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SOME EXAMPLES OF SQUARE INTEGRABLE REPRESENTATIONS
OF SEMISIMPLE/7-ADIC GROUPS

BY

GEORGE LUSZTIG1

Abstract. We construct irreducible representations of the Hecke algebra of an
affine Weyl group analogous to Kilmoyer's reflection representation corresponding
to finite Weyl groups, and we show that in many cases they correspond to a square
integrable representation of a simple p-ndic group.

1. Introduction.
1.1. Let § (resp. §) be the group of rational points of a simple split adjoint (resp.

simply connected) algebraic group over a nonarchimedian local field K, and let w:
s -» § be the natural map. The image under m of an Iwahori (resp. parahoric)
subgroup of § is said to be an Iwahori (resp. parahoric) subgroup of §. Let us fix an
Iwahori subgroup foi§.

We shall be interested in the irreducible admissible representations of § (over C)
which possess nonzero vectors invariant under f. The isomorphism classes of such
representations form the set %(§) of representations in the "unramified principal
series" of §. By a theorem of Bernstein, Borel [2] and Matsumoto [9], the set %(§) is
naturally in 1-1 correspondence with the set %(//) of irreducible (finite-dimen-
sional) complex representations of the Hecke algebra H (algebra of double cosets) of
% with respect to \. The correspondence is obtained as follows. To a representation
in %i%) one associates the space of its ^-invariant vectors which is an irreducible
//-module. Conversely to an irreducible //-module £ one associates the space of
//-linear maps from £ to the space locally constant functions on §/f; one thus gets
aS-modulein^s1).

This correspondence reduces the question of classifying the elements of %(S) to
the question of classifying the irreducible representations of //, which is an algebra
with finitely many generators and relations, explicitly known from the work of
Iwahori and Matsumoto [7]. These questions are still unsolved, in general.

1.2. A remarkable conjecture of Deligne and Langlands says that there should be
a natural fini te-to-one correspondence between %(§) (or %(//)) and the set

(1.2.1)    [(s, N) E G X Lie G | s semisimple, sNs~x — q~xN) modulo action of G,

where G is a simply connected group over C whose root system is dual to that of §
and a is the number of elements in the residue field of K; we denote by sNs~x the
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624 GEORGE LUSZTIG

image of A" under the adjoint action of s. For § of type A„, such a correspondence,
which turned out to be 1-1, was found by Bernstein and Zelevinski [1].

Let %2(S) be the set of square integrable representations in %(§) and let %2(//)
be the corresponding subset of %(//). According to Langlands, the pairs is, N) in
G corresponding to the subset %2(//) of %(//) should be the pairs is, N) as in
(1.2.1) which are not centralized by any non trivial torus in G. (We shall call them
L2-pairs.)

1.3. In this paper, we shall construct for any § of type ^ An, some representations
in %2iH) (or, equivalently, square integrable representations in %2(^)) which
should correspond to L2-pairs (i, N) in G with N subregular. To do this we use
If-graphs (as in [8]) arising from the left cells (see loc. cit.) of a Coxeter group,
containing a simple reflection. Our construction generalizes Kilmoyer's construction
[5] of the reflection representation of the Hecke algebra of a finite Coxeter group. To
prove that our representations are in fyl2(//), we apply a criterion of Casselman; to
be able to apply it, we had to do some rather long case by case computations.

1.4. Our results suggest some striking connections between the structure of
representations of H on the one hand, and the geometry of the varieties

<$is,N) = {B: Borel subgroup in G | s E <&, N E Lie(R)}

Us, N) as in (1.2.1)), on the other hand.
Let £ be a finite dimensional (complex) //-module. One can associate to £ an

element XE in the group ring Z[(C*)"] in = ranke) as follows. We consider n
standard elements TU,...,TU EH in 1-1 correspondence with vertices of the
Coxeter graph of § (see 4.2, 4.3 for the definition). Since the elements Ta commute
among themselves, there exists a filtration £ = £0 D £, D • • • D Em = 0 invariant
under each 7L,, whose successive quotients are one-dimensional. Since each Tu is
invertible in H, there exist Xj — iXJX,...,XJn) E iC*)",j = l,...,m, such that Tu
acts on £/£}_, as the scalar XßE C* il < i < n, Kj<m). We set XE - SJL,^,
G Z[(C*)"]. This is clearly independent of the choice of filtration.

On the other hand, let is, N) be a pair as in (1.2.1). Let Cx,C2,...,Cr be the
connected components of the variety $(j, N), and let 7T0(<$(.?, A7)) be the set of
these components. Let Z(s, N) be the group of elements in G which centralize both s
and N, and let Z = ¿is, N) = Zis, N)/Z\s, A)centre(G). Then Z acts natu-
rally, by permutation, on m0i%is, N)). Let <p be an irreducible complex representa-
tion of Z which appears in this permutation representation. We associate to the
triple is, N, <p) an element

*'<,,„,„)= | ¿j"'     2     e(z,C,)Tr(z,<p)A;.GZ[(C*r]-
1 </<r

z(Cj) = Cj

Here, £(z, Cy) is the Lefschetz number of the transformation z: Cj -» C, and for
each j (1 <y < r), we define

\>j=i\JX,...,X'jn)eic*)n
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SQUARE INTEGRABLE REPRESENTATIONS 625

by the requirement that, for some B G CJt the value of the z'th fundamental weight
w,: B -* C* at s is X'7. It is clear that X^ depends only on Cy, and not on the choice of
B, B E Cj. Moreover, X'j = X'k whenever C, = ziCk) for some z G Z; from this, it
follows easily that the coefficients of X'(JjJV > are integers, rather than rational
numbers. (In particular, we have

À'is./v.i) = 2x(c>)A>
Ç

where C¡ runs over a set of representatives for the Z-orbits on it0(%(s, N)) and x
denotes the Euler characteristic.)

1.5. We now state a conjecture which is a refinement of the conjecture of Deligne
and Langlands. It is convenient to enlarge the set %(%) to a set %J(%) D %(§),
defined as follows. %'(§) is the set of isomorphism classes of irreducible admissible
representations V of § such that there exists a parahoric subgroup P,$G P G§ with
"unipotent radical" 9lp and "reductive part" P = P/UP such that the i/^-in variant
part of V (a finite-dimensional P-module) contains some unipotent representation of
the reductive group P (over F ). The representations in %'(§) are said to be
unipotent representations.

One could conjecture that there is a 1-1 corespondence between the set %'(§) and
the set of all triples is, N, <p) (up to G-conjugacy) where is, N) is a pair as in (1.2.1)
and tp is an irreducible representation of the finite group Z(s, N). Under this
correspondence, the elements of %({?) should correspond precisely to the triples
is, N,q>) such that <jd appears in the permutation representation of Z(s, N) on
ir0i%(s, N)). (Note the similarity with Springer's correspondence [12] between
unipotent classes and Weil group representations.) Moreover, the square integrable
representations in %'(§) should correspond precisely to the triples is, N, <p) such
that there is no torus ¥= e in G centralizing both s and N. Let Kbe in %(§), let £ be
the corresponding element in %(//) and is, N, <p) the corresponding triple. If
V E.%2(%), or more generally, if VE%i§) is tempered, we should have the
identity

0-5-1) ^e — Ks.N,V)-
1.6. Let V E %,'(§). I don't know how to attach to F a triple (s, N, <p). However,

at least when V G %(§), one can attach to F a pair (s, N), as in (1.2.1), as follows.
The definition of the i-component is well known. Consider the //-module £
corresponding to V, let X,,...,Xm G (C*)" be defined as in 1.4. Then there is a
unique semisimple s E G (up to conjugacy) such that X,,... ,Xm are terms in the sum
X'(s0X) E Z[(C*)"]. To define the A-component, we may assume that V is tempered.
(The general case reduces to this by the ^-adic version of the Langlands quotient
theorem [11]: we require that the A-component of V is equal to the Af-component
attached to the tempered representation of a Levi subgroup of §, corresponding to
V). When V is tempered, let A be the set of all elements x G Lie G such that
sxs~x = q~xx. Then A consists of nilpotent elements and Z(s) has a unique open
orbit on A. We select N to be any element of this open orbit. The pair (s, A) is then
well defined up to G-conjugacy.
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626 GEORGE LUSZTIG

1.7. Consider, for example, the case where S is of type G2. There are precisely 8
triples is, N, <p), up to conjugacy in §, with N subregular nilpotent. They are in a
natural 1-1 correspondence with the set 91t(©3) of pairs ix,<p) where x is an
element in the symmetric group ©3, defined up to conjugacy, and tp is an irreducible
representation of the centralizer of x in ©3. (The set tDlL(©3) plays a role in the
classification of unipotent representations of the Chevalley groups of type G2 over
F.) According to 1.5, these 8 elements of (31L(©3) should correspond to 8 square
integrable representations of %. Four of them are in %(§); they are constructed in
this paper. (Their existence was first pointed out by Matsumoto [9].) The other four
are supercuspidal: they are induced from one of the four unipotent cuspidal
representations of G2(£?) via a maximal special parahoric subgroup of §.

1.8. Here are some comments on earlier work on construction elements in %2(S).
Borel [2] constructed the representations in %2(S) corresponding to one-dimensional
representations of the Hecke algebra. Recently, Gustafson constructed some (but not
all) representations in %2(S) for § of type Cn. Rodier [10] has constructed the
representations in %2(S) such that the corresponding s E G is regular.

I wish to thank J. Bernstein and W. Casselman for some very helpful discussions.
While writing this paper, I enjoyed the hospitality of the IHES.

2. L2-pairs.
2.1. Let D be a diagonalizable algebraic group over C and let XiD) be the group

of (algebraic) characters D -» C*. Define

Dc= {gED: \X{g)\= 1, for any X Elffl)),
Dv= {gED:Xig)ER>0,ioranyXEXiD)}.

Thus Dc is the maximal compact subgroup of D and Dv is isomorphic to R" as a Lie
group. Clearly, D is the direct product of the subgroups Dc, Dv.

Now let G be any algebraic group over C and let s G G be a semisimple element.
Then 5 has a canonical decomposition s — sc-sD — sv-sc, where ic, sv are the
projections of s onto the two factors of D — Dc X Dv where D is the smallest
diagonalizable algebraic subgroup of G containing s. This decomposition is pre-
served by homomorphisms of algebraic groups.

2.2. Lemma. Let T be a torus/C and let s E T be such that s — sv. Then the smallest
diagonalizable algebraic subgroup D of T containing s is connected.

Proof. As D is closed in T, the restriction map XiT) -* XiD) is onto. If it is also
injective, then T = D and there is nothing to prove. Thus, we may assume that there
exists X G ker(;í~(r) -> XiD)), X z= 1. Write X = X?, where X, is an indivisible
element of XiT) and m is an integer > 1. We have X,(i)m = 1. Since j = sv, it
follows that Xxis) = 1 hence s G 7" = ker{X,: T -* C*}. Now T is a torus of
codimension 1 in T, and we may assume that the lemma is already proved for
(7", s). The lemma follows.

2.3. Definition. Let us fix a real number q > 1. An L2-pair (with respect to a) in
a connected semisimple algebraic group G over C is a pair is, N) where s E G is
semisimple, N E Lie G is nilpotent and sNs~x = q'xN.
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SQUARE INTEGRABLE REPRESENTATIONS 627

2.4. Example. Let N G Lie G be a nilpotent element which is not centralized by
any nontrivial torus in G. Then A ^ 0. Let GN be a 3-dimensional subgroup of type
Ax of G such that N E LieiGN), and let SN be a 1-dimensional torus in GN
stabilizing the line C • N. There is a unique element s E SN such that sNs'x = q~xN
and s = sv. It is clear that is, N) is an L2-pair. Conversely, let is, N) be an L2-pair
in G such that s = sv. We show that it is of the type just described. We have
necessarily N ¥= 0. Define SN and GN as before.

Let 91(A) = (g G G | gNg~x G C* ■ A}. Then we have an exact sequence

1 -Z(tf) - 91(A) *C* -> 1

where Z(A) is the centralizer of A in G and it is defined by gNg~x = 77(g)N.
Moreover, we have 9t°(A) = Z°(A)-Sjy, since tt: Sn -» C* is onto. We have
s = iB G 91(A). By Lemma 2.2, the smallest diagonalizable algebraic subgroup of G
containing s is connected. It is contained in 91(A). It follows that s E 9l°(A/). Let
H be a maximal torus in 9l°(N) containing i. Then H (1 Z°(N) must be finite since
is, N) is an L2-pair. Hence dim(//) = 1. It follows that H is conjugate to SN under
9l°(A). As 9l°(A/) = Z°(A) • Sw, H is also conjugate to SN under Z°( A). Thus, we
may assume that s E SN. We also see that Z°(/V) contains no nontrivial torus, for if
it did, it would be a maximal torus in 9l°(A), hence it would again be conjugate to
SN under Z°(A). But SN </- Z°(A) and we find a contradiction.

We can now prove

2.5. Proposition. Assume that G is simply connected. The map (j, A) -» (jc, A)
defines a 1-1 correspondence between the set of L2-pairs is, N) in G up to conjugacy,
and the set of pairs is', A') iup to conjugacy) where s' E G is an element whose
centralizer Z(j') is semisimple and N' E Lie Z(i') is a nilpotent element whose
centralizer in Z(i') contains no nontrivial torus.

Proof. Let is, N) be an L2-pair in G. Then 5 G 91(A); hence sc G 91(A),
sv E 91(A). As in the example, we have a map tt: 91(A) -» C, gAg~' = trig)N.
This map is compatible with decomposition s — sc-sv. Thus t7-(sc) = w(i)c. But
w(s) = a"1 hence jr(jc) = 1, so that sc E Z( A), and N E Lie Z(*c). (Note that Z(ic)
is connected, since G is simply connected.) We also have s G Z(sc). Since (5, A) is
an L2-pair, it follows that Z(sc) contains no central torus =£ {e}, hence Z(sc) is
semisimple. Let £be a torus in Z(sc) such that £ C Z^) n Z(A). Then T G Z(i).
Since is, N) is an L2-pair, T must be trivial. Hence (s0, N) is an £2-pair relative to
Z(ic) and, by the discussion in Example 2.4, A is not centralized by any torus ¥= e in
Zisc).

Conversely, let s' G G be a semisimple element whose centralizer is semisimple,
(hence s' is necessarily of finite order) and let N' be a nilpotent element in Lie(Z(s'))
whose centralizer in Z(s') contains no torus # e. Let s" G Z(j') be a semisimple
element such that s" = s[¡ and such that is", A) is an L2-pair relative to Z(s').
(Note that, by the discussion in Example 2.4, s" is uniquely determined up to
conjugacy by an element in Z(A') n Z(i').) Let s = s' -s". We must show that
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628 GEORGE LUSZTIG

is, N') is an £2-pair in G. Let £be a torus in Z(s) D Z(A"). We have Z(s) = Z(sc)
D Z(i„), hence T G Z(í') D Z(í") n Z(A). As (i", N') is an L2-pair for Z(i'), it
follows that £ must be trivial. The proposition is proved.

2.6. Corollary, (a) There are only finitely many conjugacy classes of L2-pairs in G.
ib) If is, N) is an L2-pair of G, then Z(i) n Z(A) is finite.

Proof, (a) The elements s E G such that Z(i) is semisimple fall into n(«, + 1)
conjugacy classes, where n¡ are the ranks of the simple factors of G. It remains to use
the finiteness of the number of nilpotent classes in a semisimple Lie algebra.

(b) As we have seen, there exists a three-dimensional subgroup of type Ax of Z(sc)
containing sv, and whose Lie algebra contains A. We may apply to it [13] which
shows that (Z(sc) n Z(iu) D Z( A))0 is reductive. Since is, N) is an £2-pair, the last
group contains no torus ¥= e, hence is trivial.

2.7. Proposition. Assume G simply connected. Let is, N) be a pair with s G G
semisimple, N G Lie(G) nilpotent, sNs'x = q'xN. Then the variety

$(s, N)= {B = Borel subgroup of G \ s E B, A G Lie B)

is nonempty.

Proof. A Borel subgroup B contains s if and only if it contains both sc and sv.
Note that sv E Z(îc), A" G Lie Z(sc) (see the proof of Proposition 2.5). Hence
"35(5, A") is a disjoint union of/copies of the variety

{£': Borel subgroup of Z(sc) \svEB',N E LieR'}

where / is the number of Borel subgroups of G containing a fixed Borel subgroup of
Z(sc). Let D be the smallest diagonalizable algebraic group in Z(sc) containing sv.
By Lemma 2.2, D is connected. It clearly normalizes the one parameter additive
subgroup A of Z(ic) corresponding to N, hence it generates together with A a
connected solvable group. It remains to note that DA is contained in a Borel
subgroup of Z(sc).

2.8. Proposition. Assume G simply connected. Let is, N) be an L2-pair in G, and
let B G <$>is, A). Let X: B -> C* be any dominant weight, z 1. Then X(j) = ea""/2,
where e is a root of 1 and n is an integer > 1. In particular, we have | w,-(j) |< 1 for
any fundamental weight w,: B -» C*.

Proof. Write s = sc-sv. By Proposition 2.5, the centralizer of sc is semisimple,
hence sc is of finite order, hence X(sc) = e is a root of 1. Let F be a finite-dimen-
sional irreducible complex representation of Z(sc) with highest weight X\B' with
respect to the Borel subgroup B' = B n Z(ic) of Z(sc).

Then, there exists a nonzero vector x0 E V such that bx0 — Xib)x0 for all b G B'.
By Example 2.4 and Proposition 2.5, there exists an algebraic homomorphism a:
SL2(C) -» Zisc) which maps (g      °i/2) to sv and whose differential maps (°¿) to N.

We shall regard V as an SL2(C)-module, via a. By a general property of
SL2(C)-modules of finite dimension, we can decompose V = ©.eZ V¡, where

<-H(r ;-M
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SQUARE INTEGRABLE REPRESENTATIONS 629

and we have

(2.8.1) ker((0    ¿):K-r)c0K„

(2.8.2) ker((n    I.) ■ vo ̂  v) = vSLl(C)   (invariantpart).

(These   statements   are   proved   by   reduction   to   the   case   of   an   irreducible
SL2 (C)-module of finite dimension.)

Consider now the vector x0 E V. Since St,(x0) = X(so).x0, x0 must he in one of the
subspaces V¡. Since A G LieR, we have (o¿)jc0 = Nx0 = 0, hence, by (2.8.1), we
have x0 G Vi with i < 0. Assume that x0 E V0. Then, by (2.8.2), we have x0 E KSL2<C).
Let P = {g G Z(sc) I gx0 E C* • x0). This group contains B' hence it is a parabolic
subgroup of Z(sc). We have P = G since Àzl. Also, P contains a(SL2(C)), which is
reductive. Hence a(SL2(C)) must be contained in a Levi subgroup of P. The identity
component of the centre of that Levi subgroup centralizes both sv and A, contradict-
ing the fact that isv, N) is an £2-pair of Z(sc). Thus, we must have /' < 0, and hence
Xisv) = q'/2 with / an integer, i < 0. This completes the proof.

2.9. With the notations in 1.2, consider £ G %(//) and let X; = (Xy„... ,XJn) E
iC*)",j = l,...,m = dim£ be defined as in 1.4. According to Casselman [4], we
have £ G %2(£T) if and only if | Xy, |< 1 far 1 < i < n, 1 </' < m. Proposition 2.8
shows that the conjecture 1.5 is compatible with Casselman's criterion. Casselman
shows also that £ G %-(//) corresponds to a tempered representation of § if and
only if | X, |< 1 for 1 < i < n, 1 <j < m. This suggests that, in the conjecture 1.5,
the tempered representations in %'(§) correspond precisely to the triples is, N, <p) in
G such that there exists a 3-dimensional subgroup of type Ax contained in Zisc),
which contains sv and whose Lie algebra contains A. Indeed, for such a triple, the
argument in the proof of Proposition 2.8 is still applicable, but yields the weaker
conclusion | «,(■?) | < 1 for all i.

2.10. We shall now describe the L2-pairs is, N) in G (assumed to be simple,
simply connected) with A subregular. We shall also describe the varieties "S(j, A) in
these cases. The results in this section are easily proved using Steinberg's discussion
of subregular elements in [14].

If G is of type A„, there is no such £2-pair is, A). If G is of type Bn in > 2) there
is a unique such £2-pair (s, N): take s' E G to be the unique element (up to
conjugacy) such that Z(j') is of type Dn, take is", N) to be an £2-pair in Z(s') with
A regular nilpotent in Lie(Z(s')) and set s = s's". Then is, N) is the required
£2-pair in G. The variety %is, N) consists of two points (the two Borel subgroups in
G containing the unique Borel subgroup of Z(s') which has A in its Lie algebra). The
group Z(i, A) has order 2; it acts trivially on 7r0(^(i, A^)). In the remaining cases, sv
is uniquely determined by A, up to conjugacy by an element in Z°(A). We shall
regard sv as fixed. We set s' — sc.

We shall now discuss the possibilities for s'. If G is of type Dn in> 4) or £„
(« = 6, 7 or 8), then s' runs through the elements of the centre of G. The variety
9>is'sv, N) is independent of s'; it consists of (« — 1) isolated points and a single
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projective line (which is the irreducible component of the "Dynkin curve" S^ = {B:
Borel subgroups in G|AGLie(R)} corresponding to the branch point of the
Coxeter graph). In these cases, Zis'sv, N) is trivial.

Assume now that G is of type C„ (n > 3). Then there are four possibilities for
s' E Zisv, A). If s' is in the center of G (of order 2), then the variety %(s'sv, N)
consists of n isolated points and a single projective line. The group Zis'sv, N) has
two elements; it permutes two of the points and acts as identity on the other
components. The other two elements s' in Zisv, A) are such that Z(j') is of type
C„_, X C,. Then A is regular in LieZ(s'). hence %is'sv, N) consists of n isolated
points. The group Zis'sv, N) has order 2; it acts trivially on ir0i^>(svs', N)).

Assume next that G is of type £4. Then there are two possibilities for s' E Zisv, A).
If s' — e, then <S>(s'sv, A) consists of five isolated points and a single projective Une.
The group Z(a'î„, A) has two elements; it permutes two pairs of points and leaves
the fifth point and the line invariant. The second possibility is s' G Z(jD, A) such
that Z(j') is of type R4. Then A is regular in Lie Z(j'), hence tfb(s'sv, A) consists of
3 isolated points. The group Z(s'su, A) has order 2; it acts trivially on ir0i'3o(svs', A)).

Finally, assume that G is of type G2. Then Z(s, A) is isomorphic to the symmetric
group ©3. If s' = e, then 9>is'sv, N) consists of three isolated points and a single
projective line. The group Z(j'ju, A) « ©3 acts on the three isolated points by
permuting them in all possible ways, and it acts as identity on the line. If 5' is an
element of order 2 (resp. 3) then Z(i') is of type Ax X Ax (resp. A2) and A is regular
in LieZ(s'). Hence %is'sv, A) consists of 3 (resp. 2) isolated points. The group
Zis'sv, A) has order 2 (resp. 3); it acts trivially on ir0i^>is'sv, A)).

2.11. It would be interesting to understand the structure of the variety ÇB(s, A)
where is, A) is an arbitrary £2-pair in G. Let us assume that s = sv. (From the proof
of Proposition 2.7, we see that we can reduce ourselves to this case.) It seems that
this variety is nonsingular with a number of connected components equal to the
number of irreducible components of the variety ®A,.

3. Construction of some representations of Hecke algebras.
3.1. Let iW, S), (W, S') be two Coxeter groups. A map ß: S' -» S is said to be

admissible if:
(a) For any s E S, the set ß"'(j) consists of commuting involutions (it is possibly

empty).
(b) Let s ¥= t G S be such that st has order msi < 00 and let T0 be any connected

component of the full subgraph ß~x{s, t) of the Coxeter graph of iW', S'). Then we
require that T0 is the Coxeter graph of a finite Coxeter group with Coxeter number
dividing msl.

Assume that ß is admissible. Let T' be the underlying graph of the Coxeter graph
of iW, S'). For each oriented edge {s', t'} in V we choose pis', t') G N such that
pis', t')pit', s') = 4cos2(77/ws- ,-)■ (We assume, for simplicity, that ms.,, takes only
the values 2,3,4 or 6.) Let £' be the free Z[qx/2, a"1/2]-module with basis {es,},
s' E S'. (Here qx/2 is an indeterminate.) For each s E S, we define an endomor-
phism Ts: £' -> £' by
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T.M
-es, iiß(s')=s,

qe, + qx/1    S    Pit',s')et,    iiß(s')^s.
t'es'

ß(t') = s
m,.,.3*3

(Condition (b) assures that the last sum is finite.) It is clear that (Ts - q)(Ts + 1) = 0
is ES). We have

3.2. Lemma. Assume that ß is admissible. If s ¥" t E S are such that mst < oo then
TsTtTs • • • = TtTsTt ■ ■• : £' -> £' iboth sides of the equality contain msl factors). In
other words, the Ts define on £' a left module structure over the Hecke algebra H of
(W, S) iover Z[qx/2, q~x/2]). Equivalently, the graph I" together with the assignment
s' E S' -» {ßis')} and the function pis', t') is a W-graph in the sense of [8] iexcept
that p is not assumed to be symmetric).

Proof. In the case where iW', S') = (W, S) and ß is the identity map, the lemma
is due to Kilmoyer, see [5,9.8] (he assumes that W is finite, but his proof can be
easily adapted to infinite W). We shall refer to this case as "the special case". We
now turn to the general case; for each s'x ES', we define an endomorphism £/.:
£' -£'by

Vie,)
-î'> ifs' = j,',

qes., ifj'^ji and «,._,- = 2,

qes, + p(s'x, s')qx/2es,,    if s' ^ s[ and ms,s, > 3.

By "the special case" the endomorphisms Ts, define on £' a structure of left module
over //', the Hecke algebra of (W, S'). It is clear that for any s G 5, we have

(3.2.1) q-%=      u     {q~%):E'^E'.
j|e/s-'(i)

(This is an infinite product of commuting linear maps such that any element in £' is
kept fixed by all but finitely many of these maps. Hence the product has a meaning.)
In particular q~xTs is identity, if ß~x(s) is empty.

Now let s ^ t in S be such that ms, = 2. We must show that Ts commutes with Tt.
For this it is enough to show that T's, commutes with T¡, for any s'x G ß'x(s),
t'x G ß~x(t). By assumption 3.1(b), we must have ms,,, = 2; hence s'xt'x = t'xs'x. Hence
by "the special case" we have T's,T't. = T't,T's,. (Note that s'xt\ is a reduced expression.)
Next, we assume that s ¥= t in S are such that 3 < ms, < oo. By assumption 3.1(b),
we are reduced to the case where W is the dihedral group generated by s and t and
(W, S') is a finite irreducible Coxeter group with Coxeter number h dividing mst.
Then ß~x(s) and ß~x(t) consist of commuting involutions and they form a partition
of S'. According to Bourbaki [3, Chapter V, §6, Exercise 2], the longest element of
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W' has two reduced expressions of the form

( n *;)( n /,)( n *,)
{s{eß-\s)    ' x t\eß~\t)   '^lEf-'w    '

n t'M n *,)( n «)
-o-h,\     /V„' = o-i/„,      '\.'t=a-Xt.\     It\e.ß-\t)    ' "s[eß-'(s)    ' ' t\eß-\t)

(in both cases the number of II signs is equal to h). It follows then from "the special
case" that

(n^)(n^)(n35)- = (ni5)(n^)(nji)-
where s'x runs through ß'xis), t'x runs through ß'xit), and both sides contain a
number of FI signs equal to h. It follows then from (3.2.1) that

TsTtTs ■■■ = T,TST,   ■:E'^E'
(with h factors on both sides). Since h divides ms „ we have also

TST,TS ■■■ = TtTsTt ■••:£'-£'
(with mst factors on both sides). This completes the proof.

3.3. Corollary of the Proof. If S, S' are finite and ß: S' -» S is admissible, then
the map s E S -* U^^ß-i^s' defines a homomorphism of W into W' and also a
homomorphism between the corresponding braid monoids.

3.4. Let W be a Coxeter group and let S be the corresponding set of simple
reflections. We denote by / the length function on W and we set for each w EW:
tiW) = {sES\ lisw) < liw)}, <3liW) = [s G S| liws) < liw)}.

In [8] a function p from a subset of W X W to the nonzero integers was defined.
We shall not repeat the definition here, but we recall that if piy, w) is defined, then
y, w are comparable for the Bruhat order, their lengths have different parities and
piw, y) = piy,w).

Following [8], we say that w, w' E W satisfy w =£L w' if there exists a sequence of
elements w = w0,wx,... ,wn = w' in W such that for each i, 1 < i < n, piw¡^x, w¡) is
defined and £(u>,_,) it £(w,). We say that w=£Rw' if w~x <£,w'_1; we say that
w ^lr w' if there exists a sequence of elements w = w0, wx,...,wn = w' in W such
that for each i, 1 < i < n, we have h>,-_ , <¿ w¿ or w¡_, </} w¡. We say that w ~L w' if
w <¿ w' <L w. The relations w ~/j w', w ~¿^ w' are defined similarly, replacing L by
R, LR. The equivalence classes for ~l,~r,~lr have been called in [8] left cells,
right cells, 2-sided cells respectively. One reason for introducing these concepts is the
following result in [8].

(3.4.1) Let L be a left cell of W and let EL be the free Z[qx/2, q~x/2\-module with
basis {ew}weL (a1/2 is an indeterminate). Define, for each s G S, an endomorphism Ts:
EL -* EL by

'-<?„ ifsEtiw),
(e  ) = ¡ Qe« + 91/2        2        P>iy,w)ey    ifs&tiw).

sV   wJ yEL
set(y)

)i(y,w) defined
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Then, for any s ¥= t in S such that st has finite order m, we have

TST,TS •••= TtTsTt ■■■:EL^EL.
m factors m factors

In other words, each left cell L gives rise to a left module for the Hecke algebra H
associated with (W, S). Similarly, each right cell gives rise to a right //-module and
each 2-sided cell gives rise to an //-bimodule.

3.5. I conjecture that, each two-sided cell of W should have a nonempty intersec-
tion with some finite parabolic subgroup W¡ G W il G S). In particular, if S is
finite, then W should have only finitely many 2-sided cells; moreover each 2-sided
cell should be a union of finitely many left cells.

3.6. Assume, for example, that iW,S) is an affine Weyl group of type Än_x
(n > 2). We may regard W as the group of all permutations a: Z -» Z such that
a(; + n) — a(/) + n for all /' G Z and such that 2"=,(a(i) — /) = 0. The simple
reflections are o0,ox,... ,an_x where a¡(j) —j+\ for j = i (mod n), a¡(j) —j — 1
for y = i'+l (mod n), o,(y) =j íorj z i, i + 1 (mod n), i — 0,1,2, ...,n — 1. With
each a E W, we associate a sequence of integers dx < d2 =£ • ■ ■ < dn — n as follows:
dk is the maximum cardinal of a subset of Z whose elements are noncongruent to
each other mod n and which is a disjoint union of k subsets each of which has its
natural order reversed by a. This definition is suggested by the work of C. Greene
[6]; I am indebted to C. Greene for showing me how Theorem 1.5 of [6] implies that
d\ ** d2 — dx > d3 — 0*2 > ■ • • > dn — dn_x (a partition of n). I conjecture that two
elements a, a' E W are in the same 2-sided cell if and only if they give rise to the
same partition of n. (Notice that the identity element of W is the unique element of
W giving rise to the partition 1 > 1 > 1 > ■ • •.)

I also conjecture that the number of left cells contained in the 2-sided cell giving
rise to the partition X, > X2 > • • • of « is equal to «!(X',!)"1(X'2!)_1 • ■ •, where
X', > X'2 > • • • is the dual partition. More generally, if iW,S) is the affine Weyl
group associated to the group § (see 1.1) then there should be a 1-1 correspondence
between the two-sided cells of W and the set of nilpotent classes in Lie(G) (see 1.2)
such that the number of left sided cells contained in the two-sided cell corresponding
to the nilpotent N E Lie(G) is equal to H-l)'dim Hii%N)Z(N) where <3>N is the
variety of Borel subgroups of G containing A and Z( A) is the centralizer of A in G.

3.7. We return to a general Coxeter group iW, S), assumed to be irreducible. Let 6
be the set of elements w E W, w i= e, such that w has a unique reduced expression.
For each s ES, let Gs = {wE G\ <&(w) = {s}}. Then clearly, 6 = U,es6s. For
s E S, let Ts be the graph with set of vertices Qs and edges {y, w) G Gs such that
yw"x E S. The graph Ts is isomorphic to the graph T/ whose vertices are the
sequences sx, s2,...,sp of reflections in 5 such that sp = s, s¡ #si+x (1 </</>— 1)
and such that whenever s, t E S have product st of order m (2 < m < oo), there are
no m consecutive terms of sx,s2,... ,sp of form s, t, s, t,...; the edges of T¡ are of
form ((i,, s2,... ,sp), (s2,... ,sp)}. (The correspondence between Ts and Ts' is defined
byisx,s2,...,sp) ^sxs2---sp.)

Let it : Ts -» S be defined by {ttíw)} = <5l(w). This corresponds to the map
isx,s2,.. .,sp) -» sx of T/ into S. Let Ws be the Coxeter group with Coxeter graph Ts
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(simply laced) and let sw E Ws be the simple reflection of Ws corresponding to
w G Qs. We have

3.8. Proposition, (a) If y E Qs, w E W iw ¥= e) are such that piy, w) is defined
andtiy) £. £(w), then w E Gs.

(b) Gs is a left cell, for any s E S.
(c) G is a 2-sided cell.
(d) Let y, w E Gs. Then {y, w} is an edge of Ts if and only if &iy) ¥= £(w) and

p(y, w) is defined. We then have p(y, w) = 1.
(e) The graph Ts is a tree. The map tt: Ts -> S defines an isomorphism of Ts onto the

Coxeter graph of (W, S) if and only if the latter is a tree and is simply laced. If
s, t E S satisfy (ii)3 = e> men there exists an isomorphism of graphs Ts «< Tn compati-
ble with the map tt.

(f) Let Es be the free Z[al/2, q'x/2]-module with basis (ew), w E Qs. For each t E S,
let Tt: Es -» Es be the endomorphism defined by

T,(ew)

-ew iftr(w) = t,
qew + qx/2       2       %    if*(w)^t.

.veßs
ti(y)=t

y, w edge of Ts

These endomorphisms define a left H-module structure on Es.
(g) Consider the Coxeter groups (W, S), (WS,TS). Then the map tt: Ts -» S is

admissible.
(h) Assume that S is finite. Then Gs is finite for some s E S if and only ifGs is finite

for any s E S and if and only if the Coxeter graph of (W, S) is a tree and there is at
most one pair s =£ t of elements in S such that st has order > 4.

Proof, (a) Since w ¥" e, £(w) has at least one element. It cannot be contained in
£(>>) since then £(j) would have at least two elements contradicting the assumption
that y< has a unique reduced expression. Thus £(_y) £. £(w) (¿ £(.y). It follows then
from [8,(2.3.e)] that w = ty it E S) and that piy,w) = 1. If ñ(y) = {/}, then
w = ty clearly has a unique reduced expression (obtained by omitting t at the front
of the reduced expression for y). If t £ £(j), and if w = ty has more than one
reduced expression then we must have y — sxs2 ■ ■ ■ sp (reduced) and sxs2 ■ ■ ■ sm_, =
sxtsxt ■ ■ ■ im — 1 factors), where m is the order of sxt (necessarily finite). But then

w= itsxtsx ■■■)smsm+x ---Sp

(where there are m factors in the parenthesis) is a reduced expression for w and it
follows that i, G tiW). But this contradicts £(.y) t- £(w). Thus, we have proved
that w E Gs.

(b) Let w G Gs, w ¥= s, and let w = sxs2 • ■ • sp be the unique reduced expression
for w. We have sp = s. Moreover, by [8, (2.3.e)], we have piw', w) = 1, where
w' = s2 • • ■ sp. Note that £(w) = {sx) # {s2} = £(iv') hence w' ~¿w. Repeating
this, we find sxs2 ■ ■ ■ sp~ls2 ■ ■ • sp ~L- ■ ■ ~E sp = s. Hence w is in the left cell
containing s.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SQUARE INTEGRABLE REPRESENTATIONS 635

Conversely, let w' be an element in the left cell containing s. Then there exists a
sequence of elements s — w0,wx,... ,wn — w' such that for each /', 1 < i < n,
f*(w,-i> w¡) is defined and £(w,_,) ¡£ £(w(). It follows that w, ̂  e for i = 0,1,... ,n
— 1. We have also h>„ ̂ e, since e is not in the left cell containing s (51(e) =£ 9l(s)).
Applying (a) repeatedly, we find then that wt E Gs for i = 1,...,«. In particular,
w' E Gs and (b) is proved.

(c) To show that Q is contained in a 2-sided cell it is enough (because of (b)) to
show that any two elements s,t oî S satisfy s ~lrí. Moreover, since (W, S) is
irreducible, we can reduce ourselves to the case where s, t are not commuting. But
then s-s' ~ls' and s's ~ls by (b). Hence (s'i)"1 ~rs~x. In particular, we have
ss' ~lr s', ss' ~lr i hence s' ~lr s as required.

Now let w be any element in the 2-sided cell containing G. We have necessarily
w ¥= e since {e} is a 2-sided cell by itself. We want to show that w E G. We may
assume that there exists s E S and w' G Gs such that piw', w) is defined and either
£(w') £. £(w) or Sl(w') t- &(w). In the first case, we have (by (a)) w E Gs, hence
w E Q. In the second case, we have £(w'_1) ÇL £(w_1), and if w'~x E Gs,, we have (by
(a)) w~x E Gs, hence w~x EG, hence w EG. Thus, (c) is proved. The proof of (d) is
contained in the proof of (a).

(e) Any element w E Gs of length n > 2 is joined in the graph Ts with a unique
element y E Gs of length n — 1 : y is obtained from w by removing the first simple
reflection in a reduced expression of w. This gives a contraction of the graph Ts onto
its vertex s, and shows that Ts is a tree. The second statement of (e) follows from the
isomorphism Ts » T¡. (When the Coxeter graph of iW, S) is a tree and is simply
laced, the vertices of T¡ are the sequences sx,s2,...,sp in S which define a geodesic
on the Coxeter graph from sp = s to sx.) If s, t E S satisfy ist)3 = 1, we define
r;-r/by

Usx,S2,...,Sp_x), ÍÍSp_x = t,Sp = S,

[Sl'S2'--Sp-l'Sp)^\(sx,s2,...,sp_x,sp,t),    iisp_x*t,sp = s.

This is a graph isomorphism T¡ » T¡.
(f) follows from (3.4.1) and (d).
(g) follows from the isomorphism Ts » r,'. For example, if 5, ¥= tx are elements of

S such that the product sxtx has finite order m > 3, then the inverse image of {sx, tx}
under T/ -» S, regarded as a full subgraph of T¡, has as connected components only
graphs of type Am_, (whose Coxeter number is m).

(h) This also follows easily from the isomorphism Ts « r/.
3.9. Remarks, (a) If 5 is finite but Cs is infinite, Corollary 3.3 is not applicable,

but the same method gives a homomorphism of W into a "completion" of Ws. For
example, if (W, S) is an affine Weyl group of type Än(n^ 1) we get in this way an
imbedding of W into an infinite symmetric group. This is essentially the description
of Housed in 3.6.

(b) If (W, S) is of type H4, then combining Proposition 3.8(g) and Corollary 3.3,
we get an imbedding of W into a Coxeter group of type £8; if we represent the
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Coxeter diagram of £8 in the form shown in the diagram (a, b, c, d, a', b', c', d' are
the simple reflections in £g) then the subgroup generated by aa', bb', cc', dd' is the
Coxeter group of type H4. The imbedding of W in £8 doubles the length of any
element.

abed"7
•-•-*■-•
abed

3.10. We return to the setup in 3.1, and assume that ß: S' -> S is admissible and
that S, 5" are finite sets. Following Kilmoyer [5], we consider the Z[qx/2, q'x/2]-
bilinear form (,):£' X £' - Z[qx/2, q~x/2\ defined by

(es,,es>) = qx/2 + q-x/2,    (es,, e,,) =-p(s', t'),       s'¥=t',

where we agree to set pis', t') = 0, if s' ^ t', ms, t, = 2. We then have

T's,ie) = qe-qx/2ies,,e)e,

for all e E £'. Let <p be a homomorphism of Z[qx/2, q'x/2] into a field K. According
to [5,(9.13)], £' ®VK is an irreducible H ®v A-module in the case where W-W'
are finite, ß = identity, and <p is the imbedding of Z[a1/2,a"1/2] into its quotient
field. We shall prove here a more general result.

3.11. Proposition. Assume that (pipis', t')) =£ 0 for all s' ^ t' in S' such that
ms,,. > 3, that ß: S' -» S is admissible and infective and that S has finitely many iand
at least two) elements. Then the following two conditions are equivalent.

(a) £ <8>v K is an irreducible H ®v K-module.
(b) <pideties,, e,,\s,X)eS,xs,) ¥= 0 in K.

Proof. Using (3.2.1) and the injectivity of ß we are clearly reduced to the case
where W = W' and ß is the identity. We shall assume this in the rest of the proof.
Then Ts = T's for s E S.

Assume first that (b) is satisfied. Let M be a nonzero H ®v A-submodule of
£' ®<p K. If m E M, m ¥= 0 satisfies Tsim) — <piq)m for all s E S, then ies, m)v = 0
for all s E S, where (, ) denotes the A-bilinear form on £ ®v K deduced from ( , )
by extension of scalars via <p. But such m cannot exist if (b) holds. Hence, if m E M,
m =£ 0, there exists s E S such that Tsim) ¥= (piq)m. Then M D Tsim) — (piq)m —
~ies, m)es and ies, m) # 0. It follows that es E M. If t E S is joined with s in the
Coxeter graph of W, then Af 9 Tties) — q>iq)es — -(pipit, s))e, and (pipit, s)) ¥= 0,
hence e, E M. Since {W, S) is irreducible, it follows then that et G M for all t E S
so that M = E ®yK and hence £ ®v K is irreducible.

Conversely, let us assume that £ ®<p K is irreducible and that (b) is not satisfied.
Then there exists m ^ 0 in £ ®v K such that (eJ( m)9 = 0 for all s E S. Hence

(w EE®vK\Tsim) = (fiq)m, Vj G S]
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is nonzero. But this is clearly an H ®9 A-submodule, hence it must coincide with
£ ®v K. Thus, Tsiet) — (p(q)e, for all s, t E S, hence

(pipis, t)) = 0   for all s + t in S.

By assumption, S has at least two elements and we find a contradiction.
3.12. Remark. The polynomial (in qx/2)

&w. = 4s</2det{ies„et,)ls,tnesxs)

has been determined for finite W by Kostant who showed that it is equal to the
characteristic polynomial in a of a Coxeter element of W' in the standard reflection
representation. One can also compute directly &w, for (W, S') an irreducible affine
Weyl group (see the tables in Examples 3.13).

3.13. Examples. We now assume that (W, S) is an irreducible affine Weyl group.
We shall describe in each case (omitting the trivial case ^î,) certain W-graphs
obtained by the method of 3.2. Each of these Jf'-graphs T gives rise to a representa-
tion £r of the Hecke algebra H of (W, S), and when T is finite, to a homomorphism
of W into the Coxeter group with Coxeter graph T.

For each such graph, we shall specify the function ß from the vertices of T to 5 by
writing i inside a small circle at each vertex mapped by ß to s¡ E S. We also give
(when appropriate) conditions for £r ®tp K to be an irreducible H ®v A-module,
where (p is a homomorphism of Z[qx/2, qx/1] into a field K. The symbol'T ~ a, +
S2" will mean that under the specified conditions, the H ®v A-module £r ®VK is
isomorphic to the direct sum of the H ®v A-modules £g ®q> A, Es ®v A. Our
examples will include all graphs Ts associated in 3.7 to the simple reflections s E S.
The Coxeter graph will be denoted §.

TypeÄn(n>2):

TypeÊn(n>3):

%■

y^
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j)D—©-—<2ífls„

—G

%"■     ®

Assume 2 ^ 0 in A. Then

(Consider the non trivial involution of the graph F,, i = 0,...,n, compatible with the
labels and take the two eigenspaces of the corresponding £r ® A. This gives the
required decomposition.)

£g®A      irreducible «(a2- l)(qn~x - 1)^=0 in A,
Eg, ® A     irreducible «(a + l)(q"~x + l)¥=0inK,
Es„ ® A    irreducible always.

Type Cn (n > 2):

§■■       ©=Q>-®—
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S'- ©

§": ©

TypeDn(n>4):

\*TB

ES®K   irreducible «(a + l)(q2 - l)(a""2 - l) ^ 0 in A.

TypeE6:

8T*
©-©-©-©-C?

Es® K   irreducible« (a + l)(a3 - l)2=¿0inA.
Type £7:

S = rsf

£g ® A   irreducible *=>(a + l)(a3 - l)(a4 - l) ¥= 0 in A.
Type £8

S=rsf
©—-®—G

£8   irreducibles (a + l)(a3 - l)(a5 - l) ^ 0 in A.
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TypeF4:

V

T. :

§'■ ©-©—©

§"■ ©-Ö

Assume 2 i= 0 in A. Then

Ts ~§®§',   r  ~g©g".

(These are obtained as for type B„.)

Eg® K      irreducible «(a2 - l)(g3 - l) ^ 0 in A,

£g, <8> A     irreducible « (a + l)(g2 + l) ¥> 0 in A,

£g- ® A    irreducible «• a2 + a + 1 ¥= 0 in A.

£KPe G2:

g : ®—(D=<T)

-©—
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§"■      ©-©

§'"■ ©

Assume that 6 ¥= 0 in A. Then

(3.13.1) TSo~§®§'@§",
F  ~ g © g' © g'",

Eg® K   irreducible «(a - l)(q2 - l) ^ 0 in A,

£s, ® A   irreducible «(a + l)(a2 + l) ^ 0 in A,

£g» ® A   irreducible «• a2 + a + 1 ^ 0 in A,

£g«, ® A   irreducible always.

The decomposition (3.13.1) of the space £r <8> A is achieved as follows. We
denote the canonical basis of this space as

^0 ' ^2 ' ^ I ' ^2 ' ^ 1 ' e2 ' e0

p"M)

(in correspondence with the vertices of Ts ). Then the three subspaces

(e, + e\,e2 + 2e2 + e2,e0 + 2e'¿ + e'0),

(ex - e'x,e2- e2,eQ- e'0),    (e2- e'2 + e2,e0- e'¿ + e'0)

are //-submodules and give the required decomposition.
The decomposition (3.13.1) of Er¡ ® A is achieved as follows. We denote the

canonical basis of this space as

^1 ' ^2' ^1 ' ^2' ^1 ■

e0 e0

Then the three subspaces

(e, + 2e\ + e\',e2 + e'2,e0 + e'0),

(ex— ex,e2 — e2,eQ — e0),    {ex — ex + ex )

are //-submodules and give the required decomposition.

4. Computations with affine Weyl groups.
4.1. Let (W, S) be an irreducible affine Weyl group regarded as a Coxeter group.

(For information on affine Weyl groups see [3].)
W has a normal free abelian finitely generated subgroup Q, of finite index. It

consists of all elements in IF which have only finitely many conjugates.
Let ß be the group of all automorphisms of (W, S) which have the property that

their restriction to W is the same as conjugation by some element of W. This is a
finite group.
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Let W be the group of all pairs (t, W), t G ß, w EW with multiplication
(t, w)(t', w') = (tt', t'~\w)w'); in other words, W is the semidirect product of ß
and W. We write (t, w) = rw and we then have t(w) = twt"1 in W. Let P be the set
of elements in IF which have only finitely many conjugates in W. Then P is a normal
free abelian subgroup of W of finite index, containing g as a subgroup of finite
index. We have P/Q " W/W Z ß.

The length function I: W -> N extends uniquely to a function /: W -> N by
/(tw) = /(w) (t G ß, w G IF). Let us fix í0 G S in such a way that W is generated
by Q and by the finite group W0 generated by S — s0. We shall denote the elements
of S — {s0} by j,,...,s„ in a way compatible with the numbering of the Coxeter
graph of (IF, S) in 1.13.

4.2. For each », 1 < i < n, there is a unique element a, G Q and a unique
homomorphism a¡: P -» Z such that s¡xs¡~xx~x = aja'(x) for all x E X and such that
/(s,a() > /(a,). Then a,(l < ¡' < n) form a basis for g. For any », 1 < » < «, there is
a unique element w, G P such that

1     Lf»=;
«,(«,) (!</<«).

0    if/^y

In other words, we have

j,w, = u,Sj,   Si*),SilaJl = ajx,        1 <y < n,j ¥= i.j  '     —i~j>
>+ +The co, (1 < i < n) form a basis for P. Let P      be the semigroup in P generated by

w,,...,w„. We have

P+ + = {xEP\l{siX)>lix),i= 1,...,«}.

Let ht: Q -» Z be the homomorphism defined by ht(a,) =1 (1 < i *z n). This
extends uniquely to a homomorphism ht: P -» (1/2)Z. If xEP+ + , we have
/(x) = 2ht(x). In particular, we have

(4.2.1) lixy) = ¡ix) + liy)    iorx,yEP+ + .
4.3. Besides the Hecke algebra H of (IF, S), we shall also consider the Hecke

algebra H defined as follows. H is the free Z[o1/2, o"1/2]-module with basis Tw
(w G IF) and multiplication defined by

iT3 + l)iTs - q) = 0    iîsES,

TWTW. = Tww,   if liww') = liw) + liw'), w, w' E W.

The algebra H considered in the introduction is the algebra we have just defined
tensored with C, via the ring homomorphism Z[qx/2, q~x/2\ -» C taking a to a prime
power and qx/1 to its positive square root. I hope that this ambiguity in the notation
will not create confusion. Then H is a subalgebra of H. We shall denote TT also by t
(t G ß). We shall also set T¡ = T , i E [0, n].

It follows from (4.2.1) that in H, we have

(4.3.1) Txy=TxTY,    iorx,yEP+ + .
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Following J. Bernstein, we define, for each x E P, an element fx E H by

f = fl(-'(*i)+/(*2»/2y 7--1x       " x^   X2

where xx, x2 are elements of P+ + such that x — x,x2'. It follows from (4.2.1), (4.3.1)
that fx is well defined. We then have fxy = txty for all x, y G P and fx = q-'(x)/2Tx
iorxEP+ + . We shall also set 7j = q~x/2Ti (0 < /' < n). We have f~x = t¡. - (a1/2
— a"1/2). The following lemma is a special case of a result of J. Bernstein
(unpublished).

4.4. Lemma. Let » G [1, «] ano" /e» x EP.
(a) //j,x = sx,, í/ien T¡TX = TXT¡.
ib) Ifs,xs-Xx-X = ajx, then f-xfxf-x = f1¡x,7¡.

Proof. In case (a), we may write x = x,x2' with xx, x2 G P+ + , s¡xx = xxs¡,
s¡x2 = x2s¡, and we are reduced to the case where x E P+ +. In that case, ¡isx) —
¡ixs) = lix) + 1 hence TSTX = TXTS= Tsx = Txs and (a) follows.

We now consider the case (b). Write x = xxx2x with

1'     2 *        /    1   /       1 ^/    »      *^/"^2 — ~^2^i'

Using (a), we are reduced to the case where x = x,. Thus, we may assume that
x E P+ + . Let / = lix). Then /(s,) = /+ 1 (since jc G P++) and /(xs,) = / - 1
(since stxsi ¥= x). It is easy to see that s¡xs¡x E P++ hence

l{s,xs,x) = 2ht(i,xs,x) = 2ht(s,xs,x~l) + 4ht(x) = 2ht(aj"1) + 2/ = 2/ - 2.

Sinces,xi,x G P+ + , we have /(xí,x) = /(i,xs,x) +1=2/— 1. We have

T-%T-% = T~XTXSTX,   since/(x5,) = l(x) - 1,

= T/XTXS¡X,   since/(xs,x) = l(xst) + l(x),

= TslXs,x >     Since li SiXSiX ) = /(Xi,X ) -  1.

Hence fr%f-x = fs¡xs¡xf-] = f¡iXS¡ and (b) is proved.
4.5. We shall now give some formulas describing the elements Tu E H (1 < i ^ n)

for each irreducible affine Weyl group.
Type Än: We have

(4.5.1) t=TTxT2---Tn

where t G ß is defined by s0t = tsx, sxr = ts2, ... ,s„_xr — ts„, s„t — tsq.
Indeed tí,í2 ■ • -s„ is in P+ + , commutes with sx,s2,. ..,sn_x and has length n

hence it is equal to un. Using now Lemma 4.4(b), we have

tB_,t;' = t..,.;« = tltf„-x = rf0-lfxf2 ■ ■ ■ f„_„
7A| rp-\ -     rp -     rp-\     rp-]rp-\rp-.\rp-\ - rp _ ] m _ ] m   rp rp

ù>n-2Âù>n-x  ~  iwM_2u)-nL| —  1n-\1n    iwn 1n    ln-\  ~ T1n    i0    l 1i2 *        ifl-2'

t2t;' - ta-5' = ^-1t_1 • • • T-%f-x ■ ■ ■ f4%-x = tîa-%-x ■ ■ ■ t„-%-xtxt2,

fJ-¡  =  t0ia,  =  f2-%-X  ■ ■ ■ fn-Xtf-X ■ ■ ■ fiXf2-X  = TÎ,-%-X  ■ ■ ■ f-%-%
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It follows that

t„_, = T2(T2tx){f3f2) ■ ■ ■ (*#_,) • • • (fnfn_x),

t2 = r3{f3f2fx){f4f3f2) ■ ■ ■ {tfi-A-i) ■ ■ ■ {tntn-xf„-2),

Tu¡ = r"T„T„_x---Tx.

TypeBn: We have

t, = rtftt, ■ ■ ■ fn_xTJn-x ■ ■ ■ f3f2fx
where t G ß is defined by s,t = tí0, s0t = rsx, tí, = s,t for /' = 2,3,... ,n. Indeed,
tsxs2s3 ■ ■ ■ sn_xsnsn_x •■•s3s2sx is in P+ + , commutes with s2,s3,...,s„ and has
length 2n — I hence it is equal to co,.

Using now Lemma 4.4(b), we have

rp       m -1     -    rf, __     rp-\rp       rp _ ,

-la>2   w, Iu2u~i' 1     1oi/\     '

rp      rp-X    __     rp __     -T.-1    rp rp-\

1u/u2 1u3u'2' 2      jw2uj-;i-'2    '

un_|   w„-2 "n-l^fi-l « — 2-*üín_2ü)-L3   n — 2'

T^      'T'-l        =    ^ _-    'T'-l    »X1 'T'-l
ton   ü)M_[ a)nto"^| /I— 1    «„_ [W„'-2   n— 1

which determines also £,, 7\ ,...,£, .OJ2'        W3" '      W„

TypeCn(n > 2): We have

tl = f0fif2''-fn^fnfn--i'''f2fv
Using Lemma 4.4(b), we have

T     "T'-l    —    T» —-    rTl-\rr     "T'-l

-*W2    0>! ^«2 "i' 1 W|      1      '

7*^-1    -    y1 -    rp-\rp rp -\
OJ3    <*>2 ÙJ3<*,2 ^- w2wl        ^

A A . A A . A A .
TT* T'-l        ^    T —    T'-l     T T'-l

wii-iwn-2 wn—iwñ-2 n — 2   un_2uñl-3   "~ 2'

T"2 T* =    T* =    T'-l    T* T'-l
■* a)nJüJn_| 2wjw„_] n— 1   u„.|u"„L2   n- 1

which determines also 7^2,jTW3,. .., 7^    »7¡f. We can compute separately

t. = T(f.fB_, ■ ■ • £,)(£„£„-, ■••£)■■■ (£„£„_,)(£„)

where t is the unique nontrivial element of ß. Indeed, r(snsn_x ■ ■ ■ sx)(sns„_x ■ • ■ s2)
■ ■ • (i„5„_,)(5„) is in P+ + , commutes with sx,s2,...,sn_x and has length n + (n —
1) + • • • +2 + 1, hence it is equal to co„.

Type Dn (n > 4): We have

t, = fxt2 ■ ■ ■ fn_2t„_xtntH_2fn_3 ■ ■ ■ t2tx

where t G ß is defined by s„t = ts„_,, s„_,t = rsn, sxr = ts0, s0t = tí,, ts¡ = s,t

(1 = 2,3,...,« -2).
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Using Lemma 4.4(b), we have

f„f-x = f  „., = £,-'£, £f\
(*>2    W[ COj^l » Wi      1      '

T     T'-l    — T* —    T-1t T'-l
w3   w2 CO3W21 2    ^ w2w7     2    »

T T'-l        - T —    T'-l    T* T'-l
un_2   wB_3 ton_2i«J^l_3 «—3    W„_jW„_4    fl-3

T1      T* T'-l        -— T1 —-    T'-l     T» T"-
Í0„     ÍO„_j     Ww_2 0)M0Jn_ |(*í„-2 n —2   w„_2w„_3   n —2 '

rp-\rp _    yi _    rp-\rp T'-l

W„      W„_i Í0ñ'wn-1 " wnwn-1wñ-2    n

which determines also £,,£,,...,£,    , £2   , 7\2 (and also f     f  ). We can
C02 U3' '      lûn —2 ^ n— 1 "^/i ^ n— l^n

check separately that the expression

(4.5.2)    r'(fn_xfn_2f„_3 ■ ■ ■ Tx)iT„Tn_2Tn„3 ■ ■ ■ f2)(fn_xfn_2fn_3 • • • f3) ■ ■ ■
(the last three factors are (fn_xfn_2Tn_3)(TnTn_2)(£„_,) if n is even and
(tt-it-M-it-iXt) if " is odd) is equal to f^ if r is even and to f0m if « is
odd.

Here r' is the unique element of ß such that t'í„_, = s0t', t'íb = sxt'. (We then
have t's0 = s„_,t', t's, = s„r' if w is even and t'í0 = s„t', t's, = s„_xt' ii n is odd).
To get fa (for n odd) and £Un (for n even) replace £„_, by tn and £„ by tn_, in the
expression (4.5.2); we also replace r' by tt' in that expression.

Type £6: We have

Using Lemma 4.4(b), we have
rp      rp -    T* -    T-IT*      T'-l
Il>4Iùi2 ~     W4W21 — J2    -lw2'l2    »

T1   nr    T'-l —  T* =: T-It-I      T'-l
«3   «5   w4 ■'W3W5W41 4    'u4W2    4    »

T*     T-1t _    T< - T-lT T'-l
U3    «5      W6 w3W5lai6 5 103*050)4"'    5      »

T   T'-l   —   T* —   T'-'T'       _.      T'-l
«3   w6 w3to¿1 6       (J3CO5 to6   6    »

rp-\rp       rp __     rp __     rp-\rp T'-l

W3       U)5     W| -"w^'tüjCüi -*3      J(*J3W5W4I'*3

which determines also 7\ 9T*iJ! tT* 9f],
Type E-,: We have

fUi = f0fxf3f4f5f6f7f2f4f3fxf5f6f4f3f2f5f4^

(34 factors).
Using now Lemma 4.4(b), we have

A A . A A 1       A A .Tl       rp - I     -     iji -     rp — \rp      rp — |
to 3    t*)] u>3U)| 1 to 1     1

7T     iyr-1    -    J- -    rp-\rp rp -\
W4      ¿1)3 ÍO4IO3 J U.')LO| j '

T>     T»     T'-l    —   T1 —    T-It* T'-l
u2   U5   w4 aj2to5t041 4       0)4(03     4     »

T     T-lT        —    T> _    T-lT T'-l
«2    W5       C06 U)2w5It,J6 5 CO2W5ÜJ4       5       »
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T       T-lj1 _     rp __     rp~]rp T'-l
a)2    w6      u7 UiWJ îo7 6 0)20)5 o)6    6      »

T     T'-l    —    T* —    T-1t T'-l
o)2   w5 w^wj 2       0)2^050)4     2

which determines also fMs, f„4, fWfi, fw22, fw2, fj;.
Ty/^e ¿8: We have

(4.5.3) fW8 = tj^fj.fj^t^^

XÎ4T2T5Î4Î$Î6Î7TSÎ5Î4^
(58 factors). Note that if we omit the factor ro and replace each T¿ by s,, we get a
reduced expression, in the Weyl group of type £8, for the reflection with respect to
the highest root (of length 57). Using now Lemma 4.4(b), we have

(4.5.4) TUTU^ — 7^7U-i — 7g   TtíJ\   ,

T      T'-l    —    T __    T-1t T'-l
o)6to7 to6o)7 7       o)7o)g     7    '

T      T'-l    —    T7 —    T-It T'-l
W5   w6 tojco^1 6       oj6W7    6    »

T     T'-l    =    T1 —    T-IT T'-l
-,o)4-íío5 -*o)40)3' J5     Jo)5o)6lj/5     '

T"   T"   T*-' — y — t-It T'-l
o)2   0)3   0)4 0)20)30)4 4       0)40)5     4     '

T     T     T'-l    —-    T —-    T-lT T'-l
u)|   o)2   0J3 o)|a)2W3 3        0)2^30)4     3     '

rp       rp-\     __     rp __     rp ^ \ rp T'-l

0)3   w2 U3U2 2       0)21030)4     2

which determines also 7\ , 7\ , 7\ , T , T2   T2, r?.0)7'      ío^'      0)5"      0)4"      to 2'      0)3'      o) j

Type F4: We have

TU2 = T0T2T4T3TXT4T2T3T4T3T2T4TXT3T4T2

(16 factors).
Using Lemma 4.4(b), we have

rp       rp-\     -    rp -     rp-.\rp       rp-]

Iu4Iu2 1u4u,-2 J2    1u22     '

T       T^-l     _     rp __     rp-\rp rp -\

W3     OJ4 W3W4 4 0)4(^2       4       '

rp      rp-\rp -    rp -     rp-\rp -T'-l

U[   w3    u4 W|t03'w4 3      W3W4    3

which determines also £,,£,,£,.0)4'       0)3"       o) j

Type G2: We have

t7 = f0f2fxf2fxf2,
T   = T0T2TXT2TXT0T2TXT2TX.

4.6. We now consider the Coxeter graph % of the affine Weyl group iW, S) as in
3.13 and the corresponding //-module Eg. The definition of £g depends on the
choice of the function pis, t). When ê is not simply laced this choice is not unique;
to make it unique we shall require that pis, t)—\ whenever st has order > 4 and t is
nearer to an extremal point of §, than s.
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By definition, Eg has given basis elements es, one for each s G S. We shall write e¡
instead of es¡ (0 < /' *£ n ). The //-module Eg can be made naturally into an
//-module as follows. For each t G ß, we define a Z\qx/1, c7"1/2]-linear map t:
Eg -» Eg by Ties) = eT(s) is E S). It is clear that r(Tt(et)) = £T(0(T(es)) for all
t G ß, and s, t G S. Hence the endomorphisms t (t G ß) and Tw (w G W) make £â
into an //-module.

We wish to describe the action of the elements Ta E H (1 *S i < n) on the
//-module Eg, assuming that (IF, 5) is of type ¥= Än, C„.

We define an integer b, 1 < b < n, as follows: ft = n — 1 (for type Bn), b = n - 2
(for type />„), 6 = 4 (for type £„ and £4) and b = 2 (for type G2). Thus, for types Dn
and £„, i6 corresponds to a branch point of §. For any i, 0 < i < n, we denote by d¡
the distance on S between the vertices corresponding to i and ¿>. Thus, dh = 0. Let m
be the exponent with which the simple root ah appears in the highest root, expressed
as a product of simple roots. (For example, for £8, we have m = 6.)

There is a unique vector vh G £§ such that

tt(vb) = qx/\       (l<i<n,i*b),

fbivb) = ql/2vb-q(d"-3)/2+miq-l)eb,

t0(vb) = ql/2vb + q-l/2iqm-l)e0.

The vector vb is given explicitly as follows:
For type Bn(n> 3), we have

ft = eo + V. + 2 W-X)/1 + qU+i)/2)e, + 2?<»-'>/2en.
¡=2

For type Dnin> 4), we have

Dfc = e0 + qex + V (i(l_1)/2 + i(,+ I,/2)e( + ^"^V. + <7("~2)/2<V
i = 2

For type £6, we have

»b = e0 + (Y/2 + ?5/2)e2 + (? + <72 + q3)e4 + (q3'2 + q^2)e3

+ (qi/2 + qi/2)e5 + q2el+q2e6.

For type £7, we have

v„ = e0 + (qx'2 + qV^)ex + (q + q3 + q4)e3 + (q3'2 + q"2 + <?7/2 + q9/2)e4

+ (q2 + q3 + q<)e5 + (q^2 + q^)e6 + q3en +(q2 + q*)e2.

For type £8, we have

vb = e0 + (qx/2 + qxx/2)es + (q + q5 + q^e,

+ (q^2 + q9/2 + c;"/2 + qX3/2)e6 + (q2 + q* + q5 + q6 + qr)e5

+ (q5/2 + q1'2 + q9/2 + qxx/2 + qX3/1 + qX5/2)e4

+ (q3 + q4 + q6 + qn)e3 + (q1/2 + qX3/2)ex + (q3 + q5 + q7)e2.
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For type F4, we have

vh = e0+ (qx'2 + qV2)e2 + (q + q2 + q3)e4 + (2q3'2 + 2q^2)e2 + 2q2ex.

For type G2, we have

vh = e0 + (qx/2 + qi/2)e2 + 3qex.

Now let / be an integer, 1 < i < n, i ¥= b. We define a vector v¡ E Eg by
d,

a=l

where 6 = i0,ix,i2,.. .,id = i is the geodesic (of length d¡) on § from ¿> to /'. (We
identify the vertices of S with their labels.) In particular, ia, ia+] is joined in % for
a = 0,1,..., Lj..,.

We also set v0 = eh.
Let Xh: Q -» Z be the homomorphism defined by

X6(a,) = l        (1</<»,./* 6),       X6(aj = 0.

This extends uniquely to a homomorphism Xb: P -> (1/2)Z (case by case verifica-
tion).

For any integer /' (1 < /' < n, i: ¥" b) we define a homomorphism A,: £ -» (1/2)Z
by

X,{x) = XJ i, s,  • • • J, jcj."1 • • • s¡~xs~x )
l\      / D\    ¡i   l2 ld.       Id¡ '2     h    I

where b = i0,ix,.. .,id = i is the geodesic in § from b to i.
We have, for any j (1 </' < n) and any j (1 <j < n, i j= b)

IXb{cOj) — dj    iij belongs to the geodesic from b to /',
Xbiuj) otherwise.

With these notations, we can state

4.7. Theorem. Assume that iW, S) is an irreducible affine Weyl group of type ¥= An,

We have

faj(t>i) = qX'^\       (1 <t,j<n)

and

tu ) = ¡qK("j)(v° ~ q-do/2-m+\), j = b,

j[V°       \qx*-\, Kf<n,j^b.

4.8. The proof of 4.7 consists of rather long, case by case computations. We shall
indicate what computations are necessary in the case of £8 (which is the most
complicated one).

For each simple reflection s¡ (0 < ï < 8), the action of 7j on Eg (in the basis e,,
0 < / < 8) is given by a very simple formula (see 3.1). We multiply directly the 58
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matrices corresponding to the factors in (4.5.3) and we find

f4e,)=q23e,       (1 < i < 7),

t.(*8) = q2\ - q21/\,

t,(e0) = ?23e0 + (?14 + ?>8

from which it follows that f   acts in the basis t>, (0 < /' < 8), as stated in Theorem
4.7. Next, we use the formulas (4.5.4) and we check that £,,£,,£,,£,, f2, f2,\ J o)77o)g'o)5'       0)4'       k)2 ^3

T2 act as stated in Theorem 4.7. Then, Tu (1 <j < 3) whose action is still unknown
will necessarily map v¡ to ±qx¡(-aJ)v¡ (1 < i < 8) and u0 to ±qx*(-"j)v0 + a multiple of
t)4 (since they commute with the previous transformations and their square is
known). If we tensor H and Eg with C via the ring homomorphism Z[qx/2,q~x/2] -> C
taking qx/2 to 1, H becomes the group algebra of W and £§ becomes the 9-dimen-
sional standard reflection representation of W; the vectors u, (1 < i < 8) all reduce
to the same vector: the unique vector (up to a scalar) fixed by W. The action of £w
becomes the usual action of a translation in W on the reflection representation,
hence it is a unipotent transformation.

It follows that all the ± signs above are necessarily + 1. Thus, ioxj = 1,2,3,

t,(»,) = qh(Uj\    O < i< 8).

t,K) = qXÁaj)it>o + xo4).

But the action of the square of Tu is known. We have

t2K) = q2X*"J\ = q2Xi(aH»o + 2xe4);

hence x = 0, and hence Tu (1 < j < 3) act as stated in Theorem 4.7. The proofs for
the cases ¥= £8 are similar.

4.9. We now consider the graph %' associated to the affine Weyl group of type Bn
in 3= 3) (see 3.13) and let Eg, be the corresponding //-module. It has a basis
e0,ex,.. -,en_x (in 1-1 correspondence with the vertices of §'). We extend Eg, to an
//-module by letting the nontrivial element t G ß act by

T(e0) = e,,    t(é?,) = é?0,    T(e,) = e,        (2</<«-l).

We consider the vectors vx,v2,.. .,vn_x,vn_x in Eg,, defined by

%-i = «o + *i+ 2V-1)/2 + <7(i+1)/2k,
r=2

0, = e0 + qex + 2 (q^^2 - q^+x^2)ei +  2 (î('~1)/2
ï=2 (=7

o, = «„ - ^""'e, + V (<7('~1>/2 - ?"-(,+1)/2)ef.
1=2

(2<y<n- 1),
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With these notations, we can state

4.10. Proposition. We have

fakivj) = ekJqxA»'hj       (1 < k < n, 1 <j < n - 1)

where

f 1       ifk <j,
'*•>     |-1    ifk>j

and

fUtivn_x) = ekqx-¿»'\_x       (1 <k<n)

where

Í1       ifk<n,
£*      [-1     ifk = n.

The proof of this proposition (as well as that of 4.12, 4.14, 4.16, 4.18, 4.19, 4.20,
4.22) is of the same nature (direct computation) as that of Theorem 4.7.

4.11. We now consider the graph %" for (W, S) as in 4.9 and the corresponding
//-module Eg,, (of rank 1). We extend Eg,, to an //-module with ß acting trivially.

4.12. Proposition. If 1 < k<n, fUk acts on Eg,, as the scalar qx"^t\

4.13. We now consider the graphs §', §" for (W, S) of type Cn(n>2) (see 3.13)
and the corresponding //-modules Eg,, Eg,, of rank 1. They do not extend to
//-modules, but their direct sum Eg, + £g„ does: we set re' — e", re" = e' where e'
is a basis element for Eg,, e" is a basis element for £§» and t is the nontrivial element
of ß. We then have

4.14. Proposition. Let y: Z[qx/2, qx/2\ -» K be a ring homomorphism with K a
field, such that 2^0 in K and (-l)n/2 E K. Then e = e' + (-l)n/2qn/2e", ë = e' -
i-l)n/2qn/2e" form a K-basis o/(£g, © Eg,,) ®^Kand

ta(e) = (-i)y«-«2+<>/2e    (i< i < B -1),

TUi(ê) = (-l)Y"-<'2+"/2e       il<i<n- 1),

t„(0 = (-i)n/V("-,)/2e,

Uë) = -(-l)"/2q"'"-^2ë.

4.15. We now consider the graph Î' for (W, S) of type £4 (see 3.13) and the
corresponding //-module Eg,. It has basis e0, e2, e4 (in 1-1 correspondence with the
vertices of §'). We consider the vector v2,v4, v4 in Eg, defined by

v4 = e0 + (qx/2 - q^2)e2 + (q - q2 + q3)e4,

v4 = e0 + (qx/2 - q^2)e2 + (q - q2 - q3)e4,

»2 = <?o +W/2 + q1/2)e2 +(q~q2 + q3)e4.
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We can now state

4.16. Proposition. We have

1,2,3,
4,

1,3,
2,4,

1,3,4,
2.

4.17. Next, we consider the graph §" for (W, S) of type £4 (see 3.13), and the
corresponding //-module Eg,,. It has a basis ex, e3 (in 1-1 correspondence with the
vertices of %"). We consider the vector e\ = e3 + iqx/2 + q~x/2)ex in Eg,,. We can
state

4.18. Proposition. We have

t,(e3) = qx^        (l</<4),

fUi(e[) = qx^)       (Ki<4).

4.19. We now consider the graph §' for (W, S) of type G2 (see 3.13) and the
corresponding //-module Eg,. It has a basis e0, e2, ex (in 1-1 correspondence with the
vertices of §'). We consider the vectors

v2 = eQ+(qx<'2 + q3/2)e2 + qex,

v2 = e0+(qx^2-q3/2)e2 + qex,

vx=e0+(qx^2-q^2)e2-q2ex.

We then have

To,2(vi) = qv2-  TUl(vi) = -q2v2>

Tw2i »2 ) = -qpi >  ^ «2 ) = -í 2ü2,

T02i»i) =-qvx,    TUtivx) = qvx.

We now consider the graph S" for iW, S) of type G2 (see 3.13) and the correspond-
ing //-module Eg,,. It has a basis e0, e2 (in 1-1 correspondence with the vertices of
%"). We can state

4.20. Proposition. Let <p: Z[<?'/2, q~x/2\ -^ K be a ring homomorphism, with K a
field such that the equation x2 + x + 1 =0 has two distinct solutions 6, 6 in K. Then
the vectors

v = e0 + (qx'2 + 6q3/2)e2,    v = e0 + (qx'2 + ëq'/2)e2

rqx*a>\ for

-qx^-\ for

qXi{Ul)v4 for

-qx*("\ for

qx<("\ for
-qx,iUl)v4 for
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form a K-basis of Eg,, ®v K and

t2(v) = 6qv,    t2(v) = 6qv,

fui(v) = q2v,    fui(v) = q2v.

4.21. Finally, we consider the graph %'" for (W, S) of type G2 (see 3.13) and the
corresponding //-module Eg„, (of rank 1). We can state

4.22. Proposition. We have

fu¡ = q   onEs,„(i= 1,2).

4.23. Following Iwahori and Matsumoto [7], to each //-module £ one can
associate a new //-module £* as follows. £* has the same underlying space as £,
and the action of Tw (w G W) on £* is the same as the action of ql(-whwT~-\ on £,
where e: ^-»{±1} is the homomorphism defined by e(s¡) = -1 (1 </<«),
e | £ = 1. (This differs slightly from the definition in [7].) When //, £ have scalars
extended to C (via a ring homomorphism Z[qx/2, q~x/2\ -» C taking q to a prime
power, and qx/1 to a number > 1) then £* is irreducible if £ is, (£*)* = £ and
XE. = XE (with the notation in 1.4), where the bar is the involution of Z[(C*)"]
defined by

(Xx, X2,...,Xn) -» (Xj   ,x2  ,. . . ,X-j )

and 2 -» i represents the opposition involution of the Coxeter graph of §. (On the
level of representations of § the involution * was defined by J. Bernstein.) Using
2.9, it now follows that for each of the representations £r of H described in 4.7, 4.10,
4.12, 4.14, 4.16, 4.18, 4.19, 4.20, 4.22, the //-module Ef is in %2(//).

Given a one-dimensional ß-module X, and an //-module £, we can define a new
//-module £ ® X. The action of Tw (w G W) on £ ® X is the action of Tw on £
tensored with the action of r on X, where w E t • W. In particular, from £* above,
we get new //-modules E£ ® X E %2(//). We see then that for each L2-pair is, N)
in G with N-subregular we have constructed a representation E in %2(//), such that
the identity (1.5.1) is satisfied.
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