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Some exactly solvable models

of urn process theory

Philippe Flajolet, Philippe Dumas, and Vincent Puyhaubert

Algorithms Project, INRIA, F-78153 Le Chesnay (France)

We establish a fundamental isomorphism between discrete-time balanced urn processes and certain ordinary differen-

tial systems, which are nonlinear, autonomous, and of a simple monomial form. As a consequence, all balanced urn

processes with balls of two colours are proved to be analytically solvable in finite terms. The corresponding generating

functions are expressed in terms of certain Abelian integrals over curves of the Fermat type (which are also hyper-

geometric functions), together with their inverses. A consequence is the unification of the analyses of many classical

models, including those related to the coupon collector’s problem, particle transfer (the Ehrenfest model), Friedman’s

“adverse campaign” and Pólya’s contagion model, as well as the OK Corral model (a basic case of Lanchester’s theory

of conflicts). In each case, it is possible to quantify very precisely the probable composition of the urn at any discrete

instant. We study here in detail “semi-sacrificial” urns, for which the following are obtained: a Gaussian limiting

distribution with speed of convergence estimates as well as a characterization of the large and extreme large deviation

regimes. We also work out explicitly the case of 2-dimensional triangular models, where local limit laws of the stable

type are obtained. A few models of dimension three or greater, e.g., “autistic” (generalized Pólya), cyclic chambers

(generalized Ehrenfest), generalized coupon-collector, and triangular urns, are also shown to be exactly solvable.
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Introduction

The urn models which we consider are the ones where a single urn contains balls of different colours and a

fixed set of rules specifies the way the urn composition evolves: at each discrete instant, a ball is picked up

at random, its colour is inspected, and, in compliance with the rules, a collection of balls of various colours

is added to the urn. In this study, we restrict attention to balanced urn models, where the total number

of balls added at any instant is a deterministic quantity. Such urn models have been intensely studied for

about three centuries: early contributions are due to Jacob Bernoulli and Laplace [75], the subject being

then largely renewed by works of Pólya in the first half of the twentieth century. The book by Johnson and

Kotz [64] (see also [73] for a more recent update) offers an interesting perspective on the simplest models,

their history, and some of their applications in statistics, engineering, and genetics. For dimension 2 (i.e.,

balls can be of either of two colours), the model is precisely described in §1.1 below.

Our main theme is the following. To any balanced urn model, one can associate directly an ordinary

differential system of the same dimension. This differential system has particular features, in that it is

autonomous, monomial, and homogeneous in degree. The algebra of such a simple differential system

turns out to be isomorphic to the combinatorics of a balanced urn model. In particular an explicit solution

of the differential systems provides automatically an analytic solution of the urn model. We develop this

fundamental property in §1.2 in the case of dimension 2 and later extend it in §9 to the case of urns with

more than two colours.

The fundamental isomorphism between balanced urn models and differential systems makes it possible

to derive in a direct and unified way most of the explicit solutions known for special urns with two colours—

for instance those of Pólya, Ehrenfest, Friedman, as well as the coupon collector’s urn: this is the subject

of §2. Perhaps a more important consequence is that balanced urns with two colours belong to the class

of integrable systems: we establish in §3 that the differential systems, for dimension 2 at least, always

admit of an explicit first integral, so that the associated generating functions can be constructed from a

finite sequence of elementary algebraic operations combined with quadratures and functional inversion

(this corresponds to “closed-form” functions in the terminology of Taylor [98]). These integrability results

extend those obtained earlier by Flajolet, Gabarró, and Pekari [30], where the method of characteristics was

used to solve an associated partial differential equation. The new feature of treating urn models directly via

an ordinary differential system takes some of its roots in the recent combinatorial study [16].

As an illustration of the usefulness of explicit solutions, we examine in detail in §4 and §5 the class of

semi-sacrificial urns of dimension 2, which are defined by the fact that one diagonal entry is positive, the

other negative. For such urns, we obtain the following: a Gaussian limit law for the urn’s composition

at large instants; a characterization of the speed of convergence to the Gaussian limit; a quantification of

the extreme large deviation regime; the large deviation rate function; the structure of moments. These

properties extend what was known earlier from [30] regarding fully sacrificial urns, where both diagonal
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entries are negative. The results of [30] are briefly reviewed in §6, which also contains a brief discussion of

2 × 2 urns whose solution involves elliptic functions.

Next we treat triangular urns of dimension 2 in §7, where we report on unpublished results that parallel

and supplement a recent independent study of Janson [63]. Section 8 is an intermezzo dedicated to the

OK Corral problem: there, a natural time-reversal transformation applied to Friedman’s urn (the adverse-

campaign model) combines in an interesting fashion with analytic methods and provides exact evaluations

as well as asymptotic estimates that appear to be new.

In dimension greater than two, the isomorphism with differential systems still holds; see §9. However,

the systems are not in general (explicitly) integrable. We can nonetheless single out a few special classes

of exactly solvable urn models with dimension three or more, including generalized Pólya and generalized

coupon collector’s urns, as well as a multi-chamber Ehrenfest model: see §9; triangular urns of dimension 3

are also (somewhat) exactly solvable: we report preliminary results on these in §10.

Our methodology strongly relies on special functions, singularity analysis, quasi-powers approximations,

and, more generally methods exposed in the forthcoming book Analytic Combinatorics [38]. The principle

of looking for explicit solutions could hardly be better expressed than by the following quotation from

Eilbeck, Mikhailov, Santini, and Zakharov [in an introduction to a semester on Integrable Systems, at the

Newton Institute in Cambridge, 2001]:

Rather surprisingly, relatively sizable classes of nonlinear systems are found to have an extra property, in-

tegrability, which changes the picture completely. Integrable systems have a rich mathematical structure,

which means that many interesting exact solutions to the PDEs can be found. Although important in their

own right, these systems form an archipelago of solvable models in a sea of unknown, and can be used as

stepping stones to investigate properties of “nearby” non-integrable systems.

(Our title is inspired by that of Baxter’s magnificent opus, Exactly solved models in statistical physics [8].)

As we propose to demonstrate in subsequent works, the methods of analytic combinatorics can be further

adapted to several urn models that no longer admit of explicit solutions.

Apart from works that treat isolated problems, we mention here a few researches that deal with urn

models at a level comparable to the one we are aiming at here. Friedman [43] launched the study of

models determined by a general symmetric 2 × 2 (balanced) matrix. Subsequently, Bagchi and Pal [6]

elucidated the structure of moments for balanced 2 × 2 urns and deduced a Gaussian limit law for a large

class of models. Smythe [96] found a theorem of considerable generality based on the spectral properties

of the urn’s matrix, which is applicable to arbitrary dimensions. Gouet [46, 47, 48] developed powerful

martingale methods that lead to functional limit theorems, but are often of a nonconstructive (i.e., non-

explicit) nature. Pouyanne [91, 90] has recently developed a widely applicable operator approach to the

determination of moments and it would be of great interest to relate his work to the present study. Higueras

et al. [52] elaborate on the asymptotic theory of urns via algebraic differential equations, in a way that leads

to results of appreciable generality whenever some almost sure convergence property is a priori known

to hold. Finally, a special mention is due to the works of Athreya, Karlin, and Ney [3, 4] based on an

embedding into continuous time, which has the capacity of dealing with nonbalanced urn models (see

also [2]); a central contribution in this area is Janson’s recent study [62].

Our interest in this range of questions started from problems in discrete probability theory and the analysis

of algorithms. For these aspects, we refer to Mahmoud’s survey [84].

This text is an expanded version of invited lectures given by P. Flajolet at the Workshop on Analy-

sis of Algorithms (AOFA2006, Alden Biesen, Belgium, 2-8 July 2006) and at the Fourth Colloquium on

Mathematics and Computer Science—Algorithms, Trees, Combinatorics and Probabilities (Nancy, France,

September 18–22, 2006). It represents to a large extent a report on work in progress mingled with an at-

tempted survey of the field of urn processes examined under the perspective of exactly solvable models and

analytic combinatorics methods.

1 Urns and differential systems

1.1 Urn models [α, β, γ, δ]

We consider here urns that may contain balls of two possible colours or types, which we call rather unpoet-

ically x and y. An urn model is specified by a matrix with integer entries,

M =

(

α β
γ δ

)

, α, δ ∈ Z, β, γ ∈ Z≥0, (1)
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also abbreviated as [α, β, γ, δ]. At time 0, the urn contains initially

a0 balls of type x, b0 balls of type y. (2)

At regularly spaced discrete instants, the urn evolves according to the following rule:

Urn evolution rule. A ball is chosen from the urn, with all balls present in the urn at that time having

equal chances of being chosen, and its colour is inspected(i). If the ball chosen is of colour x, then α
new balls of type x and β new balls of type y are placed into the urn; if the ball chosen is of colour y,

then γ new balls of type x and δ new balls of type y are placed into the urn.

By convention, a negative (diagonal) entry in the matrix M means that balls of the corresponding colour

should be taken out of the urn.

For instance, with the matrix M =

(

−1 3
2 0

)

, a possible evolution starting with the initial configura-

tion (a0, b0) = (3, 1), at time 0, is described by the following sequence

xxxy → xxyyyy → xxyyyyxx → xxyyyyxyyy → xyyyyxyyyyy.

There, the ball chosen at each step is underlined. If it is x, then this ball is removed from the urn (since

α = −1) and 3 balls of type y are appended (since β = 3); if it is y, then then 2 balls of type x are appended

and the balls of type y are kept untouched (since γ = 2 and δ = 0). We call history any such unambiguous

description of the evolution of an urn—a history is thus nothing but a complete description of a sample

path (or trajectory) of the urn process. The length of a history is the number of transitions (→ arrows)

that it comprises, so that a history of length n specifies the possible evolution(ii) of an urn from time 0 to

time n. This paper is entirely based on developing an enumerative approach to urn histories, in contrast to

probabilistic treatments on which most publications in the field rely.

Throughout this article, we limit ourselves to considering urns that are balanced in the sense that the

matrix M has constant row sums, this sum being consistently denoted by σ,

σ = α+ β = γ + δ, (3)

and called the balance. For an urn which is balanced, the number sn of balls that it contains at discrete

time n is a deterministic quantity satisfying

sn = a0 + b0 + nσ = s0 + nσ. (4)

For urns with negative diagonal entries, there is also an issue of tenability. Say we have α = −g with

g ≥ 2. This means that, whenever an x-ball is picked up, a group of g balls should be taken out of the urn.

In order to avoid configurations that would block the urn, one must postulate that the initial composition of

the urn satisfies g|a0 and that the number of balls of the first kind added when a ball of the second kind is

chosen satisfies g|γ. Similarly for y-balls.

Definition 1 An urn given by a matrix M is tenable when the following two conditions are met:

(i) if the diagonal entry α is such that α < −1, then |α| divides both a0 and γ;

(ii) if the diagonal entry δ is such that δ < −1, then |δ| divides both b0 and β.

Henceforth, all urn models involving negative diagonal entries are assumed to be tenable.

Our global purpose is to determine the composition of the urn at any given time n. Let Hn

(

a0

b0

)

be the

set of histories of length n when the urn has the initial configuration (a0, b0), and Hn

(

a0 a
b0 b

)

the subset of

those which, at time n, correspond to an urn with a balls of type x and b balls of type y. The corresponding

cardinalities are

Hn

(

a0

b0

)

= cardHn

(

a0

b0

)

, Hn

(

a0 a
b0 b

)

= cardHn

(

a0 a
b0 b

)

.

(i) Thus, the chosen ball is not removed from the urn: this is the convention adopted by virtually all authors in the field, one that entails

no loss of generality.
(ii) We may regard the transitions as occurring at half integer times, or, equivalently, one may consider the nth transition to occur

immediately before time n.
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We shall approach the determination of these quantities via their generating functions (GFs):

H

(

z

∣

∣

∣

∣

a0

b0

)

=
∑

n

Hn

(

a0

b0

)

zn

n!
, H

(

x, y, z

∣

∣

∣

∣

a0

b0

)

=
∑

n,a,b

Hn

(

a0 a
b0 b

)

xayb z
n

n!
,

here taken to be of the exponential type. The trivariate GF is also called the complete generating function

of urn histories. For future reference, we state:

Proposition 1 For an urn of balance σ with σ > 0, the number of histories of length n satisfies

Hn

(

a0

b0

)

= s0(s0+σ) · · · (s0+(n−1)σ) = σn Γ(n+ s0/σ)

Γ(s0/σ)
= n!σn

(

n+ s0/σ − 1

n

)

, s0 := a0+b0,

and the corresponding exponential generating function is

H

(

z

∣

∣

∣

∣

a0

b0

)

=
1

(1 − σz)(a0+b0)/σ
(σ > 0). (5)

The complete generating function of urn histories H

(

x, y, z

∣

∣

∣

∣

a0

b0

)

is, for any R ≥ 1, analytic in the

domain

|x| ≤ R, |y| ≤ R, |z| < 1

σRσ
.

An immediate consequence of Stirling’s formula is

Hn ≡ Hn

(

a0

b0

)

= n!σn ns0/σ−1

Γ(s0/σ)

(

1 +
s0(s0 − σ)

2σ2n
+O

(

1

n2

))

, s0 = a0 + b0. (6)

Proof: The number of histories is determined by the observation that there are s0 possible ways to pick up

a ball at step 1, s1 = s0 + σ ways at time 2, and so on. The univariate GF then plainly results from the

binomial theorem. For |x| ≤ R and |y| ≤ R, the trivariate GF H(x, y, z) has the coefficient of its zn term

dominated by

(s0 + σn)Rs0+σn · σn Γ(s0/σ + n)

Γ(s0/σ)Γ(n+ 1)
= O

(

Rσnσnns0/σ
)

,

from which the analyticity property results. ✷

In what follows, we shall mostly use the short forms

Hn ≡ Hn

(

a0

b0

)

, H(z) ≡ H

(

z

∣

∣

∣

∣

a0

b0

)

, H(x, y, z) ≡ H

(

x, y, z

∣

∣

∣

∣

a0

b0

)

,

whenever the initial conditions (the values of a0, b0) are understood from context.

The univariate GF H(z) of all histories is by (5) a simple algebraic function. The trivariate (complete)

GF H(x, y, z) is the one that determines the urn composition; it is a (yet unknown) deformation of H(z),
and Proposition 1 ensures that it is always a function of z analytic in a neighbourhood of the origin, once

the values of x and y have been fixed to arbitrary finite values. This simple observation makes it possible

to conduct calculations in the following manner: pick up suitably convenient domains for x and y, then

restrict z to be such that |z| is small enough; extend the result of the calculation to larger domains by virtue

of unicity of analytic continuation.

Since the total number of balls at time n is the deterministic quantity s0 + nσ, all monomials entering

the trivariate GF are of the form

xaybzn = xays0+nσ−azn,

so that one has the homogeneity relation:

H

(

x, y, z

∣

∣

∣

∣

a0

b0

)

= ys0H

(

x/y, 1, zyσ

∣

∣

∣

∣

a0

b0

)

. (7)

From a logical standpoint, the variable y is unnecessary, and we can freely set it to the value y = 1,

whenever appropriate.



64 Philippe Flajolet, Philippe Dumas, and Vincent Puyhaubert

We have left aside so far the cases where σ ≤ 0. When σ = 0, the number of all histories satisfies

Hn

(

a0

b0

)

= sn
0 , H

(

z

∣

∣

∣

∣

a0

b0

)

= es0z.

When σ = −τ < 0 all histories are of finite length at most s0/τ . One has

Hn

(

a0

b0

)

= s0(s0 − τ) · · · (s0 − (n− 1)τ), H

(

z

∣

∣

∣

∣

a0

b0

)

= (1 + τz)(a0+b0)/τ ,

with the trivariate GF then being a polynomial.

Before embarking in the determination of the counting generating function H , we note that there is an

exact equivalence between the combinatorial model where all histories of a given length are considered

equally likely and the original probabilistic rules governing the urn’s behaviour.

Proposition 2 Let An (respectively Bn) be the random variable representing the number of balls of colour

x (respectively y) of a balanced urn process at time n. Then, we have:

P {An = a, Bn = b} =
[xaybzn]H(x, y, z)

[zn]H(1, 1, z)
.

In addition, at any given time, An and Bn determine one another: for an urn of balance σ, they satisfy the

relation:

An +Bn = a0 + b0 + nσ. (8)

Proof: This equivalence between combinatorics and probability owes to the fact that we are dealing exclu-

sively with balanced urns (it would badly fail otherwise): the size of the urn at time n is the deterministic

quantity sn = s0 + nσ, and, since histories are unambiguous descriptions of sample paths, each history of

length n has equal probability (1/Hn) of being chosen. ✷

1.2 The associated differential system

Our approach relies on observing dramatically simple relations between the action of differentiation on

certain expressions and the stochastic evolution of an urn. The starting point is the effect of differentiation,

noted ∂, on monomials: the obvious relation ∂x[xn] = nxn−1, can be interpreted as

∂x

[

xx · · ·x
]

= (6 xx · · ·x) + (x6 x · · ·x) + · · · + (xx · · · 6 x),
meaning: “pick up in all possible ways a single occurrence of the formal variable x and delete it”. Simi-

larly, the operator x∂x picks up all occurrences (underlined below for readability) of the variable x without

deleting them:

x∂x

[

xx · · ·x
]

= (xx · · ·x) + (xx · · ·x) + · · · + (xx · · ·x).
This interpretation of differentiation in terms of “marking” is classical in combinatorial analysis [9, 38, 49,

76].

Guided by the previous principles, we then associate to an urn of matrix M the linear partial differential

operator

D = xα+1yβ∂x + xγyδ+1∂y, (9)

where ∂x ≡ ∂
∂x . The composition of an urn that contains at any given time a balls of type x and b balls of

type y can be encoded by the monomial m = xayb. It is easily seen that the quantity D[m] generates all the

possible evolution of the urn in one step:

D[xayb] = axa+αyb+β + bxa+γyb+δ.

Similarly, D
n[xa0yb0 ] is the generating polynomial of the configurations of the urn after n steps, when its

initial configuration is (a0, b0),

D
n[xa0yb0 ] =

∑

a,b

Hn

(

a0 a
b0 b

)

xayb,

so that, using operator notation,

H(x, y, z) ≡ H

(

x, y, z

∣

∣

∣

∣

a0

b0

)

=
∑

n≥0

D
n[xa0yb0 ]

zn

n!
= ez D [xa0ya0 ] . (10)

Now, comes the central mathematical object of the present paper.
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Definition 2 Given a 2 × 2 urn model M, the associated differential system is the ordinary differential

system

Σ :

{

ẋ = xα+1yβ

ẏ = xγyδ+1 (11)

There, the notation ẋ represents differentiation with respect to the independent variable, which is by con-

vention taken to be t.

The system Σ is of a quite specific form: it is nonlinear (apart from some of the simplest cases), autonomous

(meaning that independent variable t does not figure explicitly), monomial (in the sense that only monomials

appear in the right hand sides), and homogeneous with respect to total degree (which reflects the fact that

the original urn model is balanced).

The observation that leads to our next statement is extremely simple. Let X = X(t) and Y = Y (t) be

any particular solutions of the system (11). Consider the effect of a derivative ∂t on a monomial of the form

XaY b. We have:

∂t

(

XaY b
)

= aXa−1ẊY b + bXaY b−1Ẏ (by standard differentiation rules)

= aXa+αY b+β + bXa+γY b+δ (by system Σ).

In other words: The effect of usual differentiation on solutions of the associated differential system Σ
mimicks the evolution of the urn M. Accordingly, we have

∂t

(

XaY b
)

= D

[

xayb

]

x→ X
y → Y

,

and upon repeating the process:

∂n
t

(

XaY b
)

= D
n

[

xayb

]

x→ X
y → Y

. (12)

Theorem 1 (Basic isomorphism, 2 × 2 urns) Consider a balanced urn M of the form (1), (3), which is

initialized with a0 balls of type x and b0 balls of type y. Let x0, y0 be complex numbers that are each

nonzero: x0y0 6= 0. Let X

(

t

∣

∣

∣

∣

x0

y0

)

and Y

(

t

∣

∣

∣

∣

x0

y0

)

be the solution to the associated differential system Σ

with initial conditions x0, y0. The generating function of urn histories satisfies (for z small enough)

H(x0, y0, z) = X

(

z

∣

∣

∣

∣

x0

y0

)a0

Y

(

z

∣

∣

∣

∣

x0

y0

)b0

.

Proof: The trivariate GF is given by (10) as

H(x, y, z) =
∑

n≥0

D
n[xa0yb0 ]

zn

n!
,

which by (12) and Taylor’s formula yields formally

H(X(t), Y (t), z) =
∑

n≥0

∂n
t [X(t)a0Y (t)b0 ]

zn

n!
= X(t+ z)a0Y (t+ z)b0 . (13)

Analytically, these manipulations are justified by the Cauchy-Kovalevskaya existence theorem, which guar-

antees that X(t), Y (t) are well defined and analytic in a neighbourhood of the origin. As a consequence,

Taylor’s formula can be applied and (13) is valid at least for some small enough values of z and t. It

then suffices to set t = 0 to get the statement. (Observe that the condition x0y0 6= 0 is needed to ensure

analyticity, in the case of negative exponents in (11), that is, α+ 1 < 0 and/or δ + 1 < 0.) ✷

Finding the trivariate GF H(x, y, z) thus reduces to solving the system Σ with “floating” initial condi-

tions, (x0, y0). This task is doable directly for many of the most classical urn models, for which Theorem 1

leads directly to explicit solutions, as we show in the next section (§2). A notable feature of the argu-

ment is that it adapts to higher dimensional urn models, the ones that have balls of m possible colours, for

any m ≥ 3, provided again that the models are balanced (§9 and Theorem 6, p. 102).
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Note 1. The Partial Differential Equation (PDE) approach. From the exponential operator form of (10), it immediately

results that H satisfies the partial differential equation:

∂zH = D H, i.e.,
∂

∂z
H(x, y, z) = xα+1yβ ∂

∂x
H(x, y, z) + xγyδ+1 ∂

∂y
H(x, y, z). (14)

In addition, the monomials composing H satisfy a homogeneity relation: any such monomial xaybzn with a nonzero

coefficient is such that a + b = s0 + nσ (see (8)), which implies

(x∂x + y∂y − σz∂z) H(x, y, z) = s0H(x, y, z). (15)

Given (14) and (15), it becomes possible to eliminate the differential dependency on y (that is, ∂y), then set y = 1. In

this way, it is found that the bivariate generating H(x, z) = H(x, 1, z) satisfies the fundamental PDE:

“

1 − σzxβ+σ
”

∂zH +
“

xβ+σ+1 − x1−α
”

∂xH − s0x
β+σH = 0. (16)

The solution of this equation by the method of characteristics lies at the basis of the earlier study by Flajolet, Gabarró,

and Pekari [30] (see also [92] for other instances), but we do not pursue this line of investigation here. ✷

Note 2. Combinatorics of urn histories as weighted paths. An urn history can be rendered as a weighted path in the

discrete Cartesian plane Z × Z. Indeed the sequence of values of the urn’s composition

(A0, B0), (A1, B1), . . . , (Ak, Bk), . . . , (An, Bn),

defines a polygonal line in Z
2. A history is then completely specified by a sequence of integers

̟0, ̟1, . . . , ̟k, . . . , ̟n−1,

where ̟k indicates which ball is picked up at time k (assuming some canonical numbering that identifies balls).

If (Ak, Bk) = (x, y), then one should have ωk ∈ [1 . . x + y], as there are x + y possibilities to choose a ball. The

edges connecting any two consecutive points, the “steps”, are of either one of the two types,

v =

„

α
γ

«

, w =

„

β
δ

«

,

in accordance with the rules determined by the urn’s matrix M. A v-step is chosen with a weight of x (the number of

possibilities for choosing an x ball), and similarly a w-step is chosen with a weight of y, weights being multiplicative

quantities over the sequence of steps. This is summarized by the following diagram

♣

x

y s❅
❅■

v, weight: x

✂
✂
✂
✂
✂
✂✍

w, weight: y

for M = [−1, 3, 1, 1].

This interpretation in terms of weighted paths is well known: for instance, Kotz, Mahmoud, and Robert [74] in-

troduce it to develop complicated multiple sum expressions for the probability distribution of the urn ’s composition.

Though, in all generality, the weighted path approach is ineffective for solving urn models, it is of occasional interest

to combinatorialists in situations where a simple transformations can yield lattice paths of a recognizable form (see for

instance [16]). This is in particular the case of the Ehrenfest urn (Note 5, p. 71), and of the OK Corral urn treated in

§8, p. 99, by means of the time-reversal transformation of Kingman and Volkov [70]. Weighted lattice paths of a form

similar to ours arise in Leroux and Viennot’s studies of the combinatorics of nonlinear differential systems (see, e.g,

[77]). ✷

2 Basic examples of 2 × 2 urns with entries in {0,±1}
Theorem 1 makes it possible to investigate directly a number of urn models, whose analyses have been

previously approached by a variety of techniques, including probabilistic methods, combinatorial analysis,

and the calculus of finite differences. We examine here in the light of Theorem 1 the collection of all

balanced urn models whose matrices have entries in the set {−1, 0,+1}.
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Figure 1: Ten simulations of a Pólya contagion urn over 100 steps, initialized with (1, 1) [left] and (1, 2) [right],

indicate that the distribution of the urn’s composition is spread. The diagrams plot the evolution of An as a function

of n.

2.1 The contagion model (Pólya): [1, 0, 0, 1]

The urn with matrix

M =

(

1 0
0 1

)

, (17)

that is, the identity matrix, has a simple interpretation: one can imagine a population with two kinds of genes

(or diseases) that randomly comes into contact with external elements to which their gene (or disease) is

transmitted. The question is to investigate the way the initial proportion of genes of both kinds evolves with

time.

The differential system is
{

ẋ = x2

ẏ = y2 ,

{

x(0) = x0

y(0) = y0
.

Thanks to separation of variables, one finds ẋx−2 = 1, ẏy−2 = 1, which is integrated, resulting in the

solution pair (X(t), Y (t)):






X(t) =
x0

1 − tx0

Y (t) =
y0

1 − zy0

.

By Theorem 1, the complete GF of histories for this urn is

H(x, y, z) =
xa0yb0

(1 − zx)a0(1 − zy)b0
.

The urn has balance σ = 1 and the number of histories of length n is Hn = n!
(

n+s0−1
s0−1

)

. The probability

that, at time n, there are a balls of the first type and b balls of the second type (necessarily, a + b =
a0 + b0 + n), is obtained from the trivariate GF by coefficient extraction.

Proposition 3 For the Pólya contagion model (17), the composition of the urn at time n is

P(An = a,Bn = b) =

(

a−1
a0−1

)(

b−1
b0−1

)

(

a0+b0+n−1
a0+b0−1

) . (18)

It is not hard to establish this classical result by a direct reasoning, but the way it comes out mechanically

from Theorem 1 is pleasant.

Figure 1 shows that the urn’s composition at time n varies widely. In fact, with (a0, b0) = (1, 1), one

gets, in accordance with (18),

P(An = k) =
1

n+ 1
, k = 1, . . . , n+ 1
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that is, the distribution of An is uniform over the set of all possible values [1 . . n + 1], so that An/n is in

the limit uniform over the real interval [0, 1]. Similarly, with (a0, b0) = (1, 2), the random variable An/n
has a limit distribution supported by [0, 1] with density 2(1− x), and so on. These results easily generalize

to higher dimensions: see §9.1, p. 102.

2.2 The adverse-campaign model (Friedman): [0, 1, 1, 0]

This corresponds to the antidiagonal matrix

M =

(

0 1
1 0

)

, (19)

and it is a kind of dual to Pólya’s model. This urn was studied by Friedman [43], and it can be viewed as

modelling a propaganda campaign in which candidates are so bad that the persons who listen to them are

convinced to vote for the opposite candidate. (This is perhaps not such an unrealistic situation!) The urn

has balance σ = 1. As is obvious from simulations, see Figure 2, this urn has a behaviour very different

from Pólya’s urn. Indeed, any large enough deviation of the urn’s composition from proportions ( 1
2 ,

1
2 )

tends to correct itself and bring the system back to equilibrium, and accordingly, the composition of the urn

is concentrated around its mean value.
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Figure 2: Ten simulations of a Friedman’s urn (adverse campaign model) over 100 steps, initialized with (1, 1) [left]

and (1, 2) [right], indicate that the distribution of the urn’s composition is concentrated.

The associated differential system reads

{

ẋ = xy
ẏ = xy

,

{

x(0) = x0

y(0) = y0
.

We have ẋ = ẏ, so that x and y only differ by a constant: y = x− x0 + y0. Thus, x satisfies

ẋ

x(x− x0 + y0)
= 1,

which is easily integrated. The solution pair is then found to be











X(t) =
x0(x0 − y0)

x0 − y0et(x0−y0)

Y (t) =
y0(y0 − x0)

y0 − x0et(y0−x0)

,

and the complete GF of histories is

H(x, y, z) =

(

x(x− y)

x− yez(x−y)

)a0
(

y(y − x)

y − xez(y−x)

)b0

. (20)

We single out here a simple consequence of our calculation:
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Figure 3: The histograms of the probability distribution P(An = k) as a function of k/(n + 1), for the adverse-

campaign urn initialized with (1, 0) and for n = 3 . . 50, illustrate convergence to a Gaussian regime.

Proposition 4 For Friedman’s adverse-campaign urn defined by (19) and for the initial condition (1, 0),
the generating function of urn histories satisfies

H(x, 1, z) =
x(x− 1)

x− ez(x−1)
=

x(x− 1)

x− ez(x−1)
= x+ xz +

1

2
(x+ 1)xz2 +

1

6
(x2 + 4x+ 1)xz3 + · · · . (21)

In particular n![znxk]H(x, 1, z) is an Eulerian number.

The bivariate generating function of Eulerian numbers is given in [15, 51]: it enumerates permutations

according to their number of rises (or equivalently, descents, falls, ascents, runs).

Note 3. Acquaintance groups and the combinatorics of Friedman’s urn. This urn has interesting ramifications related

to the combinatorics of permutations and increasing Cayley trees, as well as to a growth model of acquaintance groups.

Indeed, consider an evolving population, which at time n consists of individuals numbered {1, 2, . . . , n+1}. At time n
any of the individuals present, say individual numbered j, can recruit a new member (then numbered n + 2). In that

case, an edge is drawn that connects n+2 to j. The collection of all edges at time n constitutes a tree, which has label 1

at its root, and is such that labels along any branch stemming from the root are in increasing order—this is an increasing

Cayley tree [10]. The leaves of the tree, correspond to individuals who have not recruited, call them “neophytes”;

the nonleaf nodes correspond to individuals that have recruited, call them “gurus”. The problem is to determine the

proportion of neophytes in the group, equivalently, the number of leaves in the tree at time n.

Represent a neophyte by a ball of type x = •, a guru by a ball of type y = ◦. Then, the two rules are

• =⇒ ◦——•, ◦ =⇒ ◦——•,

and it is easily recognized that it is exactly modelled by Friedman’s urn, with initial conditions (1, 0). The solution

is then provided by Equation (21). (The relation to rises in permutations can also be seen directly from existing

combinatorial bijections between increasing Cayley trees, binary increasing trees, and permutations, and it is useful in

the design and analysis of several classical data structures of computer science [10, 12, 38, 41, 102].) The connection

with Eulerian numbers implies furthermore that the limiting distribution of balls of either kind is asymptotically normal

(Figure 3), a property known for a long time in the context of run statistics in random permutations: see for instance

the book by David and Barton [18, Ch. 10]. ✷

2.3 The two-chambers urn (Ehrenfest): [−1, 1, 1,−1]

Consider two chambers initially containing a finite number (s0 = N ) of particles. At any given time, a

particle migrates from one chamber to the other (Figure 4). This famous model was first introduced by

Paul and Tatiana Ehrenfest [26] in 1907 in order to investigate the way a system can reach thermodynamic

equilibrium.

Colour balls according to the chamber in which they are at any given time (say x for the left and y for the

right chamber). The system is modelled by the urn process with matrix

M =

(

−1 1
1 −1

)

, (22)
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Figure 4: The Ehrenfest model (two-chambers urn).

and its balance is σ = 0. The associated system is simply

{

ẋ = y
ẏ = x

,

{

x(0) = x0

y(0) = y0

According to Theorem 1, it suffices to solve the system in order to determine the GF of urn histories. The

derived equalities ẍ = x, ÿ = y show that the solution is such that

{

X(t) = x0 cosh t+ y0 sinh t
Y (t) = x0 sinh t+ y0 cosh t

.

Thus, the trivariate GF that solves the model is

H(x, y, z) =

(

x+ y

2
ez +

x− y

2
e−z

)a0
(

x+ y

2
ez − x− y

2
e−z

)b0

. (23)

In the standard version of the model, one starts from a0 = N and b0 = 0. In that case, the complete GF

simplifies to

H(x, y, z) = (x cosh z + y sinh z)
N
. (24)

The total number of histories of length n is Nn. The event that all particles have returned to the first

chamber is then obtained by setting x = 1 and y = 0 in H(x, y, z). Consequently:

Proposition 5 For Ehrenfest’s urn defined by (22), with N particles and initial configuration (N, 0), the

probability that, at time n, all particles have returned to the first chamber is

P(AN = N,Bn = 0) =
n!

Nn
[zn] coshN z =

1

Nn2N

N
∑

k=0

(

N

k

)

(N − 2k)n.

The formula is obtained via a binomial expansion; it is valid irrespective of the parity of n. The calculation

is easily extended to the determination of the probability that k particles have migrated (expand the result

of Equation (24)).

The way the solution of this famous problem comes out automatically is noteworthy. In the past it has

been approached in particular via matrix algebra, probability theory, combinatorial analysis, and continued

fraction theory. A discussion of higher dimensional generalizations appears in §9.2, p. 103.

Note 4. Matrix analysis of the Ehrenfest urn. An Ehrenfest urn can be viewed as a finite state Markov chain with 2N

states, when all balls are distinguished—it is then equivalent to a random walk on the N -dimensional hypercube; for

N = 3, see Figure 5 (left). States of this complete chain can be aggregated, with only the number of balls in the left

chamber being retained, and this leads to a reduced Markov chain with transition probabilities represented in Figure 5

(right).

Since the Markov chain is stationary, every state is recurrent and the system will (with probability 1) return infinitely

often to its initial configuration. This seems to contradict the principles of thermodynamics according to which the

system should be in equilibrium, with approximately N/2 balls in each chamber. The apparent contradiction is resolved

by observing that statistical mechanics only represents the ideal situation of a large N limit. The Ehrenfest model then

serves to quantify precisely the discrepancy between a finite system and its thermodynamic limit approximation.
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Figure 5: The complete and reduced Markov chains describing the Ehrenfest urn for N = 3.

The analytic solution given by Marc Kac in [66] is well known. It relies on the explicit diagonalization of the

(N + 1) × (N + 1) tridiagonal matrix of the Markov chain, which is 1
N

K, where

K =

0

B

B

B

B

B

@

0 N · · ·
1 0 N − 1 · · ·

2 0 N − 2 · · ·
3 0 N − 3 · · ·

...
...

...
...

...
. . .

1

C

C

C

C

C

A

. (25)

This is a “simple matrix with many hidden treasures” in the terms of Edleman and Kostlan [25] who offer a vivid

discussion, including surprising connections with random polynomials. ✷

Note 5. Combinatorial analysis of the Ehrenfest urn. Basic combinatorics provides an attractive alternative approach

to the Ehrenfest model. Consider histories of the urn that start from state (N, 0) and return to state (N, 0) in n steps.

This can be viewed as an ordered partition of the integer interval [1 . . n] into N (possibly empty) classes, where each

class records the times at which a particle moved. For a particle that returns to its original chamber, its class must be of

even cardinality. Then, the general theory of exponential generating functions (EGF) provides coshN z, as the EGF of

all such partitions. Similarly, if k out of N particles migrate in the course of a history, then the EGF is directly found

to be
 

N

k

!

(cosh z)N−k (sinh z)k , (26)

which is in agreement with (24). (Proof: there are k classes of odd cardinality and N − k classes of even cardinality, to

be chosen in
`

N
k

´

ways; the odd [resp., even] classes are enumerated by sinh z [resp., cosh z].)

An alternative derivation of the formulae relative to the Ehrenfest urn can be based on Flajolet’s combinatorial theory

of continued fraction [28]: histories can be transcribed as altitude-weighted Dyck paths (simple excursions) to which

the theory applies. As a consequence, the ordinary generating function (OGF) of histories corresponding to a cycle

involves the continued fraction
1

1 −
1 · N z2

1 −
2 · (N − 1) z2

1 −
3 · (N − 2) z2

. . .

. (27)

See Goulden-Jackson [50] for details of this approach in the case of Ehrenfest’s urn and Flajolet-Guillemin [33] for an

extension of the continued fraction framework to continuous-time models. (The comparison of (26) and (27), which

are related by the Laplace transformation, gives then combinatorially a continued fraction first discovered analytically

by Stieltjes.) ✷

2.4 The coupon collector’s urn: [−1, 1, 0, 0]

This is the first of our models where ball colours play nonsymmetrical rôles. The urn may contain balls of

either white (x) or black (y) colour. If a white ball is drawn, it is taken out, painted in black, then placed

back into the urn; if a black ball is drawn, it is placed back unchanged into the urn. The urn’s matrix is thus

(

−1 1
0 0

)

. (28)
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It is instantly realized that the particular initial conditions (a0, b0) = (N, 0) model the classical coupon

collector problem: a black ball represents an item that has already been drawn, a white ball an item not yet

drawn. The associated differential system is
{

ẋ = y
ẏ = y

,

{

x(0) = x0

y(0) = y0
,

and it admits the solution
{

X(t) = x0 − y0 + y0e
t

Y (t) = y0e
t .

Thus, the complete GF of urn histories is

H(x, y, z) = (x− y + yez)a0yb0eb0z.

The last expression specializes to give back the classical solution of the coupon collector problem. Upon

setting y = 1 and choosing the particular initial condition (N, 0), one finds:

H(x, 1, z) = (x+ ez − 1)
N
.

This can be expanded:

Proposition 6 For the coupon collector’s urn defined by the matrix (28) and initialized with (N, 0), the

probability distribution of the number of y balls at time n is

P(Bn = b) =
b!

Nn

(

N

b

){

n

b

}

,

where
{

n
b

}

is a Stirling number of the partition type or of “second kind”.

See [15, 51] for the usual definition of Stirling numbers. Quite remarkably, this urn model already appears

explicitly in Laplace’s Théorie analytique des probabilités [75], first published around 1811—Laplace in-

deed assigns the original question to [Jacob] Bernoulli. Gani [44] has recently made use of this urn to model

certain infectious phenomena (the propagation of diseases by means of infected syringes).

2.5 The sampling urns: [0, 0, 0, 0] and [−1, 0, 0,−1]

The urn with the null matrix
(

0 0
0 0

)

models sampling with replacement. We are initially given a0 white (x) balls and b0 black (y) balls. A ball

drawn is placed back into the urn, irrespective of its colour, so that the composition of the urn never changes.

Thus the evolution is nothing but a succession of independent Bernoulli trials (with respective probabilities

a0/s0 and b0/s0). The system is ẋ = x, ẏ = y, so that X(t) = x0e
t and Y (t) = y0e

t. The complete GF is

accordingly

H(x, y, z) = xa0yb0e(a0+b0)z.

(The binomial law arises when one counts the number of times a white balls has been drawn.)

The urn with matrix
(

−1 0
0 −1

)

corresponds to sampling without replacement and is more interesting. The system is
{

ẋ = 1
ẏ = 1

,

{

x(0) = x0

y(0) = y0
.

The complete GF of urn histories is then

H(x, y, z) = (x+ z)a0(y + z)b0 ,

from which the probability distribution of An, Bn reads off:

P(An = a,Bn = b) =

(

a0

a

)(

b0
b

)

(

a0+b0
a+b

) ,

with a+ b = n. This is again extremely classical.
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2.6 The records urn [1, 0, 1, 0]

This urn is formed with identical rows, so that the composition of the urn at time n is entirely deterministic:

An = a0 + n, Bn = b0.

From the associated differential system, we find mechanically:

H(x, y, z) =
xa0yb0

(1 − zxy)a0+b0
.

Though the composition of the urn at various instants is predictable, the number of times a ball of either

type is chosen in the course of an evolution of length n is of interest.

Let the colours x and y be named white and black, respectively, and start with a single black ball, so that

a0 = 0, b0 = 1. At time n, there are n white balls and exactly one black ball. The probability that the black

ball is picked up is 1/(n + 1). Thus, the number Sn of times that the black ball is chosen in the course of

an n step evolution is a sum of independent Bernoulli random variables:

Sn = X1 +X2 + · · · +Xn, Xj ∈ Bern

(

1

j
, 1 − 1

j

)

.

This random variable also represents the number of records in a random permutation of size n+1. (A direct

proof results from the classical construction of inversion tables [15].) For this special case, the differential

equation approach to urn models can be adapted as follows. It suffices to introduce a variable w that keeps

track of the choices of a black ball and define the (modified) differential system:
{

ẋ = x2

ẏ = wxy
,

{

x(0) = x0

y(0) = y0
.

The solution is

X(t) =
x0

1 − x0t
, Y (t) = y0(1 − x0t)

−w.

The variables x0, y0 are redundant and we may freely set them to 1. For (a0, b0) = (0, 1), the outcome is

the bivariate generating function of the number of records (and cycles) in a permutation, which comes out

as
1

(1 − z)w
,

a classical result for the generating function of Stirling cycle numbers [15, 51]. (This urn is also closely

related to what Pitman names the “Chinese Restaurant Process” [89] and to the Ewens sampling distribution

of population genetics [54].)

2.7 The all-ones urn: [1, 1, 1, 1]

Like the previous one, this urn has identical rows, so that the composition of the urn at time n is determin-

istic. The associated differential system is
{

ẋ = x2y
ẏ = xy2 ,

{

x(0) = x0

y(0) = y0
.

The solution is easily determined, once we notice that ẋx−1 = ẏy−1, which implies that x and y are

proportional and y/y0 = x/x0. We find

X(t) =
x0√

1 − 2x0y0t
, Y (t) =

y0√
1 − 2x0y0t

,

so that the complete GF of urn histories is

H(x, y, z) =
xa0yb0

(1 − 2zxy)(a0+b0)/2
.

Like for the records urn, our methods extend to a characterization of the number of times a ball of each type

is chosen. The end result is similar to the Stirling distribution of the Records Urn.

This concludes the discussion of all the ten cases of balanced urns whose matrices have entries restricted

to {−1, 0,+1}, once we take into account the equivalence between urns
(

α β
γ δ

)

∼=
(

δ γ
β α

)

, (29)

corresponding to an interchange of colours x and y.
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3 The first integral of balanced 2 × 2 urns

It turns out that urn models of dimension two (i.e., with two types of balls) that are balanced can always

be solved in finite terms. This results from the existence of a first integral for the associated differential

system. An essential parameter of the urn is the dissimilarity index of the urn model or matrix, which we

define by

p := γ − α = β − δ.

(The equivalence of the two forms requires the balance condition.) The dissimilarity parameter measures

the differential benefit, seen from either ball, resulting from the colour of the ball chosen. It is then natural

to consider the following three categories.

— Altruistic urns correspond to p > 0. In that case, a ball chosen “gives” to the population of balls of

the other colour.

— Neutral urns correspond to p = 0. In that case, the composition of the urn at any instant n is entirely

determined (and is a linear function of time). Such models are of moderate interest since they can

be studied directly like in the case of the records urn and the all-ones urn of the previous section.

Accordingly, we need not discuss them any further.

— Selfish urns correspond to p < 0. In that case a ball chosen serves its own kind more than the other

kind. In a sense, it reinforces its own population.

The family of all 2× 2 balanced urn matrices is a three parameter family. The quantities σ (the sum) and

p (the dissimilarity) are two parameters, which, together with any single entry of the matrix, determine the

model. We also observe that the matrix M admits σ as an eigenvalue, with right eigenvector the column

vector (1, 1)T. The other eigenvalue is −p = α− γ with left eigenvector (1,−1).

Note 6. The spectrum of the urn’s matrix. In the classical theory of urn models, eigenvalues play an important rôle,

since they determine to a large extent the urn’s probabilistic behaviour. For a balanced 2 × 2 urn with σ > 0, it has

been recognized for a long time that the ratio of eigenvalues,

ρ := − p

σ
≡ α − γ

α + β
,

is the basic discriminating quantity. One has a priori ρ ≤ 1, since ρ > 0 implies α > 0 and, in turn, (α−γ)/(α+β) ≤
α/(α + β) ≤ 1. Gouet [47] uses martingale arguments to prove functional limit theorems to the effect that under the

condition,

ρ ≤ 1

2
(together with βγ 6= 0, i.e., for nontriangular cases), the evolution of the urn is Gaussian—this includes all sacrificial

urns discussed in §5 and §6 for which one has ρ < 0. (Several such results do extend to urns of higher dimensions as

described in §9; see for instance [62, 96].) ✷

Finally, an urn model is said to be arithmetically irreducible if the four matrix entries have no common

divisor:

gcd(α, β, γ, δ) = 1. (30)

With little loss of generality, we shall normally confine ourselves to the study of such arithmetically irre-

ducible urns. Roughly, if d > 1 is a common divisor of all matrix entries, it is possible to group balls by

packs of d and operate with the reduced matrix that has entries [α/d, β/d, γ/d, δ/d]. (The only price to

be paid is a minor restriction on initial conditions, namely d|a0 and d|b0, but our methods can easily be

extended to cover such situations.)

Proposition 7 The differential system,
{

ẋ = xα+1yβ

ẏ = xγyδ+1 , α+ β = γ + δ

admits xp − yp as a first integral, where p = β − α = γ − δ is the dissimilarity parameter. Precisely, let

X(t) = X

(

t

∣

∣

∣

∣

x0

y0

)

, Y (t) = Y

(

t

∣

∣

∣

∣

x0

y0

)

,

be the solution of the system corresponding to the initial conditions X(0) = x0 and Y (0) = y0, with

x0y0 6= 0. Then, for t in some complex neighbourhood of 0, one has

X(t)p − Y (t)p = xp
0 − yp

0 .
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Proof: It suffices to compute

d

dt
(xp − yp) = pxp−1ẋ− pyp−1ẏ = pxα+pyβ − pxγyδ+p ≡ 0,

which ensures that xp − yp is a constant. ✷

In other words, the solutions X(t), Y (t) to the differential system provide a local parameterization of a

curve of Fermat type,

Xp − Y p = Constant .

In a sense, this explains that the two-chambers urn (Ehrenfest urn), which has p = 2, gives rise to a solution

involving hyperbolic functions, which parametrize the hyperbola Y 2 −X2 = 1. The contagion urn (Pólya

urn) has p = −1, so that X−1 − Y −1 = C (with C a constant), and it is accordingly described by linear

fractional transformations.

4 General solutions for 2 × 2 sacrificial urns (α ≤ −1)

Equipped with the first integral of Proposition 7, we proceed to solve the associated differential system.

Several cases are to be distinguished based, inter alia, on the sign of p. In this section, we operate with the

assumption

α ≤ −1, (31)

implying p > 0, thus corresponding to an upper diagonal entry that is negative and implying an urn with

positive dissimilarity. Balls of colour x are said to be sacrificial since, whenever drawn, a certain number

of them is withdrawn. An urn with at least one negative diagonal entry is said to be sacrificial. It is said to

be semi-sacrificial, respectively fully sacrificial, if the number of its negative diagonal entries is exactly 1,

respectively 2.

We start by restricting y0 in a neighbourhood of 1 and x0 in a neighbourhood of 0. Eventually, for the

probabilistic analysis, we shall set y0 = 1 (since the information provided by the variable y in the complete

GF is redundant and tolerates setting y = 1) and take x0 to vary in domains containing 0. We make use of

the following notations,

∆(x0, y0) := (yp
0 − xp

0)
1/p, ∆(x0) := (1 − xp

0)
1/p, (32)

with principal determinations of pth roots intended when x0 ≈ 0, y0 ≈ 1. So far, we have only made use

of the property p > 0, a consequence of (31).

Our goal is to eliminate the “floating” initial conditions and introduce a standard set of functions by which

one can completely express the complete GF of urn histories. Given the first integral of Proposition 7, one

can eliminate y in the equation defining x:

ẋ = xα+1yβ = xα+1 (xp − xp
0 + yp

0)
β/p

= xα+1(xp + ∆p)β/p,

and similarly for y. This can be reduced to a form that no longer involves “floating” initial conditions. Set

X

(

t

∣

∣

∣

∣

x0

y0

)

= ∆ξ(t∆σ), Y

(

t

∣

∣

∣

∣

x0

y0

)

= ∆η(t∆σ). (33)

Then, the transformed system satisfied by the pair (ξ, η) is

{

ξ̇ = ξα+1(ξp + 1)β/p

η̇ = ηδ+1(ηp − 1)γ/p ,

{

ξ(0) = x0∆
−1

η(0) = y0∆
−1 . (34)

In particular, there is separation of variables,

ξ̇

ξα+1(1 + ξp)β/p
= 1

so that on can solve for ξ:

t =

∫ ξ(t)

x0/∆

w−α−1

(1 + wp)β/p
dw. (35)
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Urn matrix: M =

„

α β
γ δ

«

;

Balance: σ := α + β = γ + δ;
Dissimilarity index: p := γ − α = β − δ;

Initial composition: (a0, b0);

Size: s0 := a0 + b0; sn := s0 + nσ;

Auxiliary quantities: r := − p

α
; s := −p

δ
;

Integral parameters: λ :=
β

p
; µ :=

γ

p
.

Figure 6: A summary of notations for 2-colour urn models.

This defines the ξ function by inversion of an Abelian integral(iii). Hence the solution of the associated

system and the complete GF of histories are expressible by means of an Abelian integral over the Fermat

curve,

Fp : Y p −Xp = 1,

and its inverse functions (with respect to composition).

At this stage, we make use of the assumption α + 1 ≤ 0 in (31). This means that balls of the x colour

“sacrifice” themselves in favour of balls of colour y. A change of variable w−α = ζ in the integral of (35)

first reduces the definition of ξ to (remember that −α is a positive number)

t = − 1

α

∫ ξ(t)−α

(x0/∆)−α

dζ

(1 + ζr)β/p
, r := − p

α
. (36)

Note that r is a positive integer, given the tenability conditions which require −α|γ. The desired standard-

ization is provided by the following definition.

Definition 3 Let the parameters r and λ satisfy r ∈ Z>0 and λ ∈ Q≥0. The fundamental integral J = Jr,λ

is defined to be

J(u) :=

∫ u

0

dζ

(1 + ζr)λ
. (37)

The pseudo-sine function S = Sr,λ is defined in a complex neighbourhood of 0 as the inverse of J:

S(J(u)) = J(S(u)) = u. (38)

The pseudo-cosine function C = Cr,s,λ is defined in a complex neighbourhood of 0 as

C(z) = (1 + S(z)r)
1/s

, (39)

where the principal determination of the sth root is adopted.

We note that, near 0, J(u) is analytic and satisfies J(u) = u+O(ur+1), so that it is analytically invertible

near 0. Thus, the function S is analytic at 0 and satisfies S(z) = z + O(zr+1). The function C(z) is also

analytic and satisfies C(z) = 1 +O(zr). Precisely:



























J(u) = u− λ

r + 1
ur+1 +

λ(λ+ 1)

2(2r + 1)
u2r+1 − λ(λ+ 1)(λ+ 2)

6(3r + 1)
u3r+1 + · · ·

S(z) = z +
λ

r + 1
zr+1 +O(z2r+1)

C(z) = 1 +
1

s
zr +O(z2r).

(40)

(By its very definition, J(u) only includes powers of the form {ukr+1}k≥0. As a consequence, S(z) and

C(z) only include terms of the form {zkr+1}k≥0 and {zkr}k≥0, respectively.)

The reason for the chosen denomination is that the functions S,C can be thought of as higher degree

analogues of trigonometric or hyperbolic functions. (In fact, minor variants of these functions have been

studied in the nineteenth century by Lundberg [81] under the name of hypergoniometric functions, their

(iii) Given an algebraic curve defined by the polynomial equation P (x, y) = 0, an Abelian integral is any integral of the form
R

Q(x, y) dx, with Q a rational function.
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study having been recently revitalized by Lindqvist and Peetre [78, 79].) In particular, when p = r = 2 and

λ = 1/2, the functions J, S, C reduce to

J(u) =

∫ u

0

dζ
√

1 + ζ2
= arcsinh(u), S(z) = sinh(z), C(z) = cosh(z),

which is how they appear in the two-chambers (Ehrenfest) urn model.

We can now state:

Theorem 2 Consider a balanced urn model whose matrix M =

(

α β
γ δ

)

has α ≤ −1 and(iv) δ 6= 0.

Then the bivariate generating function of urn histories, for (x, z) in a neighbourhood of (0, 0) is given by

the analytic expression:

H(x, 1, z) = ∆s0S
(

−αz∆σ + J
(

x−α∆α
))− a0

α C
(

−αz∆σ + J
(

x−α∆α
))− b0

δ ,
with ∆ ≡ ∆(x) = (1 − xp)1/p.

(41)

There, the usual notations are used,

σ = α+ β, p = β − α, s0 = a0 + b0,

and we have J = Jr,λ (the fundamental integral of (37)), S = J (−1) defined by S(J(u)) = J(S(u)) = u
(the pseudo-sine of (38)), C defined by C(z) = (1+S(z)r)1/s (the pseudo-cosine of (39)), the parameters

being

p := γ − α, λ =
p

β
, r := − p

α
, s := −p

δ
,

so that λ ∈ Q≥0, r ∈ Z≥1, and s ∈ Q.

Proof: We have from (36):

−αt = J(ξ(t)−α) − J(x−α
0 ∆α).

This relation can be inverted to express ξ−α:

ξ−α = S
(

−αt+ J(x−α
0 ∆α)

)

,

and henceX(t)−α, by Equation (33). Observe that, though ξ andX are not in general analytic at 0, ξ−α and

X−α are. The function η−δ is similarly expressed in terms of C, since ηp − ξp = 1. The statement finally

results from plugging the explicit forms of X,Y into the formulæ provided by Theorem 1, upon effecting

the substitution x0 → x, y0 → 1. The expression obtained is bivariate analytic in a neighbourhood of (0, 0),
as it should, owing to the tenability conditions, which ensure that the exponent of the pseudo-sine, namely

−a0/α, is necessarily an integer. ✷

We present now in Examples 1–4 several examples that illustrate the variety of special functions that may

appear in 2 × 2 urn models.

Example 1. The two-chambers urn (Ehrenfest), [−1, 1, 1,−1], revisited. This urn justifies our basic terminology

regarding pseudo-trigonometric functions. The matrix is
„

−1 1
1 −1

«

,

so that we have

σ = 0, α = −1, p = r = 2, β = 1.

The fundamental integral is

J(u) = J2,1/2(u) =

Z u

0

dζ
p

1 + ζ2
= arcsinh(u).

Consequently, the pseudo-sine and pseudo-cosine are

S(z) = S2,1/2(z) = sinh(z), C(z) = C2,1/2(z) = cosh(z).

A mechanical application of Theorem 2 then provides, when s0 = a0 = N (and b0 = 0):

H(x, 1, z) = (1 − x2)N/2 sinhN

„

z + arcsinh

„

x√
1 − x2

««

,

which is easily seen to be equivalent to the result of (24), given basic trigonometric identities. ✷

(iv) The case δ = 0 corresponds to “antitriangular” urns and needs minor adjustments in definitions: see Example 2 below.
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Example 2. The peaks-in-perms urn (Mahmoud): [−1, 2, 1, 0]. This urn has matrix

„

−1 2
1 0

«

,

and parameters

σ = 1, p = r = 2, λ =
1

2
.

The fundamental integral is accordingly

J(u) = J2,1(u) =

Z u

0

dζ

1 + ζ2
= arctan(u),

so that the pseudo-trigonometric functions are usual ones:

S(z) = tan(z), Č(z) =
q

1 + tan2(z) = sec(z) =
1

cos(z)
.

In this case, we have δ = 0, so that s = ∞, which forces us to adopt, instead of C, the function Č satisfying

Čr − Sr = 1. Then the bivariate GF of urn histories is for a0 = 1 and b0 = 0:

H(x, 1, z) = ∆(x) tan

„

z∆(x) + arctan

„

x

∆(x)

««

, ∆(x) :=
p

1 − x2. (42)

an expression that can be expanded to yield

H(x, 1, z) = x + z + 2x
z2

2!
+ (2 + 4x2)

z3

3!
+ (16x + 8x3)

z4

4!
+ (16 + 88x2 + 16x4)

z5

5!
+ · · · .

Note that, if we set x = 0, we get the GF of alternating (or up-and-down or zigzag) permutations [15, pp. 258–259].

We recognize in the last expansion a variant of the sequence EIS:A008303 in Sloane’s Encyclopedia of Integer

Sequences [95], where it is described as “Permutations of [n] with k peaks”. Indeed, values in a permutation σ =
(σ1, . . . , σn) can be classified into four types known as peaks (σi−1 < σi > σi+1), valleys aka troughs (σi−1 > σi <
σi+1), double rises (σi−1 < σi < σi+1), and double falls (σi−1 > σi > σi+1). See for instance the books of David

and Barton [18, Ch. 10] or Stanley [97, p. 24], as well as the article by Françon and Viennot [42]. A well known GF

due to Carlitz enumerates permutations according to the number of elements of each type, and H in (42) is a special

case. In fact, in an article dedicated to patterns in permutations and increasing binary trees(v) the authors of [32, p. 238]

derived an expression essentially equivalent to that of (42) and deduced a local limit law of the Gaussian type for the

coefficients.

The correspondence between this urn model and increasing binary trees results from observations made by Mahmoud

in the related context of binary search trees: Mahmoud explicitly introduced this urn in his review paper [84] and our

description is essentially an adaptation of his. First, it is well known that increasing binary trees under the uniform

model can be obtained by a simple growth model: view external nodes (that are unlabelled) as “placeholders”; start

from a single external node; at each discrete instant n + 1
2

, pick up uniformly at random such an external node,

and attach to it an internal node labelled n + 1 with two dangling external nodes. In the standard bijection between

permutations and increasing binary trees [10, 38, 97], an element that is neither a peak nor a valley corresponds to a

one-way branching internal node, hence to an external node whose brother is an internal node; a leaf (an internal node

attached to two external nodes) corresponds to a peak. It is then possible to model the growth of an increasing binary

tree by an urn model, while at the same time keeping track of peaks: Encode by a white ball (x) an external node

whose brother is an internal node; encode by a black ball (y) an external node whose brother is an external node. It is

then easily seen that the inductive construction of the tree corresponds to the urn process with matrix [−1, 2, 1, 0]. The

correspondence between this urn model and peaks in permutation is thus established. ✷

Example 3. The first algebraic urn: [−1, 3, 1, 1]. This urn has matrix and parameters given by

M =

„

−1 3
1 1

«

, σ = 2, p = r = 2, λ =
3

2
.

Its interest is to admit a complete GF that is an algebraic function of low degree.

The fundamental integral is explicit:

J(u) ≡ J2,3/2(u) =

Z u

0

dζ

(1 + ζ2)3/2
=

u√
1 + u2

.

(v) An increasing binary tree is a plane binary tree, which has internal nodes labelled by distinct integers and is such that labels

along any branch stemming from the root go in increasing order. An increasing binary tree is in bijective correspondence with a

permutation of the same size—simply read off the labels in infix order. See [97, p. 24] and [10] for instance. The model is equivalent

to that of random binary search trees [94].



Some exactly solvable models of urn process theory 79

Then inversion provides for the pseudo-sine and pseudo-cosine:

S(z) =
z√

1 − z2
, C(z) =

p

1 − z2.

Say we consider initial configurations with (a0, b0) = (0, N). The complete GF of urn histories is found to be

H(x, 1, z) = (1 − x2)N/2 1

(1 − (z(1 − x2) + x)2)N/2
.

Such an expression can be used to determine explicitly moments of the number of balls of the first colour. Take for

instance N = 1. It suffices to expand locally near x = 1:

H(x, 1, z) =
1√

1 − 2z
+ (x − 1)

z(1 − z)

(1 − 2z)3/2
+

(x − 1)2

2

z2(2 − 4z + 3z2)

(1 − 2z)5/2
+ O

`

(x − 1)2

Each partial derivative ∂r
xH(x, 1, z)

˛

˛

x=1
is a simple radical function, and in particular, the total number of histories is

(as anticipated)

Hn = n! · [zn]
1√

1 − 2z
= 2nn!

 

n − 1
2

n

!

= 1 · 3 · 5 · · · (2n − 1).

As a consequence: Each moment of the number of balls of a given colour is a rational function of n. Asymptotically, we

find easily (with the Help of Dr Salvy’s programme equivalent, under the symbolic manipulation system MAPLE):

E(An) =
1

2
n +

1

4
+

1

8n
+ O

„

1

n2

«

, V(An) =
1

4
n +

1

8
+

1

8n
+ O

„

1

n2

«

,

where E and V represent expectation and variance, respectively, and An is as usual the number of balls of colour x

present at time n. Thus the distribution is concentrated around its mean and there is convergence in probability:

An

n/2

P−→ 1.

We shall see in §6 that such closed form formulæ and simple asymptotic forms for moments are the rule. Their

derivation in the present context is almost immediate, this in sharp contrast with the fact they are often obtained in the

literature at the expense of costly recurrence manipulations(vi).

The probability of all balls being of the second colour at time n = 2ν also results from the expression of H . It is

obtained by setting x = 0 in H(x, 1, z),

H(0, 1, z) =
1√

1 − z2
,

so that, upon extracting coefficients:

P(A2ν = 0) =
(2ν)!3

ν!2 (4ν)!
∼ 2−2ν+1/2.

Like in the case of the generation-parity urn, the probability of such an extreme deviation is well quantified and turns

out to be exponentially small. (See §5 for a general theory of such urns and §5.3 for a class generalizing the present

example.) ✷

Example 4. The generation-parity model: [−1, 2, 2,−1]. Consider the urn with matrix

„

−1 2
2 −1

«

,

and parameters

σ = 1, p = r = 3, λ =
2

3
.

This urn models a binary splitting process as follows. There are two types of particles, x and y. At a discrete instant,

any of the particles present in the system has equal chances of disintegrating, with an x particle giving rise to two y

particles and a y particle giving rise to two x particles. Assume for simplicity that one starts at time 0 with one particle

of type x, so that a0 = 1, b0 = 0. If particles are numbered according to the value of n determining the time (n + 1
2

) at

which they disintegrate, the process is once more represented by an increasing binary tree. Balls of colour x correspond

(vi) Our point of view is that traditional recurrence manipulations in the case of balanced urns at least, are normally subsumed by

more synthetic generating function methods. This observation is perhaps to be somewhat nuanced, and for instance the fundamental

paper of Bagchi and Pal [6] has to be singled out: by a shrewd use of recurrence techniques, the authors of [6] were first able to

deduce the asymptotic form of centred moments of the urn’s composition and deduce a Gaussian limiting distribution for a large

class of balanced urns. However, as we shall see later, the global structure of all moments can be unwound for large classes of urns.

An elegant point of view on moment calculations is developed by Pouyanne in [91, 90].
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to balls that belong to an even generation (as measured by the distance to the root node); balls of colour y belong to a

generation which is odd.

The fundamental integral is

J(u) = J3,2/3(u) =

Z u

0

dζ

(1 + ζ3)2/3
,

which is an Abelian over the Fermat curve F3 : Y 3 − X3 = 1. The inverse function has been studied by Alfred

Cardew Dixon (1865–1936) in a long article [20] and further examined by Conrad and Flajolet(vii) in [16] as regards

combinatorial properties. What is of special interest is the fact that smh := S and its companion cmh := C are elliptic

functions (i.e., meromorphic doubly periodic functions [13, 103]). With

smh(z) := S3,2/3(z) = Inv

Z z

0

dζ

(1 + ζ3)2/3

= z + 4
z4

4!
+ 160

z7

7!
+ 20800

z10

10!
+ 6476800

z13

13!
+ · · · ,

(43)

the inverse function(viii) of J(u) (our notation follows [16, 20]), Theorem 2 provides the complete GF of histories

(Proposition 3 in [16]):

H(x, 1, z) = (1 − x3)1/3 smh

 

(1 − x3)1/3z +

Z x(1−x3)−1/3

0

ds

(1 + s3)2/3

!

,

= x +
z

1!
+ 2x2 z2

2!
+ (4x3 + 2x4)

z3

3!
+ · · · .

(44)

The function smh, which has positive coefficients, has a dominant singularity on the positive real axis, by virtue

of Pringsheim’s Theorem. Since J(u) is analytic at any finite positive point u > 0, where it satisfies J ′(u) 6= 0,

it is invertible. Thus, the dominant singularity ρ > 0 of smh along the positive real axis can only be obtained with

smh(ρ) = ∞, that is, we must have

ρ = J(∞) =
1

2π
√

3
Γ

„

1

3

«3

, (45)

where the latter evaluation results from the Eulerian Beta integral [103].

Here is a nice application of (43), (44), and (45). Say we want to estimate the probability that at time n, all balls be of

the second colour, that is, all particles alive in the system belong to some odd numbered generation. This probability is

obtained by considering H(0, 1, z), so that P(An = 0) = [zn] smh(z). (This can only happen with nonzero probability

at instants of the form n = 3ν + 1.) Then, by an easy analysis of singularities, we find

P(A3ν+1 = 0) ∼ cρ−3ν−1, ρ =
1

2π
√

3
Γ

„

1

3

«3

. (46)

For instance, we find to 10 decimal places (10D):

„

[z28] smh(z)

[z31] smh(z)

«1/3
.
= 1.76663 87490 · · · . ρ

.
= 1.76663 87502 · · · .

Equation (46) thus quantifies accurately an extreme large deviation regime that has an exponentially small probability

of occurrence. (See §6 for a general theory of such urns and, in particular, §6.2 for further elliptic connections.) ✷

Note 7. The pseudo-cosine as an inverse Abelian integral. Coming back to the transformed system (34), we have

η̇

ηδ+1(ηp − 1)γ/p
= 1.

This implies (compare with Equation (35))

t =

Z η(t)

y0/∆

w−δ−1

(wp − 1)γ/p
,

and via a change of variables similar to (36)

t = −δ

Z ξ−δ

(y0/∆)−δ

dζ

(ζs − 1)µ
, s = −p

δ
, µ =

γ

p
.

Thus: the pseudo-cosine is alternatively definable as the inverse of an Abelian integral. ✷

(vii) Regarding the genesis of the present paper, an important starting point for the differential system approach to urn models is the

detailed study of the combinatorics of Dixonian elliptic functions in [16].
(viii) The coefficients constitute the sequence EIS:A104133.
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Note 8. Hypergeometric form of the fundamental integrals. The hypergeometric function F = 2F1 is classically

defined [103] as

2F1

»

a, b
c

˛

˛

˛ z

–

= 1 +
a · b
c

z

1!
+

a(a + 1) · b(b + 1)

c(c + 1)

z2

2!
+ · · · .

The fundamental integral (37) is then a special hypergeometric function,

Jr,λ(u) = u · F
»

λ, 1/r
1 + 1/r

˛

˛

˛ − ur

–

,

as is seen from expanding and integrating term-by-term. Thus, with Inv representing inversion of functions with respect

to composition, one has for an urn with matrix [α, β; γ, δ]:

S(z) = Inv

„

z · F
»

β/p,−α/p
1 − α/p

˛

˛

˛ − zr

–«

.

Thus: the pseudo-sine function is the compositional inverse of a special hypergeometric function. A similar property

holds for the pseudo-cosine. We shall not however make much use of hypergeometric function theory in the present

paper. ✷

5 The class of 2 × 2 semi-sacrificial urns (α ≤ −1, δ > 0)

Recall that a colour is sacrificial if the corresponding diagonal entry in its matrix M is negative. The last

section has started a general treatment of the case α < 0, that is, colour x is sacrificial. Starting from there,

two subclasses of urns may be considered: (i) the fully sacrificial urn models for which α < 0 and δ < 0;

(ii) the semi-sacrificial urns for which α < 0 and δ > 0. The former case has been treated fairly thoroughly

in the earlier article of Flajolet, Gabarró and Pekari [30] and is reviewed in the next section. The latter case

is the one of interest for us now. In summary, our present object of study is the class of matrices(ix)

M =

(

α β
γ δ

)

, α < 0, δ > 0, βγ 6= 0, σ > 0. (47)

What we want to do is exploit the analytic consequences of Theorem 2 in a way dictated by the need of

asymptotic probability. As we shall see, the complex geometry of the problem is quite different from that

of [30]. A sufficient fragment of this geometry is worked out in the next subsection. After this, routine

calculations make it possible to derive precise estimates relative to extreme deviations, a Gaussian limit law

(with speed of convergence estimates), the large deviation rate function, and the structure of moments.

5.1 The analytic structure of the base functions S, C

By the term of base functions, we mean here the two functions

S(z), C(z),

which serve to express H(x, 1, z), the bivariate generating function (BGF) of urn histories. As is usual in

analytic combinatorics, singularities are essential. The first fundamental result is the following.

Lemma 1 Let M be a semi-sacrificial urn model in the sense of the conditions (47).

(i) The base functions S(z) and C(z) are analytic near 0. Their common radius of convergence ρ is

given by (p = γ − α, r = −p/α, s = −p/δ)

ρ = J(+∞) =
1

r
B(

1

r
, 1 − 1

r
− 1

s
) =

1

r

Γ( 1
r )Γ(1 − 1

r − 1
s )

Γ( 1
s )

. (48)

(ii) The only dominant singularities (i.e., the singularities of smallest modulus) of S(z) and C(z) are at

the conjugate points

ρωj , for j = 0, 1, . . . , r − 1, where ω = e2iπ/r. (49)

Proof: The proof consists in establishing four properties: (A) the radius of convergence is a singularity

and its form is explicit; (B) S(z)r avoids the value (−1) inside its disc of convergence; (C) |S(z)| remains

bounded as z tends radially to a boundary point that is not a singularity; (D) the function S(z) is analytic

at end points ρeiθ except for a collection of r special directions, as described in the statement.

(ix) Triangular urns corresponding to βγ = 0 will be dealt with in separate sections.



82 Philippe Flajolet, Philippe Dumas, and Vincent Puyhaubert

(A) Consider the BGF of histories H(x, 1, z) for an initial composition of the urn given by (a0, b0) =
(−α, 0). Then, by Theorem 2, we have

H(0, 1, z) = S(−αz). (50)

This is the exponential GF of urn histories conditioned upon the fact that no ball of colour x is present in

the end. The equation shows that S(−αz), hence S(z), has nonnegative Taylor coefficients.

By Pringsheim’s theorem [38, 99], since S(z) has nonnegative coefficients, the set of all its dominant

singularities includes the value of the radius of convergence ρ of the series at 0. In particular, in order

to determine that radius, it suffices to examine the function S along the ray R≥0, starting from 0, till a

singularity is encountered.

The main point is that S is defined as the inverse of J and J(u) is analytic at all points of the positive

real axis. At the same time, for any u ∈ R≥0, one has J ′(u) ≡ (1 + ur)−λ 6= 0. There results that J is an

analytically invertible mapping of the interval [0,+∞[ onto [0, ρ[, where ρ = J(+∞). The latter quantity

is nothing but an Eulerian Beta integral whose evaluation in terms of Γ factors is classical [103]. These

considerations justify the first assertion (i) of the lemma for S(z).

(B) We next prove that for all z such that |z| < ρ, we have S(z)r 6= −1. Observe that S(z) is a solution

of the differential equation

Y ′(z) = (1 + Y (z)r)λ,

with λ > 1, given the conditions (47). Now, it is easy to verify that a solution Y (z) cannot be analytic in

the neighbourhood of a point z0 such that Y (z0)
r = −1. Indeed, if Y (z) were analytic, we would have

Y (z) ∼ η + cη(z − z0)
a, Y ′(z) ∼ caη(z − z0)

a−1, (1 + Y (z)r)λ ∼ (−rc)λ(z − z0)
λa,

for some a ≥ 1, ηr = −1, and some c 6= 0. The equality Y ′ = (1 + Y r)λ is clearly impossible since

λ = β/(β − δ) > 1, so that the orders of growth of Y ′ and (1 + Y r)λ are incompatible.

This avoidance property implies that C(z) is analytic in the disc |z| < ρ. A simple computation also

shows that it is singular as z → ρ−. Thus, part (i) of the statement has been established for C(z).
Next, we observe, from the nature of the expansions of S and C at 0 that these functions have a rotational

symmetry, namely

S(ωz) = ωS(z), C(z) = C(ωz).

Thus, it is sufficient to study S(z), C(z) in any sector rooted at 0 with opening angle 2π/r. Also, this

symmetry immediately implies that the conjugate quantities ρωj are amongst the dominant singularities

of S and C. It takes however a bit of work to establish that there are no dominant singularities besides

these.

(C) We now proceed to investigate the behaviour of S(z) along rays of angle θ, with 0 < θ < π/r,

which is sufficient by rotational symmetry and conjugacy. Define the semi-open interval

I[θ] :=
{

xeiθ
∣

∣ 0 ≤ x < ρ
}

.

The proof of boundedness properties of S makes use of the differential relations satisfied by S. Choose

first an arbitrary R ∈ (0, ρ). The “daffodil lemma” of [38] expresses the fact that the directions of largest

increase of the modulus of an analytic function with nonnegative coefficients at 0 are to be found amongst

a set of regularly spaced rays emanating from 0; furthermore these directions are determined by the period

(or span) of the support of the coefficients of f (i.e., the set of n such that fn 6= 0). Here this lemma implies

that, for R ∈ (0, ρ) and for any θ with 0 < θ < π/r, we have
∣

∣S(Reiθ)
∣

∣ < S(R). In particular, there exists

an x0 < R such that
∣

∣S(Reiθ)
∣

∣ = S(x0). We can then find an x1 in (x0, R), such that

∣

∣S(Reiθ)
∣

∣ < S(x1).

We then propose to compare for x ∈ [R, ρ[, the two functions

Y (x) := S(xeiθ), Z(x) := S(x1 + x−R),

which satisfy the autonomous differential equations

{

Y ′(x) = (1 + Y (x)r)λeiθ

Y (R) = S(Reiθ)
,

{

Z ′(x) = (1 + Z(x)r)λ

Z(R) = S(x1)
.



Some exactly solvable models of urn process theory 83

Roughly, we can visualize the values of Y, Z as the trajectory of two mobiles whose movement is governed

by similar differential equations. In terms of modulus, i.e., distance to the origin, Y is the tortoise and Z
the hare, but contrary to what happens in the fable, the tortoise never catches up since it starts late and its

speed remains dominated by that of the hare (see [17] for another context). Consequently, till time x = ρ,

the function Y (z) remains of modulus smaller than Z(ρ) = S(x1 −R+ ρ) < +∞. The argument is made

precise by writing the differential systems in integral form:















Y (x) = Y (R) +

∫ x

R

(1 + Y (ξ)r)λeiθ dξ

Z(x) = Z(R) +

∫ x

R

(1 + Z(ξ)r)λ dξ.

(Note that the determination of the λth root is well defined by continuity since S(z)r avoids −1.) Assume

a contrario that there exists an x with x < R+ ρ− x1 such that |Y (x)| = Z(x), and let x2 be the smallest

such x. We would then have, by trivial inequalities,

|Y (x2)| ≤ |Y (R)| +
∫ x2

R

(1 + |Y (ξ)|r)λ
dξ

< Z(R) +

∫ x2

R

(1 + Y (ξ)r)λ dξ = Z(x2),

where the second inequality is strict since |Y (x)| < Z(x) at least for a small interval to the right of R. A

contradiction with the supposition that |Y (x2)| = Z(x2) has been reached. In other words, we have proved

that S(z) remains of bounded modulus along I[θ].

(D) We now establish that the end point ρeiθ of I[θ] is such that S(z) is analytic there. Say that a

direction θ different from the singular directions of the statement is proper if the set of limit values of

S(xeiθ)r as x→ ρ includes at least one element that is different from (−1).
Consider first a proper direction, with 0 < θ < π/r, and let υ0 be any limit value of S(z) along I[θ]

satisfying υr
0 6= −1. By classical existence theorems for ordinary differential equations, the equation

Υ′(z) = (1 + Υ(z)r)λ, Υ′(0) = υ,

admits a solution Υ(z) = Υ(z, υ) that is bivariate analytic in a neighbourhood Ω ⊂ C2 of (0, υ0), which

we can fix to be the polydisc

|z| < δ, |υ − υ0| < ǫ.

Choose then z0 = ρ0e
iθ such that

|ρeiθ − ρ0e
iθ| < δ

2
, |υ − υ0| < ǫ.

Then, we must have

S(z) = Υ(z − z0, S(z0)).

As a consequence of this equality, S(z) is itself analytic at ρeiθ. Thus, along any proper direction, S(z) is

analytically continuable beyond the boundary of its disc of convergence.

There only remains to exclude improper directions. Assume a contrario that there exists an improper

direction θ. Then, by definition of properness, S(z)r admits −1 as unique limit value. In addition, we

claim that there exists a particular rth root η of −1 such that S(z) tends to the limit η as z → ρeiθ. (Proof:

otherwise, S, which is bounded, would oscillate between several roots of −1, but, then, its set of limit values

would include quantities other than the rth roots of −1, a contradiction with the improperness assumption.)

Supposing still θ to be an improper direction, let γ be the image curve by S of the open ray I[θ]. We have

Jγ(S(z)) = z for all z = xeiθ, with 0 ≤ x < ρ, (51)

where Jγ(u) means that the integral defining J is to be taken along the path γ. (Proof: the identity is true

for z near 0 and it extends to the whole of γ by analytic continuation.) But then, we reach a contradiction

since, all determinations of J are such that J(η) is infinite (the integral defining J diverges), while (51)

implies that J must remain finite. Thus, no improper direction exists.

We have thus shown that all points of the disc of radius ρ other than ρ and its conjugate are regular points

for S. We have also shown that the value −1 is not approached by S(z)r, as z tends to the boundary of
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the disc of radius ρ, so that the stated analyticity properties of S in the closed disc of radius ρ also hold

for C(z). The proof of the lemma is now complete. ✷

The next step consists in characterizing the singular expansions of S(z) and C(z).

Lemma 2 Let σ > 0. In the complex plane slit along the ray R≥ρ, one has

S(z) =
z→ρ

(r0(ρ− z))
−1/r0

[

1 − λ

r1
(r0(ρ− z))

r/r0 +O
(

(ρ− z)2r/r0

)

]

, (52)

where r0 = rλ− 1, r1 = r(λ+ 1)− 1. The conjugate expansions at the points ρωj of (49) are determined

by the fact that S(z)/z is an analytic function of zr at 0. Similarly for C(z):

C(z) =
z→ρ

(r0(ρ− z))
−r/(sr0)

[

1 +
1

s

(

1 − λr

r1

)

(r0(ρ− z))
r/r0 +O

(

(ρ− z)2r/r0

)

]

, (53)

with the conjugate expansions being determined by the fact that C(z) is an analytic function of zr at 0.

Proof: This is a simple exercise in computational asymptotics. The expansion of J(u) as u→ +∞ results

from the expansion of the integrand (1 + ζr)−λ:

J(u) =
u→+∞

ρ− 1

rλ− 1

1

urλ−1
+

1

r(λ+ 1) − 1

1

ur(λ+1)−1
+O

(

1

ur(λ+2)−1

)

. (54)

Thus, ρ − J(u) is of the order of 1/ur0 , which, given that J and S are inverse pair, means that ρ − z is

of the order of 1/S(z)r0 as z → ρ. The main term of S(z) follows; further terms are obtained by series

reversion.

This formal process provides the singular expansion of S(z) in the form

(r0(ρ− z))
−1/r0 A

(

r0 (ρ− z))
r/r0

)

,

with A(w) a formal power series in w with A(0) = 1. Adopting τ = (r0(ρ− z))
r/r0 as uniformizing

parameter and making use of the fact that the compositional inverse of an analytic function is analytic

(provided, as is the case here, that the first derivative does not vanish), we see that A(w) is furthermore

analytic at 0. The validity of the expansion in the slit plane results. ✷

5.2 Probabilistic properties of semi-sacrificial urns

Equipped with a good understanding of the analytic structure of the basic functions S and C, which involve

the single complex variable z, we can now proceed with the analysis of the bivariate generating function

H(x, 1, z). The treatment follows the customary lines exposed in the book Analytic Combinatorics [38]

and they parallel what was done earlier in [30] in the case of fully sacrificial urn models. We state here in

plain words a collection of probabilistic properties whose detailed formulations constitute Propositions 8–

11 below.

Theorem 3 (Semi-sacrificial urns) Consider a semi-sacrificial urn determined by a matrix satisfying the

conditions of (47).

(i) The probability that, at time n, all balls are of the second type (An = 0) is exponentially small; the

exponential rate is a quotient of Gamma function values taken at rational arguments.

(ii) The number of balls of the first type (An) converges in distribution, in the large n limit, to a normal.

The speed of convergence to the Gaussian limit is a negative fractional power of n.

(iii) The numberAn of balls of the first type satisfies the mean and variance estimates: E(An) ∼ µn and

V(An) ∼ ξ2n, for computable constants µ, ξ; in particular, An/n converges in probability to µ. Generally,

any rth moment admits a closed-form expression, which is of hypergeometric type.

(iv) The number An of balls of the first type satisfies a large deviation principle, with the large deviation

rate function being effectively computable from the fundamental integral J of the urn model.

The extreme large deviation result result (i) and its companion (iv) are, to the best of our knowledge,

new; technically, they closely parallel the case of fully sacrificial urns discussed in [30]. The Gaussian limit

law of (ii) is known from works of Bachi, Pal, and Smythe [6, 96], but the characterization of the speed of

convergence seems to be new.
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5.2.1 Extreme large deviations

Like before, we let (An, Bn) be the vector describing the urn’s composition at time n: there are An balls of

type x and Bn balls of type y. For a semi-sacrificial urn, balls of type y never disappear, so that Bn > 0 for

all n ≥ 1. A boundary configuration is the one in which An = 0, corresponding to an extreme in the large

deviation regime (this terminology follows [30]). We state:

Proposition 8 The probability of an extreme large deviation, corresponding to the event An = 0, is expo-

nentially small. One has for large n satisfying n ≡ −a0

α mod r:

P(An = 0) = CRnnκ
(

1 +O(n−e)
)

, e = min

(

1,
β − α

β + α

)

,

where C > 0 and

κ = s0

(

1

p
− 1

σ

)

, R =

( −α
α+ β

)

ρ−1, ρ ≡ 1

r

Γ( 1
r )Γ(1 − 1

r − 1
s )

Γ( 1
s )

.

Proof: The number of configurations is obtained by setting x = 0 in the expression (41) of the BGF

(bivariate generating function) H(x, 1, z). We have, by Theorem 2:

H(0, 1, z) = S(−αz)−a0/αC(−αz)−b0/δ, (55)

if the urn is initialized with (a0, b0). Consideration of the supports of S(z) and C(z) shows that An = 0
can only happen at instants equal to −a0/α plus a multiple of r, a fact which may otherwise be confirmed

by a combinatorial reasoning.

The statement then results from singularity analysis [34, 38] applied to the BGF H(0, 1, z), as given

by (55), and a trite calculation. ✷

5.2.2 A Gaussian limit law with speed

The knowledge of the bivariate generating function of urn histories combined with the characterization of

singularities of the fundamental functions S,C gives access to the asymptotic law of the urn’s composition

(An, Bn) at every instant. We start with a purely analytic lemma describing the radius of convergence of

urn histories.

Lemma 3 Let ρ(x) be the radius of convergence of the bivariate generating function of urn histories

H(x, 1, z) considered as a function of z. There exists a complex neighbourhood of x = 1 in which this

radius is an analytic function of x and is given by the formula

ρ(x) = x−σ
∑

k≥0

(−λ
k

)

1

σ + kp

(

1 − xp

xp

)k

. (56)

Proof: The radius of convergence ρ(x) is determined by

−αρ(x)∆(x)σ + J(x−α∆(x)α) = ρ, (57)

where ρ = J(+∞) is the common radius of convergence of S(z) and C(z). Define the quantity

e(x) =
∆(x)

x
=

(1 − xp)1/p

x
.

The quantity e(x)α becomes infinite as e(x) → 0, that is as x → 1, since α ≤ −1 by assumption. By

comparing (57) for general x and for x = 1, we find

e
−σ (ρ− J(eα)) = e

−σ

∫ ∞

eα

dζ

(1 + ζr)λ
.

The change of variables ζ = υα followed by term-by-term integration of the series expansion of the inte-

grand then yields the stated form of ρ(x). ✷
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Next, from the general expression of H(x, 1, z) and from the singular expansions of S(z) and C(z), we

see directly that

H(x, 1, z) ∼
z→ρ(x)

σ−s0/σ (ρ(x) − z)
−s0/σ

. (58)

In other words, the function H(x, 1, z), regarded as a function of z with x a parameter, has a movable

singularity and a constant exponent. In particular, for an x suitably close to 1, one has(x)

[zn]H(x, 1, z) ∼ σ−s0/σ

Γ(s0/σ)
ρ(x)−n−s0/σns0/σ−1, (59)

by virtue of singularity analysis theory [34, 38]. These estimates are seen to be consistent with the case x =
1, which corresponds to the plain enumeration of urn histories.

A trite calculation suffices to enhance (58): one finds

H(x, 1, z) =
z→ρ(x)

1

(σ(ρ(x) − z))
s0/σ

[

1 +
γb0 − βa0

p(p+ σ)
(1 − xp) (σ(ρ(x) − z))

p/σ

+O
(

(ρ(x) − z)
2p/σ

)

]

,

(60)

where the error term is uniform with respect to x in a sufficiently small neighbourhood of 1. It is known

that singularity analysis preserves the uniform character of expansions with respect to a parameter (see

comments in [34] and [38, Ch. IX]). As a consequence, one has

[zn]H(x, 1, z) =
n→∞

σ−s0/σ

Γ(s0/σ)
ρ(x)−n−s0/σns0/σ−1

[

1 +O
(

n−p/σ
)]

, (61)

uniformly for x sufficiently close to 1. The expression simplifies further, when one considers the probability

generating function of An. One has

χn(x) := E
(

xAn
)

≡ [zn]H(x, 1, z)

[zn]H(1, 1, z)
=

n→∞

(

ρ(1)

ρ(x)

)n+s0/σ
[

1 +O
(

n−p/σ
)]

. (62)

This say that χn(x) closely resembles the nth power of a fixed function, or, in probabilistic terms, that An

is formally like the sum of n independent identically distributed random variables. A Gaussian law is

then expected in the asymptotic limit. Precisely the Quasi-Powers Theorem of Hwang [55, 58] guarantees

the existence of this limit law (the proof is an analytic analogue of the classical proof of the central limit

theorem, based on the continuity theorem for characteristic functions); in addition, the speed of convergence

estimate expressed by (62) translates automatically into an upper bound on the speed of convergence to the

Gaussian limit (this fact results from a suitable use of the classical Berry-Esseen inequalities [27, 80]).

Note that the coefficients in the asymptotic forms of the mean and standard deviation ofAn are accessible

from ρ′(1) and ρ′′(1), themselves easily computable from the expansion of ρ(x) at 1 in (56). (For instance,

ρ′(1) = −γ/(β + γ).) We then have:

Proposition 9 Consider a semi-sacrificial urn. The number An of x–balls at time n satisfies for x in any

compact set of the real line

P

(

An − µn

ξ
√
n

≤ x

)

=
1√
2π

∫ x

−∞
e−t2/2 dt+O

(

n−e
)

, e = min

(

p

σ
,
1

2

)

,

where the centering and scaling constants are

µ := lim
n→∞

E(An)

n
=

σγ

β + γ
, ξ2 := lim

n→∞

V(An)

n
=

βγ

−α+ β + 2γ

(

α− γ

β + γ

)2

σ.

(x) The functions S, C do have conjugate singularities at ρj = ρωj . However, none of these, except ρ itself, plays a rôle. Indeed, the

singularity ρj of S, C induces for H(x, 1, z) a singularity at

ρj(x) =
ρj − J(x−α∆(x)α)

−α∆(x)σ
;

Apart from ρ0(x) ≡ ρ(x), all the other ρj(x) escape at infinity as x → 1, and, in particular, do not contribute in the scale of the

problem, once x is restricted to a sufficiently small neighbourhood of 1.
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5.2.3 Moments

Our purpose here is to establish that moments of any order r ∈ Z≥1 of the urn’s composition An are

expressible in hypergeometric form in the following sense.

Definition 4 A function t(n) defined for integer values of its argument is said to be a hypergeometric term

if t(n+1)/t(n) is a rational function of n. It is said to be of hypergeometric form or type if it is a C-linear

combination of a finite number of hypergeometric terms.

Bivariate generating functions are a convenient way to get access to moments. Set

χr(z) :=
∂r

∂xr
H(x, 1, z)

∣

∣

∣

∣

x=1

= r![(x− 1)r]H(x, 1, z),

where the last form indicates that H(x, 1, z) should be expanded at x = 1. The rth factorial moment of An

is then

E (An(An − 1) · · · (An − r + 1)) =
[zn]χr(z)

[zn]χ0(z)
.

The starting point of the analysis(xi) is an extended version of the expansion (60), namely

H(x, 1, z) = (σ(ρ(x) − z))
−s0/σ A

(

σ(ρ(x) − z)p/σ
)

, (63)

where A(w) is an analytic function of w at 0. (Analyticity derives from the fact that A is obtained by

composition and reversion of convergent Puiseux expansions; cf Lemma 2.) Write A(w) =
∑

k≥0 akw
k

(one has a0 = 1 and a1 given by(60)). We have

H(x, 1, z) =
∑

k≥0

ak(1 − xp)k (σ(ρ(x) − z))
(−s0+kp)/σ

. (64)

The rth moment is obtained by applying ∂r
x followed by the substitution x → 1. Clearly, only the terms

corresponding to k = 0, . . . , r need to be considered.

Now, we have the reduction

(σ(ρ(x) − z))
−θ
∣

∣

∣

x=1
= (1 − σz)−θ,

as is seen from setting x = 1 in (64), given the fact that H(1, 1, z) is the univariate GF of all urn histories

given by (5). It then results that, for any m ≥ 0, the quantity

∂x
m (σ(ρ(x) − z)

−θ
∣

∣

∣

x=1

is a linear combination of terms of the form (1 − σz)−θ+ℓ, for ℓ = 0 . .m. Here, the exponents θ to be

considered are

θ ∈
{−s0 + kp

σ

∣

∣ k = 0..r

}

.

Thus, the quantity

∂x
rH(x, 1, z)|x=1 =

r
∑

j=0

cj,r(1 − σz)−θ+r,

is the sum of a finite number of terms of the form (1 − σz)−ξ. Coefficient extraction based on the rule

[zn](1 − σz)−ξ = σn

(

n+ ξ − 1

ξ − 1

)

then shows the following:

Proposition 10 All moments of a semi-sacrificial urn are of hypergeometric form in the sense of Defini-

tion 4.

(xi) This derivation follows closely the treatment of fully sacrificial urns in [30, p. 1216–1217].
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Note 9. On moments. Another way to gain access to moments is via the partial differential equation satisfied by

H(x, 1, z). This has the advantage of applying to all balanced 2 × 2 urn models. Start from the partial differential

equation (the PDE of (14), with D the operator of (9)) ∂zH = DH , where, momentarily, H represents the trivariate

GF of urn histories. Using homogeneity relations, we know that it is possible to eliminate the ∂yH term, and then

set y = 1. There results the equation (which repeats (16))

(xα+1 − xγ+1)∂xH = −s0x
γH + (1 − σxγz)∂zH, (65)

where H = H(x, 1, z). First, it is possible to set x = 1 in (65). We then retrieve the GF H(1, 1, z) via the solution of a

homogeneous differential equation and find, as expected H(1, 1, z) = (1−σz)−s0/σ . Next, if we apply differentiation

∂x
r , we obtain a linear PDE for ∂x

rH(x, 1, z), which, upon setting x = 1 provides χr(z) as the solution of an

inhomogeneous differential equation of order 1. The homogeneous equation is of the same type as that satisfied by

H(1, 1, z). Then, the variation-of-constant method is applicable. Thus the GF of any moment for any 2 × 2 balanced

urn model (not only sacrificial ones!) is expressible by quadratures. This is an illustration of the “moment pumping”

method (see [35]), where moments are pumped out of a functional equation for a BGF. We do not pursue this thread

here since the method appears to be more involved than the plain perturbation techniques employed in the paper. (It

would also be of interest to relate this approach to Pouyanne’s methods [91, 90].) ✷

5.2.4 Large deviations

The discussion of large deviations (see [19] for an accessible introduction) follows here the same lines as

in the treatment of fully sacrificial urns by [30]. It is based on the general fact that knowledge of singular-

ities of a bivariate generating functions as the secondary parameter x varies does provide exponential tail

bounds [38, 39, 56, 57] on the associated distributions.

The exact representation

P(An ≤ k) = [xk]

(

1

1 − x

[zn]H(x, 1, z)

[zn]H(1, 1, z)

)

,

and the estimate
[zn]H(x, 1, z)

[zn]H(1, 1, z)
=
C(x)

C(1)

(

ρ(1)

ρ(x)

)n

(1 + o(1))

imply the family of bounds valid for x ∈ (0, 1):

P(An ≤ k) ≤ 1

xk(1 − x)

C(x)

C(1)

(

ρ(1)

ρ(x)

)n

(1 + o(1)) . (66)

(Use the fact that, for φ an analytic function with nonnegative coefficients, one has [xk]φ(x) ≤ φ(x)x−k

when x > 0 lies within the disc of convergence of φ.) The large deviation case (for left tails, when k = κn
is less than the mean E(An) ∼ µn, that is, κ < n), is quantified by choosing the particular value x0 of x
that optimizes the family of bounds (66). This motivates the following statement.

Proposition 11 For a semi-sacrificial urn and for a number κ < µ one has the large deviation estimate

lim
n→∞

1

n
log P(An ≤ κn) = log

(

ρ(1)

xκ
0ρ(x0)

)

,

where x0 is the root in (0, 1) of the equation

−x0ρ
′(x0)

ρ(x0)
= κ.

A similar estimate holds for the right tails, P(An ≥ κn) with κ > µ.

Proof (sketch): The upper bound is provided by the preceding discussion. That the upper bound is tight

follows from an argument of Cramér-type, which has been placed within the general framework of Quasi-

Powers approximations by Hwang [56, 57]. (The essential idea is to develop a central limit law, again based

on Quasi-Powers, for an exponentially shifted family of distributions that includes the distribution of An.)

✷
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5.3 The algebraic family [−1, σ + 1, σ − 1, 1]

We now conduct a search for semi-sacrificial urns whose generating function is elementary. In particular,

our goal is to find classes of urns such that the S and C functions reduce to classical functions of analysis.

A sufficient condition is that the integral in (35), on which the J function of Definition 3 is based, be an

algebraic function.

In accordance with (35), we consider the integral

I(u) :=

∫ u

c

w−α−1

(1 + wp)β/p
dw.

(The choice of c is immaterial here.) For a semi-sacrificial urn, we have α < 0. An immediate sufficient

condition for explicit integrability is that w−α−1dw be (up to a constant factor) the differential element

corresponding to the quantity wp in the denominator. Such is the case if p = −α, that is

γ − α = −α,
implying γ = 0. This means that the matrix M is triangular—this case, which is incompatible with the

conditions (47), requires a special treatment that is given in §7.

An alternative condition for explicit integrability is obtained by reduction to the previous case, after the

change of variables v = 1/w. Proceeding in this way, we find

I(u) =

∫ 1/u

1/c

vα−1

(1 + v−p)β/p
dv =

∫ 1/u

1/c

vα+β−1

(1 + vp)β/p
dv.

Thus, explicit integrability is granted if σ = α+β and p = γ−α are equal. Algebraically, this corresponds

to the two parameter family of matrices
(

α γ−2α
γ −α

)

. Now, since we have α < 0, the tenability conditions

require that |α| should divide γ, say γ = −dα. We only consider arithmetically irreducible matrices, so

that we only need to retain the case α = −1. The matrices of interest are thus of the form
(

−1 σ + 1
σ − 1 1

)

, (67)

and we know a priori that I , hence J , hence S and C, are each a simple algebraic function. It is pleasant

to see that the general class of matrices (67) encapsulate the urn of Example 3 (p. 78), which is obtained by

setting σ = 2.

Example 5. The second algebraic urn [−1, 4, 2, 1]. We have corresponding to σ = 3

M =

„

−1 4
2 1

«

, p = 3, λ ≡ β

p
=

4

3
.

The fundamental integral is

J(u) ≡
Z u

0

dζ

(1 + ζ3)4/3
=

u

(1 + u3)1/3
.

The function S(z) is the solution of J(S(z)) = z, that is, S/(1 + S3)1/3 = z, which is readily solved to provide S
and then C:

S(z) =
z

(1 − z3)1/3
, C(z) = (1 − z3)1/3.

(Notice the striking parallel with the corresponding function in Example 3.) The GF of urn histories is then found to be

H(x, 1, z) =
(1 − x3)s0/3

`

x + z(1 − x3)
´a0

`

1 − (x + z(1 − x3))3
´s0/3

.

The radius of convergence ρ(x), which determines the main characteristics of the distribution of An is then found to be

ρ(x) =
1

1 + x + x2
,

which, as predicted by Theorem 3 is an analytic function of x for x near 1. In this case, the large deviation rate function

can be made fully explicit in terms of simple radicals. ✷

The computations in the last example are typical. We state:

Proposition 12 Any urn having a matrix of the form (67) with σ ≥ 2 is such that the bivariate generating

function of histories is an algebraic function expressible by radicals:

H(x, 1, z) =
(1 − xσ)s0/σ (x+ z(1 − xσ))

a0

(1 − (x+ z(1 − xσ))
σ
)
s0/σ

.
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5.4 The algebraic family [−1, σ + 1, 1, σ − 1] (σ even)

When aiming at integrability, a good thing to do is look for small values of the parameter r since the

integrand of the fundamental integral J(u) is (1 + ζr)−λ. For semi-sacrificial urns, the case r = 1 is

irrelevant, so that we try next r = 2.

Example 6. The third algebraic urn [−1, 5, 1, 3]. The parameters are r = 2 and λ = 5/2, the balance being σ = 4.

The fundamental integral

J(u) =

Z u

0

dζ

(1 + ζ2)5/2
=

u(3 + 2u2)

3(1 + u2)3/2

is then an algebraic function. Accordingly, the function S(z), which solves J(S(z)) = z, satisfies

S2(3 + 2S2)2

3(1 + S2)3
= z2,

which means that its square S2 is a cubic algebraic function in z2. Its expansion could then be made explicit by means

of Lagrange inversion. ✷

The previous example suggests considering the class
(

−1 σ + 1
1 σ − 1

)

, (68)

and, specifically, restrict attention to the case when σ is even. Note that the case σ = 2 also includes the

first algebraic urn. (The case σ = 2 resorts to both of the schemes (67) and (68).) For σ = 2τ , it is seen

(using integration by parts) that J(u) is of the form

J(u) =
uPτ (u2)

(1 + u2)τ−1/2
,

where Pτ is a polynomial of degree τ − 1. As a consequence:

Proposition 13 Any urn having a matrix of the form (68) with σ ≥ 2 is such that the bivariate generating

function of histories is an algebraic function. In particular, the pseudo-sine function is such that its square

is the inverse of a rational function.

6 The class of 2 × 2 fully sacrificial urns (α, δ < −1)
Fully sacrificial urns are such that both diagonal entries in the matrix are negative:

M =

(

α β
γ δ

)

, α < 0, δ < 0, βγ 6= 0, σ > 0. (69)

These models are the main object of study of the article by Flajolet, Gabarró and Pekari [30], of which the

present works constitutes in many ways a follow-up. We give below a brief account of this paper under our

current perspective.

6.1 Analytic solutions

The first integral of Proposition 7 (see §4, p. 74) applies to the fully sacrificial case, so that the formal

treatment of semi-sacrificial urns (§5) can be adapted easily to the fully sacrificial case. In fact, the formal

analysis of [30] was based on the partial differential equation of the complete GF of urn histories as dis-

cussed in Note 1 (see p. 66 and Equation (14)). That partial differential equation was then solved by the

method of characteristics, an hitherto neglected tool in the analysis of urn models. In our view, the present

treatment, via the Isomorphism Theorem (Theorem 1) allows for a more transparent connection between

the urn’s structure and its analytic solution, since it bypasses a somewhat opaque computational procedure.

The next phase of [30] consists in working out properties of the S,C functions as regards their singulari-

ties. (The corresponding functions are called there ψI and ψII .) The fact that both α and δ are now negative

entails that the conformal mapping properties of the base functions are comparatively simple to elucidate:

contrary to the situation encountered with semi-sacrificial urns in §5, there are no occurrences of multi-

ple coverings, so that suitable sectors of the complex z-plane are found to be mapped to well-determined

quadrilaterals in the image complex plane (these are the “elementary kites” of [30]). In such a case, domi-

nant singularities can be found directly, without resorting to the indirect argument employed in the proof of

Lemma 1, p. 81.

The analytic machinery needed to grind probabilistic properties from singularities is then identical to the

one exposed in the previous section, §5. One obtains in this way a result that closely parallels Theorem 3.
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(M) (Σ) (D) Type

A
`−2 3
4 −3

´

ẋ = x−1y3, ẏ = x4y−2 x−1y3∂x + x4y−2∂y ℘ [30, 88]

B
`−1 2
3 −2

´

ẋ = y2, ẏ = x3y−1 y2∂x + x3y−1∂y Jacobian [30]

C
`−1 2
2 −1

´

ẋ = y2, ẏ = x2 y2∂x + x2∂y Dixonian [16]

D
`−1 3
3 −1

´

ẋ = y3, ẏ = x3 y3∂x + x3∂y lemniscatic [30]

E
`−1 3
5 −3

´

ẋ = y3, ẏ = x5y−2 y3∂x + x5y−2∂y
√

℘

F
`−1 4
5 −2

´

ẋ = y4, ẏ = x5y−1 y4∂x + x5y−1∂y

Figure 7: Top: The six elliptic 2× 2 urns: matrix (M), system (Σ), partial differential operator (D), and elliptic type.

Bottom: The corresponding six lattices
`A B C
D E F

´

.

Theorem 4 (Fully sacrificial urns) Consider a fully sacrificial urn determined by a matrix satisfying the

conditions of (69).

(i) The probability that, at time n, all balls are of the second type (An = 0) is exponentially small; this

exponential rate is a quotient of Gamma function values taken at rational arguments.

(ii) The number of balls of the first type (An) converges in distribution, in the large n limit, to a Gaussian

law. The speed of convergence to the Gaussian limit is a negative fractional power of n.

(iii) The number An of balls of the first type satisfies the mean and variance estimates: E(An) ∼ µn
and V(An) ∼ ξ2n; in particular, An/n converges in probability to µ. Generally, any rth moment admits a

closed-form expression, which is of hypergeometric type.

(iv) The number An of balls of the first type satisfies a large deviation principle, with the large deviation

rate function being effectively computable from the fundamental integral J of the urn model.

Detailed statements that are analogous to Propositions 8–11 above are found in [30].

6.2 Elliptic urns

An elliptic function is a function that is meromorphic in the whole complex plane and is doubly periodic.

There are several ways to develop the theory of such functions—accessible introductions appear in the

books of Whittaker and Watson [103] and Chandrasekharan [13]. Elliptic functions also enjoy special

conformal mapping properties.

One of the results of [30] amounts to characterizing all 2 × 2 urn models whose solutions can be ex-

pressed in terms of elliptic functions. It is found that there are exactly six such models (after arithmetical

irreducibility, in the sense of (30), p. 74, is imposed), which are listed in Figure 7 [top]. Such elliptic urns

are associated to the regular tilings of the Euclidean plane displayed in Figure 7 [bottom].

For our purposes, the most fruitful relations that determine elliptic functions are the differential ones. For

the Weierstraß ℘-function, this is

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3, implying ℘′′(z) = 6℘(z)2 − 1

2
g2. (70)
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Figure 8: The 2–3 tree urn model. Left: a plot of {− 1
n

log P(An = k)}n+1
k=0 against k/(n + 1), for n = 24 . . 96;

right: a comparison against the limit large deviation rate function.

see [103, Ch.XX]. The Jacobian elliptic function sn(z, k) satisfies the nonlinear differential equation

(

dy

dz

)2

= (1 − y2)(1 − k2y2); (71)

see [103, Ch.XXII]. Finally, an interesting differential system considered by Dixon [20], namely

{

ẋ = y2

ẏ = x2 ,

{

x(0) = 1
y(0) = 0

, (72)

has solutions, written X(z) = cmh(z) and Y (z) = smh(z) in the notations of [16], that parameterize the

Fermat hyperbola X3 − Y 3 = 1 (this curve is of genus 1, hence elliptic). We now briefly review some of

the elliptic models of Figure 7, under the angle of differential relations and the isomorphism theorem.

A. The urn

A =

(

−2 3
4 −3

)

,

(matrix A of Figure 7) is of great historical interest: it appears in the context of balanced 2–3 trees, a

data structure of computer science used for sorting and searching [71]. The fringe analysis leads to this

urn, the “2–3 tree urn”; see [2, 5, 106] as well as [1] for a “process viewpoint” and [83] for relations to

rotation balanced data structures. Panholzer and Prodinger first derived the elliptic solution of this particular

model [88], which then served as a prime motivation for the development of [30]. Explicit reductions

to elliptic functions are developed in [30, 88], one of which goes as follows: strat from the associated

differential system,
{

ẋ = x−1y3

ẏ = x4y−2 ,

then notice that ẋx = y3, so that x2 = 2
∫

y3; similarly, we have y3 = 3
∫

x4 which yields x2 =
∫ ∫

x4.

Setting x2 = Ξ then shows that Ξ′′ = 6Ξ2, which is an avatar of the differential equation (70) satisfied by

the Weierstraß ℘ function.

Figure 8 displays numeric aspects of the large-deviation regime of such urns.

B. The urn

B =

(

−1 2
3 −2

)

has an associated differential system
{

ẋ = y2

ẏ = x3y−1 ,

which can be directly reduced to elliptic form like in the previous example. The second equation put

under the form yẏ = x3 implies that y2 = 2
∫

x3. Then, the first equation becomes ẋ =
∫

x3, which by

differentiation gives ẋ = 2x3. This is then integrated upon multiplication by ẋ: we have ẋẍ = 2x3ẋ and
1
2 ẋ

2 = 1
2x

4 + 1
2K for some constant K. The latter equation is of the Jacobian form (71).

C. The system (72) defining Dixonian functions is directly associated to the urn with matrix

C =

(

−1 2
2 −1

)
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(matrix C of Figure 7) discussed as Example 4, p. 79 under the name of “generation-parity model”, with

the functions smh, cmh providing the pseudo-sine (S) and pseudo-cosine (C) of the general theory. The

combinatorics of these functions, including the reduction to the Weierstraß ℘ form and further properties of

the urn model, are examined in [16].

D. The case of matrix D is reduced to elliptic form in [30]. What appears in this case is the lemniscatic

integral

I(u) =

∫ u

0

dζ
√

1 − ζ4
.

E. For the urn and associated system

E =

(

−1 3
5 −3

)

,

{

ẋ = y3

ẏ = x5y−2 ,

one can start the reduction like in Case C above. One finds y3 = 3
∫

x5, so that ẋ = 3
∫

x5, implying

ẍ = 3x5 and ẋ2 = x6 + K. This is not immediately recognizable as being of elliptic type. However, set

Ξ = x2. We find Ξ̇2 = 4Ξ3 +4K, which is now seen to be of elliptic type. Thus, Ξ(t) is an elliptic function

and x is the square-root of an elliptic function. (It is still justified to name the urn “elliptic”, since the initial

conditions a0 = 2, b0 = 0, for instance, lead to bona fide elliptic function solutions.)

F. The reduction of the matrix F to elliptic form is discussed briefly in [30].

Let us finally mention that a 3 × 3 model, which is exactly solvable in terms of Jacobian functions, is

discussed in §9.4, p. 107 (the pelican’s urn).

7 Triangular 2 × 2 urns (γ = 0)
In this section, we examine balanced urn models whose replacement rules are determined by a triangular

matrix(xii):

M =

(

α σ − α
0 σ

)

, 0 < α < σ. (73)

(Thus, with our general notations: γ = 0, and δ = σ is the balance of the urn.)

Triangular urns may be viewed as a simple model for evolving species. Consider two populations, for

instance apes and human. At time n, a randomly chosen individual gives birth to σ children. Apes may

evolve and as a consequence give birth to children of both species. But since offsprings inherit the char-

acteristics of their parents, a human can only give birth to a human (this is perhaps an optimistic model of

reality). The evolution of both populations can then be represented by such a triangular urn model.

We establish here the following properties, whose detailed statements constitute Propositions 14–17.

Theorem 5 (Triangular 2 × 2 urns) Consider a triangular urn model determined by a matrix of the form (73).

(i) The complete generating function of urn histories is an algebraic function of a special radical form.

A single combinatorial sum expresses exactly the composition of the urn at any instant.

(ii) Moments of any order are expressible as finite linear combinations of products and quotients of

binomial coefficients (i.e., they are of hypergeometric type).

(iii) Both a central and a local limit hold for the urn’s composition, the distribution being expressible in

terms of the stable laws of probability theory.

(iv) Moments of fractional orders and the Mellin transform of the limit law are expressible as quotients

of Gamma function values.

Bagchi and Pal [6, p. 395] briefly mention the triangular urn model, which, in their terms, “requires

further investigation” and “presents some curious technical problems and appears to need a separate treat-

ment”. The model was later studied by Gouet [47] who established convergence in distribution but did not

characterize the limit, due to limitations arising from the non-constructive character of martingale theory.

Kotz, Mahmoud and Robert [74] found the exact (hypergeometric) form of the expectation of the number

of balls of the first color at time n for the particular urn ( 1 3
0 4 ). An original analysis of 2 × 2 triangular urns

along the lines of the present treatment was included in the first version (dated March 2003) of [30], but it

was restricted to urns of the form
(

σ−1 1
0 σ

)

, and for reasons of size, had to be kept out of the eventually pub-

lished version [30]. Puyhaubert and Flajolet then worked out the case of a general matrix of the form (73),

(xii) The case α = σ leads back to the original urn studied by Pólya; the case α = 0 is such that the urn’s composition is deterministic:

see the “records’ urn” in §2.6; the case α < 0 is such that balls of type x disappear almost surely, so that the evolution is eventually

trivial. Higher dimensional urns described by a triangular matrix are also of interest since they form an integrable family.
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with the corresponding results being reported in the thesis [92]. In the mean time, Janson [63] developed

a wide-encompassing theory of triangular urn models, including non-balanced ones. To this class of trian-

gular models, we contribute explicit formulae, speed of convergence estimates, as well as a local limit law.

Note finally, that Gnedin and Pitman have recently encountered similar generating functions in [45].

7.1 Generating functions and the exact form of probabilities

Our starting point is the triangular matrix (73) and the main tool is the isomorphism theorem (Theorem 1,

p. 65). We assume a0 > 0, since otherwise the urn would never contain a ball of the first type. Regarding

exact expressions of probabilities, we have:

Proposition 14 Consider a triangular urn of the form (73), whose composition at time 0 is 〈a0, b0〉. The

bivariate generating function of urn histories is an algebraic function expressible by radicals:

H(x, 1, z) = xa0 (1 − σz)
−b0/σ

(

1 − xα
(

1 − (1 − σz)
α/σ
))−a0/α

. (74)

The probability that the urn contains a0 + kα black balls at time n is

P [An = a0 + kα] =
Γ (n+ 1) Γ

(

s0

σ

)

Γ
(

s0

σ + n
)

(

k + a0

α − 1

k

) k
∑

i=0

(−1)i

(

k

i

)(

n+ b0−αi
σ − 1

n

)

. (75)

Proof: Triangular urns are most conveniently treated by means of the associated differential system that

reads:
{

ẋ = xα+1yσ−α

ẏ = yσ+1 ,

{

x(0) = x0

y(0) = y0
.

The system is triangular, so that one can first solve for y, resulting in

Y (t) = y0(1 − σy−σ
0 t)−1/σ.

Then X(t) must satisfy:

ẋx−α−1 = yσ−α,

which is explicitly integrable. Hence, the solution to the system is explicit and it provides the algebraic

function of (74).

By definition, only blocks of α balls can be added to the urn, so that An is necessarily of the form

An = a0+kα for some k ∈ Z≥0. Coefficient extraction from (74) based on the expansion of (1−X)−α0/a

then yields

[xa0+kα]H(x, 1, z) =

(

k + a0

α − 1

k

)

(1 − σz)
−b0/σ

(

1 − (1 − σz)
α/σ
)k

.

The formula (75) then follows after expanding the kth power, upon performing coefficient extraction with

respect to z. ✷

Example 7. The simplest triangular urn: [1, 1; 0, 2]. The triangular matrix

M =

„

1 1
0 2

«

,

with σ = 2, gives rise to the simplest nontrivial triangular model. The BGF of urn histories is

H(x, 1, z) = xa0(1 − 2z)−b0/2 `1 − x
`

1 −
√

1 − 2z
´´−a0

,

which leads to

[xk]H(x, 1, z) =

 

k − 1

a0 − 1

!

(1 − 2z)−b0/2 `1 −
√

1 − 2z
´k−a0

.

Consider the case b0 = 0 and (for convenience) a0 = 1. Now, the function φ(z) = 1 −
√

1 − 2z is such that

its powers can be explicitly expanded by means of the Lagrange Inversion Theorem, since it satisfies the implicit

definition φ = z/(2 − φ). We thus find (n ≥ 1 and 2 ≤ k ≤ n + 1)

P[An = k] =
k − 1

n
2k−1

`

2n−k
n−1

´

`

2n
n

´ ,
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under the initial condition (a0, b0) = (1, 0). Asymptotically, the distribution is of the Rayley type,

P
`

an = ⌊ξ
√

n⌋
´

∼ ξ

2
√

n
e−ξ2/4,

uniformly for ξ in any compact set of R>0, this fact also constitutes a special case of Proposition 16 below. This urn

was studied independently by Janson who obtains a central limit result [63, Ex. 3.1]. ✷

7.2 Moments

Like probabilities, moments of the number of x-balls admit closed-form expressions: these are even simpler,

as each moment turns out to be of hypergeometric type, that is, a finite linear combination of products and

quotients of Gamma function values (see Definition 4, p. 87). For an alternative approach, see [90, §3.2].

Proposition 15 The random variable An has expectation and standard deviation that satisfy

E [An] = a0

Γ
(

t0
s

)

Γ
(

t0+α
s

) nα/s +O
(

nα/σ−1
)

,

(σ [An])
2

= a0



(a0 + α)
Γ( t0

s )

Γ( t0+2α
s )

− a0

(

Γ
(

t0
s

)

Γ
(

t0+α
s

)

)2


n2α/s +O
(

nα/σ
)

.

(76)

The general moment of order ℓ is a finite linear combination of terms of the form

(

t0+kα
s

)

· · ·
(

t0+kα
s + n− 1

)

t0
s · · ·

(

t0
s + n− 1

) =

( t0+kα
s +n−1

n

)

( t0
s +n−1

n

)

, 0 ≤ k ≤ ℓ,

and asymptotically,

E
[

An
ℓ
]

= αℓ Γ
(

a0+ℓ α
α

)

Γ
(

t0
s

)

Γ
(

a0

α

)

Γ
(

t0+ℓ α
s

) nℓ α/s +O(n(ℓ−1)α/σ). (77)

Proof: Given the probability generating function ofAn (Proposition 14), moments are obtained by repeated

differentiation with respect to variable u followed by the assignment u 7→ 1. Precisely, the ℓth factorial

moment is equal to

E [An(An − 1) · · · (An − ℓ+ 1)] =
Γ (n+ 1) Γ

(

t0
σ

)

σnΓ
(

t0
σ + n

) [zn]

[

∂ℓ

∂uℓ
H(x, 1, z)

]

u=1

.

For the first moment, this gives us

E [An] =
Γ (n+ 1) Γ

(

t0
σ

)

σnΓ
(

t0
σ + n

) [zn]

(

∂H(x, 1, z)

∂u

)

x=1

=
Γ (n+ 1) Γ

(

t0
σ

)

σnΓ
(

t0
σ + n

) [zn]a0∆
t0+a

where ∆ denotes here the function ∆ = (1 − σz)−1/σ . For the second moment, one finds

E
[

An
2
]

=
Γ (n+ 1) Γ

(

t0
σ

)

σnΓ
(

t0
σ + n

) [zn]
(

a0(a0 + a)∆t0+2a − a0 a∆t0+a
)

.

Coefficient extraction leads to binomial coefficient forms involving rational parameters. The asymptotic

equivalents are obtained by Stirling’s formula, which proves (76).

Similarly, for higher moments, we start by expressing the function H(x, 1, z) as

H(x, 1, z) = ∆t0
(

1 − ∆a
(

1 − x−a
))−a0/a

.

For x close enough to 1, this expression admits a series expansion given by

H(x, 1, z) = ∆t0

∞
∑

k=0

a0

a
· · ·
(a0

a
+ k − 1

)

∆ka (1 − x−a)
k

k!
.
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Introduce the collection of numbers (sk,ℓ)k,ℓ∈Z≥0
such that for x near 1,

(1 − x−α)k =

∞
∑

ℓ=k

sk,ℓ(x− 1)ℓ.

Then, sk,k = αk and upon exchanging summations, one finds

H(x, 1, z) = ∆t0

∞
∑

ℓ=0

(x− 1)ℓ

(

ℓ
∑

k=0

sk,ℓ

k!

a0

α
· · ·
(a0

α
+ k − 1

)

∆kα

)

. (78)

From this expression, it is seen that the ℓth derivative of H(x, 1, z) at x = 1 is a polynomial in ∆, of degree

t0 + ℓα, whose leading coefficient is a0 · · · (a0 + (k − 1)α) = αℓΓ
(

a0

α + ℓ
)

/Γ
(

a0

α

)

. By linearity, this

property also extends to the ℓth power moment. Finally, since

[zn](1 − z)−λ1 = o
(

[zn](1 − z)−λ2
)

if λ1 < λ2,

the asymptotic equivalent of the general moment follows. ✷

Example 8. The KMR triangular urn [1, 3; 0, 4] . In [74], Kotz, Mahmoud, and Robert discuss recurrences satisfied by

probabilities and moments in the triangular case and make explicit some first moment computations. In particular, they

study a variant of the model

M =

„

1 3
0 4

«

,

and we name the latter the KMR triangular urn. We consider here the initial conditions (a0, b0) = (1, 0). The mean

number of balls of the x-type at time n satisfies

E[An] = 4n + 1 − 1
`

n−3/4
n

´

∼ 4n − π
√

2
Γ(3/4)

n3/4 + 1 + O(n−1/4).

(Similar forms have been computed by the authors of [74] using somewhat heavier recurrence manipulations.) Here

moments result effortlessly from taking partial derivatives of the BGF H(x, 1, z) at x = 1,

H(x, 1, z) =
1

δ1/4
, H ′

x(x, 1, z) =
1

δ5/4
− 1

δ
,

H ′′
xx(x, 1, z) = 5δ−9/4 − 8δ−2 + 4δ−7/4 − 5δ−5/4 + 4δ−1,

(79)

where δ = 1 − 4z, upon extracting coefficients. As a consequence of the last equation, the variance also admits an

explicit form involving binomial coefficients of fractional index, and its asymptotic value is

2

3
π

8
√

2 − 3π

Γ(3/4)2
n3/2 − 3π

√
2

Γ(3/4)
n3/4 + O(

√
n).

The number of balls of the second colour has thus been found to be of average order n3/4, which coincides with the

order of growth of the standard deviation. This is a strong indication of the presence of a non-Gaussian law(xiii), a

property that we justify in the next subsection. ✷

7.3 Local limit laws

The non-Gaussian character of the limit in triangular cases is obvious from the moment calculations of the

previous subsection. It was observed by Smythe in [96]. However, apparently the martingale arguments

of [96] do not lead to a determination of the limit law. Gouet [47] shows the existence of a limit distribution

and remarks that “information on the moments of Z [the limit] can be obtained from the difference equa-

tions characterizing the moments of Wn [our An]”, but he does not appear to have available a complete

characterization of this limit.

Proposition 16 The random variable An follows a local limit law whose density is expressed in terms of

Mittag-Leffler functions. Precisely, for any compact set I of R>0, and any ξ in I such that ξ nα/σ is an

integer, one has

P

[

An = a0 + αξnα/σ
]

=
1

nα/σ
g(ξ) +O

(

1

n2α/σ

)

(xiii) We are grateful to Dr Philippe Robert for asking us, in 2003, to determine the variance and the corresponding distribution, which

eventually led to the developments of the present section, first reported in the 2003 version of [30] and in [92].
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Figure 9: Hankel integration contour

where the error term holds uniformly with respect to ξ ∈ I . The function g is defined on R>0 by means of

the series expansion

g(ξ) =
Γ
(

t0
σ

)

Γ
(

a0

α

)ξa0/α−1
∑

k≥0

(−1)k

Γ
(

b0−kα
σ

)

ξk

k!
. (80)

Hence, Γ
(

a0

α

)

/Γ
(

t0
α

)

(−ξ)1−a0/αg(−ξ) is the inverse Laplace transform of a

Mittag-Leffler function with parameters (−α/σ, b0/σ). If b0 = 0, it is exactly the density of a stable

law of index α/σ.

Proof: In connection with the analytic inclination of this paper, it is of interest to note that the stable-like

distributions arise here for a bivariate generating function whose singular structure experiences a discon-

tinuity at 1 (see [38, Ch. IX] for a perspective). The type of phenomenon encountered here resorts to the

so-called critical composition scheme of [7]: this is described by a BGF of the form F (uG(z)) in the case

where F,G have algebraic singularities, while G at its singularity assumes a value that creates a singularity

for F . The result thus follows from [7], but for completeness, we sketch the proof here.

By expanding the outer radical (·)−a0/a in the expression (74) of H , one finds

P [An = a0 + kα] =
Γ (n+ 1) Γ

(

t0
σ

) (k+
a0
α −1
k

)

σnΓ
(

t0
σ + n

) [zn] (1 − σz)
− b0

σ
(

1 − (1 − σz)
α
σ

)k
.

The coefficient of zn is estimated by means of Cauchy’s coefficient formula,

[zn] (1 − σz)
−b0/σ

(

1 − (1 − σz)α/σ
)k

=
σn

2iπ

∫

γ

(1 − z)−
b0
σ

(

1 − (1 − z)
α
σ

)k dz

zn+1
,

using a contour of integration γ that winds around 1 and is scaled according to the general principles of

singularity analysis [34, 38]. The contour is displayed in Figure 9: we choose rn = 1 + Cn−α/σ and then,

Rn =
√

rn2 + (1/n)2, where C is a fixed positive real. Set k = ξnα/σ , where ξ lies in a fixed compact

subset I of R>0. When C is chosen sufficiently large (C > max(I) is enough), the contribution along the

large circle is exponentially small for any ξ in I . Setting z = (1 − t/n) then leads to the approximation,

P [An = a0 + ka] ∼ Γ
(

t0
s

)

Γ
(

a0

a

)ξa0/a−1 1

2πnα/σ

∫

H
t−b0/σe−ξtα/σ+tdt,

where H is a clockwise oriented loop around the negative real axis. Next, keep the kernel t−b0/σet and

expand the other exponential; this gives us

1

2iπ

∫

H
t−b0/σe−ξtα/σ+tdt =

1

2iπ

∞
∑

k=0

∫

H

(−ξ)k

k!
t

ka−b0
s etdt

=
1

2iπ

∞
∑

k=0

(−ξ)k

Γ
(

ka−b0
s

)

k!

where the last equality derives from Hankel’s classical representation of the Gamma function [103]. The

error estimates are obtained by expanding the integral to one more term. The connection with stable laws
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Figure 10: Limit laws of triangular urn models with 2 types of balls.

finally results from a trite comparison with the classical expression of their densities as found in the books

of Feller [27] or Zolotarev [107]. ✷

Figure 10 displays some of the limit densities of triangular urns for various initial conditions. The plot

on the left corresponds to limit laws of
[

α 2
0 α+2

]

urns, α ∈ [2 . . 6], with initial conditions (α + 1, 1), the

plot on the right displays densities of the same urns, with initial conditions (α − 1, 1). Graphs with higher

peaks correspond to higher values of α.

7.4 Mellin transforms and moments of fractional orders

We finally determine the Mellin transform of the limit law of An. Recall that, given a function h(ξ) defined

over R≥0, its Mellin transform is defined by

h⋆(s) =

∫ ∞

0

h(ξ)ξs−1 dξ.

In particular, if h(ξ) is the density of a nonnegative random variable Y , then h⋆(s) = E[Y s−1]. In other

words, a Mellin transform provides moments of fractional (or even complex) orders, and its expression

must extrapolate the values of the classical power moments of integral order.

Proposition 17 The density g(x) of the limit law of An admits a Mellin transform given, for any s such

that ℜ(s) > 1 − a0/α, by

g∗(s) =
Γ
(

a0+(s−1)α
α

)

Γ
(

t0
σ

)

Γ
(

a0

α

)

Γ
(

t0+(s−1)α
σ

) . (81)

The moment of order κ of the limit law exists for any complex κ with ℜ (κ) > −a0/a and is equal to

g∗(κ+ 1), with g⋆ provided by (81).

Proof: The Mellin transform of the density is given by

g∗(s) =

∫ +∞

0

ξs−1

(

Γ
(

t0
σ

)

Γ
(

a0

α

)ξa0/α−1

∫

H
t−b0/σe−ξtα/σ+tdt

)

dξ

where H is a clockwise oriented loop around the negative real axis. Define

F (ξ, t) =
Γ
(

t0
σ

)

Γ
(

a0

α

)ξa0/α+σ−2t−b0/σe−ξtα/σ+t.

The integral
∫ +∞
0

ξs−1e−ξγdξ converges for any λ such that ℜ(λ) > 0 and is equal to λ−sΓ(s). The

contour H can is chosen as displayed below,
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0 1

θ

with π
2 < θ < σ

α
π
2 . Given this integration contour, for any t of H and any s satisfying ℜ(s) > 1 − a0/α,

the integral
∫ +∞
0

F (ξ, t)dξ converges and its value is

∫ +∞

0

F (ξ, t)dξ = Γ

(

a0 + (s− 1)α

α

)

t−(t0+(s−1)α)/σ et.

It suffices to integrate this expression with respect to t, and the statement follows. ✷

8 Intermezzo: the OK Corral urn [0,−1,−1, 0]
The analytic approach to 2 × 2 urn models leads to the solution of several classical problems in a unified

way. Instances that have been encountered in earlier sections include the coupon collector’s problem, the

Ehrenfest model, records and rises in permutations, leaves in binary increasing trees and trees of acquain-

tance networks, as well as the fringe analysis of 2–3 trees. We briefly discuss here results obtained in the

period 2004–2005 by two of us [36], which will give rise to a separate publication. These results exemplify

further the interest of an analytic approach to urn models, as well as the diversity of stochastic behaviours

that such models may lead to.

The model at stake here is described by a matrix

M =

(

0 −1
−1 0

)

, (82)

which is not of a type hitherto considered (here, β = γ = −1, while all previous results are based on the

assumption β, γ ≥ 0). If an x ball is picked up, then a y ball should be taken out of the urn; if a y ball is

picked up, then a x ball should be taken out of the urn. The process stops once balls of one or the other

colour are exhausted.

A vivid interpretation of the urn defined by (82) is as follows. Consider two groups of gunwomen facing

each other. At time 0, the first group comprises m fighters and the second group comprises n fighters. (We

assume throughout m,n ≥ 1.) At each discrete instant, a fighter chosen uniformly at random shoots and

kills a member of the opposite group. The problem consists in quantifying the chances for a team to win

as well as the number of survivors. In other words: To what extent does a numerical advantage in the field

increase the chances of a favorable outcome? As pointed out by Kingman [69], this question is a basic one

in the mathematical theory of warfare and conflicts initiated by Frederick William Lanchester (1868–1946).

The problem of analysing the urn (82) has been named the “OK Corral Problem” by reference to the

famous gunfight at the OK Corral Ranch of Tombstone in 1881. It makes sense both in the “fair” case where

m,n are equal (or nearly equal) and in the “unfair” case where m ≫ n or n ≫ m. It was introduced by

Williams and McIlroy in [105]. These authors gave a heuristic argument based on a deterministic differential

system and a diffusion process approximation suggesting for the mean number µ(m,n) of survivors the

asymptotic estimates

{

µ(m,n) ∼
√
m2 − n2, for m≫ n,

µ(m,m) ∼ 2Km3/4, with K := 3−1/4π−1/2Γ(3/4).
(83)

In particular the numerical evidence for the correctness of the second estimate was overwhelming.

Kingman [68] proved the estimate of µ(m,m) in (83) and a good deal more. By recurrence manipula-

tions, he obtained, for the fair case m = n, the asymptotic form of higher moments of the number S of

survivors, which leads to a characterization of the limit distribution of S:

P(S ≤ λn3/4) →
√

2

π

∫ λ2/3

0

e−x2/2 dx. (84)
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Figure 11: Left: Fifty random evolutions in the fair case m = n = 50. Right: Random evolutions in the general case

m + n = 100, with m ∈ [1 . . 99]. The horizontal axis represents time, the vertical axis corresponds to the size of the

first group.

Remarkably, the methods of [68] also make it possible to justify the first approximation of (83) for the

unfair fight, in the case when m − n is large compared to
√
m. Finally Theorem 3 of [68] describes the

transition region when m − n ∼ x
√
m in terms of a Gaussian error function (erf). Kingman’s arguments

in [68] are based on moment methods, and accordingly they say little regarding speed of convergence to

the asymptotic limit in estimates like (84). This problem is revisited by Kingman and Volkov in [70] who

proved a local limit law, (i.e., convergence to the Gaussian density function) accompanied with error bounds

for the fair case m = n, in a form consistent with (84). The results of [70] are based on ingenious coupling

arguments. Interestingly enough, they also lead to an exact expression involving a double alternating sums

for the probabilities of interest.

The analytic results reported in [36] (see also [92] for a preliminary presentation) are the following.

First, it is possible to obtain expressions for the probability distribution of the number of survivors that

are valid in all (fair/unfair) cases and are simpler than those of Kingman and Volkov, as they involve only

a single alternating sum. Then, an explicit single alternating sum representation for the probability of

survival of the first group, can be derived. The approach reveals a connection with Eulerian numbers and it

provides an independent proof of Kingman’s phase transition (84) as well as a precise and optimal speed of

convergence estimate. If the ratio α = m/n satisfies α < 1, then the probability for the first group to win

becomes exponentially small, and one can precisely quantify this exponential smallness. Precise statements

are given now.

Proposition 18 (OK Corral: Exact forms) (i) The probability Pց(m,n, s) of observing s survivors from

the first group in the OK Corral problem admits the exact expressions:

Pց(m,n, s) =
s!

(m+ n)!

m
∑

k=1

(−1)m−k

(

k − 1

s− 1

)(

m+ n

n+ k

)

km+n−s

=
s!

(m+ n)!

n
∑

k=1

(−1)n−k

(

k + s− 1

k

)(

m+ n

m+ k

)

km+n−s.

(85)

(ii) The probability P1(m,n) of survival of the first group satisfies

P1(m,n) =
1

(m+ n)!

n
∑

k=1

(−1)m−k

(

m+ n

n+ k

)

km+n (86)

=
1

(m+ n)!

m
∑

k=1

Am+n,k, (87)

where An,k =
∑

0≤j≤k(−1)j
(

n+1
j

)

(k − j)n. In particular, the survival probability is equal to the proba-

bility that a random permutation of size m+ n has less than m rises.

Proof (sketch): (i) The starting point is the time-reversal transformation of Kingman and Volkov [70] (see

Note 2, p. 66 for background): it is possible to view histories of the OK Corral process as mirror images
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Figure 12: The transition graphs of the Ehrenfest urn with N = 3 particles (top) and of the Mabinogion urn with

N + 2 = 5 sheep (bottom) illustrate the duality of the two models, under time reversal.

of histories of Friedman’s urn, up to a normalizing factor. It then becomes possible to make use of the

complete analytic solution of Friedman’s urn as given by (20), p. 68. Standard expansions provide the first

form stated in (85), while the seemingly similar second form results from a suitable integral representation.

(ii) Generating function calculations make it possible to carry explicitly the summation needed to derive

the evaluation (86) from that of (85). ✷

Proposition 19 (OK Corral: asymptotic forms) (i) Consider nearly fair fights defined by initial condi-

tions m,n satisfying
m− n√
m+ n

= θ, where θ lies in a compact interval of the real line. Then, the survival

probability of the first group satisfies

P1(m,n) =
1√
2π

∫ θ
√

3

−∞
e−t2/2 dt+O

(

1

n

)

, (88)

the uniform error term O(n−1) being optimal.

(ii) Consider the “unfair” regime m = αn, with α < 1, a constant. There exist a function W (α)
satisfying W (0) = −∞, W (1) = 0, such that the probability of survival of the first group satisfies

1

n
log P1 (αn, n) = W (α) +O

(

log n

n

)

. (89)

The function W is defined for α ∈ (0, 1) by W (α) = −(1+α) log

(

log xα

xα − 1

)

−α log xα, the real number

xα being defined implicitly by the equation
xα

xα − 1
− 1

log xα
=

α

1 + α
.

Proof (sketch): (i) The estimate (88) is a consequence of (86), after a central limit estimate with speed

is developed, based on quasi-powers approximation. (ii) The estimate (89) is a large deviation estimate

established by a process similar to the one detailed earlier in the case of semi-sacrificial urns. ✷

Other statements of [36] include exact representations for all power moments of the number of survivors

in the fair case m = n: these make precise and complement calculations of Kingman (who obtained

moments of orders 4, 8, 12, . . .) and lead to another proof of (84). In particular, one gains direct access to

the mean itself, whose expression is a sum that involves the birthday paradox function,

Q(k) :=
k

k
+
k(k − 1)

k2
+ · · · + k!

kk
.

An integral representation of the Nörlund-Rice type [37] then leads to an asymptotic expansion of the mean

number of survivors. It is of interest to note that, in this perspective, the asymptotic analysis relies on an

analytic extrapolation of the sequence (Q(k)) to the complex plane.

Note 10. The Mabinogion urn. The time reversal transformation that relates the OK Corral urn to Friedman’s can

be of interest in other contexts. For instance, the Mabinogion urn(xiv), described by Williams in [104, p. 159] and

corresponding to the matrix

M =

„

1 −1
−1 1

«

,

analytically reduces to the Ehrenfest urn when time is reversed: see Figure 12 (details are omitted in this short abstract).

✷

(xiv) According to a medieval Welsh folk tale , the Mabinogion, there is a magical flock of sheep, some black, some white. Whenever

a black sheep bleats, a white sheep becomes instantly black; whenever a white sheep bleats, a black sheep becomes instantly white.
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9 Higher dimensional models

We briefly discuss here a few additional urn models involving balls of more than two colours. Let m be the

number of colours. We now let xj be the formal variable associated to colour j. When there are only three

types of balls (m = 3), we tend to use x := x1, y := x2, and u := x3, for readability.

Definition 5 For an urn with matrix

M = (Mi,j), (90)

the associated differential system is the following collection of m ordinary differential equation:

Σ :







ẋi = xi

m
∏

j=1

x
Mi,j

j







i=1 . . m

, (91)

with initial conditions

{xi(0) = xi.0}i=1 . . m . (92)

By a slight abuse of notation, the system (91) can be rewritten as

Ẋ = X
I+M ,

with I the identity matrix of the proper dimension. An analogue of Theorem 1 still holds for the associated

system.

Theorem 6 (Basic isomorphism, m×m urns) Consider an m×m urn with matrix M that is balanced,

that is,
∑

j Mi,j = σ for all j = 1 . .m. Let X(t) = (Xi(t))
m
i=1 be the solution of the system (91) under

the initial conditions (92). Assume that
∏m

i=1 xi,0 6= 0. Then, there exists a small neighbourhood of 0 in

the z-plane such that

H(x1,0, . . . , xm,0, z) =

m
∏

i=1

Xj(t)
ai,0 ,

when the urn is initialized with ai,0 balls of colour i.

In general, form ≥ 3, we do not know of first integrals for this system (see Note 11 below). Accordingly,

our discussion in this article will be limited to special cases, ones that usually involve symmetry. Fortu-

nately, urn models naturally occurring in real life often possess some interesting structure—often, precisely,

a symmetry of sorts.

Note 11. Nonintegrability(xv). The system

ẋ = y2, ẏ = u2, u̇ = x2, (93)

together with its d dimensional generalization, has been considered by Jouanolou in [65] in the context of Pfaffian sys-

tems. (This model does have combinatorial content since it corresponds to analysing the depth of nodes in binary search

trees and increasing trees taken modulo d; it is thus a natural generalization of the generation-parity urn, Example 4.) A

theorem of [65] asserts the non-existence of a polynomial first integral for (93). Elementary proofs of non-integrability

(in the sense that they are based on basic differential algebra rather than algebraic geometry) are discussed in [82, 86].

These results are of great interest: they imply that the global approach that we developed for 2 × 2 urns (based on the

first integral of Section 3) admits of no universal generalization in any dimension d ≥ 3. ✷

9.1 The purely autistic (hyper-Pólya) urn

Nobody cares about her neighbour: the matrix is the unit matrix, which for m = 3 is

M =





1 0 0
0 1 0
0 0 1



 .

This is a generalization of the original Pólya urn. For m = 3, still, the associated differential system reads

ẋ = x2, ẏ = y2, u̇ = u2.

(xv) We are greatly indebted to Jacques-Arthur Weil and Aleksandar Sedoglavić for insightful discussions and references relative to

these questions. In particular A. Sedoglavić has mostly kindly provided the references to the works of Jouanolou, Moulin-Ollagnier,

Nowicki et al [65, 82, 86].
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Figure 13: The cyclic chambers urn with m = 3 chambers. Left: overall structure. Right: a random evolution of the

urn initialized with (a0, b0, c0) = (90, 0, 0) represented by the successive values of (Bn, Cn) for n = 0 . . 900.

Not surprisingly, variables separate. Taking into account the initial condition vector (x0, y0, u0), we have

x(t) =
x0

1 − x0t
, y(t) =

y0
1 − y0t

, u(t) =
u0

1 − u0t
.

The complete GF of urn histories when starting from a configuration of composition (a0, b0, c0) is then

H(x0, y0, u0, z) =

(

x0

1 − x0z

)a0
(

y0
1 − y0z

)b0 ( u0

1 − u0z

)c0

.

Coefficient extraction is immediate, and we get by the binomial theorem:

Proposition 20 For the purely autistic urn in dimension m = 3 initialized with (a0, b0, c0), one has

P(An = a,Bn = b, Cn = c) =

(

a−1
a0−1

)(

b−1
b0−1

)(

c−1
c0−1

)

(

a0+b0+c0+n−1
a0+b0+c0−1

) ,

assuming a+ b+ c = n+ a0 + b0 + c0.

This formula generalizes the case m = 2; see (18). It is of course easily derived directly (in combinatorial

terms, we are talking of a shuffle of histories corresponding to each one of the various colours, and shuffles

translate into products of exponential generating functions), extends to any dimension m, and is very well

known.

9.2 The cyclic chambers (hyper-Ehrenfest) urn

This is a natural generalization of the Ehrenfest urn introduced for dimensionm = 2 in §2.3, p. 69. Form =
3, imagine that you have three chambers arranged cyclically at third roots of unity. Particles are allowed

to migrate freely from one chamber to the next in clockwise order (Figure 13, left). (Thus the model has a

privileged direction for the migration of particles.) The matrix that models the system is

M =





−1 1 0
0 −1 1
1 0 −1





(Each particle becomes a ball whose colour represents the chamber the particle is currently in.)

The associated differential system is then

Σ : ẋ = y, ẏ = u, u̇ = x,

so that x(t) satisfies

d3

dt3
x(t) = x(t),
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which implies that x(t) is a linear combination of

et, eωt, eω2t, with ω := e2iπ/3.

And similarly for y(t), u(t).
The analysis is best developed for the general case of dimension m. Define the sectioned exponentials:

Er,m(t) :=
∑

n≡r mod m

tn

n!
,

so that Er,m(t) = O(tr) as t → 0. For instance: E0,2(t) = cosh t and E1,2(t) = sinh t. Equivalently, we

have

Er,m(t) =
1

m

m
∑

j=1

ω−jreωjt, ω := exp

(

2πi

m

)

.

These functions with j = 0, . . . ,m− 1 clearly form a basis of the linear space of solutions of the equation

dm

dtm
f(t) − f(t) = 0.

The system Σ with initial conditions x0 = (x1,0, x2,0, . . .) then has solutions

X1

(

t
∣

∣ x0

)

=

m
∑

j=1

xj,mEj−1,m(t),

and similarly for the other Xj’s (with a cyclic shift of the initial condition vector (x1,0, x2,0, . . .). This

provides the complete analytic solution of the urn model:

Proposition 21 For the cyclic chambers urn in dimension m initialized with a vector (a1,0, a2,0, . . .), the

complete GF of histories satisfies

H(x0; z) =

m
∏

j=1

Xj

(

z
∣

∣ x0

)aj,0
,

where

Xj

(

z
∣

∣ x0

)

=

m
∑

r=1

xj+r−1,mEj−1,m(t), (94)

in which we interpret xm+1 ≡ x1, xm+2 ≡ x2, and so on. In particular, the probability that an urn

initialized with (N, 0, 0) returns to its original state in n steps is

P(An = N) =
n!

Nn
[zn]E0,m(z)N . (95)

Speed of convergence to equilibrium. Let us first return to m = 3 and specialize the discussion to

a system initialized with N balls of the first colour and no ball of any of the other colours. The initial

composition vector is then (N, 0, 0). Let hn be the number of histories corresponding to the event that at

time n, balls are gain all of the first colour, i.e., all particles have returned home. The EGF of the sequence

hn is by (95):

h(z) = E0,3(z)
N .

The multinomial expansion then provides

h(z) =
1

3N

∑

j1+j2+j3=N

(

N

j1, j2, j3

)

exp
(

(j1 + ωj2 + ω2j3)z
)

,

so that

hn =
1

3N

∑

j1+j2+j3=N

(

N

j1, j2, j3

)

(

j1 + ωj2 + ω2j3
)N

. (96)

(This quantity is nonzero only if n ≡ 0 mod 3.) The expression above is seen to nicely extend the analysis

of the standard Ehrenfest model.
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Figure 14: The spectrum of the Markov chain describing the cyclic m-chambers (hyper-Ehrenfest) urn, when m =
3, 4, 5.

The system is, like in dimension 2, represented probabilistically by finite Markov chains—the complete

one (analogous to the hypercube) and the reduced one (see §2.3 and Figure 5, p. 71). The reduced chain,

which keeps track only of the population of each chamber, has
(

N+2
2

)

states and a transition matrix of the

same dimension. The spectrum of that matrix is also visible on an expression (96): the eigenvalues are

precisely the quantities

λj1,j2 =
j1
N

+
j2
N
ω +

(

1 − j1
N

− j2
N

)

ω2. (97)

The reason why the enumerative result (96) “contains” all eigenvalues is the following. For any directed

graph, the number of closed paths with a root vertex distinguished having length n is TrAn with A the

adjacency matrix of the graph and Tr the trace operator—this quantity is none other than the nth power

sum symmetric function of the eigenvalues (with possible multiplicities): see for instance [11, p. 12] or [38,

Ch. V]. For the graph of the complete Markov chain (with 3N states, where the identities of the balls are

preserved, see the discussion of §2.3), the number of closed paths is equal to 3Nhn, by the fundamental

symmetry of the model. Since the reduced chain is obtained by aggregating states of the complete chain,

the sets of eigenvalues of both matrices are the same, only multiplicities differ. Figure 14 (left) displays the

corresponding eigenvalues when m = 3 and N = 8.

The second largest eigenvalues dictate the speed of convergence to equilibrium. In Figure 13 (right),

we see a random trajectory represented by the pair (Bn, Cn) of the urn initialized with (N, 0, 0): the urn

first evolves by transferring balls from Chamber I to Chamber II [the nearly horizontal part of the path

in Figure 13], then enough balls migrate from Chamber II to Chamber III [the slanted zigzag part of the

path], after which the urn tends to spend most of the time near the “equilibrium” value (N/3, N/3) [the blob

around the point (30, 30)]. The common modulus of the second eigenvalues is made fully explicit by the

calculation (97). These correspond to j2 = 1, j3 = 0 or j2 = 0, j3 = 1 so that their common modulus µ[3]

is

µ[3] =

∣

∣

∣

∣

(

1 − 1

N

)

+
1

N
e2iπ/3

∣

∣

∣

∣

=

√

1 − 3

N
+

3

N2
.

In dimension m (i.e., there are m cyclically arranged chambers), this modulus is made fully explicit by a

similar calculation.

Proposition 22 For the Markov chain associated to the cyclic chambers urn with m cyclic chambers, the

modulus of the second largest eigenvalues is

µ[m] =

∣

∣

∣

∣

(

1 − 1

N

)

+
1

N
e2iπ/m

∣

∣

∣

∣

=

√

(

1 − 2

N

)2

+
4

N

(

1 − 1

N

)

cos2
π

m
. (98)

The formula (98) is also compatible with what we know of the standard Ehrenfest urn (m = 2), for which

the spectrum is N/N, (N − 2)/N, . . . ,−(N − 2)/N,−N/N , so that the convergence to equilibrium is

an exponential with rate µ[2] = (N − 2)/N . The spectrum for N = 8 and m = 3, 4, 5 is represented in

Figure 14. (It is unclear to us how Kac’s treatment could be extended to cover such higher dimensional

cases—for relevant techniques, see Mohar’s survey [85].)
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Note 12. Combinatorial analysis of the cyclic chambers urn. The formulae above are not all that surprising from a

combinatorial point of view: let the urn be, as above, initialized with N balls of the first type and return to its initial state

after n moves. A corresponding history can be regarded as a partition of the set {1, . . . , n} into an ordered collection

of N (possibly empty) disjoint classes, each of which has size a multiple of 3: the jth class records the various times

at which ball j has been active. Given general principles of combinatorial analysis, this makes it obvious why the

generating function is an N th power of a sectioned exponential. (This generalizes earlier observations of Flajolet,

Françon, Goulden, and Jackson [14, 29, 50] relative to the case m = 2.) ✷

The differential system approach can also be extended to urns involving random transitions, provided

that in all cases the model remains balanced. In that case the system becomes polynomial (instead of being

plainly monomial). To illustrate this point, we briefly discuss an undirected version of the cyclic chambers

model.

Example 9. The symmetrical three-chambers model. The case where each of three chambers communicates with its

two neighbours can be modelled by a matrix of the form

M =

0

@

−1 Z 1 − Z
Z −1 1 − Z
Z 1 − Z −1

1

A ,

where the Bernoulli random variable Z assumes the values 0, 1 with equal probability, and each transition of the urn

involves an independent draw of a variable of type Z. A simple extension of Theorem 6 then shows that one should

consider the differential system
8

<

:

ẋ = 1
2
(y + u)

ẏ = 1
2
(u + x)

u̇ = 1
2
(x + y)

,

8

<

:

ẋ(0) = x0

ẏ(0) = y0

u̇(0) = u0.
(99)

The sum S := x + y + u satisfies Ṡ = S, so that

S(t) = (x0 + y0 + z0)e
t,

and x(t) satisfies the differential equation ẋ + 1
2
x = 1

2
S. Thus, the first base function is

X(z) =
1

3
(x0 + y0 + u0)e

z +
1

3
(2x0 − y0 − u0)e

−z/2, (100)

and symmetrically for Y (z), U(z). In particular, starting with the initial configuration (N, 0, 0), the probability that all

particles have returned to the first chamber at time n, obtained by setting y0 = u0 = 0 in (100), is

P(An = N) =
n!

Nn
[zn]

„

1

3
ez +

2

3
e−z/2

«N

.

For a fixed value of N , this quantity is, asymptotically in n,

P(An = N) =
1

3N

»

1 + O

„„

1 − 1

2N

«n«–

.

This last estimate reflects the fact that the symmetrical urn reaches equilibrium faster than its nonsymmetrical counter-

part.

More generally, models of multichamber systems where communication between chambers is described by a finite

graph equipped with probabilities [67] are amenable to such a treatment. Relations between urn models and interacting

particle systems as considered by Itoh and his coauthors [59, 60, 61] seem to deserve further study. ✷

9.3 The generalized coupon collector’s urn

Start with the double coupon collector problem: Alice and her little brother Bob collect images or coupons

found in chocolate tablets, and Alice who comes first passes all her duplicates to Bob. They want each to

have a complete collection, knowing that there are initially N different coupons. How much time do they

need, on average, in probability?

The problem is modelled by the urn

M =





−1 1 0
0 −1 1
0 0 0



 .
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Initially there are N balls all of the first colour (x). As soon as an x-ball has been picked up, it becomes a

ball of the second colour (y). A y ball, when picked up, becomes of the third colour (u) and remains so for

ever. It is easily realized that the double coupon collector problem is adequately modelled in this way.

The associated differential system is

ẋ = y, ẏ = u, u̇ = u.

It is linear with constant coefficients and of a triangular form: one can then solve for u, which gives a

simple exponential, then solve backwards by successive integrations. Given the initial condition vector

(x0, y0, u0), the solution is

U(z) = u0e
z, Y (z) = y0 + u0(e

z − 1), X(z) = x0 + y0z + u0(e
z − 1 − z).

The complete GF of histories when the urn is started at time 0 with the vector (N, 0, 0) is then

H(x0, y0, u0, z) = (x0 + y0z + u0(e
z − 1 − z))

N
.

What is of interest is the time at which a double collection is obtained, that is, all balls of x, y have disap-

peared. Such configurations correspond to setting (x0, y0, u0) to (0, 0, 1). Thus the probability that at time

n two collections have (already) been obtained is

n!

Nn
[zn] (ez − 1 − z)

N
.

These numbers are higher order generalizations of Stirling partition numbers.

The results above are also extremely well known and in accordance with what either poissonization

arguments or combinatorial enumeration techniques otherwise provide [31, 38, 40, 87]. They generalize

easily to higher dimensions, thereby providing a partial unification of balls-and-bins models (random allo-

cations [72]) and urn processes of the type studied in this paper—this aspect is otherwise discussed in the

context of continuous time models by Holst [53].

The foregoing considerations are also of interest to researchers working in analysis of algorithms. Indeed,

it can be verified that the algorithm known as random probing hashing(xvi) in a paging environment can be

modelled by an urn of the multiple coupon collector’s type. This observation has been made by Durand and

Viola in 2003–2004 (unpublished) and a preliminary account of the analysis is to be found in Chapter 3 of

Marianne Durand’s PhD thesis [24]. (The treatment of Durand and Viola makes use of the earlier technique

of characteristics, as adapted from [30].)

9.4 The pelican’s urn

There is a tradition to be found in several cultures (Egyptian and Christian, inter alia): The mother pelican

had to feed her little baby pelicans in time of famine; she would tear her breast open to feed her young with

her entrails. This is rendered as follows by Alfred de Musset in his famous poem, La nuit de mai.

Lorsque le pélican, lassé d’un long voyage,

Dans les brouillards du soir retourne à ses roseaux,

Ses petits affamés courent sur le rivage

En le voyant au loin s’abattre sur les eaux.

Déjà, croyant saisir et partager leur proie,

Ils courent à leur père avec des cris de joie

En secouant leurs becs sur leurs goitres hideux.

Lui, gagnant à pas lents une roche élevée,

De son aile pendante abritant sa couvée,

Pêcheur mélancolique, il regarde les cieux.

Le sang coule à longs flots de sa poitrine ouverte ;

En vain il a des mers fouillé la profondeur ;

L’Océan était vide et la plage déserte ;

Pour toute nourriture il apporte son cœur.

Sombre et silencieux, étendu sur la pierre,

Partageant à ses fils ses entrailles de père,

Dans son amour sublime il berce sa douleur,

Et, regardant couler sa sanglante mamelle,

Sur son festin de mort il s’affaisse et chancelle,

Ivre de volupté, de tendresse et d’horreur.

The preceding considerations perhaps justify naming as pelican’s the urn whose matrix is, for m = 3,

M =





−1 1 1
1 −1 1
1 1 −1



 .

(xvi) See Knuth’s description of the model in [71, Ex. 6.4.48]. The random probing model is a companion to the uniform probing

model described in [71, pp. 534–535], and both serve to estimate the efficiency of double hashing [71, pp. 528–529]. See also the

discussion in [101, pp. 507–509].
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The associated differential system is

ẋ = yz, ẏ = ux, u̇ = xy. (101)

Observe that the system is strangely reminiscent of a system of differential equation satisfied by the Jaco-

bian elliptic functions [103, pp. 492–493]. To wit:

d

dt
sn t = cn t dn t,

d

dt
sn t = −dn t sn t,

d

dt
sn t = −k2 sn t cn t, (102)

where k is known as the modulus. The elliptic connection is easily elicited. In (101), multiply the first

equation by x, the second by y, the third by u, resulting in

xẋ = yẏ = uu̇ = xyu. (103)

This gives us a system of two first integrals:

x2 − x2
0 = y2 − y2

0 = z2 − z2
0 ,

which is sufficient to guarantee integrability. In particular, one can express y, u in terms of x, resulting in

the following differential equation for x:

dx
√

(x2 − x2
0 + y2

0)(x2 − x2
0 + u2

0)
= dt.

This shows that indeed x(t) is of the Jacobian elliptic type. The reduction to the standard normal form of

Jacobian elliptic functions, namely,

dw

dt
=
√

(1 − w2)(1 − k2w2),

is then easily obtained upon a double change of scale:

X(t) =
1

√

x2
0 − y2

0

sn

(

t
√

x2
0 − y2

0

+K,

√

x2
0 − y2

0

x2
0 − u2

0

)

.

(The second argument is the explicitly written modulus; the constantK is determined by initial conditions.)

One can then set x0 = 1 as well as y0 = y, u0 = u, to obtain the three fundamental functions of the

pelican’s urn.

It is interesting to note that the pelican’s urn is related to investigations carried out by Schett in the 1970s:

Schett introduced the trivariate operator

D = yu∂x + ux∂y + xy∂u,

which is precisely the partial differential operator of the pelican’s urn, and he was led to doing so for

the purpose of finding efficient algorithms for calculating the Taylor expansions of the Jacobian elliptic

functions [93]. Starting from there, Dumont and Viennot were then able to deduce new combinatorial

interpretations of coefficients of the Jacobian elliptic functions [21, 22, 23, 100]. To this panoply, our

current developments thus add histories of the pelican’s urn as a new combinatorial interpretation.

The hyperpelican urn and hyperelliptic functions. Integrability is also granted for higher dimensional

versions of the pelican’s urn. For instance, in dimension m = 4, the matrix

M =









−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1









will give rise to a hyperelliptic equation

dx
√

(x2 − a2)(x2 − b2)(x2 − c2)
= dt,

since (compare with (103))

xẋ = yẏ = uu̇ = vv̇ = xyuv.

We are not currently aware of works dedicated to the combinatorial interpretation of Abelian integrals (e.g.,

Abel’s addition theorem) over curves of genus g > 1, though some interesting combinatorics might arise.

Urn models at least indicate that hyperrelliptic integrals and their inverses may well have combinatorial

content.
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10 Triangular 3 × 3 urns

The theme of this section is the study of urn models with a 3 × 3 matrix of the triangular form

M =





α β σ − α− β
0 δ σ − δ
0 0 σ



 . (104)

Such urns present a specific interest since they do not satisfy the irreducibility condition assumed in most

other works. (For a notable exception, see Janson’s recent study [63].)

A 3 × 3 triangular urn serves as yet another simple model of evolving species. There are now three

species, corresponding to three types of balls, say x, y, u, with respective populations An, Bn, Cn at time n.

Evolution is irreversible, following the direction x → y → u, in accordance with the following diagram:

The evolution of balls of the first colour, x, is described by a 2×2 triangular urn process, namely

(

α σ − α
0 σ

)

(simply aggregate colours y, u and view the corresponding balls as being of a single colour), so that we may

freely restrict our attention to the random variables Bn and Cn representing at time n the number of balls

of colour y and u, respectively. In order to avoid degenerate cases, we further assume the conditions

αβδ 6= 0. (105)

We now present a classification of triangular urn models with three types of balls under the assump-

tions (104) and (105). It turns out that three cases need to be considered: in each case, we establish

convergence in distribution of Bn and fully characterize its limit law. (Similar methods would apply to

estimate Cn, while An is simply described by a balanced 2× 2 triangular model whose behaviour is known

from §7.) The results of this section have been already reported in the thesis [92], to which we refer for

detailed proofs.

10.1 Generating functions

A function I(z) serves to express all generating functions relative to 3 × 3 urns models—it is in fact a

special hypergeometric function. Its main analytic property is described by the following lemma.

Lemma 4 Let λ = α+β−δ
δ . For any complex z satisfying |z| < 1, the function I(z), defined by

I(z) =
∑

n≥0 , n 6=α/δ

(−1)n α

α− nδ

(

n− λ− 1

n

)

zn, (106)

admits a unique analytic continuation to the slit complex plane C \ R≤−1.

Proof (sketch): The function I(z) is clearly analytic in the unit disc. Define Iz0
(z) by

Iz0
(z) = −αzα/δ

∫ z1/δ

z0

(1 + tδ)λ

tα+1
dt, (107)

where z0 is a fixed real from ]0; 1]. By adopting as path of integration a straight line from z0 to z, we see

that Iz0
exists as an analytic function in C \ R≤ 0.

Termwise integration of the expansion of the integrand of (107) provides a function which, up to a

normalizing term of low degree, coincides with I(z) near the origin. (In the case when δ divides α, a

further logarithmic term is to be taken into account.) ✷
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Proposition 23 Consider a 3 × 3 urn of the form (104), satisfying the condition (105) and initialized

with (a0, b0, c0). The 4-variable generating function of urn histories is

H(x, y, u; z) = Xa0Y b0U c0 . (108)

The functions Y and U are given by

U = u(1 − s uσz)−1/σ, Y = y

(

1 − yδ

(

1

uδ
− 1

Uδ

))−1/δ

.

The function U is determined by cases as follows:

— If α/δ 6∈ Z≥1:

X = x

(

1 − xα

(

I

(

(y

u

)δ

− 1

)

y−α − I

(

(

Y

U

)δ

− 1

)

Y −α

))−1/α

.

— If there exists m ∈ Z≥1 such that α = mδ, then

X = x

(

1 − xα

(

I

(

(y

u

)δ

− 1

)

y−α − I

(

(

Y

U

)δ

− 1

)

Y −α

−
(

m− λ− 1

m

)(

1

yδ
− 1

uδ

)m

log(Y/y)α

))−1/α

.

Proof (sketch): We make use of the fundamental isomorphism theorem in its multidimensional version. (A

proof based instead on partial differential equations and the method of characteristics appears in [92].) The

associated differential system is triangular:






ẋ = xα+1yβuσ−α−β

ẏ = yδ+1uσ−δ

u̇ = uσ+1







x(0) = x0

y(0) = y0
u(0) = u0.

The u-component can be solved directly,

u(t) = u0(1 − σuσ
0 t)

−1/σ,

and the y-component then results by integration (since ẏy−δ−1 = uσ−δ),

y(t) = y0
(

1 − yδ
0

(

u−δ
0 − u(t)−δ

))−1/δ
,

just like in the two-dimensional case. The x-component is finally determined by another integration (since

ẋx−α−1 = yβuσ−α−β), which leads to the special function I(z) defined in (106). ✷

10.2 Expectation and second moment of Bn

The probability generating function of the random variable Bn, giving the number of y-balls at time n is

encoded into the GF H(1, y, 1; z). Then, moments of any order are obtained as usual by differentiating

with respect to y, then setting y = 1, and finally extracting coefficients by means of the [zn] operation. Let

∆ = (1 − szσ)−1/σ . The derivatives of H with respect to y at y = 1 are seen to be polynomials in ∆ and

log ∆, whose coefficients are easily determined. Three cases emerge from the analysis.

Proposition 24 Let Bn be the random variable giving the number of y-balls present in the urn at time n.

Then the first and second moments of Bn belong to one of three distinct regimes:

— If α < δ:










E[Bn] =
(

b0 + a0
δ

δ−α

)

Γ( t0
σ )

Γ( t0+δ
σ )

nδ/σ +O
(

n(δ−1)/σ
)

E[(Bn)2] =

[

K
Γ(

t0
σ )

Γ(
t0+2α

σ )

]

n2δ/σ +O
(

n(2δ−1)/σ
)

where K is

K =

(

b0 + a0
δ

δ − α

)2

+ δb0 + a0

(

αδ2

(δ − α)2
+ δ − α− 2δ +

2δ(δ + δ)

2δ − α

)

.
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— If α = δ:











E[Bn] = a0 δ
α

Γ( t0
σ )

Γ( t0+α
σ )

nα/σ log n+O
(

nα/σ
)

E[(Bn)2] ∼
(

a0 δ
α

)2
[

(

1 + α
a0

)

Γ(
t0
σ )

Γ(
t0+2α

σ )

]

n2α/σ (logn)
2

+O
(

n2α/σ log n
)

.

— If α > δ:











E[Bn] = a0 δ
α−δ

Γ( t0
σ )

Γ( t0+α
σ )

nα/σ +O
(

n(α−1)/σ
)

E[(Bn)2] =
(

a0 δ
α−δ

)2
[

(

1 + α
a0

)

Γ(
t0
σ )

Γ(
t0+2α

σ )

]

n2α/σ +O
(

n2(α−1)/σ
)

.

This result, when accompanied by similar analyses of Cn (the number of u-balls) and An (the number

of x-balls), provides an overall picture of the urn’s probable evolutions. First, since An is governed by

a 2 × 2 triangular urn process, we have with high probability [w.h.p.]: An = Θ(nα/σ), given what we

already know regarding 2× 2 triangular urns (§7, p. 93). Naturally, we have An +Bn +Cn = σn+O(1),
which implies Bn + Cn = σn + o(n) [w.h.p]; next Bn = o(n) holds according to Proposition 24, so that

Cn = σn + o(n) [w.h.p.]. We may then regard intuitively the diagonal quantities as reproduction rates

and interpret the situation as follows: (i) if α < δ, the reproduction rate of x-balls is smaller than that

of y-balls, so that y balls evolve essentially at their own pace, which corresponds toBn being of order nδ/σ .

(ii) if α = δ, the reproduction rates of x- and y-balls are the same, and from this confluence of values, a

logarithmic term is induced; (iii) if α > δ, then x-balls, which reproduce faster, drive the game for y-balls.

10.3 The distribution of Bn when α ≥ δ

This is the case where the evolution of y-balls is essentially driven by that of x-balls. We treat it first as it is

technically simpler. We have:

Proposition 25 For a triangular urn with α ≥ δ, the random variable Bn giving the number of y-balls at

time n admits moments that satisfy the following asymptotic estimates:

— If α > δ:

E
[

Bn
ℓ
]

=

(

αδ

α− δ

)ℓ Γ
(

a0+ℓα
α

)

Γ
(

t0
σ

)

Γ
(

a0

α

)

Γ
(

t0+ℓα
σ

)nℓα/σ +O
(

nℓ(α−1)/σ
)

(109)

— If α = δ, then

E
[

Bn
ℓ
]

= δℓ Γ
(

a0+ℓα
α

)

Γ
(

t0
σ

)

Γ
(

a0

α

)

Γ
(

t0+ℓα
σ

)nℓa/σ(log n)ℓ +O
(

nℓα/σ(log n)ℓ−1
)

. (110)

In particular, the normalized variable Bn defined by

Bn =
α

δ

Bn

nα/δ log n
if α = δ, Bn =

α− δ

δ

Bn

nα/δ
otherwise.

converges in distribution to a limit low whose density is given by (80),

Proof (sketch): The moment calculations are detailed in [92]. A comparison with the moments obtained

for the 2× 2 case shows that they are the same to main asymptotic order, up to scaling. The convergence in

distribution then follows from the classical moment convergence theorem. ✷

10.4 The distribution of Bn when α < δ

In this case, the functionH(1, y, 1; z) admits a series expansion at y = 1 whose coefficients are polynomials

in ∆ and log ∆; the coefficient of (y−1)ℓ has degree ℓδ in ∆ and its leading term involves a rational function

of a0, b0, α, β, δ. Hence, each moment of the normalized random variable Bn = Bn/n
δ/σ converges to a

finite value. The first few terms are easily obtained by series expansions (and computer algebra!), but we

have been unable to find a simple expression for the general term. The following proposition establishes a

convergence in distribution for this random variable as well as an integral representation of the characteristic

function. (This representation can then be used to calculate moments at will, via successive differentiations.)
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Proposition 26 For a triangular urn with α < δ, the normalized random variable

Bn =
Bn

nδ/σ

converges in distribution to the law whose characteristic function admits the integral representation

φ(ξ) =
1

2iπ
Γ

(

t0
σ

)∫

H
t−c0/σ (tρ − iδξ)

−(a0+b0)/δ
I

(

iδξ

tρ − iδξ

)−a0/α

etdt. (111)

For any ξ in [−ξ0; ξ0], the contour H can be any clockwise oriented contour surrounding the negative real

axis at a distance at least
(

1 + 1
R

)1/ρ
(δξ0)

1/ρ
, where R is such that I−1/α is well defined and bounded for

|z| ≤ R.

Proof (sketch): We only treat the case of an urn initialized with one x-ball at time 0, the general case

being similar. The idea consists in extracting the coefficient of zn in H(1, y, 1; z) by means of Cauchy’s

coefficient formula: this gives the probability generating function of Cn, up to a factor of Hn. For this

coefficient extraction, a Hankel contour in accordance with the principles of singularity analysis is adopted.

At the same time, since convergence in law depends on a suitably scaled version of Bn, the substitution

y = eiξ/nδ/σ

,

is to be used. This renormalization, combined with standard asymptotic approximations, then gives rise to

the integral representation (111).

Precisely, set ρ = δ/σ. The characteristic function φn(t) of Bn is

φn(ξ) ≡ E

[

eiξBn

]

=
n!

1 · (1 + σ) · · · (1 + (n− 1)σ)
[zn]H(1, eiξ/nρ

, 1; z).

By the continuity theorem of characteristic functions, it suffices to show that the function φn converges to

φ, as given by (111). Let ξ be a fixed real number taken from an interval [−ξ0, ξ0]. The coefficient of [zn]
is obtained by means of Cauchy’s coefficient formula, which gives (after the change of variable σz → z)

φn(ξ) =
n!

1
σ · · ·

(

1
σ + n− 1

)

1

2iπ

∮

h

(

z,
ξ

nβ

)− 1
α dz

zn+1
,

where the function h is

h(z, θ) = 1 − I
(

eiδθ − 1
)

eaθ
+ I

(

(1 − z)−ρ
(

1 − e−iδθ
)

1 − (1 − z)−ρ (1 − e−iδθ)

)

(

e−iδθ − 1 + (1 − z)ρ
)α/δ

.

As already announced, we choose the integration contour to be of the Hankel type, as in Figure 9. Then we

renormalize z by setting z = 1− t/n, in accordance with the general principles of singularity analysis. One

then finds the main approximation:

h

(

1 − t

n
,
ξ

nρ

)

= I

(

iδξ +O
(

1
nρ

)

tρ − iδξ +O
(

1
nρ

)

)

(

tρ − iδξ +O

(

1

nρ

))α/δ

+O

(

1

n(δ−α)/σ

)

.

Integration of this last approximation over a complete Hankel contour only introduces negligible error terms

(see [92] for details), a fact which concludes the proof of the statement. ✷

The results above have some striking formal similarities with the analysis given by Janson of unbalanced

2×2 urn models. Perhaps this could be explained to some extent by considering that the x- and y-balls play

between themselves a game that resembles the one described by an unbalanced 2 × 2 model.

11 Relations between discrete and continuous time models

Since a large portion of the literature dedicated to urns appeals to a continuous time model, it is of obvious

interest to investigate whether a dictionary exists between the continuous and discrete frameworks. Ele-

ments for this discussion can be found in the book by Athreya and Ney [4] (see p. 219–224 for a specific
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treatment of the relationships between urns and branching processes), the article of Athreya and Karlin [3],

as well as in the dedicated calculation of [16, §3.4].

The continuous time model assumes that each ball is equipped with an exponentially distributed, Exp(1),
clock. In other words, the random time T at which a ball fires a transition (after it has been born) satisfies

P(T > t) = e−t.

The exponential distribution satisfies the well-known memoryless property, namely

P(T > t+ τ | T > τ) = P(T > t),

which entails a fundamental equivalence principle (see [4, p. 221] and [3, Th. 1]): The discrete time urn

process at any instant n = 0, 1, 2, . . . and the continuous time version stopped after the nth firing are

equivalent.

Consider a balanced urn process given as usual by a matrix M with balance σ. Let Z(t) represent

the continuous time urn process at time t, and let Yn be the discrete urn process at time n (our notations

follow [4]). We can now state a quantitative version of the equivalence principle.

Theorem 7 (Discrete-to-continuous transfer) Consider a balanced urn model with balance σ. Let E be

an event that is defined by a set of histories(xvii), also denoted by E . Define the continuous time probabilities:

Ω(t) := P(Z(t) ∈ E)

and the history counts

Ξn := card
{

h ∈ E
∣

∣ |h| = n
}

.

Let the urn be initialized with s0 balls at time 0. Then, the continuous time probabilities are given by

Ω(t) = e−s0tΞ

(

1

σ

(

1 − e−σt
)

)

, (112)

where Ξ(z) is the exponential generating function of the sequence of history counts (Ξn):

Ξ(z) :=
∑

n≥0

Ξn
zn

n!
.

Proof: The proof boils down to the determination of the distribution of the urn’s size in continuous time,

the principles having been folklore knowledge for a long time (see [4, p. 109] for the generalized Yule

process, [63, Lemma 5.1], and [16, §3.4] for a calculation analogous to the present one). We have, upon

conditioning on size,

P(Z(t) ∈ E) =
∑

n≥0

P(S(t) = n)
Ξn

Hn
, (113)

where S(t) is the random variable representing the size of the continuous time urn at time t.
Regarding the distribution of S(t), we have

P
[

S(t+ dt) = n+ σ
]

= P
[

S(t) = n+ σ
]

· (1 − (n+ σ)dt) + P
[

S(t) = n
]

· ndt. (114)

(Either size has not changed as none of the (n + σ) balls fired in the interval [t, t + dt], or size was

previously n and one of the n balls fired. This is an instance of the Kolmogorov backward equations.) Set

̟n(t) = P(S(t) = n). Then, Equation (115) can be rephrased as the differential recurrence

̟′
n+σ(t) + (n+ σ)̟n+σ(t) = n̟n(t). (115)

The differential equation satisfied by ̟n+σ is then solved by the variation-of-constant method, which pro-

vides an integral recurrence:

̟n+σ(t) = ne−(n+σ)t

∫ t

0

e(n+σ)t̟n(t) dt, (116)

(xvii) Acceptable events are for instance: (i) the urn contains k balls of the first type; (ii) the urn contains k balls of the first type at

time n; (iii) the urn has more balls of the first type than of the second type at all even instants; (iv) a ball of the second type has

never been drawn; (v) all balls of the second type have disappeared in the end; and so on.
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whose solution is easily verified to be

̟n(t) ≡ P(S(t) = n) = e−s0t
(

1 − e−σt
)n
(

n+ s0/σ − 1

n

)

. (117)

It then suffices to observe that Hn, as expressed by Proposition 1 (p. 63), equals n!σn
(

n+s0/σ−1
n

)

, and

the proof is completed by combining (113) and the evaluation (117). ✷

We can first conduct a few verification. Let E = {ǫ}, i.e., only the “empty” history of size 0 is in E .

We have Ξ(z) = 1 and Theorem 7 predicts Ω(t) = e−s0t, which is consistent with the fact that no firing

amongst the s0 original balls should have taken place till time t. Next, let E be the set of all histories: the

generating function is, by Proposition 1, Ξ(z) ≡ H(z) = [1 − σz]−s0/σ . Substitution then shows that

Ω(t) = e−s0t
[

1 − (1 − e−σt)
]−s0/σ ≡ 1,

as it should be. Naturally, the statement of Theorem 7 can be extended by linearity to generating functions.

For instance, we have:

Proposition 27 Let (A(t), B(t)) be the composition of a balanced 2 × 2 urn at time t and let, as usual,

H(x, y, z) be the trivariate generating function of urn histories. The continuous and discrete models are

related by
∑

a,b

P [(A(t), B(t)) = (a, b)]xayb = e−s0tH

(

x, y,
1

σ

(

1 − e−σt
)

)

.

As a consequence of Theorem 7 and 27, essentially all our previous calculations relative to balanced

urns in discrete time can be translated back into the framework of continuous time. Take for instance

the generation-parity model of Example 4, p. 79, initialized with one x-ball. Under continuous time, the

probability that, at some large time t, all balls be of an odd generation—this is an “extreme” large deviation

event—is

e−t smh(1 − e−t)

(smh(z) is defined in (43)), and is thus exponentially small, being asymptotic to e−t smh(1), where

smh(1)
.
= 1.20541.

12 Conclusions

A first conclusion of this preliminary study is that some order can be put amongst those classical urn

models that admit of explicit solutions. More generally, the methods of analytic combinatorics, based on

generating functions, complex asymptotics and singularities, as well as the Quasi-Powers Theorem (for

Gaussian laws) and specific contour integration (for non-Gaussian laws) can provide a wealth of valuable

information. In this way, we have been able to obtain precise estimates of speed of convergence, some local

limit convergence results, large deviation rate functions, and, in a few cases even, limit laws that seem to be

new.

Many more problems deserve further investigation. We list them here in order of increasing difficulty.

— The study of nonsacrificial urns (either altruistic or selfish in the sense of §3, p. 74) should be con-

ducted in a way that parallels our study of semi-sacrificial urns. We foresee no particular obstacle in

the case where the urn’s composition is Gaussian, as the Quasi-Powers Theorem should be applica-

ble. Non-Gaussian cases should be amenable to treatment by methods of contour integration perhaps

analogous to the ones employed for triangular models (see [38, Ch. IX] for a discussion of some

relevant methods).

— The study of higher dimensional models might be amenable to a perturbative analysis of singularities,

at least in the case where the urn has a Gaussian behaviour, and despite the fact that there is no hope

to obtain general solutions because of nonintegrability considerations (Note 11, p. 102).

— The elucidation of the behaviour of at least some of the non-balanced models seems to be the most

challenging problem posed to the analytic approach at this stage.
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tics & Probability Letters 8 (1989), no. 3, 225–228. MR MR1024032 (91d:60075)

[47] , Martingale functional central limit theorems for a generalized Pólya urn, The Annals of Probability 21
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(1995), no. 3, 195–233.

[87] Donald J. Newman and Lawrence Shepp, The double dixie cup problem, American Mathematical Monthly 67

(1960), 58–61.

[88] Alois Panholzer and Helmut Prodinger, An analytic approach for the analysis of rotations in fringe-balanced

binary search trees, Annals of Combinatorics 2 (1998), 173–184.

[89] Jim Pitman, Combinatorial stochastic processes, Technical Report 621, 2002, Lecture Notes for Saint-Flour

Course, 231 pages.

[90] Nicolas Pouyanne, An algebraic approach of large Pólya processes, To appear in Annales de l’Institut Henri
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Polytechnique, Palaiseau, France, 2005.

[93] Alois Schett, Properties of the Taylor series expansion coefficients of the Jacobian elliptic functions, Mathemat-

ics of Computation 30 (1976), no. 133, 143–147.

[94] Robert Sedgewick and Philippe Flajolet, An introduction to the analysis of algorithms, Addison-Wesley Publish-

ing Company, 1996.

[95] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2006, Published electronically at

www.research.att.com/˜njas/sequences/.

[96] R. T. Smythe, Central limit theorems for urn models, Stochastic Process. Appl. 65 (1996), no. 1, 115–137.

[97] Richard P. Stanley, Enumerative combinatorics, vol. I, Wadsworth & Brooks/Cole, 1986.

[98] Michael E. Taylor, Partial differential equations. I, Applied Mathematical Sciences, vol. 115, Springer-Verlag,

New York, 1996.

[99] E. C. Titchmarsh, The theory of functions, second ed., Oxford University Press, 1939.

[100] Gérard Viennot, Une interpretation combinatoire des coefficients des développements en série entière des fonc-
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