SOME EXAMPLES OF ASYMPTOTICALLY MOST POWERFUL TESTS

By ABraHAM WALD!

Columbia University

1. Introduction. In a previous paper’ the author gave the definition of an
asymptotically most powerful test and has shown that the commonly used tests,
based on the maximum likelihood estimate, are asymptotically most powerful.

In this paper some further examples of asymptotically most powerful tests
will be given. Let us first restate the definition of an asymptotically most
powerful test. Let f(z, 6) be the probability density of a variate z involving an
unknown parameter 8. For testing the hypothesis § = 6, by means of n inde-
pendent observations z;, - -, z, on £ we have to choose a region of rejection
W. in the n-dimensional sample space. Denote by P(W, | 6) the probability
that the sample point £ = (z;, - -+ , z,) will fall in W, under the assumption
that 8 is the true value of the parameter. For any region U, of the n-dimen-
sional sample space denote by g(U,) the greatest lower bound of P(U., | 6).
For any pair of regions U, and T, denote by L(U., , T,) the least upper bound of

In all that follows we shall denote a region of the n-dimensional sample space
by a capital letter with the subscript n.

Definition 1: A sequence {W,} (n = 1,2, -- -, ad inf.) of regions is said to be
an asymptotically most powerful test of the hypothesis 8§ = 6, on the level of
significance « if P(W, | 8) = « and if for any sequence {Z,} of regions for
which P(Z, | 8,) = a the inequality

lim sup L(Z., W,) <0

n-—>0

holds.

Definition 2: A sequence {W,} (n = 1, 2, ---, ad inf.) of regions is said to
be an asymptotically most powerful unbiased test of the hypothesis § = 6, on
the level of significance « if P(W,, | 6p) = lim g(W,) = «, and if for any sequence
{Z,} of regions for which P(Z, | 6,) = lilm g(Z,) = a, the inequality

n=00

lim sup L(Z,., W.) <0

n=—+00

holds.

1 Research under a grant-in-aid of the Carnegie Corporation of New York.
2 ““Asymptotically most powerful tests of statistical hypotheses,”’” Annals of Matk. Stat.
Vol. 12 (1941).
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Consider the expression

(1) pio) = - 322 ( 5 1081 (a, 6).

n a=1
Let W, be the region defined by the inequality y.(60) > c» , W defined by the
inequality y.(6)) < ¢ , and W, defined by the inequality | y.(60) | > ¢, , where
the constants c, , ¢, and ¢, are chosen such that

P(Wi | 6) = P(Wn | 6) = P(W,|6) =

It will be shown in this paper that under certain restrictions on the probability
density f(z, 6) the sequence {W,} is an asymptotically most powerful test of the
hypothesis 8 = 6, if 6 takes only values > 6. Similarly {W,} is an asymptot-
ically most powerful test if 6 takes only values < 6,. Finally {W,} is an
asymptotically most powerful unbiased test if 8 can take any real value.

Another example of an asymptotically most powerful unbiased test of the
hypothesis 8 = 6,, as it will be shown, is the critical region of type A in the
Neyman-Pearson theory of testing hypotheses. This fact gives a strong justifi-
cation for the use of the critical region of type A.

2. Assumptions on the density function. Let w be a subset of the real axis.
Denote by 6* a real variable which takes only values in w and let 6 be a variable
which can take any real value. For any function y(x) we denote by Eqf(x) the
expected value of ¥(x) under the assumption that 6 is the true value of the
parameter, i.e.

+o0
Eyy(x) = [m v(2)f(x, 0) dz.

For any z, for any positive § and for any real value 6; denote by <p1(x, 6,, 6) the
greatest lower bound, and by ¢.(z, 6:, 6) the least upper bound of — log Sf(z, 6)

in the interval 6, — 6 < 6 < 6, + é. In all that follows the sy mbol 67, for
any integer 7, will denote a value of 6* i.e., 67 is a point of .

We say that a value 6 lies in the e-neighborhood of w if there exists a valuc 6*
such that [ — 6*| < e

Throughout the paper the following assumptions on f(x, 8) will be made:

AssuMmpTION 1: For any pair of sequences {6,} and {65} (n = 1,2, --- , ad inf.)
Sfor which

. i) *
llg’lo EO,, (“9_0 logf(x; 0») =0
also

lim (6, — 63) = 0.

N =00
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2
Furthermore there exists a positive e such that E, [ é% log f(x, 01)] 18 a bounded
Sfunction of 6 and 6y, E’o log Sz, 61) is a continuous function of 0 and 6, and

E,, [5_0 log f(z, el)] = d(6y) has a positive lower bound, where 6, can take any value

in the eneighborhood of w.

AssuMpTION 2: There exists a positive ko such that Egei(z, 61, 8) and
Eo,p5(x, 01, 6) are uniformly continuous functions in the domain D defined as
Jfollows: the variables 6, and 0, may take any value in the ko-neighborhood of w and &
may take any value for which | 8| < ko. Furthermore it is assumed that

E02[¢i(xy 01, 6)]27 (z = 1’ 2)

are bounded functions of 6,, 0, and & in D.
AssuMmpTION 3: There exists a positive ko such that

+o +o0 2
[ ireoa=[ 2 wna=0

for all 6 in the ko-netghborhood of w.
Assumption 3 means simply that we may differentiate with respect to  under
the integral sign. In fact,

+o0
f f(il?, 0) dx = 1,

identically in 8. Hence

2

a [+ 3
6_0[«. f(z, 0) dz = a6 [w flz,8)dr = 0.

Differentiating under the integral sign we obtain the relations in Assumption 3.
AssuMPTION 4: There exists a positive ko and a positive n such that

E, l;-% log f(z, 6) ]Hﬂ

s a bounded function of 0 in the ky-neighborhood of w.

3. Some propositions. ProposiTIiON 1: To any positive B there exists a posi-
e v such that

hm P{-—_ | ya(6%) | > v | 0} =1
vV
uniformly in 6* and for all 0 for which | 6 — 6*| > B.

Proor: From Assumption 1 it follows that | E, 6_60 log f(z, 6%)

has a positive
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lower bound in the domain | § — 6*| > B. Since according to Assumption 1
2
E, [ (% log f(=x, 0*)] is a bounded function of 6 and 6*, Proposition 1 easily follows.
ProposiTION 2: There exists a positive e such that

liin Plya.(6) < t|6] = N(t]|6)

uniformly in t and for all 0 in the e-neighborhood of w where

@) @) = — E, ;_02 log f(z, 6) = £, [6% log f(z, 0)]
and

_ 1 ~12/d0) 4
3) N(t|6) T f_ e .

Proposition 2 follows easily from Assumptions 3 and 4 and the general limit
theorems.
ProrosiTION 3: There exists a positive e such that for any bounded sequence {u,}

t
li:: {P [y,.(o) <tlo+ \"/n] — f_ 3 e D N (| o)} =0

uniformly in t and for all 6 in the e-neighborhood of w.
Proor: We have

4 0+ "".) 20) + E _—_ log f(za, 0.

4) y( Vo)=Y \/n\/ 2602 gf )

where 6., lies in the interval [0 0+ \"}" :, . From Assumption 2 and the above
n

equation we easily obtain

lim<{P| y.0 “"><t0 “"]
n‘iﬂ{[?’<+\/n o+

- P[y,.(o) — und(6) < t]6 4+ 2 :I} =

(5

uniformly in ¢ and for all 6 in the eneighborhood of w. From Proposition 2
and (5) we get

,l,liﬂ {f_; dN(|6) —P[yn(a) <t+ und(a)’g + \i}_]} _

or

6) lim { f_ e dN( |6) — P[y,,(o) <t]6+ un_]} -0

n=c0 o n
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uniformly in ¢ and for all 6 in the eneighbourhood of w. This proves Propo-
sition 3.

ProrosiTiON 4: There exists a positive e such that for any positive v and for
any sequence {u,} for which lim | u, | =

7 =00

lim P{l ya(6%) | > v | 6* + \’}"_} =1
n =00 n

uniformly in 6*.

Proor: If there exists a positive 8 such that

> B for almost all n,
\/ n

Proposition 4 follows from Proposition 1. Hence we have to consider only the

7 =00 '\/n

= 0. Since

By unt v yn( + \#/"n) =0,

we get from (4)

2 aezlogf(xa, 62)

(7) Eor i unt v [yn(0%)] + wn Eoosupsn/my = p =0.

Since lim :/M—"; = 0, we have on account of Assumption 2

Z 602 Ing(xa, n) 2

}‘1_12 Bt uurn/my = p = Ep 3 log f(x, 6*)

= _E"‘[é% log f(x, 0*)]2 = —d(6*)

uniformly in 6*. According to Assumption 1 d(6*) has a positive lower bound;
hence on account of lim | . | = « we obtain from (7)

® i | Boeyquyr/my 9n(0) | = o0
uniformly in §*. The variance of y,(6*) is equal to the variance of :—0 log f(z, 6%).

On account of Assumption 1 the variance of g-o log f(x, 6*) (under the assumption

that 6* + \%z is the true value of the parameter) is a bounded function. Hence

Proposition 4 is proved on account of (8).
ProposiTION 5: Let {W.(6%)} be a sequence of regions of size a, i.e.
P[W.(6%) | 6*] = «, and let V(6% y) be the region defined by the inequality
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ya(0%) < y. Let Un(6* y) be the intersection of V(6% y) and W,(6%) and denote
P[U.(6*, y) | 6%] by Fa(y|6%). Denote furthermore P[Wn(a*) 6% + \—;—ﬁ] by
G(6*, u, n). If {65} and {u.} are two sequences such that lim d(6)) = d;
lim Py | 0}) = F(y) and lim p, = u then o

+o
lim 6%, ua,m) = [ M 4aR(y),

N =00 0

Proor: Let lim u, = p and consider the Taylor expansion

za: log f(xa, * + \‘77—) = ; log f(x., 6*) + \”7";& Zﬂ a% log f(z., 6*)

+1em 8 S e, 00)
2 n 902 @ om

©)

where 6, lies in the interval [ 0%, 0* + \ﬁ/—:—t] From this we easily get on account

of Assumption 2 and the fact that {u.} is bounded

» S\ Za, 0% + Hz
(10) log aIJl < e 0*)\/ n> = unyn(8%) — 3% d(6*) + €(6*, n)

where for arbitrary positive 7

: * % _‘_‘L__ —
) tim P{]e0t, )| < nl0* + 5} =1
uniformly in 6*. Denote by R,.(6*) the region defined by
(12) | e(0*,n)| < n>0.

On account of (11) we have

3 * * ﬁ": —
(13) tim P R0 104+ =] = 1,
uniformly in 6*. Denote the intersection of R,(6*) and W.(6*) by Q.(6%), and
the intersection of R,(6*) and U.(6* y) by T.(6* y). Furthermore denote
P[T.(6% y) | 6*] by F.(y | 6%). Then we have

t
e" [ VI G (y | 6%) < PI:T"(O*’ ) |6* + En :l
: -V
(14) t
<o [ e an gl
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for all values of £ and 8*. Furthermore we obviously have

(15) lim {G(o*, iy 1) — P[an*) 6% + \“/7-&]} _0

Nn =00

uniformly in 6*, and
(16) lim [F,(t]6*) — Fa(t|6*)] =0

n=00

uniformly in 6* and ¢. Since n may be chosen arbitrarily small, it follows from
(14) and (15) that to any ¢ > 0, n may be chosen such that

+o00
6%, waym) — [ D aP (¢ 7) | <

a7 lim sup 5

n=00

for any sequence {07 }.
To each ¢ let L. be a positive number such that L. depends only on e and

—L, )
(18) [ ennt—inf, d* dN(t | 0*) + f eﬂnt—-ing a" dN(t l 0*) < €
) L

for all n and for all values of 6*. Since d(6*) has a positive lower and a finite
upper bound, it is easy to verify that such a L. exists. From (18) and Proposi-
tion 3 it follows

ling  sup {P [yn(oi) < —L.|6% + \“/";J

P| ya.(67) > L.| 62 ”"_]} <t

+ P[0l > Lok + 2

for any arbitrary sequence {6x}. Since the difference U,(6*, tz) — U.(6* 1) is
a subset of the difference V,(6*, t) — V,(6* ;) and since T.(0* ;) — TA(6%, t1)
is a subset of U,(6* ;) — U.(6* t) for &, > t;, we get from (18) and (19)

limsup{Pl:U,,(G:, ~L) 6% +\"/"_]+P|:W,.(0,.)|0 +\“/n]

(19)

(20) - P[Un(ﬂn, L) |67 + \/‘]} <3
and

. * _L. iy X(07) |67 v
@1) lll?ffp{P[T"w"’ Lolon + \#/ ]+P[Q e WL]

1 €
_P[Tn(on, e)la + ]J 5
for any sequence { 6x}. On account of (14) we get from (21)

—L,
(22) " lim sup { f WD B (1 0%) + [ e BOD F, (tla,.)} <:.

n—>00 © L 2
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vl
Se(1-!2-e)

for any sequence {6}. Consider now the sequence {6} which satisfies the
conditions of Proposition 5. Since F,(¢ | 6%) converges to F(¢) uniformly in ¢,
on account of (16) also F,(t| 8%) converges to F(f) uniformly in ¢. Hence we
obtain from (23)

From (17) and (22) we obtain

L,
(23) lim sup ;G(O: ) Mo, M) — f 0D G B (¢ ] 6%)

n—ro0 — L,

L; n
GO%, i) = [ H aP) ] < e(1 + o )

(24) lim sup 3

n—>00

3

Since ¢ and n may be chosen arbitrarily small, Proposition 5 follows from (24).

4. Some theorems and corollaries. THEOREM 1. Denote by S.(6*) the region
defined by the inequality y.(0*) > A.(6%) where A.(6%) is chosen such that
P[S.(6%) | 6*] = a. For any region W.(0*) denote by L.[W .(6%)] the least upper
bound of P[W,(6%) | 6] — P[S.(6%) | 8] with respect to 6* and 6, where 6 is restricted
to values > 6*. Then for any sequence {W,(6%)} for which P[W.(6*) | 6*] = o,

lim sup L,[W.(6*)] < 0.

Proor: Assume that Theorem 1 is not true. Then there exists a sequence
of integers {n'}, a sequence {0;.} and a sequence {6,.} (6., > 6%) such that

(25) lim {P[W,:(6") | 6a:] — P[Sar(65:) | 6211} = 8> 0.

n =00

On account of Proposition 2 and Assumption 2 the sequence {A,.(6%:)} is
bounded. Then it follows easily from (25) and Proposition 4 (taking'in account

that Ej a—ao log f(z, 6*) > 0 for § > 6*

(26) (6ur — O )N/W = par > 0

must be bounded. Denote by {n’’} a subsequence of {n’} such that
(27) lim d(6}.)) = d

(28) lim pn» = g, and

(29) lim F,.(t] 62.) = F(2)

uniformly in ¢ where
Fu(t]| 6%) = P[U.(6% ) | 6*]

and U, (6% t) is the intersection of W,(6*) and the region y.(6*) < t. The exist-
ence of a subsequence {n’"'} such that (29) holds follows from the fact that

(30)  Fa(te]| 6%) — Fu(ts]| 6%) < ®u(ta| 6%) — ®a(tr ]| 6*) for &> 4,
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and

1
V/2rd
where ®,(t | 6*) denotes the probability Ply.(6%) < ¢|6*]. Furthermore it can
easily be shown that

t
@31) lim &, (¢ | 0%7) = j F gy = N(D),

4o

(32) . dF(t) = a.

— 00

On account of Proposition 5 we get from (25), (27), (28), (29), (30) and (31)
(33) f_ :o e GR (1) — fA T gt dN(t) =8,
where A denotes a value such that
[ ane) = o
4

It has been shown in a previous paper’ that (33) leads to a contradiction. Hence
Theorem 1 is proved.

THEOREM 2: Denote by S.(0*) the region defined by the inequality y.(6%) <
AL (6%) where A,(6%) is chosen such that P[S.(0*%)|6*] = a. For any region
W.(6%) denote by L.[W,.(0*%)] the least upper bound of

P[W.(6*) | 6] — P[S.(6*) | 6]
with respect to 6* and 0, where 6 is restricted to values < 6*.  Then for any sequence
{W.(0%)} for which P[W,(6%) | 6*) = q,

lim sup L.[W.(6*)] < 0.

n =0

The proof is omitted, since it is analogous to that of Theorem 1.
TueorEM 3: Let {W,(6%)} be for each 6* a sequence of regions for which
P[W . (6*) | 6*] = o and lim g[W.(6%)] = a uniformly in 6*. Denote by L.[W ,(6%)]

the least upper bound of
PIWA(6%) | 6] — Pl ya(6*) | > Aa(6*) | 6]
with respect to 8 and 6%, where A,(6%) is chosen such that
Pllya(6%) | > 4.(6%) | 6*] = a.
Then
lim sup L, [W.(6*)] < 0.

n-=*0

3See p. 12 of the paper cited in 2.
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Proor: Denote Ply.(6%) < ¢|6*] by ®.(¢| 8*) and denote by F,(¢| 6*) the
probability (under the hypothesis § = 6*) of the intersection of W,(6*) with
the region y,(6%) < ¢. Assume that Theorem 3 is not true. Then there exists
a subsequence {n”’}, a sequence {0;..} and a sequence {6,-} such that

limd(f) =d;  Lm @urr — 65 )7 = lim parr = p;
lim F,..(t|65:0) = F(f)

uniformly in ¢, and

+0o0 A )
(34) f_ M GR () — f_ N (t) — fA HMEGN() = 8

where A is a positive number such that

1 b e
dN(t) = ﬁ and N@) = — e gy,
/’ '\/21I'd .[.oo

This can be proved in the same way as (33) has been proved. The author has
shown in a previous paper* that (34) leads to a contradiction. Hence Theorem
3 is proved.

THEOREM 4: Denote by A.(6*%) the region of type’ A of size o for testing the hy-
pothesis § = 0*. Denote by B.(6*) the region | y.(8%) | > C.(6%) where C,(68*%)
1s determined such that

Pll ya(0%) | 2 Ca(6%) | 0%] =

062
lim {P[A.(6*) | 6] — P[B.(6*) | 6]} =

n =00

2
Then, under the assumption that Eq [ log f(=, 0*)] 18 bounded,

uniformly in 6 and 6*.
Proor: The region A,(6%) is given by the inequality®

[= 2 1ogstza, o |

+Zae2

where ki, (6%) and k., (6*) are chosen such that A,(6*) should be unbiased and of
size @. The inequality (35) can be written also in the form

9) ;
l0g f(ra,8%) 2 Ka@)| 3 108 (e, 09 | + K16,

(36) [y (69" + =~ Z Ing(x,,,O*) > 15, (6%)ya(6%) + 1.(6%.

62

4See p. 14 of the paper cited in 2.

§ Neyman, J. and Pearson, E. S., ““Contributions to the theory of testing statistical
hypotheses,”’ Stat. Res. Mem., Vol. 1.

6 See the paper cited in 8.
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Let {us} be a bounded sequence. From Assumption 2 it follows that for any
positive e

(37) p{[

<elo* “"_}=1
€| +\/n

uniformly in 6*. Since (37) holds for arbitrarily small ¢, we get easily on ac-
count of Proposition 3

(8)  lim {P [A,,(o*) | 6* + \“/;J - P[A;(o*) | 6* + \‘;ﬁ]} =0

uniformly in 6* where A4, (6*) is defined by
(39) [ya (6] 2 1n(6%)ya(6%) + T(6%) + d(6%).

Since 4,(6*) is unbiased and of size a, we have on account of (38) and (39)

2
;1; )X ;’_02 log f(za, 0%) + d(6%)

(40) lim I,(6*) = 0 and

(41) lim I, (6%) + d(6%) = \(6%) > 0

uniformly in 6* where A(6*) is given by the condition

(42) N [M“—‘) I G — g
V' 2rd(6%) &vi@w

Inequality (39) is obviously equivalent to the simultaneous inequalities:
ya(6%) < ca(6)  and  ya(6) 2 ¢(6%)
where ¢, (6%) and c, (6*) are the roots of the equation in y,(6*)
[yn(09) = 1.(6%)ya(6*) + 12(6*) + d(6%).
Since
lim ¢, (6*) = — V/\(6%) and  limc,(6%) = + VA6

uniformly in 6* from Proposition 3 it follows that

lim {P [A,.(O*) | 6* + \i‘/;]

(43) __
—VX(6%) ii2a(en « hu2d(0%
- [ et T AN (¢ | 6%) — f eI N (| 6%) = 0
w V(@Y

uniformly in 6*.

Now let us consider a sequence {»,} such thatlim | », | = « and lim I =,
n
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We shall prove that
44 [ #(0%) | 6* + :I =1
(44) (6" | \/n

2
log f(z, 0*)] is assumed to be bounded,

2

uniformly in 6*. Since Eo[

5) Brrcum | o081, 0 |
and

2
(46) Eooi 601/ [ 30 log f(=, 0*)]

are bounded functions of 6* and n. We get by Taylor expansion

Z 55 108 f(za, 6%) = Za:(%logf@a, 6* + \*V/"j—)
(47)
_ \/" 2602 log f(2a, 05)

where 87 lies in [ 0%, 0* + \V/"_:, Hence
n

(48)  Eosonymlys09] = —v,.EM"/\m[ aezZ‘ng@m d )]

From Assumption 2 and lim | »,| = o it follows that the absolute value of
the right hand side of (48) converges to «. Hence
Hm | Egeyr,/alyn(6¥)] | = .
Since on account of Assumption 1
F:) 2
Eoornv/) [ 59 08 (¥e, 0*):'
is a bounded function of 7 and 6*, also the variance of y,(6*) (under the assump-

tion that § = 6* 4 v,/4/7n is the true value of the parameter) is a bounded
function of n and 6*. Hence for any arbitrary large constant C

(49) tim P[ 309 > €10 + =] = 1,

uniformly in 6*. The equation (44) follows easily from (36), (40), (41), (45),
(46) and (49).
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> B> 0for all n. Then it follows

Consider a sequence {p,} such that \/—

easily from Proposition 1 that for any arbitrary C

. Pn
50 0% | > * ELoLON I
(50) llmP[Iy(O)l_Cle +\/n] 1

2
uniformly in 6*. Since Ea[ log f(z., 0*)] is assumed to be bounded, and

2

therefore also Eo a3 log f(z, 6*) is bounded, there exists a finite g such that

(51) lim P{' Z s  log flza, 09| < g10* + 7} =1

uniformly in 6*. From (36), (40), (41), (50) and (51) it follows

(52) lim P[A,,(e*) |6* + \—’}ﬁ] =1

uniformly in 6*. Since on account of Propositions 3 and 4, the relations (43),
(44) and (52) hold if we substitute B,(6*) for A,(6*), Theorem 4 is proved.
If Assumptions 1-4 are fulfilled for the set w consisting of the single point
6 = 6y, then we get from Theorems 1-4 the following corollaries:
COROLLARY 1: Let W, be the region deﬁned by the inequality y.(6)) > cn;
W, defined by the inequality y,,(oo) <cn, and W, defined by the mequalzty
| yn(60) | > ca, where the constants c, , ¢, and c, are chosen such that

P(W,|6)) = P(W, | 6) = P(W.|6) =

Then {W.,} is an asymptotically most powerful test of the hypothesis 8 = 6y if 9
takes only values > 6,. Similarly {Wh} is an asymptotically most powerful test
if 0 takes only values < 6. Finally {W,} is an asymptotically most powerful
unbiased test if 0 can take any real value.

CoroLLARY 2: The sequence {A.(6o)} is an asymptotically most powerful un-
biased test of the hypothesis 0 = 6o, where A,.(6) denotes the critical region of

type A for testing 0 =



