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OF THE FREDHOLM-RADON METHOD
IN POTENTIAL THEORY
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Dedicated to Professor Jan PoldSek on the occasion of his sixtieth birthday
(Received June 24, 1985)

Summary. Simple examples of bounded domains D < R? are considered for which the presence
of peculiar corners and edges in the boundary 2D causes that the double layer potential operator
acting on the space €(éD) of all continuous functions on D can for no value of the parameter «
be approximated (in the sup-norm) by means of operators of the form «f 4+ T (where I is the
identity operator and T is a compact linear operator) with a deviation less than |a[; on the other
hand, such approximability turns out to be possible for @ = 4 if a new norm is introduced in
%(0D) with help of a suitable weight function.
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In this paper we deal with examples of open sets D — R® whose boundary 4D
is compact and can be covered by a finite number of planes parallel to the coordinate
axes; we shall consider only those D for which D is locally a surface (i.e. every
point of 0D has a neighbourhood in 0D which is homoemorphic with R?) and we
shall call these sets rectangular.

Boundary value problems for sets of this type occur frequently in applications.
Besides that, rectangular sets are conveniently used for approximation of more
general domains, and various procedures (like that of Wiener) often permit to
reduce a (generalized) boundary value problem corresponding to a general domain
to a (classical) boundary value problem for a rectangular set. Among constructive
methods of solving boundary value problems the Fredholm method of integral
equations is of particular interest, also from the point of view of numerical treatment
(cf. [16], [14], [15]). This method exhibiting the duality between the Dirichlet
and the Neumann problems is especially efficient in connection with exterior problems.
Let us suppose, for example that D is bounded, 0D connected, and denote by%*(0D)
the space of all signed finite Borel measures supported by éD. If v e%*(aD), then
its Newtonian potential Uv represents a harmonic function in R3\ D whose
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gradient VUv is integrable over all bounded Borel sets contained in R®\ dD; accord-
ingly, one may introduce the functional

(1) NUv: ¢ — {@, NUv)

over the space @ of all compactly supported infinitely differentiable functions in R3
defining

{o,NUv) = J’ Vo(x). VU v(x) dx ,
G

where G is the complement of D = D U 6D. NUv may be considered as a natural
weak characterization of the normal derivative of Uv]G at 0G = dD. There is a uni-
quely determined u € $*(0D) representing the functional (1) in the sense that

{p, NUv} =_[ pdu, 9ed;
éD

if we identify u = NUv then, moreover, the operator
(2) NU: v+ NUv

is bounded on €*(9D) normed by total variation. (This follows from the fact that
there is a constant n < oo such that each straight line in R® which is not parallel
to the coordinate planes intersects D at most n-times; cf. Th. 1.13 in [9].)

We shall describe two examples illustrating the difficulties connected with the
natural question of invertibility of the operator (2) on ¥*(éD). An affirmative answer
(which follows from a recent result in [17]) means that the generalized Neumann
problem for G with an arbitrarily prescribed normal derivative ,ue‘é*(ﬁG) has
always a solution representable as a Newtonian potential Uy of a suitable v € €*(0G).

Similarly, if (G) is the space of all continuous functions on 8D then for each
f € €(oD) the classical double layer potential Wf with momentum density f on dD
can be defined and represents a harmonic function on R*\ D admitting continuous
extension from D to D. If W,f denotes the restriction to dD of this extension, then
the operator
©) Wi f— Wif
is bounded on %(0D) equipped with the usual maximum norm (and the operator (2)
is dual to (3)). Invertibility of (3) on %(dD) is another natural question connected
with representability of solutions of the classical Dirichlet problem by means of
double layer potentials with continuous momentum densities. Let us remark that
in the plane R? such problems for suitably normalized logarithmic potentials have
been satisfactorily settled because the corresponding operator W; can be decomposed
into

H+T+Z=W,

where I is the identity operator, Tis a compact operator and Z is a bounded operator
on %(0D) whose norm is less than 4; this is true for domains D < R? whose boundary
has bounded rotation in the sense of Radon (cf. [5], [10], [1], [11]) and also for
some more general boundaries admitting infinitely many angular points with angles
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exceeding a positive constant (compare [7]). The Riesz-Schauder theory then permits
to apply the Fredholm theorems and obtain the desired results concerning boundary
value problems. In the space R, however, the situation is entirely different. We are
going to exhibit examples of simple rectangular domains D < R® for which such
decomposition of W, is impossible because the distance of W; — 1l from the space Q
of all compact linear operators acting on %’(60) (in the metric defined by the maximum
norm) exceeds the critical value 1 and also the distance of W; — ol from Q@ exceeds
|o| for any value of the parameter «. Nevertheless, the situation can be saved if
a new norm (inducing the same topology of uniform convergence) is introduced
in (D) (cf. also [17] dealing with general rectangular sets).

Let us remark that Calderdén’s result on boundedness of Cauchy’s integral operators
in L,-spaces opened the way to the investigation of representability of solutions of
boundary value problems by layer potentials whose densities are in L,-spaces (cf.
[3]); for 1 < p < <o the picture is different from that considered here and Verchota’s
inequality relating the L,-norms of normal derivatives from both sides of the bound-
ary for potentials with L,-densities permits to avoid the difficulties connected with
the approximation by compact operators occurring in the Radon scheme. The reader
is referred to [13] (cf. also [6]) for results and references concerning the application
of layer potentials with densities in L,, 1 < p < oo.

Notation. We shall consider rectangular sets D # @ in R’. If y e oD, then n(y)
will denote the unit vector of the exterior normal to D at y provided this is meaningful;
for definiteness we put n(y) = 0 (= the zero vector in R®) in the case when y is
situated on an edge where the normal is not defined. The symbol ¢ will be used
to denote the 2-dimensional surface measure. Given z € R® we define the signed
measure 4, on Borel subsets of D by

aify) = "0 = D oy
4zly — 2|
so that, up to the normalizing factor, d4, is just the element of the oriented spatial
angle under which 4D is visible from z; the normalization is so chosen that 4,(0D) = 1
for any z in D in case D is bounded, while A,(0D) = —1 for any z € R*\ D in case D
is unbounded. Note that, in case z € D, y — z is orthogonal to n(y) for all y in those
faces in 0D whose closure contains z. Consequently, for any fixed z € 0D, the function

L) -0 - 2)
==

is bounded on 0D and the measure 4, is of bounded variation. #(9D) is the space
of all continuous functions on D equipped with the topology of uniform convergence;
[...] is the usual maximum norm in %(2D). For f € #(dD) we define the correspond-
ing double layer potential by

Wi() =f f£di,.
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Wf is a harmonic function on R3\ 0D tending to zero at infinity. We put
Q(y) = {xeR%|x — y| <r}
and denote by

d(y) = lim volume (Q,(y) n D)
rio  volume (Q/(y))

the density of D at y. Then for any y € D,
lim Wf(z) = Wf(y) + [1 — d»)]f(y) = Wf(y) + 1£(3).

z—y
zeD

where we have put

Wiy) = Wfy) + [+ - d)] f(v), yedD, fe®(eD).
The symbol I will always denote the identity operator on #(dD). Since for any
fe%(oD)
W, f(y) = lim Wf(z)

z=y
zeD

is a continuous function of the variable y € 6D, the so-called direct double layer
operator

W=Ww, -4l
is a bounded operator acting on #(dD) (cf. Th. 2.19 and Prop. 2.20 in [8]). The
Dirichlet problem for D with the prescribed boundary condition g € ¥(dD) can be
reduced to the equation
© G+ W)f=g
for an unknown f e %(@D). For a rectangular set D the corresponding operator W
can never be compact, because the smoothness of the boundary (of class (6"“) is
necessary for the compactness of W on #(éD) (cf. Th. 3.15 in [8]). Q will stand
for the space of all compact linear operators acting on %(éD). If S is a bounded
linear operator on %(GD), we denote by

wS = inf{”S —T|; Te 0}

its distance from Q. The Radon scheme permits to apply the Riesz-Schauder theory
to the equation (4) under the assumption that

(5) oW < %.
The quantity oW (usually called the essential norm of W) can be simply evaluated in
geometric terms connected with D. Put
r={0eR%|0] =1}.
Given y e R®, 0 e I' and r > 0, we denote by n,(0, y) the number (possibly 0 or + o)
of all points in {y + ¢0; 0 < ¢ < r} n D. The function
0 n,l6,y)

is Borel measurable on I' (cf. Lemma 5.3 in [9]; note also that it coincides a.e.
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on I with the function n(+, y) investigated in 1.11 in [9]) so that we may define
o) = L j ny(6, y) do(6) .
an Jr
Then wW can be evaluated by the formula
(6) oW = lim sup {v(y); y € aD}
rlo

(cf. Th. 4.1 in [8]).
We are now going to discuss an example of a rectangular set D = R? for which
oW exceeds the critical value 1.

B

Fig. 1

Example 1.
Put
D= (~1,1) x (0,1) x (—1,0) u (0, 1) x (=1,1) x (—1,0),
B =(-1,0) x {O} x (—1,0),
C ={0} x(—1,0) x (—1,0),
E={-%41> x<0,1) x {0} u<0,}> x (—%,%> x {0}
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(cf. Fig. 1). Consider a variable point y = [0, ¥, ¥3] € C and fix re(0,%). If y
approaches the origin, then the normalized spatial angle under which E is visible
from y tends to 3/8, so that

lim [A(Q,(y) n E)| = %;

e
if, at the same time, the ratio y,/ys tends to zero (so that y comes much closer to B
than to E), then the normalized spatial angle under which B is visible from y ap-
proaches %, whence

Q) A B)| >4 as 2250, 3,50, yecC.
Y3

We see that
vy) = |4(2(») 0 E)| + |4(Q(y) 0 B)| > §
as

21_2—+0, y3—0, yeC.
V3

Consequently, for any r € (0, 1),
sup {v,(y); ye oD} = §
and, in view of (6), oW = § > 4.
Remark. One might also think of decomposing the operator W; into
W, = (W, —al) + ol
with another value of the parameter o = 0 (for o = § we get W; — 1 = W). It
follows from the reasoning described in 4.2 in [9] that, for our set D, we have always
o(W; — al)> |of ;
the distance (if measured by the norm |...|) of the operator 1/a W; — I from Q can
never be made smaller than 1 once we have
lim sup {v,(y); ye oD} > .
rlo

In order to overcome this difficulty we are now going to introduce a new norm
in (5(6D) inducing the same topology of uniform convergence,
Let
. E1=<05%>X <07%> X{O},
E, = {—=%0) x <0, }> x {0},
E; = 0,3 x (—4,0) x {0}.
Fix a constant g € (1, 4) whose precise value will be specified later and define the
function w on éD as follows:

u;(y)-—-i-q for yeE;, w(y)=42q for yeE,UE;,
W(YI, Yas _1) = W(yl, y2s0) if [yl’ yzao]EE’
w(y) =1 for all remaining yedD.
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Fig. 2

The distribution of values of w in E is illustrated in Fig. 2.
Clearly, w is lower semicontinuous on ¢ D and satisfies the inequalities
t<w=l.

We shall now define the norm |...[¢,, in (D) by

|fle,, = max {l—f(«y)—l ;ye GD} , fe®(dD).
wy)
Obviously,

\ I/ = |fle. = 471, fe®@D),

so that the space Q of all compact linear operators acting on the Banach space

%(0D) with the new norm | . Jg,, Temains the same. We shall prove that the distance
we (W) = inf {|W — Tl,; Te Q}

can be made smaller than % by a suitable choice of the constant g occurring in the

definition of w. Let us fix r (0, %), denote by c,, the characteristic function of
D~ 2,(y) and define

erf(y) = J‘aDCy,f 'fdlys y € aD ) fe %(aD) .

It is not difficult to verify that the operator
W f> Wf
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is compact on %(0D) (compare the proof of Th. 3.6 in [8]). We shall now investigate
the operator

Z,=W—-W,.
In order to estimate |Z,|gw we fix an arbitrary f € ¥(0D) with ]f](gw < 1 and consider
the ratio

(7) |Z, f)lw(y) -
Suppose first that y = [y,, y,, 3] € 9D, max |y| <+ We shall distinguish the
1<k<3

cases (I)—(TII) described below (where int M always denotes the interior of M < 9D
with respect to aD).

0 yeintE,, 1<k <3:

It is easily seen that

1.2 if yeE,,
bl @) o0 < ) + o) = {3 TR
so that
2,501 = 1608 + ) = 22y
and the ratio (7) is bounded by 1/2q.
(1) yeB:
Put
E=E,UE,
and consider the normalized spatial angle
(3 I(E)| = |A(Es)] + |A(E2)] -
Let

el =[-1,0,0], ¢ =1]0,1,0]
and denote by P; (j = 1, 2) the half-plane determined by the straight line {ty; t € R'}
and the half-line {re’; t = 0}. Let V' be that part of the unit sphere I" which is enclosed
between P; and P,. Since P,, P, are orthogonal, the area of V equals
o(Vy=m.
Defining
Ey={y - (x - ysxeEy)
by reflection of E; at y, we have
) [4,(Es)| = |4(E5)] -
Observe that E; (as well as E,) is contained in the wedge bounded by the half-
planes Py, P, and that the rays from y through the points of £, are different from
all rays from y through the points in E,, because the latter are directed upwards
whereas the rays from y through E, are directed downwards due to y; < 0. Con-
sequently, o V)

Ij'y(EZ)l + I/l.v(E?s)l = 47; =4,
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whence we get by (9), (8)

Further we have

14(0) =
Noting that | f| £ w we summarize

|Z, £F(»)]| £ 34|A(E)| + 3a|A(ES)| + 34]4,(E5)| + |4(C)] <

) 1qg + 8
Sifg+3a+d=1. %—W(y),
so that the ratio (7) is bounded by
Tq + 8

16

in this case.
(III) yeC:

In view of the symmetry of D and w we again have

Z.f)| ., 7a+38
—_— s ..
w(y) 16
We have thus seen that in all cases (I)—(III) the estimate
(10) ______|Z,f(y)| 1 max <1 , Tq+8 8)
w(y) q 16

IIA

holds for any y in the intersection of the sets

3
H,=BuCulUintE,
k=1
and

H,={y= [yp V2, ¥3) € 0D; max kal < %} .
15k23

N
It follows from the construction of w that every y € H, is either contained in H,
or is a limit of a sequence y" € H, n H, with lim w(y") = w(y). Since lim Z, f(y") =
n—ao n—oo
= Z,f(y) because of continuity of Z.f, we conclude that the inequality (10) holds
for all y € H,. Since the vertex e*> = [0, 0, —1] has a similar position as the origin
in 9D, we conclude by symmetry that (10) remains valid for all y = [y, y,, y;] € @D
satisfying
LV1‘ =i, |)’2‘ =4, |Y3 + 1[ £4%.

Even simpler considerations show that for the remaining y € dD the estimate

12:SO) < 4 pax (3 , %) < 1 max <l, 7_‘1_i§)
w(y) 34 ¢ 16
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holds. Thus (10) is valid for all y € 8D. Since f e #(0D) was an arbitrary function
with |f|e,, < 1, we have

(11) |Z,|¢,, < % max l, 79 +3 )
q 16

Let go = (y/(138) — 4)/7, which is the positive root of the equation 1/g = (7q + 8)/16.
Since 1 < go < 8/7 we may take ¢ = g, in (11) and conclude that

Zje.S 5= <}

we (W) <
9o

In order to exhibit another type of critical corners we shall consider the following
example,

Example 2. Put
D=(-2,1)x(-1,0) x(-1,00u(—-1,0) x (0,1) x (=2,1) u(—1,0) x
x {0} x (—1,0),
€ =1{0} x (0,1) x (-2, 1),
Cy = {[0, x5, x3] € C; |x5] £ /(3) x2} ,
C,=C\Cy,
E (=2,1> x {(—1,0> x {0},
Ey = {[x, %, 0] € B o] £ — (3 xa)
B =(0,1) x {0} X (—1,0),
B, = {[x1,0,x3]€B; x3 = —x,},
B, = B\ B,

(cf. Fig. 3).
In this case we have, for any r > 0,

lim sup v,(y) = %
y—0
yedD

and the quantity

oW = lim sup {v,(y); y € 9D}

rlo
assumes precisely the critical value 1/2. We shall describe the construction of a lower
semicontinuous function w on @D satisfying the inequality

(12) 566 <w<1
for which the norm |...[¢, makes the distance
we (W) <3%.
If e = [ey, e, €3] and ¢ > 0, let
(13) K,(e) = {y € R%; max |y, — e < %g} ;
1<k<3

if e = 0 is the origin, we write simply K, = K,(0).
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Fig. 3

Define
2q for yeK,nCy,
w(y)=<%q for yeK,nE,,
1 for the remaining yeK; ndD,

.where g €(1, %) is a constant whose value will be specified later. If e is any of the
points e! =[~1,0,0], ¢ =[0,0, —1] and e' + €* =[~1,0, —1], then w is
transferred into the intersection of dD with

Ky(e)
using the symmetry of D with respect to the planes {x € R*; x; = —4} and {x e R?;
x; = —%}. Finally, we let w(y) = 1 for all y € 0D not situated in any of the cubes
K, K (e), e = ¢!, €%, e' + €. Clearly, w is a lower semicontinuous function on 4D
satisfying (12). Let us fix an arbitrary f e %(3D) with |f|e, < 1 and re (0, }). We
shall again examine the ratio (7) as in Example 1. Let us first consider y e K, ;2 N 0D
and distinguish the following cases (A)—(D).

(A) yeB;:
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Then the normalized spatial angle under which E is visible from y is estimated by
IL(E) < %
Further we have

Let

p= {[xl’ 0, xs]; X3 = _xl} >
denote by P, the half-plane determined by the straight line p and the half-line
{te’;t 2 0} and let P, be the half-plane determined by p and the half-line

{[0, x5, x3]; 0 = x5 = — \/(3) x5} .
The angle enclosed by P, and P, equals
2n
arctan /(%) < e
Writing
(14) e = ;— arctan /(%) € (0, 1)
n

we get for

C; ={[0,x;,x3] € C; x5 < — J(3) x5, x, > O},

C; ={-x;xeC7}
the estimate

(€3] + [3(C3) é

which is based on a reasoning similar to that occurring in case (II) of Example 1
in connection with |4,(E;)| + [A,(E,)|. Clearly,

(e~ el =4, (c5)] + [A(ch)] < =

§ .
Hence we obtain
2./ _ 5q 9 + 4 + 5q
Z st 842y 2T
w(y) = ZD s+ g Ce =t
(B) yeB,:
Now we get
O] =4,
ll.v(El)' = % ’
[A(ENE,)| < ¢/9
so that again
1z.70)| _ — |2.f0)| = 3 .9 + 4 + Sq’
w(y) 18
where ¢ is defined by (14).
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(©) yeCy:

The reasoning described in case (II) of Example 1 yields for
B = {[x, x,, x3] €0D; x, = 0}

the estimate
1(B)] < .
Further we have
B} 1

AE))| = 73
1

A(ENE))| £ —,
IENED = 25

whence
1z, f(»)| 3q 12 + 59
=1z <314+ = 4+ 1)=1. .
( I f(y)l = 2 3 6 © 2 13
(D) yeC,
Again
(B) < %.
Now
1
IWME)| £ —
) = 2.
so that
1
1Z, /=33 +H =13 = Z_W(y)’
1Z, £(y)| <L
w(y) 2q

Since this estimate holds also for y € E; while for y e B\ B we get, by symmetry,

from (A), (B) the estimate

|Z,f(y)[ <1 9+4+5g
=3 s
w(y) 18

we conclude that, for any y e Ky;, n dD,
iny)|<; 1 1245¢ 9+4e+ 59\ | 1 9+ 4s + 5q
= - »— = fmax{—, —— .
w(y) q 18 18 q 18
The same estimate holds for y € Ky;5(e) N 0D, e = ¢!, ¢®, o' + €. Since an even
better estimate can be established for the remaining y e 9D we arrive at

} max 1 9+4s+5q .
q 18
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If g, is the positive root of the equation
1 9+ 4e+ 5g
PR TR
one easily checks that g, € (1, ). Taking ¢ = g, we obtain

o (W) S <3.
2q,

The discussion of the above examples permits to establish the following results.

Let us agree for a while to denote by D, and D, the rectangular set described in
Example 1 and Example 2, respectively; let w; be the corresponding lower semi-
continuous function constructed on dD; (j = 1, 2). Consider an arbitrary rectangular
set D c R3. We shall say that a point z € 4D is critical if, for every ¢ > 0,

limsup v,(y) 2 % ;
yeob
obviously, any critical z € 6D is a vertex. D will be termed admissible if, for every
critical z € 9D there is a 0 €(0,4) and an isometric mapping of K,(z) n D onto
one of the sets K, n dD; (j = 1 or 2).

Proposition. If D is an admissible rectangular set in R® with 8D + O and W is
the corresponding direct double layer operator on %(GD), then there is a lower
semicontinuous function v on 0D satisfying the inequalities

(15) l<vgl
such that
(16) we (W) < 1.

Proof. Let us fix ¢ €(0, 4) which is less than half of the distance of any two
different vertices in 0D and satisfies
sup {v,(y); yeK,(e) n D} < %
for each noncritical vertex e € dD. Take ¢ small enough to guarantee that for each
critical z € 9D there is an isometric mapping 7, of K,(z) n D onto K, n 9D, (j = 1
or 2); in this case we define v{x) = wj(z,(x)), x e K,(z) n dD.
Letting z run over all critical verticles in dD we put

uy)=1 for yedD\U K,2).

In this way we obtain a lower semicontinuous function v on &D satisfying (15) and
the discussion described in the above examples yields the inequality (16).

The following corollaries of the above theorem can be proved by arguments
described in § 5 of [9].

Corollary 1. Let D be an admissible rectangular set in R® with 6D + 0, G =
= R*\ D, pe%*oD).
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Then the generalized Neumann problem
NUv=upu
for G with the boundary condition p admits a solution v e €*(0D) iff n(¢H) =0

for each bounded component H of G; the solution v is uniquely determined iff G
is unbounded and connected.

Corrolary 2. Let D be an admissible rectangular set in R® with 0D # 0 and let
Gy, ..., G, (p Z 0) be bounded components of G = R*\D; fix x;€G;{j = 1, ..., p).

Given g € €(0D), then there are uniquely determined constants c,, ..., c, and
an f € €(0D) such that the function

(17) x = Wf(x) -l-.icjlx—x"l“1

represents a solution of the Dirichlet problem for D and the boundary condition
g; fis uniquely determined iff D is bounded and G connected (in which case the sum

p
> ...in (17) disappears).
i=1
Remark. The world “admissible” can be dropped in the above corollaries. This
follows from a recent result in [17].
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Souhrn

NEKTERE PRIKLADY NA APLIKABILITU FREDHOLMOVY-RADONOVY
METODY V TEORII POTENCIALU

JoSEF KRAL, WOLFGANG WENDLAND

Jsou vySetfeny jednoduché priklady omezenych oblasti D < R®, pro nd% hrany a vrcholy
na hranici ¢D zpisobuji, e operator potencialu dvojvrstvy na prostoru €(¢D) vSech spojitych
funkci na @D nelze pro Zadnou hodnotu parametru o aproximovat (vzhledem k maximové
normé&) operatory tvaru of + T (kde I je identick§ operator a T je kompaktni linedrni operator)
s chybou men3i neZ |af; takova aproximace je v§ak moZnd po zavedeni nové normy na €(éD)
odvozené od vhodné vahové funkce.

Pezrome

HEKOTOPBIE ITPUMEPbLI OTHOCUTEJIBHO ITPUMEHUMOCTI METO/JJA
OPEATIOJIMA-PAZIOHA B TEOPUU ITOTEHIUAJIA

JosEF KRAL; WOLFGANG WENDLAND

PaccmatpuBaroTCs HPOCTHIE IPHMEPL! OrpaHuyeHdsiX obmacteii D < R} ¢ pebpaMu ¥ BepLiIH-
HaMmH Ha rpauuue 0D. B 3THX mpuMepax oueparop JBOMHOIO CIIOS HAa MPOCTpaHcTBe ¥(¢D) BCex
HENPEepLIBHBIX (DYHKUUHA Ha 0D Henb3si HE IIPY KaKOM 3HAYCHWH DapaMmeTpa o almpoKCHMUPOBATEH
{OoTHOCHTENIEHO MAaKCHMYM-HOPMBI) TIPH OMOIIH onepaTtopos ol + T (rae I—ToxAeCcTBeH LIl one-
paTop 1 T—KOMIAKTHBIN JIMHEHHBIA ONEPaTOp) ¢ NOrPEUIHOCTHIO MEHBINE YeM ] o |; C OPYTOii CTO-
POHBI, TaKas annpoKCUMAaVs CTAHOBUTCS, BO3MOXHOHR [U151 3HAYCHUSA o = Jz* TIOCNe BBEJCHUA HOBO
HOPMBI Ha €(0D), onpeleleHHOoM NPA MTOMOIIH MOAXOIsIIe BecoBoi (hyHKIMH.
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