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Abstract. We construct entire functions with hyperbolic and simply parabolic
Baker domains on which the functions are not univalent. The Riemann maps
from the unit disk to these Baker domains extend continuously to certain arcs
on the unit circle. The results answer questions posed by Fagella and Henriksen,
Baker and Domı́nguez, and others.

1. Introduction and main results

The Fatou set F(f) of an entire function f is the subset of the complex plane C
where the iterates fn of f form a normal family. Its complement J (f) = C \F(f)
is the Julia set. The connected components of F(f) are called Fatou components.
As in the case of rational functions there exists a classification of periodic Fatou
components (cf. [7, Section 4.2]), the new feature for transcendental functions being
Baker domains. By definition, a periodic Fatou component U is called a Baker
domain if fn|U →∞ as n→∞. The first example of a Baker domain was already
given by Fatou [18, Exemple I] who proved that f(z) = z + 1 + e−z has a Baker
domain U containing the right halfplane. Since then many further examples have
been given; see [31] for a survey.

By a result of Baker [1], the domains today named after him are simply con-
nected. A result of Cowen [14] then leads to a classification of Baker domains,
which has turned out to be very useful. We introduce this classification following
Fagella and Henriksen [17], but note that there are a number of equivalent ways
to state it; see section 2 for a detailed discussion. For simplicity, and without loss
of generality, we consider only the case of an invariant Baker domain; that is, we
assume that f(U) ⊂ U . We define an equivalence relation on U by saying that
u, v ∈ U are equivalent if there exist m,n ∈ N such that fm(u) = fn(v) and we
denote by U/f the set of equivalence classes. The result of Fagella and Henriksen
is the following [17, Proposition 1].

Theorem A. Let U be an invariant Baker domain of the entire function f . Then
U/f is a Riemann surface conformally equivalent to exactly one of the following
cylinders:

(a) {z ∈ C : −s < Im z < s}/Z, for some s > 0;
(b) {z ∈ C : Im z > 0}/Z;
(c) C/Z.
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We call U hyperbolic in case (a), simply parabolic in case (b) and doubly parabolic
in case (c). More generally, the above classification holds when U is a simply
connected domain, U 6= C, and f : U → U is holomorphic without fixed point
in U .

While we defer a detailed discussion of this classification to section 2, we indicate
where the names for the different types of Baker domains come from. Since U is
simply connected, there exists a conformal map φ : D → U , where D is the unit
disk. Then g = φ−1 ◦ f ◦ φ maps D to D. (In fact, it can be shown that g is
an inner function.) By the Denjoy-Wolff-Theorem, there exists ξ ∈ D such that
gn → ξ as n → ∞. As f has no fixed point in U and thus g has no fixed point
in D, we actually find that ξ ∈ ∂D. Now suppose that g extends analytically to a
neighborhood of ξ. Then g(ξ) = ξ and U is hyperbolic if ξ is an attracting fixed
point, U is simply parabolic if ξ is a parabolic point with one petal and U is doubly
parabolic if ξ is a parabolic point with two petals.

We note that the Baker domain U of Fatou’s example f(z) = z + 1 + e−z men-
tioned above is doubly parabolic. For example, this follows directly from Lemma 2.2
below. It is known (see the remark after Lemma 2.3 below) that if U is a dou-
bly parabolic Baker domain, then f |U is not univalent. Equivalently, U contains
a singularity of the inverse function of f : U → U . (For Fatou’s example it can
be checked directly that f : U → U is not univalent, as U contains the critical
points 2πik, with k ∈ Z.) On the other hand, f |U may be univalent in a hyperbolic
or simply parabolic Baker domain. The first examples of Baker domains where
the function is univalent where given by Herman [21, p. 609] and Eremenko and
Lyubich [16, Example 3]. We mention some further examples of Baker domains:

(1) simply parabolic Baker domains in which the function is univalent ([4, The-
orem 3], [5, Section 5.3] and [17, Section 4, Example 2]);

(2) hyperbolic Baker domains in which the function is univalent ([5, Sections 5.1
and 5.2], [8, Theorem 1] and [17, Section 4, Example 1];

(3) hyperbolic Baker domains in which the function is not univalent ([30, The-
orem 3], and [32, Theorems 2 and 3];

We note that there are no examples of simply parabolic Baker domains in which
the function is not univalent. Therefore it was asked in [17, Section 4] and [38,
p. 203] whether such domains actually exist. Our first result says that this is in
fact the case.

Theorem 1.1. There exists an entire function f with a simply parabolic Baker
domain in which f is not univalent.

It turns out that the function constructed also provides an answer to a question
about the boundary of Baker domains which arises from the work of Baker and
Weinreich [4], Baker and Domı́nguez [2], Bargmann [6] and Kisaka [22, 23].

For a conformal map φ : D → U let Ξ be the set of ξ ∈ ∂D such that ∞ is
contained in the cluster set of φ at ξ and let Θ be the set of ξ ∈ ∂D such that
limr→1 φ(rξ) =∞. Clearly, Θ ⊂ Ξ. The sets Θ and Ξ depend on the choice of the
conformal map φ, but we will only be concerned with the question whether Ξ is
equal to ∂D or Θ is dense in ∂D, and these statements are independent of φ.
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Devaney and Goldberg [15] showed that if λ ∈ C\{0} is such that f(z) = λez has
an attracting fixed point and U denotes its attracting basin, then Θ is dense in ∂D.
Baker and Weinreich [4, Theorem 1] proved that if f is an arbitrary transcendental
entire function and U is an unbounded invariant Fatou component of f which
is not a Baker domain and which thus – by the classification of periodic Fatou
components – is an attracting or parabolic basin or a Siegel disk, then Ξ = ∂D.
Baker and Domı́nguez [2, Theorem 1.1] showed, under the same hypothesis, that
if Θ 6= ∅, then Θ = ∂D. Under additional hypotheses this had been proved before
by Kisaka [22, 23].

As shown by Baker and Weinreich [4, Theorem 3], the above results need not
hold for Baker domains: they gave an example of a Baker domain bounded by a
Jordan curve on the sphere. Clearly, for this example the sets Ξ and Θ consist of
only one point. On the other hand, Baker and Weinreich [4, Theorem 4] showed
that if a Baker domain U is bounded by a Jordan curve on the sphere, then f is
univalent in U .

If U is a Baker domain, then∞ is accessible in U and thus we always have Θ 6= ∅
for Baker domains. Baker and Domı́nguez [2, Theorem 1.2] showed that if U is a
Baker domain where f is not univalent, then Θ contains a perfect subset of ∂D.
Again, this had been proved before by Kisaka [22, 23] under additional hypotheses.

Baker and Domı́nguez [2, p. 440] asked whether even Θ = ∂D if U is a Baker
domain where f is not univalent. It was shown by Bargmann [6, Theorem 3.1]
that this is in fact the case for doubly parabolic Baker domains. With Θ replaced
by Ξ this result appears in [22]. The question whether these results also hold for
hyperbolic and simply parabolic Baker domains was left open in these papers.

It turns out that the Baker domain constructed in Theorem 1.1 can be chosen
such that

(1.1) Ξ 6= ∂D.

In particular, this implies that Θ 6= ∂D. A modification of the method also yields
an example of a hyperbolic Baker domain with this property. We thus have the
following result.

Theorem 1.2. There exists an entire function f1 with a simply parabolic Baker do-
main U1 such that f1|U1 is not univalent and the set Ξ defined above satisfies (1.1).

There also exists an entire function f2 with a hyperbolic Baker domain U2 satis-
fying (1.1) such that f2|U2 is not univalent.

2. Classification of Baker domains

We describe the classification given by Cowen [14] following König [25] and Barg-
mann [6]; see also [31, Section 5] for a discussion of this classification. Let U be
a domain and let f : U → U be holomorphic. We say that a subdomain V of
U is absorbing for f , if V is simply connected, f(V ) ⊂ V and for any compact
subset K of U there exists n = n(K) such that fn(K) ⊂ V . (Cowen used the
term fundamental instead of absorbing.) Let H = {z ∈ C : Re z > 0} be the right
halfplane.
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Definition 2.1. Let f : U → U be holomorphic. Then (V, ϕ, T,Ω) is called an
eventual conjugacy of f in U , if the following statements hold:

(i) V is absorbing for f ;
(ii) ϕ : U → Ω ∈ {H,C} is holomorphic and ϕ is univalent in V ;
(iii) T is a Möbius transformation mapping Ω onto itself and ϕ(V ) is absorbing

for T ;
(iv) ϕ(f(z)) = T (ϕ(z)) for z ∈ U .

König [25] used the term conformal conjugacy. With the terminology eventual
conjugacy we have followed Bargmann [6].

If U is the basin of an attracting (but not superattracting) fixed point ξ, then
an eventual conjugacy is given by the solution of the Schröder-Kœnigs functional
equation ϕ(f(z)) = λϕ(z), with λ = f ′(ξ) 6= 0. Similarly, eventual conjuga-
cies in parabolic domains are given by the solutions of Abel’s functional equation
ϕ(f(z)) = ϕ(z) + 1.

In what follows, we assume that f has no fixed points in U . Clearly, this is the
case for Baker domains U . The result of Cowen can now be stated as follows.

Lemma 2.1. Let U 6= C be a simply connected domain and f : U → U a holo-
morphic function without fixed point in U . Then f has an eventual conjugacy
(V, ϕ, T,Ω). Moreover, T and Ω may be chosen as exactly one of the following
possibilities:

(a) Ω = H and T (z) = λz, where λ > 1;
(b) Ω = H and T (z) = z + i or T (z) = z − i;
(c) Ω = C and T (z) = z + 1.

It turns out (cf. [17]) that the cases listed in Lemma 2.1 correspond precisely
to the cases of Theorem A. Thus U is hyperbolic in case (a), simply parabolic in
case (b) and doubly parabolic in case (c).

König [25, Theorem 3] has given the following useful characterization of the
different cases.

Lemma 2.2. Let U 6= C be an unbounded simply connected domain and f : U → U
a holomorphic function such that fn|U →∞ as n→∞. For w0 ∈ U put

wn = fn(w0) and dn = dist(wn, ∂U).

Then

(a) U is hyperbolic if there exists β > 0 such that |wn+1 − wn|/dn ≥ β for all
w0 ∈ U and all n ≥ 0;

(b) U is simply parabolic if lim infn→∞ |wn+1 − wn|/dn > 0 for all w0 ∈ U , but

inf
w0∈U

lim sup
n→∞

|wn+1 − wn|
dn

= 0;

(c) U is doubly parabolic if limn→∞ |wn+1 − wn|/dn = 0 for all w0 ∈ U .

Denote by ρU(·, ·) the hyperbolic metric in a hyperbolic domain U , using the
normalization where the density λD in the unit disk is given by λD(z) = 2/(1−|z|2).
Considering the hyperbolic metric instead of the Euclidean metric in Lemma 2.2
leads to the following result; see [6, Lemma 2.6] or [38, Theorem 2.2.11].
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Lemma 2.3. Let U 6= C be a simply connected domain and f : U → U a holomor-
phic function without fixed point in U . For z ∈ U put

`(z) = lim
n→∞

ρU(fn+1(z), fn(z)).

Then

(a) U is hyperbolic if infz∈U `(z) > 0;
(b) U is simply parabolic if `(z) > 0 for all z ∈ U , but infz∈U `(z) = 0;
(c) U is doubly parabolic if `(z) = 0 for all z ∈ U .

Note that the sequence (ρU(fn+1(z), fn(z)))n∈N is non-increasing by the Schwarz-
Pick Lemma (Lemma 3.1 below). Thus the limit defining `(z) exists.

Let now U be an invariant Baker domain of the entire function f . It is not
difficult to see that if f |U is univalent, then f(U) = U . Also, the Schwarz-Pick
Lemma says that if f |U is univalent, then

ρU(fn+1(z), fn(z)) = ρU(f(z), z)

for all n ∈ N and z ∈ U . It now follows from Lemma 2.3, as already mentioned in
the introduction, that U cannot be doubly parabolic if f |U is univalent.

Lemma 2.4. Let f : U → U be as in Lemma 2.1 and let U0 be an absorbing
domain for f . Then f : U0 → U0 and f : U → U are of the same type according to
the classification given in Theorem A or Lemma 2.1.

Proof. Let (V, ϕ, T,Ω) be an eventual conjugacy of f in U . Since, by the definition
of an absorbing domain, V and U0 are simply connected, the components of V ∩U0

are also simply connected. It was shown by Cowen [14, p. 79-80] (see also [6,
Lemma 2.3]) that there exists a component W of V ∩ U0 which is absorbing for f
in U . Moreover, ϕ(W ) is absorbing for T in Ω. Thus (W,ϕ|W , T,Ω) is an eventual
conjugacy of both f : U → U and f : U0 → U0. The conclusion follows. �

We note that a somewhat different approach to classifying holomorphic self-maps
of H, based on the sequences (ρH(fn+1(z), fn(z)))n∈N, was developed by Baker and
Pommerenke [3, 28]; see also [12]. As shown by König [25, Lemma 3], this leads to
the same classification as above.

We mention that Baker domains may also be defined for functions meromorphic
in the plane. In general, Baker domains of meromorphic functions are multiply
connected. König [25, Theorem 1] has shown that if U is a Baker domain of a
meromorphic function with only finitely many poles, then an eventual conjugacy
in U exists and the conclusion of Lemma 2.2 holds. On the other hand, even-
tual conjugacies need not exist for Baker domains of meromorphic functions with
infinitely many poles [25, Theorem 2]. For further results on Baker domains of
meromorphic functions we refer to [38]. In particular, we note that if U is a multi-
ply connected Baker domain of a meromorphic function f such that there exists an
eventual conjugacy in U , then U contains at least two singularities of f−1; see [38,
p. 200]. Thus f |U is not univalent in a multiply connected Baker domain U with
an eventual conjugacy.

More generally, one may also consider functions meromorphic outside a small set.
For such functions the classification of Baker domains is discussed in [37, Section 4].
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The classification of Baker domains mentioned above appears in various other
questions related to Baker domains. Besides the papers already cited we men-
tion [10, 11, 13, 26].

3. Preliminary lemmas

The following result, already used in section 2, is known as the Schwarz-Pick
Lemma; see, e.g., [34, p.12].

Lemma 3.1. Let U and V be simply connected hyperbolic domains and f : U → V
be holomorphic. Then ρV (f(z1), f(z2)) ≤ ρU(z1, z2) for all z1, z2 ∈ U . If there
exists z1, z2 ∈ U with z1 6= z2 such that ρV (f(z1), f(z2)) = ρU(z1, z2), then f is
bijective.

If U ⊂ V , then we may apply the Schwarz-Pick Lemma to f(z) = z and obtain
ρV (z1), z2) ≤ ρU(z1, z2) for all z1, z2 ∈ U .

The following result is the analogue of the Schwarz-Pick Lemma for quasicon-
formal mappings [27, Section II.3.3]. Note that a different normalization of the
hyperbolic metric is used in [27].

Lemma 3.2. Let U and V be simply connected hyperbolic domains and f : U → V
be a K-quasiconformal mapping. Then

(3.1) ρV (f(z1), f(z2)) ≤MK(ρU(z1, z2))

for z1, z2 ∈ U , with

(3.2) MK(x) = 2 arctanh
(
ϕK
(
tanh 1

2
x
))
.

Here ϕK is the Hersch-Pfluger distortion function.

The function arctanh ◦ ϕK ◦ tanh appearing on the right hand side of (3.2)
has been studied in detail in a number of papers. For example, it was shown
in [29, Theorem 1.6] that this function is strictly increasing and concave. Various
estimates of this function in terms of elementary functions are known. We only
mention [35, Theorem 11.2] where it was shown that the conclusion of Lemma 3.2
holds with (3.1) replaced by ρV (f(z1), f(z2)) ≤ K (ρU(z1, z2) + log 4). We do not
need any explicit estimate for MK , but the fact that (3.1) holds for some non-
decreasing function MK : [0,∞)→ [0,∞) suffices.

The following result [33, Lemma 1] is the fundamental lemma for quasiconformal
surgery. Here C = C ∪ {∞} denotes the Riemann sphere.

Lemma 3.3. Let g : C → C be a quasiregular mapping. Suppose that there are
disjoint open subsets E1, . . . , Em of C, quasiconformal mappings Φi : Ei → E ′i ⊂ C,
for i = 1, . . . ,m, and an integer N ≥ 0 satisfying the following conditions:

(i) g(E) ⊂ E where E = E1 ∪ · · · ∪ Em;
(ii) Φ ◦ g ◦ Φ−1

i is analytic in E ′i = Φi(Ei), where Φ : E → C is defined by
Φ|Ei

= Φi;
(iii) gz = 0 a.e. on C \ g−N(E).
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Then there exists a quasiconformal mapping ψ : C → C such that ψ ◦ g ◦ ψ−1 is
a rational function. Moreover, ψ ◦ Φ−1

i is conformal in E ′i and ψz = 0 a.e. on
C \

⋃
n≥0 g

−n(E).

Shishikura stated the result in [33] for rational functions, but it holds for entire
functions as well. A stronger result, stated for entire functions, can be found in
[24, Theorem 3.1].

4. Proof of Theorem 1.1

Put g(z) = e2πiαzez, where α ∈ [0, 1] \Q is chosen such that g has a Siegel disk
S at 0, and put

h(z) = 2πi(α +m) + z + ez

where m ∈ Z. Using g(ez) = exph(z) it can be shown that h has a Baker domain
V = logS on which h is univalent. This example, with m = 0, is due to Herman [21,
p. 609]; see also [4, 8, 9]. We shall assume, however, that m ≥ 3. It is not difficult
to see that V is simply parabolic.

There exists r0 ∈ (0, 1) and a g-invariant domain S0 ⊂ S such that

D(0, r0) ⊂ S0 ⊂ D(0, 1).

Here and in the following D(a, r) denotes the open disk of radius r around a point a.
With x0 = log r0 we thus see that V contains H0 = {z ∈ C : Re < x0}. Moreover,
if z ∈ H0, then

(4.1) Imhn(z) ≥ 2π(α+m) + Imhn−1(z)− 1 > Im z + 2nπ and Rehn(z) < 0

for n ∈ N.
For x1 < x0 − π we define

S(x1) = {z ∈ C : Re z < x1, | Im z| < 2π} ∪D(x1, 2π)

and

T (x1) = {z ∈ C : Re z < x1, | Im z| < π} ∪D(x1, π)

We also put

k(z) = 2πi(α +m) + z + exp(e−z − L),

for a large constant L to be determined later.
Now we define F : C → C as follows. For z ∈ C \ S(x1) we put F (z) = h(z),

for z ∈ T (x1) we put F (z) = k(z) and for z ∈ S(x1) \ T (x1) we define F (z) by
interpolation. Thus for x ≤ x1 and π ≤ y ≤ 2π we put

F (x+ iy) =
y − π
π

h(x+ 2πi) +
2π − y
π

k(x+ πi),

for x ≤ x1 and −2π ≤ y ≤ −π we put

F (x+ iy) =
−y − π
π

h(x− 2πi) +
2π + y

π
k(x− πi),

and for π ≤ r ≤ 2π and −π/2 ≤ ϕ ≤ π/2 we put

F (x1 + reiϕ) =
r − π
π

h(x1 + 2πeiϕ) +
2π − r
π

k(x1 + πeiϕ).
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We claim that F is quasiregular. By definition, F is holomorphic in T (x1) and

in C \ S(x1). So it suffices to consider the dilatation in S(x1) \ T (x1). We first

consider the subregion A = {x + iy : x ≤ x1, π < y < 2π} of S(x1) \ T (x1). For
z = x+ iy ∈ A we have

(4.2) F (z) = 2πi(α +m) + z + P (z)

with

(4.3) P (x+ iy) =
y − π
π

ex +
2π − y
π

exp(−e−x − L)).

It is easy to see that if |x1| is large enough, then |Px(z)| ≤ 1/4 and |Py(z)| ≤ 1/4
for z ∈ A. Thus |Pz(z)| ≤ 1/4 and |Pz(z)| ≤ 1/4 and hence |Fz(z)| ≥ 3/4 and
|Fz(z)| ≤ 1/4 for z ∈ A. It follows that F is quasiregular in A. The argument for
the domain A = {x+ iy : x ≤ x1, −2π < y < −π} is analogous.

Now we consider the region B = {x1 + reiϕ : π ≤ r ≤ 2π, −π/2 ≤ ϕ ≤ π/2}.
For z = x1 + reiϕ ∈ B we have

(4.4) F (z) = 2πi(α +m) + z +Q(z)

with

(4.5)
Q(x1 + reiϕ) =

r − π
π

exp
(
x1 + 2πeiϕ

)
+

2π − r
π

exp
(
− exp

(
x1 + πeiϕ

)
− L

)
.

The computation of the partial derivatives of Q is more cumbersome than for P ,
but again it follows |Qz(z)| ≤ 1/4 and |Qz(z)| ≤ 1/4 for z ∈ B if |x1| and L = L(x1)
are large enough. As before this implies that F is quasiregular in B.

It follows from (4.2), (4.3), (4.4) and (4.5), together with the corresponding
representation in A, that

(4.6) ImF (z) > Im z + 2π(α +m)− 1 > 3π and ReF (z) < x0

for z ∈ S(x1) \ T (x1), provided |x1| and L are large enough. Together with (4.1)
this implies that if x1 and L are suitably chosen, then every orbit passes through
S(x1) \ T (x1), which is the set where F is not holomorphic, at most once.

It now follows from Lemma 3.3, applied with g = F , N = 1, m = 1,

E1 =
∞⋃
n=1

F n
(
S(x1) \ T (x1)

)
and Φ1 = idE1 , that there exists a quasiconformal map ψ : C → C such that
f = ψ ◦ F ◦ ψ−1 is an entire function.

It is easy to see that f is transcendental. For example, let a ∈ J (h) such that
h−1(a) is infinite. The complete invariance of J (h) yields that h−1(a) ∩ S(x1) = ∅
so that h−1(a) ⊂ F−1(a) = ψ−1(f−1(ψ(a))). Therefore f−1(ψ(a)) is infinite, which
implies that f is transcendental.

In the sequel, we will apply the concepts of the Fatou-Julia theory also to the
quasiregular function F . For example, we can define J (F ) as the set where the
iterates of F are not normal and find that J (f) = ψ(J (F )).
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It follows from (4.1) and (4.6) that

ImF n(z)→∞ for z ∈ V \
∞⋃
k=0

h−k(T (x1))

as n→∞. With W0 = {z ∈ C : Re z < x0, Im z > 2π} we have

V \
∞⋃
k=0

h−k(T (x1)) ⊃ W0

and thus find that F has a Baker domain W containing W0. Using (4.6) we see

that S(x1) \ T (x1) ⊂ W .
We now show that T (x1)∩J (F ) 6= ∅. In order to do so we note that if x ∈ R is

sufficiently large, then∣∣∣F (−x+ i
π

2

)∣∣∣ =
∣∣∣k (−x+ i

π

2

)∣∣∣ =
∣∣∣2πi(α +m)− x+ i

π

2
+ exp (iex − L))

∣∣∣ ≤ 2x

while∣∣∣F ′ (−x+ i
π

2

)∣∣∣ =
∣∣∣k′ (−x+ i

π

2

)∣∣∣ = |1− iex exp (iex − L))| ≥ ex−L − 1 ≥ ex/2.

Given a1, a2 ∈ J (F ) it now follows from Landau’s theorem that if x is large enough,
then there exists j ∈ {1, 2} and z ∈ D(−x + iπ/2, 1) such that F (z) = aj. By
the complete invariance of J (F ) we thus have D(−x + iπ/2, 1) ∩ J (F ) 6= ∅. In
particular, T (x1) ∩ J (F ) 6= ∅.

Since F has the unbounded Fatou component W , a result of Baker [1] yields that

F has no multiply connected Fatou components. Since S(x1)\T (x1) ⊂ W ⊂ F(F ),
this implies that T (x1) contains an unbounded component Γ of J (F ).

For large x ∈ R we consider w1 = −x − 2πi, w2 = F (w1) and w3 = F (w2).
Obviously, wj ∈ W for j = 1, 2, 3. We note that w1 is “below” the strip T (x1)
while w2 and w3 are “above” this strip by (4.6). In fact, we have

w2 = 2πi(α +m− 1)− x+ ew1 ∈ W0

and

w3 = 2πi(α +m) + w2 + ew2 = 2πi(2α + 2m− 1)− x+ ew1 + ew2 ∈ W0.

We choose δ > 0 such that r1 = 2π(α + m) + δ < r2 = 2π(2α + 2m − 3) − δ and
find that

w2 ∈ D(w3, r1) ⊂ D(w3, r2)

for sufficiently large x. This implies that

ρD(w3,r2)(w2, w3) = ρD((w2 − w3)/r2, 0) ≤ 2 arctanh(r1/r2).

As D(w3, r2) ⊂ W0 ⊂ W , the Schwarz-Pick Lemma now yields that

(4.7) ρW (w2, w3) ≤ ρW0(w2, w3) ≤ ρD(w3,r2)(w2, w3) ≤ 2 arctanh(r1/r2)

for large x.
Next we show that

(4.8) ρW (w1, w2)→∞ as x→∞.
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In order to do so, we note that the preimage of Γ under F contains an unbounded
continuum Γ′ which is contained in {z ∈ C : Re z < x1, y1 < Im z < y2} for suitable
y1, y2 satisfying y1 < y2 < −2π. Let now γ be a curve connecting w1 and w2 in W .
It follows that there exists x2 ≤ x1 such that if t ≤ x2, then there exists z ∈ γ, ζ ∈ Γ
and ζ ′ ∈ Γ′ such that Re ζ = Re ζ ′ = Re z = t and y1 < Im ζ ′ < Im z < Im ζ < π.
This implies that the density λW of the hyperbolic metric in W satisfies

λW (z) ≥ 1

2 dist(z, ∂W )
≥ 1

2 min{|z − ζ|, |z − ζ ′|}
≥ 1

π − y1

.

From this we can deduce that if x < x2, then∫
γ

λW (z)|dz| ≥ |x− x2|
π − y1

.

As this holds for all curves γ connecting w1 and w2, we obtain

ρW (w1, w2) ≥
|x− x2|
π − y1

,

from which (4.8) follows.
Put U = ψ(W ). Since f = ψ ◦ F ◦ ψ−1 we find that U is a Baker domain of f .

Let vj = ψ(wj), for j = 1, 2, 3, and denote by K the dilatation of ψ. It follows
from Lemma 3.2 and (4.7) that

ρU(v2, v3) ≤MK(2 arctanh(r1/r2)).

Suppose now that f : U → U is univalent. The Schwarz-Pick Lemma yields that
ρU(v2, v3) = ρU(f(v1), f(v2)) = ρU(v1, v2). Noting that ψ−1 is also K-quasiconfor-
mal, we deduce from Lemma 3.2 that

ρW (w1, w2) ≤MK(ρU(v1, v2)) = MK(ρU(v2, v3)).

Combining the last two estimates we obtain

ρW (w1, w2) ≤MK(MK(2 arctanh(r1/r2))),

which contradicts (4.8). Thus f : U → U is not univalent.
It remains to show that U is a simply parabolic Baker domain. In order to do

so we recall that V is a simply parabolic Baker domain of h. We also note that it
follows from the construction of V that there exists an absorbing domain V0 of h
in V satisfying V0 ⊂ {z ∈ C : Re z > 2π}. Clearly, V0 is also an absorbing domain
of F in W . Hence U0 = ψ(V0) is an absorbing domain of f in U .

Since ψ is analytic in V0, we find for v ∈ V and w = ψ(v) ∈ ψ(V ) = U and large
n that

ρU0(f
n+1(w), fn(w)) = ρψ(V0)(ψ(hn(v)), ψ(hn+1(v))) = ρV0(h

n+1(v), hn(v)).

Since V is a simply parabolic Baker domain of h, Lemma 2.4 now yields that U is
simply parabolic. This completes the proof of Theorem 1.1.
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5. Proof of Theorem 1.2

Let α, g, h, ψ and f be as in the proof of Theorem 1.1. Baker and Weinreich [4,
Theorem 3] used results of Ghys [19] and Herman [20] to show that for suitably
chosen α the boundary of the Siegel disk S of h is a Jordan curve. Actually, by
a recent result of Zakeri [36], this is the case if α has bounded type. Thus in this
case the Baker domain V of h is bounded by a Jordan curve on the sphere. Let
γ be a Jordan arc in ∂V ∩ {z : Im z > 2π}. It follows from the construction that
γ ⊂ ∂W and that the points of γ are accessible from W . Thus ∂U contains the
Jordan arc ψ(γ) consisting of points accessible from U . This implies that Ξ 6= ∂D.
Thus f1 = f and U1 = U have the desired property.

The construction of f2 and U2 is similar. Here our starting point are the functions
g(z) = 1

2
z2e2−z and h(z) = 2− log 2 + 2z− ez considered in [8]. The function g has

a superattracting basin B at the origin which is bounded by a Jordan curve and
V = logB is a hyperbolic Baker domain of h where h is univalent. By a similar
reasoning as in the proof of Theorem 1.1 we will now use quasiconformal surgery to
construct an entire function f2 with a Baker domain U2 where f is not univalent.

Here we put, for large a positive integer M ,

S(M) = {z ∈ C : |Re z + 2πM | < 2π, Im z < −2π} ∪D(−2πM − 2πi, 2π)

and

T (M) = {z ∈ C : |Re z + 2πM | < π, Im z < −2π} ∪D(−2πM − 2πi, π).

Next we put k(z) = 2− log 2 + 2z+ exp(e−iz−L) for a large constant L and define

F : C → C by F (z) = h(z) for z ∈ C \ S(M), by F (z) = k(z) for z ∈ T (M)

and by interpolation in S(M) \ T (M). Similarly as in the proof of Theorem 1.1
we see that F is quasiregular if M and L = L(M) are large enough and that there
exists a quasiconformal map ψ such that f2 = ψ ◦F ◦ψ−1 is a transcendental entire
function. Noting that V ∩ H is invariant under h and thus under F we see that
F has a Baker domain W containing V ∩H. Thus U2 = ψ(W ) is a Baker domain
of f2, and the construction shows that ∂U2 contains a Jordan arc consisting of
points accessible from U2.

To show that U2 is hyperbolic we use again Lemma 2.4, noting that the domain
V0 = {z ∈ C : Re z < 3πM} is absorbing for h and F in V and that ψ is analytic
in V0. Finally, the reasoning that f2 is not univalent in U2 is similar to that in the
proof of Theorem 1.1.
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