [3»5 2 5] + [274’ 5] + [3a 47 5] +
(~1)[1,6 2 1]+ (~1)[1,6 2 6] + (1) [2,6 D 2] + (~1)[2,6 D 6] + (—1)[3,6 2 3] +
(-1)[3,6 2 6]+ (—1)[4,6 D 4] +(-1)[4,6 D 6] + [4,5,6]
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k  h¥(IFy)  generating cocycles
0 1 1]
1 1 (1] + [2] + [3] + [4] + [5] + [6]
2 2 1D21]+[2D2]+[8323]+[4D4]+[525]+[62D 6]
(1,2] + [2,3] + [1,4] + [1,5] + [2, 5] + [3,5] + [1, 6] + [2, 6] + [3, 6] + [4, 6]
3 4 [12121]+[22222]+[32323]+[42424]+[52525]/+[6262 6]
(1,221]+[1,222]+[2,322]+[2,3 23] +[1,421]+[1,4 2 4] +[1,5 2 1] +[1,5 2 5] +
(2,52 2] +[2,5 D 5] +[3,56 23] +[3,5 5]+ [1,6 D 1] +[1,6 D 6] + [2,6 D 2] +[2,6 D 6] +
[3,6 23] +[3,6 26]+[4,6 2 4]+[4,6 D 6]
(1,8,4] +[2,8,4] +[2,4,5] + [3,4,5] + [4, 5, 6]
[1,2,5] + [2,3,5] +[1,2,6] + [2,3,6] + [1,4, 6]
A.31 Root system FE;
TQ
O O O O O O
Dynkin diagram 1 3 4 5 6 7
PY/QV ~Z/2Z
Fundamental group v v v
generated by Ay € P¥ mod Q
A.31.1 Cohomology of coroot lattice XV = QV
(9] = (0,0,0,1)
does not lie in the image of comp,
k H*(Wj, XY) generating cocycles
0 0
1 z/27Z (A —2AY) [7]
2 z)27 2071 2 1] + (—2AY) [2 2 2] + (—2AY) [8 2 8] + 2AY[1,3] + (—2AY) [4 D 4] +

(—2AY) 52 5] + (—2AY) [6 2 6] + (—AY) [7 2 7] + (—AY +2AY) [1,7] +
(A(\i/ - 2A’\7/) [2’ 7] + (Ag - 2A¥) [37 7] + (AG\S/ - QA;/) [47 7] + (A(\S/ - 2A’\7/) [5’ 7] +
(=AY +3AY —3AY) [6,7]



A.31 Root system Fr 279

k H* (W, XY) generating cocycles

3 ZNRZOZNLSL)2Z (A —20Y) [1,7 D1+ (—AY —2AY) [2,7 2 2]+ (—2AY) [2,7 2 7] +
(—AY —2AY) [3,7 2 3]+ (—2AY) [3,7 2 71+ (—AY ) [1,3, 7]+ (—AY —2AY) [4,7 2 4] +
(—2A8) 14,7 2 7]+ (—AY —2AY) [5,7 2 5] + (—AY +2AY —3AY) [5,7 2 7] +
(28 — 2AY) [2,6,7) + (24 — 2AY) [3,6,7] + (24§ — 2AY) [4,6,7] + AY[5,6,7]
(

AJ[2,5 D 21+ AJ[2,5 2 5]+ (—AY) [2,4,5] + (—AY — AY) [5,6 D 5] +
(—AY —AY) [5,6 2 6]+ (—AY + AY — AY +AY) [2,5,6] +
(=AY + 207 = AY) 5,7 2 7] + (AY — 2AY +2AY —2AY) [5,6,7]

2AY[1,2 D 1] +2AY[1,2 2 2] + (—2AY) [2,8 2 2] + (—2AY) [2,3 2 8] +

20Y) [1,4 2 1] + (—2AY) [1,4 2 4] + 20/ [1,2,4] + 2AY[1,3,4] + (—2AY) [2,8,4] +
2AY) [1,5 2 1]+ (—2AY) [1,5 2 5] + (—2AY) [2,5 D 2] + (—2AY) [2,5 2 5] +
2AY) [3,5 2 3] + (—2AY) [3,5 D 5] + 2AY[2,4,5] + 2AY[3,4,5] +
2AY) [1,6 2 1] + (—2AY) [1,6 D 6] + (—2AY) [2,6 D 2]+ (—2A) [2,6 2 6] +
2AY) [3,6 2 3] + (—2AY) [3,6 D 6] + (—2AY) [4,6 D 4] + (—2A) [4,6 D 6] +

5,6] + (—2AY) [1,7 2 1]+ (=AY [1,7 2 7]+ (—2A7) [2,7 2 2] +

N

9 7
AY)[2,7 27+ (—AY +28Y) [1,2,7] + (—2AY) 8,7 2 3] + (—AY ) [3,7 2 7] +
A —20Y) (2,8, 7] + (—2AY) [4,7 2 4] + (—AY) [4,7 2 7] + (AY — 2AY) [1,4,7] +
20Y) [5,7 2 5] + (=AY) [5,7 2 7] + (A — 2AY) [1,5,7] + (AY — 2AY) [2,5,7] +
AY —20Y) [8,5,7] + (—AY +3AY —3AY) [1,6,7] + (=AY +3A¢ — 3AY) [2,6,7] +
AY +3AY = 3AY) [3,6,7]) + (—AY +3A¢ —3AY) [4,6,7] + (AY — A{ + AY) [5,6,7]

(-
(-
(-
(-
(-
2AY [4
(-
(
(-
(
(-

k h*(XV) generating cocycles

0 1 2A7 ]
1 2 2AY[1] + 2A7 [2] + 2AY [3] + 2AY [4] + 2AY [5] + 2AY [6] + 2AY [7]
(AY +24Y) [2]
2 4 2AY[1 D 1] +2AY[2 D 2] +2AY[3 D 3] +2AY[4 D 4] + 2AY[5 D 5] + 2AY[6 D 6] + 2AY[7 D 7]

AY[1,2]) + AY[2,3] + 207 [1,4] + (AY + AY) [3,4] + 2AY[1, 5] + 2AY[2, 5] + 2AY[3, 5] + 2AY[1,6] +
2AY[2,6] + 2AY[3, 6] + 2AY [4, 6] + 2AY [1,7] + A [2,7] + 247 [3,7) + A [4,7] + (AY +2AY) [5,7]

2AY[1,2] + 2AY [2, 8] + 2AY [1,4] + 2AY [1, 5] + 2A7 [2, 5] + 2AY [3, 5] + 2A7 [1, 6] + 2AY [2, 6] + 2AY [3,6] +
2A7[4,6] +2A7[1,7] + 2A7[2, ]+2AV[ 2]+ 2A7 [4, 7] + 207 [5, 7]

(AY +AY) [1,3] + (A +Ag +2AY) [3,5] + AY[4,5] + (A +247) [2,7] + (Ag +2AY) [3,7] +
(A +247) [4, 7]+ A{[5,7]
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k h*(XVY) generating cocycles

3 8 2AY[1 D1 D 1]+2AY[2
2AY[6 D 6 D 6] +2AY [T

2
7

2222]+2A7[832323]+2A7[42424]+2A/[5252 5]+
2727

A{[1,2 2D 1] +2A7[1,2 D 2] +2A7[2,3 D 2] + A)][2,3 D 3] +2A7[1,4 D 1] +2A7[1,4 D 4] +
(A +AY) (8,4 23] + (AY + AY +3AY) [3,4 2 4] + AY[1,8,4] + (AY +2AY) [2,3,4] +
2AY[1,5 D 1] +2A7[1,5 D 5] +2A7[2,5 D 2] + 2AY[2,5 D 5] +2AY[3,5 D 3] +2AY[3,5 D 5] +
(AY + A +2AY) [3,4,5] + 2AY[1,6 D 1] + 2AY[1,6 D 6] + 2A7[2,6 D 2] + 2AY[2,6 D 6] +
2A7[3,6 D 3] +2AY[3,6 D 6] +2AY[4,6 D 4] +2AY[4,6 D 6] +2AY[1,7 D 1] +2A¥[1,7 D 7] +
AJ[2,7 D21 +2AY[2,7 D7) +2AY[3,7 D 3] +2AY[3,7 D 7] +AJ[4,7T D 4] +2AY[4, 7D 7] +

A[5,7 28] + (A +2AY) [5,7 2 7] + AY[2,5,7] + (AY + AY) [4,5,7] + (AY + A{ +3AY) [5,6,7]

2AY[1,2 D 1]+ 2AY[1,2 D 2] +2AY[2,3 D 2] +2AY[2,3 D 3] +2AY[1,4 D 1] +2AY[1,4 D 4] +
2A7[1,5 D 1] +2AY[1,5 D 5] +2AY[2,5 D 2] + 2AY[2,5 D 5] + 2A7[3,5 D 3] +2AY[3,5 D 5] +
2AY[1,6 D 1] +2A7[1,6 D 6] +2A7[2,6 D 2] +2A7[2,6 D 6] +2A7[3,6 D 3] +2A7[3,6 D 6] +
2A7[4,6 D 4] +2AY[4,6 D 6] +2AY[1,7 D 1] +2AY[1,7 D 7] +2A7[2,7 D 2] + 2AY[2,7 D 7] +
2AY[3,7 D 3] +2A7[3,7 D 7] +2A7[4,7 D 4] +2A7[4,7 D 7] +2A7[5,7 D 5] +2A7[5,7 D 7]

(AY +20Y) [1,2 2 2]+ (AY + AY) [1,2,3] + (AY + AY +AY) [1,2,4] + (AY +24Y) [2,8,7] +
(AY +2AY) [1,4,7] + AY[1,5,7] + AY[3,5,7] + AY [4,5,7]

(AY +AY) [1,8 2 1] + (AY + AY) [1,8 2 3] + (AY + A¢ +2AY) [8,5 2 3] + AY[4,5 D 4] +
AY14,5 2 5]+ (A +2AY) [2,7 2 2] + (AY +2AY) [8,7 2 8] + (Af +2AY) [4,7 2 4] +
(A +20Y) [5,7 2 5] + AY[5,7 2 7] + AY[2,5,7] + (AY + AY) [4,5,7] + (AY + A{ +3AY) [5,6,7]

(A +AY +2AY) [1,3,4] + 2AY[2,3,4] + 2AY[2,4, 5] + 2AY[3,4,5] + 2AY[4, 5, 6] + 2AY 5,6, 7]
(AY +20Y) 12,5 2 2] + (AY + AY + AY + A +20Y) [2,4,5] + (AY + AY) [2,5,6] + A{[2,5,7]

AY[1,2,5] +AY[2,3,5] + (Ag + A¥) [1,4,5] +2AY[1,2,6] +2AY[2,3,6] +2AY[1,4, 6] +
(AY +AY) [1,5,6]+ (AY + AY) [3,5,6]+2AY [1,2, 7]+2A7 2,8, 7] +2AY [1,4, 7]+ A{ [1,5, 7]+ A [3, 5, 7]

@)

:

T

=~

—~
S~—
/N
—= O
N————

O = =

O O OOOO| W
O = = O = OO

O O OO~ HFHO

A.31.2 Cohomology of coweight lattice XV = PV

[¢u] = (1)

does not lie in the image of comp,

k HY(Wy,X") generating cocycles

0 0
1 0
2 0
3 z)2Z AJ[2,5 2 2] + AJ[2,5 2 5] + (—AY) [2,4,5] + (—AY) [5,6 D 5] + (—AY) [5,6 D 6] +

(—AY + AY =AY +AY) [2,5,6]
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k hX(XVY) generating cocycles

0 0

1 0

2 1 AY[1,3] + (AY + A{) [8,5] + AY[4,5]

3 3 AY[1,8 211+ AY[1,8 28]+ (A +AY) 3,5 2 8] + AY[4,5 D 4] + AY[4,5 D 5]

AY[1,8,4] + AY[2,3,4] + (AY + AY) [2,4,5] + AY[3,4,5] + (AY + AY) [4,5,6] + A [2,5,7] +
A3[4,5,7) + A3 [5,6,7]

AY[1,2,5] + AY[2,3,5] + AY[1,2,6] + AY[2,3,6] + AY[1,4,6] + AY[1,2,7] + AY[2,3,7] + AJ[1,4,7] +
A3[1,5,7] + AS[3,5,7] + AY[4,5,7]

A.31.3 Cohomology with trivial coefficients

k Hk(WO,Z) generating cocycles

0 /A I

1 0

2 z/)2z 21+ (-1)[222]+(-1)[8 28] +[1,8]+ (~1)[42 4]+ (~1)[5 2 5] +
(-1)[626]+(-1)[727]

3 z)2Z (1,22 1]+ (1,22 2]+ (-1)[2,3 D 2] + (~1)[2,3 2 3] + (-1)[1,4 D 1] +
(-1)[1,424]+[1,2,4] + [1,3,4] + (-1)[2,8,4] + (-1) [1,5 D 1] + (-1)[1,5 D 5] +
(71) [235 2 2] + (71) [215 2 5] + (71) [355 2 3] + (71) [3»5 2 5] + [2745 5] + [37 47 5] +
(-1)[1,6 21]+(-1)[1,6 2 6]+ (—1)[2,6 D 2] +(-1)[2,6 2 6]+ (—1)[3,6 D 3] +
(_1) [376 2 6] + (_1) [436 2 4] + (_1) [476 2 6] + [47556] + (_1) [177 2 1] +
(_1) [177 2 7] + (_1) [277 2 2] + (_1) [2»7 2 7] + (_1) [3»7 2 3] + (_1) [3’7 2 7] +
(_1) [457 2 4] + (_1) [457 2 7] + (_1) [577 2 5] + (_1) [577 2 7] + [5a67 7]

k  h¥(Fz)  generating cocycles

0 1 1]

1 1 [1] +[2] + [3] + [4] + [5] + [6] + [7]

2 2 121]+[222]+[8323]+[424]+[525]+[626]+[727]

(1, 2]+[2, 3]+ [1, 4] +[1, 5] +[2, 5] + [3, 5] + [1, 6] +[2, 6] + [3, 6] + [4, 6] +[1, 7]+ [2, 7] +[3, 7] +[4, 7] + [5, 7]
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k  h¥(IFy)

generating cocycles

[12121]+[22222]+[832823]+[42424]+[52525]+[62626]+[72727]

(1,221]+[1,222]+[2,322]+ (2,82 3] +[1,42 1]+ (1,42 4] +[1,5 D 1] +[1,5 D 5] +
(2,56 22]+[2,525]+([3,523]+[3,525]+[1,6 21]+[1,6 D2 6] +[2,6 D2]+[2,6 6]+
(3,6 23] +[3,6 26]+[4,624]+[4,626]+[1,721]+[1,727]+[2,722]+[2,727]+
8,7238]+ 3,727+ [4,724]+[4,727]+[5,725]+[5,727]

(1,3,4] +[2,3,4] +[2,4,5] + [3,4,5] + [4,5,6] + [5,6, 7]
(1,2,5] +[2,3,5] +[1,2,6] + [2,3,6] + [1,4,6] +[1,2,7] +[2,3,7] + [1,4,7] + [1,5,7] + [3,5, 7]

(2,5,7]

A.32 Root system Fg

O O O O O
Dynkin diagram 1 3 5 6 7
Fundamental group PY/QY ~0

= O—0O
o
0 O

A.32.1 Cohomology of coroot lattice XV = QV

[¢u] = (1)

does not lie in the image of comp,

k HX(Wy,X") generating cocycles

0 0
1 0
2 0
3 Z/2Z A{12,5 2 2] + AJ[2,5 2 5]+ (—AY) [2,4,5] + (—AY) [5,6 2 5] + (—AY) [5,6 2 6] +
(—AY +AY — A +AY) [2,5,6]
k h¥XV) generating cocycles
0
1 0
2 1 AY[1,8] + (AY +A{) [3,5] + AY[4, 5]
3 2 Ag[1,321]+A§[1,3QS]+(AX+A§) (3,5 D3] +AY[4,5 D 4] + AY[4,5 D 5]

AY[1L,2,4] + (A + AY) [1,4,7) + (AY + AY) [1,5, 7] + AY[2,5,7] + (AY + AY) [3,5,7] + AY[1,6,7] +
AY[2,6,7] + AY[3,6,7] + AY[4,6,7] + AY[2, 5, 8] + AY[5, 6, 8]
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k H*(W,,Z) generating cocycles
0 y/A I
1 0
2 z)2Z P21+ (-1[222]+(-1)[823]+[1,3] +(-1)[4 2 4]+ (-1)[5 2 5] +
(-1)[626]+(-1)[727]+(-1)[8 2 8]
3 z)27 [1,221]+[1,222]+(-1)[2,8 2 2] +(-1)[2,8 D 3] +(~1)[1,4 D 1]
(71) [114 2 4] + [13 214] + [17334] + (71) [ 7374] + (71) [135 2 1] + (71 ] +
(-1)[2,5 2 2]+ (-1)[2,5 2 5] + (1) [3,5 2 3] + (1) [3,5 2 5] + 2,4, » 5] +
(71) [176 2 1] + (71) [156 2 6] + (71) [276 2 2] + (71) [276 2 6] + (71
(=1)[8,6 2 6]+ (—1)[4,6 D 4] + (—1)[4,6 D 6] + [4,5,6] + (-1)[1,7
(_1) [177 2 7] + (_1) [2= 7 2 2] + (_1) [277 2 7] + (_1) [377 2 3] + (_
(_1) [41 7 2 4] + (_1) [41 7 2 7] + (_1) [5»7 2 5] + (_1) ['5’ 7 2 7] + [57
(-1)[1,821]+(-1)[1,8 D 8] +(-1)[2,8 D 2]+ (-1)[2,8 2 8] + (-
(71) [318 2 8] + (71) [478 2 4] + (71) [4»8 2 8] + (71) [5»8 2 5] + (7
(_1) [658 2 6]+(_1) [658 2 8]""[ a758]
k  h*(Fy)  generating cocycles
0 1 i
1 1 [1] + [2] + [3] + [4] + [5] + [6] + [7] + [8]
2 2 [1D21]+[222]+[323]+[424] +[525]+[626]+[727]+[828]
(1,2] +[2,3] + [1,4] + [1,5] + [2,5] + [3, 5] + [1,6] + [2,6] + [3,6] + [4,6] + [1,7] +[2,7] + [3,7] +
[4,7] + [5,7] + [1,8] + [2,8] + [3, 8] + [4, 8] + [5, 8] + [6, 8]
3 4 [12121]+[22222]+[82323]+[42424]+[52525/+[62626]+[72727
[8 282 8]
1,221]+[1,222]+[2,822]+[2,8 28] +[1,421]+[1,4 D 4] +[1,56 D 1] +[1,5 D 5] +
(2,5 2 2] +[2,5 25]+[3,5 23] +[3,5 25| +[1,6 2 1] +[1,6 D 6] +[2,6 D 2] +[2,6 D 6] +
(8,6 23]+ (3,6 26]+[4,6 4] +[4,6 26]+([1,721]+[1,7 27 +[2,722]+[2,72 7]+
(8,7 23]+[3,7 2 7]+[4,7 D 4]+[4,7 D 7]+[5,7 D 5]+[5,7 D 7]+[1,8 D 1]+[1,8 D 8] +[2,8 D 2]+
(2,8 2 8]+(3,8 23] +([3,8 28] +[4,824]+[4,8 D 8]+[5,825]+[5,8 2 8]+[6,826]+[6,8 D 8]

(1,3,4] +[2,3,4] + [2,4,5] + [3,4,5] + [4,5,6] + [5,6,7] + [6,7, 8]

(1,2,
[

5] +[2,8,5] +[1,2,6] +[2,3,6] + [1,4,6] + [1,2,7] +[2,3,7] + [1,4,7] + [1,5,7] + [2,5,7] +
3,5,7]+[1,2,8]+[2,3,8] +[1,4,8] +[1,5,8] +[2,5,8] + 3, 5, 8] + [1, 6, 8] + 2, 6, 8] + [3, 6, 8] + [4, 6, 8]
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A.33 Root system F

Dynkin diagram

Fundamental group PY/QY ~0

A.33.1 Cohomology of coroot lattice XV = QV

[¢u] = (1)

does not lie in the image of comp,

k HY(Wy,X") generating cocycles

0 0
1 0
2 0
3 z/)2Z AY[2,8 D21+ AY[2,8 D 8]+ (=AY +2A5 — 2AY +2AY) [2,3,4]

k h¥XV) generating cocycles

0 0

1 0

2 1 (AY +AY) [2 2 2]+ (AY + AY) [1,2]

3 3 (AY +AY)[22222]+AY[1,2 D 1]+ (AY + AY) [1,2 D 2]

(AY +AY) [2,3 2 2]

AY[2,3 D 3]

A.33.2 Cohomology with trivial coefficients

k Hk (Wo,Z) generating cocycles

0 /A 1

1 0

2 722 Z/2Z [323]+(-1)[42D 4] +[3,4]

121+ (-1)[222]+[1,2]
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k H*(W,,Z) generating cocycles

w

Z7/2 Z/2Z [2,3 D 2] +[2,3 D3]

(1,321]+[1,3 23]+ (1) [1,4 2 1] + (1) [1,4 2 4] + (1) [2,4 2 2] +
(71) [234 2 4] + [13 374]

k  h*(Fy)  generating cocycles
0 1 0
1 2 [1] +[2]
(3] + [4]
2 4 [121]+[222]
[323]+[424]
[1,3] + [1,4] + [2,4]
(2, 3]
3 8 [12121]+[22222]

[82323]+[424D4]
[1,321]+[1,421] +[2,42 2]
[1,3 D3] +[1,424]+[2,4 D 4]
2,32 2]

[2,3 2 3]

[1,2,3]

(2,3,4]

A.34 Root system G,

C==0
Dynkin diagram 1 2
Fundamental group PY/QY ~0

A.34.1 Cohomology of coroot lattice XV = QV

. = O with 7 = AY[1] + AJ[2]

k HX(Wy,X") generating cocycles

0 0

1 0
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k HYX(W,y,XY)

generating cocycles

3 0

k h*(XVY) generating cocycles
0 0

1 0

2 0

3 0

A.34.2 Cohomology with trivial coefficients

k HX(W,,Z) generating cocycles
0 z i
1 0
2 Z7/2 Z/2Z [2 D2]
121]
3 z/2Z7 [1,2D1]+[1,222]
k  h*(Fy)  generating cocycles
1 i
1 2 1]
(2]
2 3 [1D1]
[222]
(1,2]
3 4 1D2121]
[2D22D2]
(1,2 21]
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B.1 DeConciniSalvetti.py

18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

from itertools import chain
from sage.all import ZZ
from sage.combinat. free_module import CombinatorialFreeModule

def

subsets_of_cardinality_atmost(S, k):

287

"""Returns an iterable of all the subsets of cardinality <= k of the (finite) set S."""

assert k »>= 0
if Kk > @ and len(S) > O:
for SS in subsets_of_cardinality_atmost(S[1:], k):
yield SS
if len(SS) < k:
yield (S[@],)+SS
else:
yield ()

# TODO: Return only those flags with \Gamma_1 generating a finite subgroup,
# order(st) < \infty for all s,t \in S, in order to support finitely generated infinite Coxeter o

def

def

def

def

def

& groups.
flags_of_cardinality(S, k):

i.e. such that

"""Returns an iterable over all the flags of cardinality k over the (finite) set S.

Returns an iterable over all tuples (Gamma_1, Gamma_2, ...) s.t. S \supseteg Gamma_1 \ &

% supseteq Gamma_2
and \sum_{i \geq 1} \# Gamma_i = k
assert k >= 0
if k ==
yield ()
elif len(S) > 0:
for Gamma_1 in subsets_of_cardinality_atmost(S, k):
m = len(Gamma_1)
for flag in flags_of_cardinality(Gamma_1, k-m):
yield (Gamma_1,) + flag

minimal_coset_representatives(W, TT, T):
"""Returns the representatives of the left «TT>-cosets in <T>.

Given a Coxeter group W and subsets TT \subseteq T of the set S of distinguished generators e

s of W,

returns the representatives of the left <TT>-cosets in the subgroups <T> of W.

reps = [W.one()]
yield W.one()
n =20
while len(reps) > 0:
n = n+l
longer_reps = []
for g in reps:
for s in T:
gg = s*g
1 = gg.length()

if 1 == n and not gg in longer_reps and all( (ggxt).length() > 1 for t in TT ):

yield gg
longer_reps.append(gg)
reps = longer_reps

mu(Gamma, tau):
"""Returns \# { \gamma \in \Gamma : \gamma \leq \tau \}

Given a set Gamma of integers and an integer tau in Gamma, returns the
number of elements of Gamma that are smaller or equal to tau.

return sum(1 for x in Gamma if x <= tau)

number_of_inversions(f, X):

return sum(chain. from_iterable((1 for y in X if x < y and f[x] > f[y]) for x in X))

alpha(W, Gamma, i, tau, beta, conj_map):

return ixbeta.length() + sum(len(Gamma_j) for Gamma_j in Gamma[:i-1]) + mu(Gamma[i-1], tau) e



288

67
69

70
71

72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

92
93
94

95
96

105

131

B PROGRAM LISTINGS

s+ sum(number_of_inversions(conj_map, Gamma_j) for Gamma_j in Gamma[i:])

def compute_conj_map(W, beta, X, Y):

"""Returns the dictionary describing the mapping Gamma_i_plus_one -> Gamma_i_minus_tau, x &
S |-> \beta.inverse() * x * beta if well-defined, otherwise None.

Given a Coxeter group W and an element beta of W, and sequences X, Y of elements of W. &
o simple_reflections().keys(),
returns a dictionary f such that

f[x] = beta.inverse() * x x beta
for all x in X, if the right hand side is an element of Y for all x, otherwise returns None &
S

beta_inv = beta.inverse()

conj_map = {}
for x in X:
gg = beta_inv x W.simple_reflections()[x] * beta
for y in W.simple_reflections().keys():
if W.simple_reflections()[y] == gg:
if y in Y:
conj_map[x] =y
break
else:

return None
if not x in conj_map: # beta”(-1) % x * beta isn’t even a simple reflection
return None
return conj_map

class DeConciniSalvettiResolution:

"""Class representing the free resolution of the trivial R[W]-module R as constructed by o
s DeConcini-Salvetti"""
def __init__(self, W, R=ZZ):

"""Constructs the DeConcini-Salvetti resolution of W.

Given a finite Coxeter group W (actually, W can be finitely or even countably generated o
s , but that’s not implemented right now),

returns the DeConcini-Salvetti resolution of the trivial R[W]-module R.

self.W =W

self.R = R

self._modules = {}

self._flags = {}

self._morphisms = {}

def S(self, k):

"""Returns the canonical basis of C(k), given by the set of flags of cardinality k.

assert k >= 0

if not k in self._flags:

self._flags[k] = list(flags_of_cardinality(self.W.simple_reflections().keys(), k)) @

s # TODO: I’m using the keys instead of the generators themselves; is this @&
S necessary?

return self._flags[k]

def C(self, k):
"""The k-dimensional piece of the deConcini-Salvetti complex (C(k) = @ for k < @)."""
if not k in self._modules:
if k >»= 0:
self._modules[k] = CombinatorialFreeModule(self.W.algebra(self.R), self.S(k))
else:
self._modules[k] = CombinatorialFreeModule(self.W.algebra(self.R), [])
return self._modules[k]

def delta(self, k):
"""The differential delta(k): C(k) -> C(k-1).

Given an integer k, returns the differential delta(k): C(k) -> C(k-1) in degree k.
Ck_minus_1_basis = self.C(k-1).basis()
def index_to_reflection(k):
return self.W.simple_reflections() [k]
def delta_terms(Gamma):
for i in [ i for i in range(len(Gamma)) if len(Gamma[i]) > (len(Gamma[i+1]) if i+1 o
s < len(Gamma) else Q) ]:
Gamma_i_plus_one = Gamma[i+1] if i+1 < len(Gamma) else ()
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for tau in Gamma[i]:
Gamma_i_minus_tau = tuple( x for x in Gamma[i] if not x == tau )
for beta in minimal_coset_representatives(self.W, map(index_to_reflection, o
< Gamma_i_minus_tau), map(index_to_reflection, Gamma[i]))
beta_inv = beta.inverse()
conj_map = compute_conj_map(self.W, beta, Gamma_i_plus_one, &
< Gamma_i_minus_tau)

if conj_map == None: # x |-> beta”{-1} % x % beta does not define a map &
s from Gamma_i_plus_one to Gamma_i_minus_tau
continue

if len(Gamma_i_minus_tau) > O:
Gamma_prime = Gamma[:i] + (Gamma_i_minus_tau,) + tuple(tuple(sorted ¢
% (conj_map[x] for x in Gamma_j)) for Gamma_j in Gamma[i+1:])
else:
Gamma_prime = Gammal[:1i]
yield (-1)**xalpha(self.W, Gamma, i+1, tau, beta, conj_map) * (beta * &
% Ck_minus_1_basis[Gamma_prime])

def delta(Gamma):
return sum(delta_terms(Gamma))
if not k in self._morphisms:

if k »= 1:
self._morphisms[k] = self.C(k).module_morphism(on_basis=delta, codomain=self.C( &
s k-1))
else:
self._morphisms[k] = self.C(k).module_morphism(on_basis=lambda x: self.C(k). &

< zero(), codomain=self.C(k-1))
return self._morphisms[k]
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def

# M

# an

#

an
# Mo

rt itertools
itertools import chain
sage.modules. free_module_morphism import FreeModuleMorphism
sage.modules. free_module import FreeModule, FreeModule_generic
sage.groups.abelian_gps.abelian_group import AbelianGroup
sage.all import vector, matrix, divisors, GF, Hom, ZZ, QQ
DeConciniSalvetti import x*

finite_direct_sum_of_constant_family(I, R, M):
>?’Given a finite set I, and a FreeModule M over a ring R, returns the copower MA{(I)} = \ &

< bigoplus_{i \in I} M.

More precisely, returns a triple (N, components, from_components), where

N - instance of FreeModule

components - function that given an element n of N, returns a dict { i: i-th component o
s of m }

from_components - function that given a dict { i: n[i] }, returns an element n of N such &

s  that n[i] is the i-th component of N

33

assert isinstance(M, FreeModule_generic)
m = len(M.gens())

assert m == M.rank()
index_to_I = list(I)
len_I = len(index_to_I)

N = FreeModule(R, len_Ixm)
I_to_index = {}
for k in range(len_I):
I_to_index[index_to_I[k]] = k
def components(x):
return { i : M.linear_combination_of_basis(x[m*I_to_index[i]:m*(I_to_index[i]+1)]) for e
% i in I}
def from_components(comp):
return N.linear_combination_of_basis(list(chain. from_iterable(( M.coordinate_vector( o
s comp[i]) if i in comp.keys() else M.zero_vector() for i in I))))
return (N, components, from_components)

should be a free (combinatorial ?) R[G]-module and N should be a FreeModule over a PID R ( &
< must be = ZZ) at the moment

d action is a function of two variables that given (g, x) as input, where g is an element o
s of G

d x in an element of N, returns another element of N.

re precisely: x in an element of N.V(), and given any two elements x,x’ of N.V() that e

s define the same element of N,



290

37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

62
63
64
65
66

67
68
69
70
71
72
73
74
75
76

77
78

79
80
81
82
83
84
85
86

101

B PROGRAM LISTINGS

# i.e. such that x-x’ lies in N.W(), the elements action(g,x) and action(g,x’) should define o
S the same element of N
def hom_module(M, N, action):
M_gens = M.gens()
M_basis = M.basis()
M_basis_keys = M_basis.keys()
hom_M_N, components, from_components = finite_direct_sum_of_constant_family(M_basis_keys, N &
s .base_ring(), N)
def new_action(g, x):
comp = components(x)
return from_components({ i: action(g,comp[i]) for i in M_basis_keys })
return (hom_M_N, M_basis, M_basis_keys, components, from_components, new_action)

def sum_in_module(M, iterable):
X = M.zero()
for val in iterable:
X = x+val
return x

# Given an action of a monoid on a module,
# this computes the linearly extended action
def linearly_extended_action(M, action, a, x):
return sum_in_module(M, map(lambda g: a[g]*action(g, x), a.support()))

# Given f: M’ —--> M, computes the induced homomorphism
fA\ast: Hom(M, N) —---> Hom(M’, N)
# not very elegant to make this function take hom_M_prime_N_data and hom_M_N_data as additional e
S arguments
, but I want to avoid unnecessary computations and the problem of nonunique representations, o
S i.e. we shouldn’t rely
# on hom_module returning the same objects given the same input.
def hom_module_induced_morphism(f, N, action, hom_M_prime_N_data, hom_M_N_data):
M_prime = f.domain()
M = f.codomain()
hom_M_prime_N, M_prime_basis, M_prime_basis_keys, prime_components, prime_from_components, ¢
% prime_hom_action = hom_M_prime_N_data
hom_M_N, M_basis, M_basis_keys, components, from_components, hom_action = hom_M_N_data

#

#

f_values = {}
for i_prime in M_prime_basis_keys:
f_values[i_prime] = f(M_prime_basis[i_prime])

def f_star_components(x):
c_x = components(x)

c = {}
for i_prime in M_prime_basis_keys:
a = f_values[i_prime]
for ¢ in N.coordinates(sum_in_module(N, [ linearly_extended_action(N, action, a[i], &
o c_x[i]) for i in a.support() ])):
yield c

matrix_representing_f_star = matrix([tuple(f_star_components(x)) for x in hom_M_N.basis()], ¢
S  ncols=hom_M_prime_N.rank())
return FreeModuleMorphism(Hom(hom_M_N, hom_M_prime_N), matrix_representing_f_star)

def coroot_lattice_as_fg_Z_W_module(cartan_type):

R = RootSystem(cartan_type)

L = R.coroot_lattice()

basis = L.basis()

basis_keys = basis.keys()

M = FreeModule(ZZ, len(basis_keys)) # Instances of CombinatorialFreeModule aren’t instances o
s of FreeModule: WTF?!?

W = L.weyl_group()

def M_to_L(x):
d = x.dict()
return sum_in_module(L, [ d[i]x*basis[basis_keys[i]] for i in d.keys() 1)

def L_to_M(x): # this is slows a hell!
return vector(list([ x[k] for k in basis_keys ]))

def new_action(g, x): # TODO this is slow, *really*, xreallyx slow. Fix this!
return L_to_M(g.action(M_to_L(x)))

return (W, L, M, M_to_L, L_to_M, new_action)

# given a FreeModule M over a ring R’ with a coerce_map to R,
# returns the base change of M to R, i.e. M\otimes_{R’} R
def base_change_module(M,R):

assert R.has_coerce_map_from(M.base_ring())

MM = FreeModule(R, len(M.basis()))
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102 # given an element x of M, returns the image of x in MM under the canonical map

103 # M ———> MM = M \otimes_{R’} R

104 def base_change_map(x):

105 return MM.from_vector (vector(map(R.coerce_map_from(M.base_ring()), M.coordinates(x))))
106 MM .base_change_map = base_change_map

107 return MM

109 # given a f homomorphism between FreeModule’s over a ring R’ that is
110 # endowed with a coerce map to a ring R, returns the base change of f:

111 # f\otimes_{R’>} R: M\otimes_{R’} R ———> N\otimes_{R’} R

112 def base_change_morphism(f, R):

113 M = f.domain()

114 N = f.codomain()

115 assert R.has_coerce_map_from(f.base_ring())

116 MM = base_change_module(M, R)

117 NN = base_change_module(N, R)

118 return FreeModuleMorphism(Hom(MM,NN), f.matrix().change_ring(R))

class generating the lattices Q(R~vee) <= X_\Omega <= P(R~Avee)
, corresponding to subgroups \Omega <= P(R”vee)/Q(R”vee), as
free ZZ-modules endowed with action of the Weyl Group

TODO: At the moment, only the computation of the cocharacter lattice is implemented,
as it’s the only thing we need. Maybe one fine day I shall implement the character lattice

H
N
IS

Q # # # # # #H #

126 too.
127 lass RootDatumGenerator:
128 def __init__(self, R):
129 self.R = R # don’t really need to keep this, but might as well
130 self.Pvee = R.coweight_lattice()
131 basis = self.Pvee.basis()
132 basis_keys = tuple(basis.keys())
133 dim = len(basis_keys)
134 self.MPvee = FreeModule(ZZ, dim)
135 self.MQvee = self.MPvee.submodule([ vector([ alpha_vee[j] for j in basis_keys ]) for o
< alpha_vee in self.Pvee.simple_roots() ])
136 self. fundamental_group = self.MPvee/self.MQvee
137 def Pvee_to_MPvee(x):
138 return vector([ x[k] for k in basis_keys ]) # using x[k] is way faster than x. &
s coefficient(k)
139 def MPvee_to_Pvee(x):
140 return sum_in_module(self.Pvee, [ x[i]*basis[basis_keys[i]] for i in range(dim) ])
141 def actionb52(g, x):
142 return Pvee_to_MPvee(g.action(MPvee_to_Pvee(x)))
143 self.action = actionb52
144 self.Pvee_to_MPvee = Pvee_to_MPvee
145 self.MPvee_to_Pvee = MPvee_to_Pvee
146
147 # returns an element of Pvee that maps to x under Pvee -->> fundamental_group
148 def lift_to_Pvee(self, x):
149 return self.MPvee_to_Pvee(x.lift())
150
151 # returns the image of the element x under the map Pvee -->> fundamental_group
152 def map_to_fundamental_group(self, x):
153 return self.Pvee_to_MPvee(x)
154
155 # returns the sublattice X of Pvee corresponding to the subgroup Omega of the o
s fundamental_group
156 def cocharacter_lattice(self, Omega):
157 return self.MPvee.submodule(list(self.MQvee.gens()) + [ x.lift() for x in Omega.gens() e

s 1)

159 class CohomologyOfRootData(RootDatumGenerator):

160 def __init__(self, R):

161 RootDatumGenerator.__init__(self, R)

162 self.W = R.coweight_lattice().weyl_group()

163

164 def cohomology_of_cocharacter_lattice(self, Omega):

165 WC = WeylCohomology(self.W, self.cocharacter_lattice(Omega), self.action)

166 WC_mod2, comparison = WC.base_change(GF(2))

167 def universal_2_cocycle():

168 assert tuple(self.W.simple_reflections().keys()) == tuple(self.Pvee.simple_roots(). &
s keys())

169 assert list(self.W.simple_reflections().keys()) == list(self.Pvee.basis().keys())

170 indices = self.W.simple_reflections().keys()
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171 assert all(self.W.simple_reflections()[i].action(self.Pvee.simple_roots()[i]) == - &
< self.Pvee.simple_roots()[i] for i in indices) # make sure numberings match up

172 K2, K2_basis, K2_basis_keys, K2_components, K2_from_components, K2_action = WC._K &
s (2)
173 phi_u_components = {}
174 for i in indices:
175 Gamma = ((i,), (i,))
176 assert Gamma in K2_basis_keys
177 phi_u_components[Gamma] = self.Pvee.simple_roots()[i] # again, L.simple_roots() &
% actually consists of coroots (weird convention)
178 return K2_from_components({Gamma: self.Pvee_to_MPvee(phi_u_components[Gamma]) for o
< Gamma in phi_u_components.keys()})
179 phi_u = WC_mod2.K(2).base_change_map(universal_2_cocycle()) # universal_2 cocycle() e
s lives in Hom(CS_2, X7vee) (and isn’t actually a cocycle)
180 _comp = {}
181 def comparison_on_gens(k):
182 if not k in _comp:
183 _comp[k] = [ WC_mod2.H(k).quotient_map()(WC_mod2.K(k).base_change_map(x.lift()) &
s ) for x in WC.H(k).gens() ]
184 return _comp[k]
185 mod2_ker = WC_mod2.d(2).kernel()
186 M = mod2_ker / mod2_ker.submodule([ WC_mod2.K(2).base_change_map(x) for x in WC.d(2). e
< kernel().gens() ])
187 return (WC, WC_mod2, comparison_on_gens, phi_u, WC_mod2.H(2).quotient_map()(phi_u), M. o

< quotient_map()(phi_u))
188
189 def subgroups_of_finite_abelian_group(A):

190 assert len(A.invariants()) == len(A.gens())

191 B = AbelianGroup(A.invariants()) # A is an instance of FGP_Module, which is not a subclass e
s of AbelianGroup

192 # The Sage function AbelianGroup.subgroups is xreally, reallyx slow (as of version 8.1)

193 for BB in reversed(B.subgroups()): # I prefer to get smaller subgroups first

194 yield A.submodule([ A.sum(( gen.exponents()[i]*A.gens()[i] for i in range(len(A.gens()) ¢

% ) )) for gen in BB.gens() ])

196 def faster_kernel(f)

197 >??Computes the kernel of a morphism between FreeModules.

198

199 Until this is fixed in Sage, it is necessary if we want to compute

200 kernels of integer matrices in our lifetime.

201 ’7e

202 if f.base_ring() == ZZ:

203 K = f.matrix().change_ring(QQ).kernel().intersection(FreeModule(ZZ, f.domain().rank()))

204 return f.domain().submodule([ f.domain().linear_combination_of_basis(x) for x in K.gens &
s O D

205 else:

206 return f.kernel()

207

208 # base class for cocomplexes that are dimension-wise finite free R-modules
209 class CocomplexOfFreeModules:

210 def __init__(self, R=ZZ):

211 self.R = R

212

213 def base_ring(self):

214 return self.R

215

216 # the k-th dimensional module

217 def K(self, k):

218 raise NotImplementedError # override in subclass

219

220 # the k-th dimensional differential d(k): K(k) —--> K(k+1)

221 def d(self, k):

222 raise NotImplementedError # override in subclass

223

224 def base_change(self, new_base):

225 assert new_base.has_coerce_map_from(self.R) # in a just world, we would start from a o
s ring morphism, and wouldn’t need this code

226 new_cocomplex = CocomplexOfFreeModules(new_base)

227 K = {}

228 _d = {}

229 def new_K(new_self, k):

230 if not k in _K:

231 _K[k] = base_change_module(self.K(k), new_base) # self.K(k).change_ring( &

< new_base)
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251

254

258

300

def

return

_K[k]

def new_d(new_self, k):
if not k in _d:

_d[k] = base_change_morphism(self.d(k), new_base) # self.d(k).change_ring( &

S new_base)

return _d[k]
# comparison map, given k returns a (python) function
self.K(k) —--> self.base_change(new_base).K(k)
# at the moment, this is just the identity (because of Sage’s weirdness)
def comparison(k):
def identity(x):
return x

H#*

return
new_cocomplex.K = new_K.__get__(new_cocomplex, CocomplexOfFreeModules) # thanks to Mad

identity

% Physicist! https://stackoverflow.com/q/394770/
new_cocomplex.d = new_d.__get__(new_cocomplex, CocomplexOfFreeModules)

return (new_cocomplex, comparison)

# the k-th dimensional cohomology group
k) :
if not hasattr(self, °_H’):

self._H = {}
if not k in self._H:

self._H[k] = faster_kernel(self.d(k))/self.d(k-1).image()
return self._H[k]

def H(self,

A cocomplex K that computes the cohomology of a R[W]-module M.
More precisely,

the cocomplex K(k) = Hom_R[W](C(k),M), where C(k) is

It is assumed that R is a principal ideal domain and that M
lass WeylCohomology(CocomplexOfFreeModules):

def __init__(self, W, M, action, R=ZZ):
self.DCSR = DeConciniSalvettiResolution(W, R)

self.M =M
self.action = action
self.R = R
self.modules = {}

self.differential = {}
self.cohomology = {}

def _K(self,
if not k in self.modules:
self.modules[k] = hom_module(self.DCSR.C(k), self.M, self.action)

return self.modules[k]

def K(self,

def d(self,

self.differential [k] = hom_module_induced_morphism(self.DCSR.delta(k+1), self.M,

test():

k) :

k) :
return self._K(k)[Q]

k) :
if not k in self.differential:

o self.action, self._K(k+1), self._K(k))
return self.differential [k]

def d(cartan_type):
CRD = CohomologyOfRootData(RootSystem(cartan_type))

_, WC_mod2, _, _, _ = CRD.cohomology_of_cocharacter_lattice(CRD. fundamental_group. &

< submodule([]))
return WC_mod2.H(2).dimension()

dims = {1:

N

O O W

8:

1

’
’
’
’

’

O WONO

3/
e}

for ell in dims.keys():
print "Checking.that.dim_\\F_2_.HA2(W_0,X" \\vee.\\otimes_\\Z_\\F_2).=.%d.for_.A_%d" % ( o
s dims[ell], ell)

dim = d([’A’,ell])

the DeConcini-Salvetti resolution of the trivial R[W]-module R.

is a FreeModule over R.

293

o

o
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301 if dim == dims[ell]:

302 print "OK"

303 else:

304 print "Test_FAILED:.dimension.=.%d" % dim

B.3 LaTeXOutput.py

1 import itertools

2 from sage.all import =*

3 from CoxeterCohomology import x

4 from cypari2.handle_error import PariError

5 from os.path import isfile

6

7 def latex_rep_of_finite_abelian_group_with_invariants(invariants):

8 if len(invariants) ==

9 return ’0’

10 return ’.\\oplus.’.join(map(lambda n: (’\\Z/%d\\Z’ % n) if n > @ else ’\\Z’, invariants))

12 def latex_rep_of_fundamental_group(crd):

13 omega = crd. fundamental_group

14 return (latex_rep_of_finite_abelian_group_with_invariants(omega.invariants()), ’>,.’.join( &
< map(lambda gen: crd.lift_to_Pvee(gen)._latex_(), omega.gens())))

16 def latex_rep_of_subgroup_of_fundamental_group(crd, omega_prime):

17 if omega_prime == crd.fundamental_group:

18 return *P~M\\vee/QM\\vee’

19 s = ?,.” . join(map(lambda x: str(crd.fundamental_group.coerce_map_from(omega_prime)(x)), &
< omega_prime.gens()))

20 if s == 77:

21 return ’0’

22 else:

23 return ’\\left<%s\\right>’ % s

24

25 def latex_rep_of_salvetti_flag(Gamma):

26 return ’_\\supseteq.’.join(map(lambda Lambda_i: ’%s’ % ’,’.join(map(str, Lambda_i)), Gamma) &
s )

27

28 def latex_rep_of_element_of_Pvee(x):

29 return x._latex_()

30

31 def latex_rep_of_element_of_MPvee(crd, x):

32 return latex_rep_of_element_of_Pvee(crd.MPvee_to_Pvee(x))
33

34 def latex_rep_of_element_of_MXvee(crd, MXvee, x):

35 return latex_rep_of_element_of_Pvee(crd.MPvee_to_Pvee(crd.MPvee.coerce_map_from(MXvee)(x)))
36

37 def latex_rep_of_salvetti_cochain(WC, k, phi, rep_for_M=str):

38 """Returns latex representation of the element phi of WC.K(k)."""

39 _, M_basis, M_basis_keys, components, _, _ = WC._K(k)

40 comp = components(phi)

41 def optional_parentheses(x):

42 return (’\\left(%s\\right)’ % x) if (’+’ in x or -’ in x) else x

43 s = .+’ . join(map(lambda Gamma: ’%s\\bm{\\text{\\mbox{$[%s]$}}}’ % (optional_parentheses( &

s rep_for_M(comp[Gamma])), latex_rep_of_salvetti_flag(Gamma)), filter(lambda Gamma: not e
% comp[Gamma].is_zero(), M_basis_keys)))

44 return s if not s == ’’ else 70’

45

46 def transpose_matrix(A):

47 n = len(A)

48 if n == 0:

49 return A

50 m = len(A[Q@])

51 return [ [ A[j][i] for j in range(n) ] for i in range(m) ]

52
53 def latex_rep_of_matrix(A):

54 matrix_contents = 7’

55 for row in A:

56 matrix_contents += ’_.&.7.join(map(str, row)) + >.\\\\.’

57 return ’\\begin{pmatrix}.%s.\\end{pmatrix}’ % (matrix_contents if matrix_contents != > o

s else ’\\relax’)
58
o def latex_rep_of_cohomology(omega_prime, crd, WC, WC_mod2, comparison_on_gens, phi_u, e
< class_of_phi_u, class_of_phi_u_mod, range_of_k=[0,1,2,3])
60 s =77

o
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97

124

def cochain_rep(k, x):

return latex_rep_of_salvetti_cochain(WC, k, x, rep_for_M=lambda x: ¢
s latex_rep_of_element_of_MXvee(crd, WC.M, x))

def mod2_cochain_rep(k, x):

x_lifted = WC.K(k).linear_combination_of_basis([ GF(2).1lift(y) for y in x]) # lift to o
% cochain in the Salvetti complex over MXvee

return latex_rep_of_salvetti_cochain(WC, k, x_lifted, rep_for_M=lambda x: &
s latex_rep_of_element_of_MXvee(crd, WC.M, x))

def rep_of_comparison(comparison_on_gens):

#
s
s
s
i

A = [ x.list() for x in comparison_on_gens ]
return latex_rep_of_matrix(transpose_matrix(A))
The cocycle phi_u
+= \n\\vskip.5pt’
+= \n\\begin{center}’
+= >\n\\scalebox{1.15}{\\fbox{\\begin{tabu}spread.1cm{X[-1,R,$$1X[-1,L,$$]1}"

f phi_u.is_zero():

s += 7 \nu\\phi_uo&o=\\u0u\\\\?

elif class_of_phi_u.is_zero():

s += ’\no\\phi_uc&.=\\c\\partial.\\tau.\\text{_.with_.}_.\\tau.=_%s_ \\\\" % o
< mod2_cochain_rep(1, WC_mod2.d(1).1lift(phi_u))

else:

n 0o nnnon#Eonoon

s += 2\no[\\phi_u].&.=\\o\\left(%s\\right)_-\\\\’ % ’,.’ .join(map(str, WC_mod2.H(2). &
< coordinate_vector(class_of_phi_u)))
if class_of_phi_u_mod.is_zero():
s += *\n.&.\\textbf{.lies.in.the.image.of.$\\text{comp}_2$}° # TODO: Give pre-image
else:
s += *\n.&.\\textbf{_.does.not.lie.in.the.image.of_$\\text{comp}_2$}°’
+= \n\\end{tabu}}}’
+= ’\n\\end{center}\n’
Integral cohomology
+= ’\n\\begin{longtabu}{1X[-0.3,C,$$]>{\\footnotesize}X[1,L,$$]1}"
+= ’\n\\toprule’
+= >\n\\rowfont {\\bf}’
+= P\nk.&.HAK(W_0, XM\ \vee) c& .\ \textbf {{\\normalsize.generating.cocycles}}.\\\\’
+= \n\\midrule’
+= ’\n\\endhead’

row_counter = 1

n_

rows = len(range_of_k)

for k in range_of_k:

nwnonnon#FEonoon

S

row = ’%d.&.> % k
row += ’%s.&.’ % latex_rep_of_finite_abelian_group_with_invariants(WC.H(k).invariants() &
S )
row += *%s’ % >.\\linebreak.\\newline.’.join(map(lambda x: cochain_rep(k, x.1lift()), WC &
s .H(k).gens()))
s += \n%s.\\\\%s’ % (row, >\\\\’ if row_counter < n_rows else ’’)
row_counter += 1
+= >\n\\bottomrule’
+= ’\n\\end{longtabu}\n\n\\vskip.@.5cm\n’
Mod 2 cohomology
+= ’\n\\begin{longtabu}{1X[0.1,C,$$]>{\\footnotesize}X[1,L,$$]}"’
+= ’\n\\toprule’
+= \n\\rowfont {\\bf}’
+= ?\nk.&.hrk(\\overline{X"\\vee})_ & \\textbf{{\\normalsize.generating.cocycles}}.\\\\’
+= >\n\\midrule’
+= ’\n\\endhead’

row_counter =1
for k in range_of_k:

n # 0 on

n n non

row = *%d.&.7 % k
row += *%s.&.7 % str(WC_mod2.H(k).dimension())
row += ’%s’ % >.\\linebreak.\\newline.’.join(map(lambda x: mod2_cochain_rep(k, WC_mod2. &
s H(k).lift_map()(x)), WC_mod2.H(k).gens()))
s += *\n%s.\\\\%s’ % (row, >\\\\’ if row_counter < n_rows else ’7)
row_counter += 1
+= ’\n\\bottomrule’
+= >\n\\end{longtabu}\n\n\\vskip.0.5cm\n’
Matrices of comparison maps
+= \n\\begin{center}\\begin{tabu}spread.icm.{>{\\bf}X[-1,R,$$]X[-1,C,$$]1X[-1,C,$$]X[-1,C &
s ,$$1x[-1,C, 881}’
+= ’\n\\toprule’
+= 2\n%s.\\\\’ % ’_.&.7.join((>\\textbf{k}’,) + tuple(map(str, range_of_k)))
+= 2\n\\midrule’
+= P\n%s.\\\\’ % ’.&.7 . join((’\\textbf{comp}_k’,) + tuple(map(lambda k: rep_of_comparison &
< (comparison_on_gens(k)), range_of_k)))
+= ’\n\\bottomrule’
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125 s += >\n\\end{tabu}\\end{center}\n’
126 s += “\n\\vskip.l.cmo\n’
127 return s

129 def latex_rep_of_trivial_cohomology(crd, WC_triv, WC_triv_mod2, range_of_k=[0,1,2,3])

130 s =77

131 def cochain_rep(WC, k, x):

132 return latex_rep_of_salvetti_cochain(WC, k, x, rep_for_M=lambda x: ’’ if x[Q] == 1 else ¢
s str(x[0]))

133 # Trivial integral cohomology

134 s += >\n\\begin{longtabu}{1X[0.3,C,$$]>{\\footnotesize}X[1,L,$$]}’

135 s += “\n\\toprule’

136 s += ’\n\\rowfont{\\bf}’

137 s += *\nko& HAK(W_0, \\Z) & \\text{{\\normalsize_generating.cocycles}}.\\\\’

138 s += ’\n\\midrule’

139 s += “\n\\endhead’

140 row_counter = 1

141 n_rows = len(range_of_k)

142 for k in range_of_k:

143 row = ’%d.&.7 % k

144 row += ’%s.&.’ % latex_rep_of_finite_abelian_group_with_invariants(WC_triv.H(k). &
% invariants())

145 row += ’%s’ % >.\\linebreak.\\newline.’.join(map(lambda x: cochain_rep(WC_triv, k, x. &
o lift()), WC_triv.H(k).gens()))

146 s += \n%s.\\\\%s’ % (row, >\\\\’ if row_counter < n_rows else ’’)

147 row_counter += 1

148 s += “\n\\bottomrule’

149 s += >\n\\end{longtabu}\n\n\\vskip.@.5cm\n’

150 # Trivial Mod 2 cohomology

151 s += >\n\\begin{longtabu}{1X[0.1,C,$$]>{\\footnotesize}X[1,L,$$]}’

152 s += “\n\\toprule’

153 s += >\n\\rowfont{\\bf}’

154 s += ’\nk.&.h" "k (\\F_2). & \\text{{\\normalsize_.generating.cocycles}}.\\\\’

155 s += ’\n\\midrule’

156 s += “\n\\endhead’

157 row_counter = 1

158 for k in range_of_k:

159 row = ’%d.&.7 % k

160 row += ’%s.&.7 % str(WC_triv_mod2.H(k).dimension())

161 row += ’%s’ % ’.\\linebreak.\\newline.’.join(map(lambda x: cochain_rep(WC_triv_mod2, k, &
s WC_triv_mod2.H(k).lift_map()(x)), WC_triv_mod2.H(k).gens()))

162 s += 2\n%s.\\\\%s’ % (row, >\\\\’ if row_counter < n_rows else ’’)

163 row_counter += 1

164 s += “\n\\bottomrule’

165 s += >\n\\end{longtabu}\n\n\\vskip.icm.\n’

166 return s

167

16s def latex_rep_of_cohomology_of_type(cartan_type):

169 s =77

170 R = RootSystem(cartan_type)

171 CRD = CohomologyOfRootData(R)

172 cartan_type_text_repr = "%s%d" % (cartan_type[@], cartan_type[1])

173 s += ’\\subsection{Root.system.\\texorpdfstring{$%s$}{%s}}’ % (R.cartan_type()._latex_(), e

s cartan_type_text_repr)

174 s += >\n\\fbox{\\begin{tabular}{rp{1cm}1}°’

175 s += “\n\\textbf{Dynkin.diagram}.&.&.%s_.\\\\.[2em]’ % R.dynkin_diagram()._latex_()

176 group_rep, gens_rep = latex_rep_of_fundamental_group(CRD)

177 s += “\n\\textbf{Fundamental._group}.&.&.\n{$\\begin{aligned}.PA\\vee/Q”\\vee_&.\simeq.%s. &

s \\\\’ % group_rep

178 if len(gens_rep) > O:

179 s += *\n.&.\\text{_generated.by.}._.%s_.\\in.P~A\\vee_.\\mod.Q”\\vee’ % gens_rep

180 s += ’\n\\end{aligned}$}’

181 s += ’\n\\end{tabular}}\n’

182 section_counter = 0

183 for omega in subgroups_of_finite_abelian_group(CRD. fundamental_group):

184 WC, WC_mod2, comp_on_gens, phi_u, class_of_phi_u, class_of_phi_u_mod = CRD. &
% cohomology_of_cocharacter_lattice(omega)

185 if omega.invariants() == (): # simply connected case

186 s += “\n\\subsubsection{Cohomology.of.coroot.lattice.\\texorpdfstring{$xX~\\vee.=.Q &

o M\vee$ }{XAv.=_QAVv]]?

187 s += “\n\\label{subsub:cohomology_of_%s_simply_connected}’ % cartan_type_text_repr

188 elif omega == CRD.fundamental_group: # adjoint case

189 s += >\n\\subsubsection{Cohomology.of.coweight.lattice.\\texorpdfstring{$X~\\vee.=. &

s PM\\vee$ } {XAvo=uPAV])?
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190 s += ’\n\\label{subsub:cohomology_of_%s_adjoint}’ % cartan_type_text_repr

191 else: # general case

192 omega_latex_rep = latex_rep_of_subgroup_of_fundamental_group(CRD, omega)

193 omega_text_rep = str(omega)

194 s += >\n\\subsubsection{Cohomology.of.lattice.\\texorpdfstring{$xA\\vee$}{Xrv}. &

% corresponding.to.\\texorpdfstring{$\\Omega.=_%s$}{Omega.=_%s}}’ % ( &
< omega_latex_rep, omega_text_rep)

195 s += ’\n\\label{subsub:cohomology_of_%s_%d}’ % (cartan_type_text_repr, o
< section_counter)
196 section_counter += 1
197 s += ’\n’+latex_rep_of_cohomology(omega, CRD, WC, WC_mod2, comp_on_gens, phi_u, e
s class_of_phi_u, class_of_phi_u_mod)
198 WC_triv = WeylCohomology(CRD.W, FreeModule(ZZ, 1), lambda g,x: x, R=ZZ)
199 WC_triv_mod2 = WeylCohomology(CRD.W, FreeModule(GF(2), 1), lambda g,x: x, R=GF(2))
200 s += >\n\\subsubsection{Cohomology.with.trivial.coefficients}’
201 s += >\n\\label{subsub:cohomology_of_%s_with_trivial_coefficients}’ % cartan_type_text_repr
202 s += ’\n’+latex_rep_of_trivial_cohomology(CRD, WC_triv, WC_triv_mod2)
203 return s

205 def compute_cohomology_for_type(X, range_of_ell):

206 for ell in range_of_ell:

207 print "Computing.cohomology.of.%s_%d...." % (X, ell)
208 filename = ’cohomology_of_%s_%d.tex’ % (X, ell)

209 if isfile(filename):

210 print "File_already.exists, .SKIPPING."

211 else:

212 s = latex_rep_of_cohomology_of_type([X,ell])

213 with open(filename, ’w’) as f:

214 f.write(s)

215 print "DONE."

B.4 main.py

1 from sage.all import x*

2 from LaTeXOutput import =

3 import sys

4

5 def main():

6 if len(sys.argv) > 2:

7 compute_cohomology_for_type(sys.argv[1], list(map(int, sys.argv[2:])))
8 else:

9 print "Usage:.sage.main.py.<type>._.<list-of-ranks>\nFor_example:._sage_main.py.A_.2.3.4\n"
10

11 if __name__ == ’__main__":

12 main()

B.5 Makefile

1 .phony: no-default-goal sync-changes compute-A compute-B compute-C compute-D compute-F compute- &
s E compute-G compute-all

SAGE = /Applications/SageMath/sage

A_RANGE =
B_RANGE =
C_RANGE =
D_RANGE =
E_RANGE =
F_RANGE =
G_RANGE =

8

© ® N o o A W N
W wWwN
o O & W
O O O
=0 O O
w30
o 0

[
o
N> O WNDN -~

-
=

=
w N

CRD-FILES = DeConciniSalvetti.py CoxeterCohomology.py LaTeXOutput.py main.py
CRD-DIR = /Users/nico/Documents/math/crd

-
~

15
16 no-default-goal:

17 @echo "No.default.goal.set._.Please.choose.a.goal._.manually"
18

19 sync-changes:

20 rsync -v *.py $(CRD-DIR)

21

22 commit: sync-changes

23 cd $(CRD-DIR) && git commit -a && git push

24
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25 compute-A:

26 @echo "Computing.cohomology.of_.type.A"
27 $(SAGE) main.py A $(A_RANGE)

28

29 compute-B:

30 @echo "Computing.cohomology.of.type.B"
31 $(SAGE) main.py B $(B_RANGE)

32

33 compute-C:

34 @echo "Computing.cohomology.of.type.C"
35 $(SAGE) main.py C $(C_RANGE)

36

37 compute-D:

38 @echo "Computing.cohomology.of.type.D"
39 $(SAGE) main.py D $(D_RANGE)

40

41 compute-E:

42 @echo "Computing.cohomology.of.type.E"
43 $(SAGE) main.py E $(E_RANGE)

44

45 compute-F:

16 @echo "Computing.cohomology.of._type.F"
47 $(SAGE) main.py F $(F_RANGE)

48

49 compute-G:

50 @echo "Computing.cohomology.of.type.G"
51 $(SAGE) main.py G $(G_RANGE)

52
53 compute: compute-A compute-B compute-C compute-D compute-E compute-F compute-G
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