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Summary. A new class of exact solutions of plane gasdynamic equations is found
which describes piston-driven shocks into non-uniform media. The governing equations of
these flows are taken in the coordinate system used earlier by Ustinov, and their similarity
form is determined by the method of infinitesimal transformations. The solutions give
shocks with velocities which either decay or grown in a finite or infinite time depending on
the density distribution in the ambient medium, although their strength remains constant.
The results of the present study are related to earlier investigations describing the propaga-
tion of shocks of constant strength into non-uniform media.

1. Introduction. One-dimensional unsteady anisentropic gas flows have been studied
for a long time. Some of the solutions describing these flows may be found in Sedov [1],
Keller [2], McVittie [3] for plane, cylindrical and spherical geometries. It would appear,
therefore, that new exact solutions, in the similarity form or otherwise, are difficult to find,
at least in the physical plane. The hodograph transformation would render the boundary
condtions, at the piston driving the flows, difficult to satisfy. Thus, one has to look for such
a transformed system as would allow the boundary conditions, both at the piston and at the
shock, to be conveniently satisfied. Such a transformed system was given by Ustinov [4].
The choice of independent variables in the new system was such that the shock trajectory
could be obtained by keeping one of the coordinates, s, constant, while the piston path (and
the particle trajectories) were marked out by constant values of r, the other coordinate.
Ustinov also found a special class of solutions which describe gas flows into a non-uniform
undisturbed medium, produced by a piston and headed by a shock. Some flows without
shocks were also found by allowing the shock strength to tend to zero.

In a different class, Castell and Rogers [5] have constructed some new solutions for
one-dimensional flows from the known solutions of Sedov, using certain reciprocal and
adjoint transformations and following an earlier study of Ustinov [6].

In the present paper, we generalize the work of Ustinov [4], We first find all the
similarity transformations for the equations of Ustinov by applying the method of infini-
tesimal transformations (Bluman and Cole [7]). We find that only two types of similarity
variables made up of t and s are compatible with shock conditions, the so-called power law
type and the exponential type. The similarity forms of these solutions can be easily guessed
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by direct intuitive argument, but the method of infinitesimal transformations ensures that
there are no other nontrivially different similarity forms. We construct similarity solutions
in these variables consistent with the shock conditions. The power law solutions include
Ustinov's solution as a special case and in general involve five arbitrary constants. The
exponential solutions involve four arbitrary constants. These (constant) parameters are
exclusive of y, the ratio of specific heats. The two classes of solutions describe piston-driven
shocks into media which are at rest and have constant pressure but variable distributions of
density. In a medium with increasing density the shock velocities decay, while they grow in
a medium with decreasing density. However, in either case, the shock strength measured by
the pressure ratio across the shock or the Mach number remains constant along the shock
trajectory. In this sense, the family of solutions considered here describes the propagation of
shocks of constant strength which are produced by a suitable piston motion such that the
inhomogeneity of the medium ahead and the motion of the piston behind contrive to
maintain such shocks. We also consider solutions without shocks in the limit of vanishing
shock strength, and local analysis is carried out to describe approximately the nature of
these solutions. The physical nature of the solutions described in the present paper is
brought out in a number of graphs showing particle trajectories and isobars for a variety of
representative parameters.

In Sec. 2, we give the basic equations and boundary conditons and their transformation
to new variables. Sec. 3 gives briefly the theory of infinitesimal transformations, as applied
to Ustinov's equations, to identify the similarity variables. Sec. 4 deals with power law
solutions while Sec. 5 treats the exponential solutions. Finally, Sec. 6 contains discussion
and conclusions of the present study.

2. Basic equations and their transformation. The equations governing plane, com-
pressible and inviscid flows are

p, + (pu)x = 0, (2.1)

p(u, + uux) + px = 0. (2.2)

S, + uSx = 0, (2.3)

p = py expf5 M. (2.4)
riere p, u, p and S are the density of the fluid, particle velocity, pressure and entropy
respectively at any point x and time t. Eq. (2.4) relates the thermodynamic variables p, p and
S; y and C„ stand for the ratio of specific heats and the specific heat at constant volume
respectively. In view of (2.1) and a certain combination of (2.1) and (2.2), we introduce the
variables x and ^:

dx = p dx — (pu)dt, (2.5)

d£, = pu dx — (p + pu2)dt. (2.6)

These differential relations imply

ix _ _«d( + <£+£!!!! (2.7)
P PP

dt = — — + - dx. (2.8)
P P
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The Rankine-Hugoniot conditions holding across a shock moving into a non-uniform
medium with density p# = p^(x), p = p0 (a constant) and u0 — 0 are

p _ (y + l)p + (y - l)Po (2g)
p* (y - i)p + (y + i)p0'

M = (p-Po)[(y + i)p + (y- i)Pol~1/2» (2.10)

1/ = (2P*r1/2[(y + i)p + (y - i)p0]1/2- (2.11)

Writing the shock trajectory dx = Udt in terms of the variables £ and r via (2.7)-(2.8), we
have

+ 4>(x)dz = 0, (2.12)

where

</>(= (2.13)p*M
To facilitate the fitting of the shock conditions, a new coordinate s is introduced such that

ds = d^ + (j)(x)dx, (2.14)

implying s is constant along the shock. The differential relations (2.7H2.8) now become

dx, - "-ds + + + (2.15)
P PP

ds u + d) ,dt = - —+ (2.16)
P P

We remark that Eq. (2.14) is invariant under a translation in s so that we may, for con-
venience, choose s = 0 to give the shock trajectory. Eq. (2.5) implies that t = constant along
a particle line. Thus, the trajectories t = constant also give lines with constant entropy in
the t — s plane. In consequence of this, Eq. (2.3) may be dropped and the other two
equations (2.1H2.2) may be transformed as

wt + wws - - p~lly ps - <P'(t) = 0, (2.17)
y

Pr+ wps- pws = 0, (2.18)

where

fix) = [pp~vyiy, w = u + <p (2.19)

from the equation of state (2.4). Here 0(t) is as defined in (2.13). Thus, we have to deal with
the second-order system (2.17)—(2.18) wherein the functions <f>{i) and/(r), arbitrary so far,
will be determined from the shock conditions. Thus, (2.9H2.11) lead to

Po / 2p0
y + 1 VP* 4>2A=o = rrr (- V + 1)- (2-20)

ws=0 = 4>(^), (2.21)



252 P. L. SACHDEV AND A. VENKATASWAMY REDDY

/(T) = pl'Jo
\y - l)Po + 2y p»4>2

{y+l)PoP* (2.22)

Since we seek similarity solutions in terms of a combination of variables z and s, we choose
(j)(z),f (t) and p^x) at the shock such that p„ </>2 andf/4>2 are constant.

3. In variance group and similarity variables. To identify the similarity form, we use the
theory of infinitesimal transformations given originally by Ovsjannikov [8] and expounded
more clearly by Bluman and Cole [7]. We employ, in fact, an abbreviated form of the same,
as in the paper of Logan and Perez [9]. We seek a one-parameter infinitesimal group of
transformations

f=x + eT, s = s + eS; w = w + eW, p = p + eP, (3.1)

where the generators T, S, W, and P are functions of t, s, u and p under which the system of
equations (2.17)—(2.18) are invariant. We shall further impose the requirements that the
shock trajectory is given by the similarity variable equal to zero (cf. Sec. 2) and the (reduced)
dependent variables assume constant values along the shock. As usual, the similarity trans-
formations will reduce the PDEs (2.17)—(2.18) to ODEs which may be solved analytically, if
possible, or numerically otherwise.

We introduce the following notation for the sake of convenience. Let x1 = t, x2 = s,
u1 = w,u2 = p and define the derivatives

p'j = du'/dxj, i=l,2, 7=1,2.

It can be verified that the invariance of the differential equations, as computed by Bluman
and Cole, is equivalent to the following definition of invariance [9]: a system of differential
equations

Hn(x\ uj, p'j) = 0 1=1,2,

is said to be constantly conformally invariant under the infinitesimal group (3.1) if there
exist constants anj (n,j =1,2) such that

LH„ = ocnJ H j, n= 1,2, (3.2)

for all smooth surfaces ul = u'(xj), where L is the Lie derivative in the direction of the
extended vector field,

dx' duj *PJ dpy
where

and where

hi = t, ex = s, = w, £u2 = p,

d£i , dt\ . dd .

are the generators of the derivative transformations. Writing out (3.2) gives

dJLl pj . ML pi . dJL # = - u n = I 7 n 4)
dxj dul dp) nJ J' ' ( *
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If from Eq. (3.3) are substituted into (3.4), polynomials in p) are obtained. If these
equations are made to hold for arbitrary values of p), thus requiring their coefficients to
vanish, a system of linear PDEs in the generators T, W, P and S are obtained. This system
of equations, often referred to as the determining system, is solved to find the group (3.1).

If the above analysis is carried out for Eq. (2.17), then the invariance of this equation
gives

T = T(t, s), S = S(t, s), (3.5)

8W 8W f 8P ±,— + w—   p lly — = -atu4> + T(j) , (3.6)
oz cs y os

dW dT dT
- n - *• rr <37)

dW f dT— + ~p ly — = a i2, (3.8)
op y os

dS dW dS f _..dP
~T + w~a~~w~z P ^~ = allW_a12P- (3-9)o t oxv cs y ow

op y op y os

= T- p-l/y p~iy+i)/yP - an - p~lly + <x12w. (3.10)
y r y

In the same way, invariance of Eq. (2.18) yields

dP dP dW ±l n,n
—+ w —-p —= -a21</), (3.11)
OT OS OS

Ihi + P17 = (3'2)
8P 8T dT = (3'13)

8P 8W 8S /t ,w — - p — + p — = <X21W + (1 - a22)p, (3.14)
dp 8w os

dS 8P ^ dW f- — + w   w —-p —=-a21-p lly + tx22w-W. (3.15)
ox Bp 8s dp y

We now solve the above determining differential equations for the transformation
group. Eqs. (3.12) and (3.13) give dT/ds = 0. This result with (3.5) gives T = T(r). Eqs. (3.14)
and (3.7) imply a21 = 0, which in turn gives dP/dw = 0. Eq. (3.9) and (3.8) give dW/dp =
— a12 = a12 = 0. Again, (3.7) and (3.11) with dP/dw = 0 imply dP/ds = 0. Then, (3.6) and
(3.11) give W = W(z, w), P = P(p). It is also clear from the determining equations (3.5)-
(3.15) that

d2P 82W d2T d2S
dp2 8w2 dx2 8s2
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Hence

T = b1T + b2. (3.16)

Eq. (3.16), with the help of (3.12) and (3.10), implies

P = (a22 + bjp. (3.17)

Eqs. (3.14) and (3.9) imply dS/ds = (2b1 + an), that is

S = (2b1 + au)s + S^t). (3.18)

Now, (3.9) gives

W = (all + bl)w + S'(r). (3.19)

Finally, (3.10) and (3.6) give
/(t) = a1T((X22+bl)ly)+2xil+bl~'Z22)lbl, b, # 0, (3.20)

</>(t) =

/(t) = a i exp

</>(t) = exp

yai l/fc]

a22 + b

y

r r , 1,J ^,,/n + i + a2jdT + a3

i + 2a11 + i»i -ot22^

<XnT expl —-— I —— dz 4- a2Jdt + a
,bt=0. (3.21)

In the above, au a2, a3, and b2 are arbitrary constants and Sj(t) is an arbitrary function
of t. Eqs. (3.16)-(3.19) give the generators of the invariance group for the differential
equations (2.17) and (2.18). The invariant surface conditions [7] to determine the similarity
variable and the similarity solution for w and p become, respectively,

„ dw dwT- + S--W, ,3.22)

T~ + S^~ P. (3.23)
ox cs

The characteristic system of (3.22) is

dx ds dW
b1r + b2 (an + 2/7JS + Sj(t) (an + bjw + Si(t)'

One first integral gives the similarity variable

a = sT~*lllbl~2 - |SAT)T-°lllbl~3, by # 0,

= s exp( - y-x I - I <*11 \ SiW , , „CXP( ~ *T 7 ~*T ' 1 =
(3.24)
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The second first integral gives

w(t, s) = T"llbt + l

'(X.22I
= exp( —

Txlilbl + 2Sl(z)dz + Wx{a)

exP( dz + wi(a)

ft, #0,

, b, = 0.
(3.25)

In a similar way Eq. (3.23) gives

p(x, s) = TX22,bi + l + P^a), bt¥=0,

= exp (:y" t)pj((7), = 0.
(3.26)

In the above, and are arbitrary functions of a. Next we use the shock conditions
(2.20H2.22) to determine Sj(t) and other constants. That the similarity variable a is con-
stant on the trajectory s = 0 implies

Si(T) = 0,

g = sT~^"illbl + 2\ bl^ 0,

= s exp( — au/(>2)i, bx = 0.

Also, from the shock conditions we have

f/(j)2 = constant,

which requires that a22 + = 0 and tz3 = 0. Without loss of generality, we take b2 = 1
and t = 0 at the origin.

Finally, the similarity forms of the solutions for the differential equations (2.17H2.18)
are given by

a = s[l + &jt],

w = [1 + b^Y11/61 + 2 W^o), bx± 0 (3.27)

P =

/ = ax[l + V] 20,11/1,1+ 2,

(f) = a2[ 1 + bx x2"lllbl + 1.

a = s exp( — a^r),

w = exp(a11i)H/1((r),

P = PM), bl = 0 (3.28)
/= exp(2ani),

</> = a2 exp(a11t).
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4. Power-law similarity solutions. Introducing the similarity form of the solutions

az
a = — 1+  , (4.1)

Pot0\ PoX0J

w = <f)W(<j), (4.2)
P = Po P(o), (4.3)

(4.4)
Po *o \ Po xo)

/= f^c/l+—Y", (4.5)bp o \ P0x0J

in accordance with (3.27), into (2.17) and (2.18), we obtain

(W - a(a + 1 )a)W' - C^^P' = aa(l - W), (4.6)

PW' - (W - (a + l)aa)F = 0. (4.7)

W and P here should not be confused with those of Sec. 3. Here they refer to the similarity
form of w and p as defined in (4.2) and (4.3). In the above, a is the exponent in the definition
of the similarity variable and x0,t0, p0 and p0 are arbitrary constants with the dimensions
of distance, time, pressure and density respectively. The constant a assumes values + 1 or
— 1. The parameter is given by

1 + (2y/b)\ b
yT+i-j

where the pressure ratio across the shock

Ps = o _ p 2b - y + 1
Po * y+1 '

and b = p0 xl/p01%.
The undisturbed distribution of density p^(t) is chosen to fit into the similarity form of

the shock conditions. Thus,

at ^ ~2a
P* = Pol 1 H ) ■ (4-8)

\ PoXoJ
The family of solutions referred to thus involves five arbitrary constants, namely x0,t0,p0,
p0 and a ^ 0. The case a = 0 would imply isentropy of the flow, which is not admissible by
the basic transformations of Sec. 2.

The initial conditions for the ordinary differential equations (4.6) and (4.7) can be found
by the substitution of the similarity form of the solution (4.1)—(4.5) and (4.8) into the shock
conditions, (2.20)-(2.22). The shock trajectory is taken to be s = 0, implying a = 0, and
along it

2b — y + I
y + 1

w(0) = p( o) = — ;; = p^. (4.9)

Taking a, W as dependent variables and P as independent variable, (4.6), (4.7) and (4.9) can
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be written as

dW/dP = (W - V)/P, (4.10)
dV/dP = al(C1P(y~1)ly - (IV - V)2)/P(W - 1), (4.11)

with initial conditions

V(P) = 0, W(PJ = P„ (4.12)
where V = (a + 1 )aa and al = (a + l)/a. Along the shocks s = 0, therefore, from (2.5) we
have

dx = p* dx. (4.13)

Substituting p^ from (4.8) into (4.13) and integrating, we get

x 1
x0 a(2a + 1)

ax \2oi+1 1 1
1 +  -1 , a#

P o x0J J 2

= 1 /a ln(l + az/p0x0), a =

Again, using dx = Udt in (4.13), we get, after an integration,

t 1

(4.14)

t0 a( a + 1) T - ■]•1 + ] — 1 |, a * -1,
PoX,

= -ln(l+ — |, a = — 1.
a \ P o

(4.15)

In the derivation of Eqs. (4.14) and (4.15), the boundary conditions r = 0atx = 0, t = 0
have been used. Eqs. (4.14H4.15) give the parametric representation of the shock wave
motion. Eliminating t between Eqs. (4.14) and (4.15), we get

x(t) 1
a(2a + 1)

t
1 + a(a + 1) —

to.

(2«+l)/(«+l) ") |
-1, «#-l, -2,

= ^ (1 - exp( - at/t0)), a = -1, (4.16)

2 ( at\ 1= - lnl 1 H , a = — -,
a \ t0J 2

as the explicit trajectory of the shock.
Expressing rasa function of x from Eqs. (4.14) and substituting into (4.8), we get

P*M = Po 1 + a( 2a + 1) —
-<2«/2«+l) j

/ \ , (417)/ ax\ 1= PoexW a=-5-

Similarly, expressing i as a function of t from Eq. (4.15) and substituting into the expression
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for shock velocity, we get

t/ = ^
fo

t
1 + a(a + 1) —

a/ot+ 1

a # -1,

(4.18)
x0 / at\

It can be verified that, when aot > 0, the undisturbed density p„ ahead of the wave is a
decreasing function of x, the shock velocity U increases with t, and the non-dimensionalized
pressure, at the back of the shock, P = p/p0 > P^. Similarly, when aa. < 0, increases with
x, U decreases with t and 1 < P < P^. at the back of the shock. Figs. 1-7 give the distri-
bution of pressure and particle trajectories between the shock locus (or sonic line) and the
piston path for some typical values of the parameters.

Fig. 1. Piston path, isobars and shock locus fory = 4,ft = f,a = — a = 1 (Eqs. (4.26)). The shock velocity
decays to zero in an infinite time and distance in an increasing density medium. The density becomes infinite at an

infinite distance.
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Fig. 2. As in Fig. 1 with y = 1.4, b = 2.4, a = — 1, a = — 1 (Eqs. 4.25)). The shock velocity grows to infinity in an
infinite time and distance in a decreasing density medium. The density becomes zero at an infinite distance.

We substitute

s = p0focr(l+ ) > w = 4>(W — 1), p = p0p
P o *ov

into Eqs. (2.15) and (2.16) to get

dx x0 (W - 1^ ^ ax \2x+i da
dP b \ P J\ PqXqJ dP'

(419)
dt t0 / J at V+1 da
dP P \ p0XoJ dP
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Fig. 3. Piston path, particle trajectories and sonic wave locus for y = b = 1.4, a = — 1, a = — 1. The sonic speed
grows to infinity in an infinite time and distance in a decreasing density medium.

Using Eqs. (4.10) and (4.11), (4.19) can be written as

dx x0
dP atxb

dt_=t^
dP act

dW\2— -C,p-^ + 1M
dP 1

dWY _ —(y+ l/y,

1 +-^~
P0 xo_

2a + 1

(4.20)

1 +
P o *o_

a+ 1 /
l(W- 1). (4.21)

Making use of the conditions (4.14) and (4.15) at the shock P = Eqs. (4.20) and (4.21)
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can be integrated to give

at
1 H 

P0 *0

2a+ 1

+

aba.

1

,p r/dwy
— -c,p-(y+1M

p* A dP J dP

a(2a + 1)

ab p*

PoxoJ

"/^Y-cpWlUJ ClP

a# -1, 1 (4.22)

dP + - ln/'l + -^-Y a = —
a V PoW 2

0-40-

0-30-

0-20

0-10

o
Fig. 4. As in Fig. 3 with y = b = 1.4,a = —0.75, a = — 1 (Eqs. (4.16), (4.22) and (4.23)). The sonic speed grows to
infinity in a finite time(£ = 4(0) and infinite distance in a decreasing density medium. The density becomes infinite

at an infinite distance.
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Fig. 5. Piston path, particle trajectories and shock locus for y = 1.4, b = 2.4, a = —0.75, a = 1. The shock ve-
locity decays to zero in an infinite time and finite distance (x = 2x0) in an increasing density medium. The

density becomes infinite at x = 2x0.

, a* Y+1
H I cpt \ PoXoJ

+

aa

1

p*
dw\2  _ r p~ly+ i/y>

L \dP J 1
dP

(W — 1)

a(a + 1)
1+ ) -1

Po xo,
a / — 1, (4.23)

= r[®2_ClP_<v+Hfw^n + lln(1+^1")' a=~1a Jp* \dp J _ (w - !) a \ PoXoJ
where

Pif<P< oo for aa > 0,

1 < P < P^ for aa < 0.
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Setting t = constant in (4.22) and (4.23), we obtain the trajectories of the gas particles in
parametric form. In particular, with t = 0, we obtain the law of motion of the piston as

x(P) = _L
x0 aba.

tr, aa

p*

^ e> — (y -t- 1/y)
dP J 1

dP,

(424)
dP

(w-iyjp*
which gives rise to a shock wave moving according to (4.16).

Thus, Eqs. (4.4), (4.5), (4.8), (4.10H4.11) and (4.22H4.23) give in a closed form the exact
solution of the following problem in terms of some quadratures: at t = 0, there is a quies-
cent gas in the region x > 0 with constant pressure equal to p0 and density determined by
the relation (4.17). At the time t = 0, a piston begins to move according to the law (4.24) in
the region x > 0. Ahead of the piston a shock appears immediately whose law of motion is
given by Eq. (4.16). The solution of the problem contains five arbitrary constants x0 ,t0,p0,
p0 and a.

If M0 denotes the ratio of the shock velocity to the sound velocity in the quiescent gas
ahead of it, we find that M0 = (b/y)1/2. In view of the second law of thermodynamics
M0 > 1, that is, b > y.

Eqs. (4.10) and (4.11) can be solved explicitly for a = — 1 and a = — Fora=— 1, the
solution is given by

1+ aT

T =  ''I l>Cl(P* ̂ - P'W) "CP" PJ] + -Xq cib d
i - i +

az \ 1

Po *o/

t,- = - f [C1P^+^-l]-^- + -ln(l+ —
a.p* (P~ 1) a \ p0x0

u — <P(P ~ 1), 0 = ^(1+ — ) , (4.25)
Po x0 \ Po x0y

f( \ yPo r (1 1 aT ^ (\ ax\f(*) = T Ci 1 +  . P* = Po\l bp 0 \ PoX0J V xoJ
x(t) _ 1
x0 a

1 - exP( - ~

l<P<Pt,, for a— 1 and Pie<P< 00 for a=—1.

We recover Ustinov's solution [4] by taking a = — 1 in (4.25).
For a = —j, the solution is again explicit:

x=_2_fp
x0 ab JP<i

Cir_,v+n/v (b — yCiP~ily)2 JP+'- ln(l+ "
a \ Po xo

21 1 + —
1 = \ P 0*0
t0 a

1/2

dPP rCir-<^ (fc-yc.p-^'
Q1/2
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2
+ -

a
1 +

ax xl/2

P o *o
(4.26)

u = <j>Q{py12, 0,£^(i+_«_r/2, /=i_^Clfi+ aT
Po xo \ Po xoJ b Po \ Po xo

(ax\ X(t) 2 ( at\
P* — Po exP I )>  = - lnl 1 + — I,

\x0J x0 a \ t0)

1 <P<P^, for a = 1, and P* < P < oo for a=— 1,

where

e,1+(t±iV+2f,p 2fClP"-""
y — IJ y - 1

We now consider the limiting case when the shock strength tends to zero so that the front is
not a shock but a characteristic. In this case M0 = 1, that is b = y, and the shock degener-
ates into a sonic wave. Eq. (4.11) has a singularity at P = P„, s 1, and therefore we cannot
directly solve (4.10) and (4.11) numerically. We find the local solution of (4.10) and (4.11) in
the neighbourhood of P — 1, when W = 1, V = 0 and utilize it to start the solution numeri-
cally.

It is easy to verify that the local solution of (4.10) and (4.11) for the shockless case is
given by

W = 1 + (P - 1) + b2(P - l)2 + b3(P - l)3 + 0(P - l)4,
(4.27)

V = -2b2(P - 1) - (b2 + 3b3)(P - l)2 - (2b3 + 4b4)(P - l)3 + 0(P - l)4,

where

1 — 2a!/' \ 12y / (1 — fli) [_ 7 ~ 1

K = f"' ,2). b2b3 + (y + l)(2y + l)(3y + l)a1/24y3(3 - 2a,).4(3 —

Making use of (4.27), Eqs. (4.24) can be integrated to give the approximate piston path:

x(P) 1 1
act. ya j

b2(P - l)2 + ( 2b3 + | b2^j(P - 1)3J + 0(P - l)4
(4.28)

= - - [2b2(P - 1) + 3b3(P - l)2 + 4MP - I)3] + 0(P - l)4,
t0 aa. at

P > 1, aa. > 0.

In (4.28), x and t are positive in the neighborhood of P = 1 only if — 2 < a < 0.
The local solution of (4.10) and (4.11) in the neighborhood of P = P* > 1 is given by

W = P* + (P ~ P*) + (P - P*)2 + <>3(P ~ P*f + 0(P - PJ4,
V = - 2a2 PJP - PJ - (a2 + 3a3 P*)(P - PJ2 - (2a3 + 4a4 PJ(P - PJ3 + 0(P - P„)4,

(4.29)
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10 20 30
x/x0 X 10"2

Fig. 6. As in Fig. 5 with y = §, ft = §, a = —0.25, a = — 1. The shock velocity grows to infinity in a finite time
(( = 4f0/3) and a finite distance (x = 2x0) in a decreasing density medium. The density becomes zero at x = 2x0.

where

a2 = «i(l - Ci)/2(P* - 1),

1
a, = 6<P„ - 1)

«i(! - Ci) . y +
iFr=~ni2a~i)+y +i gtQl

7 P* J'
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Fig. 7. As in Fig. 5 with y = §, b = §, a = —1.5, a = 1. The shock velocity decays to zero in a finite time
(f = 210) and a finite distance (x = xjl) in an increasing density medium. The density becomes infinite at

x = x0/2.
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1
a4 =

„ 2^ „ (7 + JX2y + DaiCi'
6a3(a, - 1) + 2^(2^ - 1)   , 2 12(P* - 1) L 2 y2 Pi

Using (4.29), Eqs. (4.24) can be integrated in the neighborhood of P = P„ to give the piston
path

- = - -i; [2(Pm - 1 )a2(P - PJ + [3(P+ - 1 )a3 + b2JP - PJ2
x0 aa ato

+ [4(P„ - 1 )a4 + 2a3 + §a2](P - PJ3] + 0(P - P„)4, (4.30)

f = - - [2a2(P - P J + 3a3(P - P„)2 + 4a4(P - P„)3] + 0(P - PJ\
t0 aa ax

From Eqs. (4.30) it is clear that, for a physically meaningful solution, that is for x and t
positive, we have P > P^ for aa > 0, and 1 < P < P+ for aa < 0.

5. Exponential-type similarity solutions. The second class of similarity form of solu-
tions identified by (3.24) imply

w = (j) W(cr), (5.1)

P = Po (5-2)

a = —expf - (5.3)
P0 *0 \ P0 xo)

/=^C1 exp(~—\ (5.4)
bp 0 \ Po xoJ

J. Po*o ( ax \4> = exp   . (5.5)
Po xo \P0 xoJ

The constants x0,t0,p0, p0, and a occurring above are similar to those defined in Sec. 4.
Substitution of (5.1 H5.5) into (2.17)-(2.18) yields

(1W - aa)W' - Cj P~l<*P' = a(l - W), (5.6)

P W' — (W — aa)P' = 0. (5.7)

We have chosen the undisturbed density to be

P* = Po exp( - —) (5.8)
V Px 0/

so as to get the similarity form of the shock conditions. Eqs. (5.6) and (5.7) can be rewritten
as

dW/dP = (W - V)/P, (5.9)

dV/dP = (CjP*- lly - (W - V)2)/P(W - 1), (5.10)

with initial conditions

W(P*) = P*, V(PJ = 0. (5.11)
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where V = aa. It is instructive to note that Eqs. (5.9) and (5.10) can be recovered from Eqs.
(4.10) and (4.11) in the limit of a tending to + oo, implying = 1. The solutions without
shocks do not exist in the present family.

Proceeding as in Sec. 4, it is easy to verify that the parametric representation of shock
wave motion is

JL - J_
x0 2 a

( lax \ 1 t if / ax \
exp   — 1 — = - exp   — 1

\Po xo/ J to a L \PoW (5.12)

The explicit trajectory of the shock, shock velocity, and the undisturbed density ahead of
the shock are given respectively by

U(t) = ^ (1 + at/t0), (5.14)
h

pjx) = p 0/(l + 2 ax/x0). (5.15)

The functions x and t are found to be

( lax
exp -

^ _ \Poxo.
x0 ab

( ax
exp  

 \P o xo
to a

where

dW V  1
dP J dP + —

la
exp( ) - 1

P o x0/'
(5.16)

dW V
dP J

Qip-(y+ i/y) dP 1 (ax
+ - exp   - 1

(W - 1) a \p0x0

P^ < P < oo, for a = 1 and 1 < P < P^ for a = — 1.

The piston motion corresponding to x = 0 is given by

x 1
x0 ab

t_ _ 1
t0 a

_q p-(y+ i/y)
dP ClF

(_ q p ■(■/+D/yUP ClP

dP,

dP
(w-iy

(5.17)

Some typical results for the presemt class of solutions are shown in Figs. 8 and 9.
The local solution of (5.9) and (5.10) and the piston path in the neighborhood of

P = P* > 1 are given respectively by Eqs. (4.29) and (4.30) with al = 1 and a = 1.

6. Discussion and conclusions. We have in this paper found two families of similarity
solutions of a transformed system of one-dimensional gasdynamic equations. The similarity
form of the transformed system implies the following constraints: (1) the density in the
undisturbed medium (with a constant pressure) varies according to the power law (4.17),
which implies either a decreease in density ahead of the shock to zero or to an increase in
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Fig. 9. As in Fig. 5 with y = •§, fc = §, a = — 1. The shock velocity decays to zero in a finite time (( = t0) and a
finite distance (x = x0/2) in an increasing density medium. The density becomes infinite at x = xj 2.
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density to an infinite value, at an infinite or a finite distance, (2) the shock strength as
measured by pressure ratio across the shock or shock Mach number has a constant value
throughout the course of shock propagation, while the shock velocity itself either grows to
infinity in the case of a decreasing-density medium or decays to zero in the increasing-
density medium at an infinite or a finite time according to Eq. (4.18).

The propagation of shocks of constant strength has been considered earlier by several
authors—for example by Carrus, Haas and Kopal [10], who analyzed the propagation of
shocks of constant strength in a compressible spherical gas-configuration which is stratified
under the effect of gravity. The shock was assumed to be caused by a central explosion. As
Figs. 1-9 show, the piston accelerates (decelerates) in the case of a growing (decaying) shock
velocity, moving into a decreasing (increasing) density medium, thus assisting in the process
of shock velocity growth (decay). The circumstance of the shock velocity decaying (growing
to become infinite) at a finite distance and a finite time is a little unusual, although the
increasing (decreasing) density in the undisturbed medium causing it is quite conceivable in
spite of the piston motion from behind. In fact, in these cases, the piston stops much before
the point where the density becomes zero or infinite and Figs. 6, 7, and 9 show the piston
motion up to its final stage. In these cases, although the shock velocity and the sound speed
both vanish (or become infinite) at a finite distance and a finite time, their ratio remains
constant and equal to its initial value. The decay of an initial profile headed by a shock
which evolves according to the single non-linear PDE

u, + g(u)ux + yu" = 0, 0 < a < 1, A > 0,

g(u) > 0, gu{u) > 0, 0 < u <£ 1,

has been considered by Murray [11]. He finds that the profile decays in a finite time and a
finite distance. Thus, the case of the medium with increasing density is somewhat similar,
though here we consider a boundary-value problem and the damping is affected by the
nonuniform undisturbed medium. The propagation of an initially spherically shock wave
due to explosion in air in the direction of most rapidly increasing density (besides other
directions) has been studied by Zeldovich and Raizer [12], in the limit of the shock having
traversed a large distance from the point of explosion. They have brought out clearly the
attentuating effect of the increasing density on the shock velocity. They have analyzed the
analogy of such a motion with the motion of an inhomogeneous atmosphere set in by
impulsive loading, that is, a forward piston motion of a very short duration. A subset of the
solutions found in the present paper exhibits a rather extreme situation such that the
attenuation (growth) of the shock velocity, caused by a certain piston motion and propagat-
ing into an increasing (decreasing) density medium, takes place in a finite distance and a
finite time.

The preceding discussion pertains to power-law similarity solutions. The exponential
form of similarity solutions shows that the shock velocity either decays to zero in the
increasing density medium at a finite distance and finite time or becomes infinite in the case
of a decreasing density medium at an infinite distance and infinite time (cf. Eqs. (5.14)—
'5.15)).

For the sake of comparison, we discuss Ustinov's solution, which comes out as a special
case of the power-law solutions of Sec. 4 with a = — 1, a = — 1. Ustinov obtained this
solution by considering the product form of solution of the system (2.17H2.18) and special-
ized it to the case when p is a function of s only and u is a product of (p(z) (cf. Sec. 2) and a
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function of s. He was able to find an explicit solution which shows that the shock velocity
grows exponentially with time as it proceeds into a medium of decreasing density. On the
other hand, if we take a = +1 in (4.25), it can be easily verified that the solution has a shock
velocity decaying exponentially at a finite distance x = x0, where the undisturbed density
blows up. As opposed to Ustinov's solution, our special explicit solution with a = — j,
a = 1, shows that the undisturbed density increases exponentially and the shock velocity
decays algebraically in time. The case a = — i, a = —1 gives the solution with a growing
shock velocity in a medium with exponentially decreasing density and the shock velocity
becomes infinite in a finite time, t = 2t0.

Finally, we briefly comment on the solutions which are headed by sonic lines (character-
istics) and not shocks. While the solutions with shocks for the power law case exist for
— oo < a. < oo, a =/= 0, the shockless ones exist only in the range — 2 < a < 0 of the simi-
larity parameter. The case a = 0, as we have remarked earlier, is inadmissible since it
invalidates the basic assumption of non-isentropy in the transformation of the usual system
of gasdynamic equations. The exponential form of the similarity variable allows no so-
lutions which are shockless.
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