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SOME EXAMPLES OF MANIFOLDS OF
NONNEGATIVE CURVATURE

JEFF CHEEGER

The purpose of this note is to describe some examples of manifolds of non-
negative curvature and positive Ricci curvature. Apart from homogeneous
spaces, no such examples appear in the literature. Our main tool is the formula
of O'Neill [8] for riemannian submersions.

Recall that the map π\ Mn+k —> Nn of riemannian manifolds is called a
riemannian submersion if

1. π is a differentiate submersion, i.e., for all m e M, rank dπm = n,
2. dπ\Hm is an isometry for all m e M.

Here Hm is the orthogonal complement of the kernel Vm of dπ. If X, Y are
horizontal fields, then the vertical component [X, Y]ζ, of [X, Y](m) depends
only on X(m), Y(m). Let x,y € Nπ(m) be orthonormal, x, y their horizontal lifts
at m, and K, K denote sectional curvature. Then the formula of O'Neill says

Let G X M -» M be an action of a Lie group on M such that all orbits are
closed and of the same type. Then π: M —> G/M is a submersion, and any
G-invariant riemannian structure on M induces in an obvious way a riemannian
structure on G\M such that π becomes a riemannian submersion. If M has
nonnegative curvature, then so does G\M.1

If G acts on N19 Mί freely and properly discontinuously on iVl5 then it acts
freely and properly discontinuously on Nλ X M1 by the diagonal action. Hence
further examples arise by taking products.

Example 1 (Associated bundles). Let M = Gλ X M l 5 where Gλ is a Lie
group with bi-invariant metric, and M1 has nonnegative curvature. Suppose
G C Gx is a closed subgroup which acts on Mλ by isometries. Then (g1? m) —>
(gi 8~\8m) defines a free properly discontinuous action of G onM. As above,
G\M inherits a metric of nonnegative curvature. Topologically, G\M is of
course the bundle with fibre M1 associated to the principal fibration G-^ G1-^
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Recently, Gromoll and Meyer [4] have constructed a free action of S3 on SP(2)
which preserves the bi-invariant metric. The quotient is an exotic 7-sρhere.
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GJG. Gx acts by isometries of G\M via (g19 m) —• (ggλ, m). In general, however,
even if Mλ is homogeneous, G\M will not be homogeneous if Gλ does not act
transitively; e.g. the S2 bundle over S2 of Example 3 below.

Example 2 (Change of metric). It is sometimes of interest to consider the
case G = Gx in the preceeding example. In this situation, the projection
π\(M,e) —»M x G = G\M X G is a diffeomorphism. Therefore we have

actually obtained a new metric g on M. In order to describe the new metric,
we proceed as follows: Let T denote the tangent space to the orbit G(m) of
m, and N = T1-. Let E19 , Ep be an orthonormal basis of left invariant fields
of G, and let λEt denote the corresponding Killing fields on M. If X is a field
on G (resp. M), we denote by X the field (X, O) (resp. ( 0 , Z ) ) on G X M.
Then the space T tangent to the orbits of G on G X M is spanned by the fields
Eί + λEt. Set ((λE^λEj}) = (Λίfi) = K. Then the normal space N = f -1 is
spanned by orthonormal fields {JV*} (where iV4 € N) and {̂ ^̂  — 2*<.i^z} In

I

order to find a vector in TV which projects down under dπ to say λEi9 we must

decompose lEt as Λi^ = λ£f + λEf. Then ĵ&f is the required vector. Set

If Z = (xitk) and Y = (vί>z)? by collecting terms we have

X + Y = / , X - Y . £ = 0 ,

or

X = K(/ + φ - ' Y - (1 + K)- 1 .

In particular, Y is symmetric and commutes with K. Then

= Σyi,ιkι,ryj,r + Σ yί,ιkι>Ίcδk>skr>syj>r
lr l,k,r,s

So

x = γ\κ + κ2) = κ(/

Thus the new metric g may be described by

g is closely related to deformations of metric which have been studied in [2].
It is a straightforward matter to compute the curvature of g we will not carry



MANIFOLDS OF NONNEGATIVE CURVATURE 625

this out because we do not need it. Observe, however, that a plane section in
N can have zero curvature with respect to the product metric on M x G only
if its projection on M has zero curvature with respect to the original metric.
On the other hand, dπ: N —> Mm is curvature nondecreasing with respect to
the metric g on M. Hence in general g has "fewer" sections of zero curvature
than g does. Since G is often the largest group to act by isometries with respect
to g, this improvement may have been obtained at the expense of destroying
some of the symmetry of the metric g.

Example 3 (Connected sum of symmetric spaces of rank one). Let S1 act
freely on S2n+1 so that S1 -> S2n+1 -> CP(ri) is the Hopf ίibration. S1 also acts
on R2 by rotation about the origin. The quotient of S2n+1 X R2 by the diagonal
action is the normal bundle η of CP(n) in CP(n + 1). η is diίϊeomorphic to
CP(n + 1 ) with a ball removed. If S2n+1 and R2 are equipped with ^-invariant
metrics, then η inherits a metric of nonnegative curvature. It is interesting to
choose such metrics as follows: Let g0 denote the metric of constant curvature
1 on S2n+\ and T 0 N be the splitting of Sf+1 into the tangent space to the
orbit of S1 and its orthogonal complement. Define a new metric gt on S2n+1 by

gε\N = g0\N, &(2V, Γ) = 0 , Q.\T = (1 + e)g\T .

Clearly S1 still acts by isometries with respect to ge, and for sufficiently small
positive ε, which we now fix, gε still has positive curvature. Now equip R2 with
a metric hε given in polar coordinates by

\dr dr I \dr dθ ) \ dθ 3Θ

where ft(r) is a smooth convex function with the properties /e(0) = 0, fε(0) = 1,

and far) = 2π (1 + ε)/V(l + ε)2 - 1 for sufficiently big r > jR.
/?2 has nonnegative curvature with respect to hε, and hence (gε, hε) gives rise

to a metric of nonnegative curvature on η = S2n+1 X R2. If we restrict to the
_ S1

disc bundle Dχ(ή) with R> R, then an annular neighborhood of the boundary
splits isometrically as 3Dχ(η) x /, where / denotes an interval.

In fact, A = {X e R2\R < \\X\\ < R} splits isometrically as Sι X /, and S1

acts trivially on /. Then

S2n+i χ A = s2n+1 x (Sι x /) = (S2n+1 xS1) x / - S 2 W + 1 x / ,

and the calculation of the previous example shows that S2n+1 = dD^(η) gets
back the original metric #0 of curvature 1. It is a routine manner to check that
analogous constructions work for the normal bundles of the cut loci of the
other symmetric spaces of rank one. Since the metrics split as a product S2n+1

X I near the boundary, by gluing two such disc bundles together along their
common boundary we obtain
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Theorem 1. The connected sum of a symmetric space of rank one with
another symmetric space of rank one or its negative admits a metric of non-
negative curvature.

Remark These manifolds contain a totally geodesic hypersurface, the
common boundary of the disc bundles. Conversely, the arguments of [3]
show that any manifold M of nonnegative curvature which contains a totally
geodesic hypersurface H with trivial normal bundle is topologically the union
of two disc bundles with common boundary H.

Also, these manifolds are not homogeneous in general. For example, CP(2)
+ CP(2) has signature 2 while CP(2) — CP(2) is the nontrivial S2 bundle over
S2. By the Meyer-Victoris sequence, both spaces have the same integral ho-
mology groups as S2 X S2. But by a result of J. Wolf (unpublished) any
Riemannian homogeneous space with the integral homology groups of S2 X S2

is difϊeomorphic to S2 X S2.

Example 4 (Kervaire spheres). In order to produce a metric of nonnegative
curvature by the method of gluing together different disc bundles, it was
necessary that the metrics ge had positive curvature for sufficiently small ε.
While there are not many such examples known, an easier condition to fullfill
is that of having positive Ricci curvature. For k odd, consider the Brieskorn
variety Bnk defined by the equations

Z* + Z\ + . + Z\ = 0 , \ZQ\2 + \Z\\ + . . . + \Zn\
2 = 2 .

As is well known SO(n) x S1 acts on this variety by isometries of the metric
induced from the imbedding as follows: (£, Θ)(ZQ,Z) = ( £ % , Θ(ξkZ)), where
Z = (Z19 - - ,Z W ), Θ e SO(η), and ξ is a complex number of norm 1. The
principal orbits of this action are codimension 1, and are given by the level
surfaces | Z 0 | = a, O < a < 1. It is easy to check that with respect to the
induced metric, the curve [0,1] —> (/, /, Vl — tn, 0, 0, , 0) is orthogonal to
all orbits. The isotropy groups of the points (0, /, 1, 0, , 0), (1, i, 0, 0, , 0)
and (a, i, Vl — an, 0, , 0) are easily computed to be SO(n — 2) x Φ,
SO(n — 1) and SO(n — 2) respectively, where Φ is the circle imbedded as

cos 2θ — ί sin 2Θ,

/cos nθ — sin nθ

sin nθ cos nθ

0

It follows from [7] that Z % ) = {(Zo, , Z J | 0 < |Z 0 | < a) Π Bn>k, D(V2) =
{|(Z0, ,Zn)\a < |Z 0 | < 1} Π BUfk are disc bundles given as follows:

D(Vι) = SO(n) x D2 , D(V2) = (SO(n) x Dn~ι) x S1 .
Sθ(n-2)XΦ 5O(7i-l)

Now equip ZK^), D(η2) with metrics as follows: Let so(n) = p + so(n — 1)
be the standard decomposition of the Lie algebra so(n) of SO(n), and let g
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denote the bi-invariant metric on so(n). Define a new left invariant metric gε

on SO(ri) by setting

g.\P = g\P , gε(p,so(n - 1)) = 0 .

gε\so(n - 1) = (1 + ε)g\so(n - 1) .

gε is right invariant under so(n — 2), and for sufficiently small ε it has posi-
tive Ricci curvature for n Φ 4, and nonnegative Ricci curvature for n — 4, but
unfortunately not nonnegative sectional curvature. Let (r, θl9 , θn) be polar
coordinates on the rc-disc D w , and /ε(r) be a convex function satisfying the
conditions of /, of Example 3. Then equipping SO(ή), Dn with the metrics
gε,hε respectively we produce as in Example 3 a metric on D(η2) — SO(ri)

X D71'1 x S1 with the property that near the boundary the metric is iso-
SO(w-l)

metrically a product of an interval and the boundary SO(n)\SO(n — 2) x Sι

equipped with its normal metric. By the same technique we construct such a
metric on DO^). Then by gluing Όfa), D(η2) together we obtain a metric of
nonnegative Ricci curvature on Bnk. On D(-η^ this metric is easily seen to have
positive Ricci curvature near the orbit |Z 0 | = 0. (D(η2) splits off S1 isometric-
ally and hence has a direction of zero Ricci curvature.) However, by a theorem
of Aubin [1], the metric can be deformed to one of strictly positive Ricci cur-
vature. For n odd, & Ξ 3 , 5 mod 8, Bn>k is the Kervaire sphere [7]. Hence

Theorem 2. The Kervaire spheres admit metrics of positive Ricci curvature.
Theorem 2 should be contrasted with results of Hitchen [6], which give

examples of exotic spheres which do not even admit a metric of positive scalar
curvature.

A modification of Aubin's arguments shows that one can actually choose
the metrics of positive Ricci curvature to be invariant under SO(n) x S1 the
proof will appear in the thesis of P. Ehrlich. Motivated by our examples,
Hernandez [5] has constructed imbeddings of a large family of Brieskorn
varieties for which the Ricci curvature is positive. In particular, he also gets
all the Kervaire spheres. On the other hand, clearly various other examples
arise from our method by looking at G-spaces with orbits of codimension 1.

One might ask if by careful choice of the function /e, it is possible to com-
pensate for the negative curvatures of gε so as to make the sectional curva-
tures of D(ηλ), D(η2) come out nonnegative. This is possible for DO^), but
seems not to be possible for
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