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Abstract

In this paper, we assess an integral containing incomplete H-functions and utilize it to

build up an expansion formula for the incomplete H-functions including the Bessel

function. Next, we evaluate an integral containing incomplete H-functions and use it

to develop an expansion formula for the incomplete H-functions including the Bessel

function. The outcomes introduced in this paper are general in nature, and several

particular cases can be acquired by giving specific values to the parameters engaged

with the principle results. As particular cases, we derive expansions for the incomplete

Meijer (Ŵ)G-function, Fox–Wright p�
(Ŵ)
q -function, and generalized hypergeometric

pŴq function.
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1 Introduction and preliminaries

The topic of special functions is very rich and is constantly increasing with the advent of

new problems in the field of applications in engineering and applied sciences. In addition,

applications to H-functions was already documented in a large range of response-related

topics, such as diffusion, reaction–diffusion, electronics and communication, fractional

differential and additive equations, other fields of theoretical physics, biology, and math-

ematical probability theory. Therefore, due to the overwhelming demand, a number of

papers on these functions and their possible applications have been made available in the

literature. For further information, see the research monographs [18, 19] and recent work

[1–3, 16]. The main object of this paper is to build up integrals including incomplete H-

functions and incomplete H-functions and utilize them to get expansions for incomplete

H-functions and incomplete H-functions involving the Bessel function with the help of

the orthogonal properties of Bessel functions.

The H-function, H-function, and incomplete type functions such as gamma functions,

H-functions, H-functions that are to be used further are described below.
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Fox [12] investigated and defined a new function during his study of symmetrical Fourier

kernels in terms of the Mellin–Barnes-type contour integral, known as Fox’s H-function

Hm,n
p,q (z) =Hm,n

p,q

[

z

∣

∣

∣

∣

(aj,Aj)1,p

(bj,Bj)1,q

]

=
1

2π i

∫

L

�(ϑ)z–ϑ dϑ , (1)

where

�(ϑ) =

∏m
j=1 Ŵ(bj + Bjϑ)

∏n
j=i Ŵ(1 – aj –Ajϑ)

∏q
j=m+1 Ŵ(1 – bj – Bjϑ)

∏p
j=n+1 Ŵ(aj +Ajϑ)

, (2)

L is a convenient contour that detached the poles.m,n,p,q are positive integers with con-

straints 0 ≤ n ≤ p, 1 ≤ m ≤ q, the coefficients Aj (j = 1, . . . ,p) and Bj (j = 1, . . . ,q) ∈R
+, and

aj and bj are complex parameters. TheH-function is absolutely convergent and defines an

analytic function under the set of conditions described in [12] (see also [15, 18, 19]).

In 1987, Inayat-Hussain [13] introduced a generalization of the H-functions, known as

the H-functions:

H
m,n

p,q (z) =H
m,n

p,q

[

z

∣

∣

∣

∣

(aj,Aj; ζj)1,n, (aj,Aj)n+1,p

(bj,Bj)1,m, (bj,Bj;ηj)m+1,q

]

=
1

2π i

∫

L′

�(ϑ)z–ϑ dϑ , (3)

where

�(ϑ) =

∏m
j=1 Ŵ(bj + Bjϑ)

∏n
j=1[Ŵ(1 – aj –Ajϑ)]

ζj

∏q
j=m+1[Ŵ(1 – bj – Bjϑ)]

ηj
∏p

j=n+1 Ŵ(aj +Ajϑ)
, (4)

m,n,p,q ∈ N0 with constraints 0 ≤ n ≤ p, 1 ≤ m ≤ q, Aj (j = 1, . . . ,p), Bj (j = 1, . . . ,q) ∈ R
+,

aj (j = 1, . . . ,p), and bj (j = 1, . . . ,q) are complex numbers. The exponents ζj (j = 1, . . . ,n) and

ηj (j = m + 1, . . . ,q) take noninteger values, and L′ is a reasonable contour that detaches

the poles. The H-function is absolutely convergent under the arrangement of conditions

described by Buschman and Srivastava [10].

We next recollect and define the lower and upper incomplete gamma functions γ (ϑ , z)

and Ŵ(ϑ , z) as follows:

γ (ϑ , z) =

∫ z

0

yϑ–1e–y dy
(

ℜ(ϑ) > 0; z≧ 0
)

(5)

and

Ŵ(ϑ , z) =

∫ ∞

z

yϑ–1e–y dy
(

z≧ 0;ℜ(ϑ) > 0 if z = 0
)

. (6)

These functions fulfill the following relation:

γ (ϑ , z) + Ŵ(ϑ , z) = Ŵ(z)
(

ℜ(ϑ) > 0
)

. (7)

Using the incomplete gamma functions defined above, Srivastava et al. [23] presented and

researched the incomplete H-functions as follows:

γm,n
p,q (z) = γm,n

p,q

[

z

∣

∣

∣

∣

(a1,A1, y), (aj,Aj)2,p

(bj,Bj)1,q

]

=
1

2π i

∫

L

g(ϑ , y)z–ϑ dϑ (8)
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and

Ŵm,n
p,q (z) = Ŵm,n

p,q

[

z

∣

∣

∣

∣

(a1,A1, y), (aj,Aj)2,p

(bj,Bj)1,q

]

=
1

2π i

∫

L

G(ϑ , y)z–ϑ dϑ , (9)

where

g(ϑ , y) =
γ (1 – a1 –A1ϑ , y)

∏m
j=1 Ŵ(bj + Bjϑ)

∏n
j=2 Ŵ(1 – aj –Ajϑ)

∏q
j=m+1 Ŵ(1 – bj – Bjϑ)

∏p
j=n+1 Ŵ(aj +Ajϑ)

(10)

and

G(ϑ , y) =
Ŵ(1 – a1 –A1ϑ , y)

∏m
j=1 Ŵ(bj + Bjϑ)

∏n
j=2 Ŵ(1 – aj –Ajϑ)

∏q
j=m+1 Ŵ(1 – bj – Bjϑ)

∏p
j=n+1 Ŵ(aj +Ajϑ)

, (11)

with the arrangement of conditions setout in [23].

These incomplete H-functions fulfill the following relation (known as decomposition

formula):

γm,n
p,q (z) + Ŵm,n

p,q (z) =Hm,n
p,q (z). (12)

The incompleteH-functions γm,n
p,q (z) andŴm,n

p,q (z) defined in (8) and (9) exist for x≥ 0 under

the set of conditions given by Srivastava et al. [23], with

Ω > 0,
∣

∣arg(z)
∣

∣ <
Ωπ

2
and � > 0,

where

Ω =

m
∑

i=1

Bi –

q
∑

i=m+1

Bi +

n
∑

i=1

Ai –

p
∑

i=n+1

Ai,

δ =

q
∑

i=1

bi –

p
∑

i=1

ai +
p – q

2
and � =

q
∑

i=1

Bi –

p
∑

i=1

Ai.

Srivastava et al. [23] introduced a generalization of the incomplete H-functions, known

as the incomplete H-functions defined in the following way:

γm,n
p,q (z) = γm,n

p,q

[

z

∣

∣

∣

∣

(a1,A1; ζ1; y), (aj,Aj; ζj)2,n, (aj,Aj)n+1,p

(bj,Bj)1,m, (bj,Bj;ηj)m+1,q

]

=
1

2π i

∫

L

g(ϑ , y)z–ϑ dϑ , (13)

and

Ŵ
m,n

p,q (z) = Ŵ
m,n

p,q

[

z

∣

∣

∣

∣

(a1,A1; ζ1; y), (aj,Aj; ζj)2,n, (aj,Aj)n+1,p

(bj,Bj)1,m, (bj,Bj;ηj)m+1,q

]

=
1

2π i

∫

L

G(ϑ , y)z–ϑ dϑ , (14)
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where

g(ϑ , y) =
[γ (1 – a1 –A1ϑ , y)]

ζ1
∏m

j=1 Ŵ(bj + Bjϑ)
∏n

j=2[Ŵ(1 – aj –Ajϑ)]
ζj

∏q
j=m+1[Ŵ(1 – bj – Bjϑ)]

ηj
∏p

j=n+1 Ŵ(aj +Ajϑ)
(15)

and

G(ϑ , y) =
[Ŵ(1 – a1 –A1ϑ , y)]

ζ1
∏m

j=1 Ŵ(bj + Bjϑ)
∏n

j=2[Ŵ(1 – aj –Ajϑ)]
ζj

∏q
j=m+1[Ŵ(1 – bj – Bjϑ)]

ηj
∏p

j=n+1 Ŵ(aj +Ajϑ)
, (16)

with the arrangements of conditions setout in [23] with

Ω =

m
∑

i=1

|Bi| –

q
∑

i=m+1

|ηiBi| +

n
∑

i=1

|ζiAi| –

p
∑

i=n+1

|Ai| > 0 and
∣

∣arg(z)
∣

∣ <
πΩ

2
. (17)

Several authors currently work on a wide variety of applications for these incomplete

functions. See, for example, recent works [6–9, 14, 20–22] and references therein.

The paper is organized in the following way. In Sect. 2, we evaluate the improper inte-

grals involving the Bessel function, incompleteH-functions, and incompleteH-functions.

In Sect. 3, we derive expansions for incomplete H-functions and incomplete H-functions

involving the Bessel function with the help of integrals presented in Sect. 2 and the or-

thogonal properties of Bessel functions. In Sect. 4, we obtain particular cases.

2 The integrals

In this section, we derive improper integrals involving the Bessel function, incompleteH-

functions, and incomplete H-functions. These integrals will be used in Sect. 3 to prove

the expansions for incomplete H-functions and incomplete H-functions.

Theorem 2.1 Let ℜ(ϑ) > 0, 
 > 0, h > 0, | arg(z)| < π

2
, ℜ(u+ v+h bi

Bi
) > –1, and ℜ(u) < – 1

2
.

Then for y ≥ 0,

∫ ∞

0

eixxuJv(x)Ŵ
m,n
p,q

[

z xh
∣

∣

∣

∣

(a1,A1; y), (aj,Aj)2,p

(bj,Bj)1,q

]

dx

=
e
1
2 (u+v+1)iπ

2u+1Ŵ( 1
2
)

× Ŵ
m+1,n+1
p+2,q+1

[

z

(

e
iπ
2

2

)h∣
∣

∣

∣

(a1,A1; y), (–u – v,h), (aj,Aj)2,p, (v – u,h)

(–u – 1
2
,h), (bj,Bj)1,q

]

. (18)

Proof To demonstrate (18), consider its the left-hand side. Expressing the incomplete H-

function in terms of the Mellin–Barnes-type integral defined in (9), we have

L.H.S =

∫ ∞

0

eixxuJv(x)
1

2π i

∫

L

G(ϑ , y)
(

z xh
)–ϑ

dϑ dx.

Change the integration order, we have

L.H.S =
1

2π i

∫

L

G(ϑ , y)z–ϑ

∫ ∞

0

eixxu–hϑ Jv(x)dxdϑ .
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To assess the above internal integral, we will use the following formula [17, p. 106, (1)]:

∫ ∞

0

eixxuJv(x)dx =
e
1
2 (u+v+1)iπŴ(u + v + 1)Ŵ(–u – 1

2
)

2u+1Ŵ( 1
2
)Ŵ(v – u)

,

ℜ(u + v) < –1,ℜ(u) < –
1

2
. (19)

Then we get

L.H.S =
1

2π i

∫

L

G(ϑ , y)
e
1
2 (u+v+1–hϑ)iπŴ(u + v + 1 – hϑ)Ŵ(–u – 1

2
+ hϑ)

2u+1–hϑŴ( 1
2
)Ŵ(v – u + hϑ)

z–ϑ dϑ . (20)

Using (11), we obtain the required right-hand side of (18). �

Theorem 2.2 Let ℜ(ϑ) > 0, 
 > 0, h > 0, | arg z| < π

2
, ℜ(u + v + h bi

Bi
) > –1, and ℜ(u) < – 1

2
,

Then for y ≥ 0,

∫ ∞

0

eixxuJv(x)γ
m,n
p,q

[

z xh
∣

∣

∣

∣

(a1,A1; y), (aj,Aj)2,p

(bj,Bj)1,q

]

dx

=
e
1
2 (u+v+1)iπ

2u+1Ŵ( 1
2
)

× γ
m+1,n+1
p+2,q+1

[

z

(

e
iπ
2

2

)h∣
∣

∣

∣

(a1,A1; y), (–u – v,h), (aj,Aj)2,p, (v – u,h)

(–u – 1
2
,h), (bj,Bj)1,q

]

. (21)

Theorem 2.3 Let ℜ(ϑ) > 0, 
 > 0, h > 0, | arg(z)| < π

2
, ℜ(u+ v+h bi

Bi
) > –1, and ℜ(u) < – 1

2
.

Then for y ≥ 0,

∫ ∞

0

eixxuJv(x)Ŵ
m,n

p,q

[

z xh
∣

∣

∣

∣

(a1,A1; ζ1; y), (aj,Aj; ζj)2,n, (aj,Aj)n+1,p

(bj,Bj)1,m, (bj,Bj;ηj)m+1,q

]

dx

=
e
1
2 (u+v+1)iπ

2u+1Ŵ( 1
2
)

× Ŵ
m+1,n+1

p+2,q+1

[

z

(

e
iπ
2

2

)h∣
∣

∣

∣

(a1,A1; ζ1; y), (–u – v,h; 1), (aj,Aj; ζj)2,n,

(–u – 1
2
,h), (bj,Bj)1,m,

(aj,Aj)n+1,p, (v – u,h)

(bj,Bj;ηj)m+1,q

]

. (22)

Proof To demonstrate (22), consider its left-hand side. Expressing the incomplete H-

function in terms of the Mellin–Barnes-type integral defined in (14), we have

L.H.S =

∫ ∞

0

eixxuJv(x)
1

2π i

∫

L

G(ϑ , y)
(

z xh
)–ϑ

dϑ dx.

Changing the integration order, we have

L.H.S =
1

2π i

∫

L

G(ϑ , y)z–ϑ

∫ ∞

0

eixxu–hϑ Jv(x)dxdϑ .
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From this by means of formula (19) we obtain

L.H.S =
1

2π i

∫

L

G(ϑ , y)
e
1
2 (u+v+1–hϑ)iπŴ(u + v + 1 – hϑ)Ŵ(–u – 1

2
+ hϑ)

2u+1–hϑŴ( 1
2
)Ŵ(v – u + hϑ)

z–ϑ dϑ , (23)

and using (16), we obtain the required right-hand side of (22). �

Theorem 2.4 Let ℜ(ϑ) > 0, 
 > 0, h > 0, | arg(z)| < π

2
, ℜ(u+ v+h bi

Bi
) > –1, and ℜ(u) < – 1

2
.

Then for y ≥ 0,

∫ ∞

0

eixxuJv(x)γ
m,n
p,q

[

z xh
∣

∣

∣

∣

(a1,A1; ζ1; y), (aj,Aj; ζj)2,n, (aj,Aj)n+1,p

(bj,Bj)1,m, (bj,Bj;ηj)m+1,q

]

dx

=
e
1
2 (u+v+1)iπ

2u+1Ŵ( 1
2
)

× γ
m+1,n+1
p+2,q+1

[

z

(

e
iπ
2

2

)h∣
∣

∣

∣

(a1,A1; ζ1; y), (–u – v,h; 1), (aj,Aj; ζj)2,n,

(–u – 1
2
,h), (bj,Bj)1,m,

(aj,Aj)n+1,p, (v – u,h)

(bj,Bj;ηj)m+1,q

]

. (24)

Remark If we set ζj = 1 (j = 1, . . . ,n) and ηj = 1 (j =m+ 1, . . . ,q) into Theorems 2.3 and 2.4,

we obtained the results of Theorems 2.1 and 2.2, respectively.

3 Expansion formulas

In this section, we present expansions for incomplete H-functions and incomplete H-

functions involving the Bessel function with the help of integrals presented in Sect. 2 and

derive the orthogonality of Bessel functions.

Theorem 3.1 Let h > 0,
∑p

i=1Ai –
∑q

i=1 Bi ≤ 0, 
 > 0, | arg(z)| < 
π
2
, r = μ + 2ϑ + 1, ℜ(u +

v + 2h bi
Bi
) > 0 (i = 1, . . . ,m), and ℜ(u) < 1

2
. The for y ≥ 0,

eixxuŴm,n
p,q

[

z xh
∣

∣

∣

∣

(a1,A1; y), (aj,Aj)2,p

(bj,Bj)1,q

]

=
1

2u–1Ŵ( 1
2
)

∞
∑

ϑ=0

re
1
2 (u+r)iπ Jr(x)

× Ŵ
m+1,n+1
p+2,q+1

[

z

(

eiπ/2

2

)h∣
∣

∣

∣

(a1,A1; y), (–u – r + 1,h), (aj,Aj)2,p, (r – u + 1,h)

(–u + 1
2
,h), (bj,Bj)1,q

]

. (25)

Proof To demonstrate (25), let

f (x) = eixxuŴm,n
p,q

[

z xh
∣

∣

∣

∣

(a1,A1; y), (aj,Aj)2,p

(bj,Bj)1,q

]

=

∞
∑

ϑ=0

Cϑ Jμ+2ϑ+1, (26)

where f (x) is ceaseless and bounded in the interval (0,∞) when u ≥ 0. Hence statement

(25) is substantial.
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Multiplying both sides of (26) by x–1Jμ+2t+1(x) and integrating with respect to x from 0

to ∞, we get

∫ ∞

0

eixxu–1Jμ+2t+1(x)Ŵ
m,n
p,q

[

z xh
∣

∣

∣

∣

(a1,A1; y), (aj,Aj)2,p

(bj,Bj)1,q

]

dx

=

∞
∑

ϑ=0

Cϑ

∫ ∞

0

x–1Jμ+2t+1(x)Jμ+2ϑ+1(x)dx.

Now applying statement (18) and the orthogonality of the Bessel functions [17, p. 291, (6)],

we obtain

Ct =
ve

1
2 (u+v)iπ

2u–1Ŵ( 1
2
)

× Ŵ
m+1,n+1
p+2,q+1

[

z

(

eiπ/2

2

)h∣
∣

∣

∣

(a1,A1; y), (–u – v + 1,h), (aj,Aj)2,p, (v – u + 1,h)

(–u + 1
2
,h), (bj,Bj)1,q

]

, (27)

where v = μ + 2t + 1. From equations (26) and (27) we obtain the desired result (22). �

Theorem 3.2 Let h > 0,
∑p

i=1Ai –
∑q

i=1 Bi ≤ 0, 
 > 0, | arg(z)| < 
π
2
, r = μ + 2ϑ + 1, ℜ(u +

v + 2h bi
Bi
) > 0 (i = 1, . . . ,m), and ℜ(u) < 1

2
, Then for y≥ 0,

eixxuγm,n
p,q

[

z xh
∣

∣

∣

∣

(a1,A1; y), (aj,Aj)2,p

(bj,Bj)1,q

]

=
1

2u–1Ŵ( 1
2
)

∞
∑

ϑ=0

re
1
2 (u+r)iπ Jr(x)

× γ
m+1,n+1
p+2,q+1

[

z

(

eiπ/2

2

)h∣
∣

∣

∣

(a1,A1; y), (–u – r + 1,h), (aj,Aj)2,p, (r – u + 1,h)

(–u + 1
2
,h), (bj,Bj)1,q

]

. (28)

Theorem3.3 Let h > 0,
 > 0, | arg(z)| < π

2
, r = μ+2ϑ+1,ℜ(u+v+2h bi

Bi
) > 0 (i = 1, . . . ,m),

and ℜ(u) < 1
2
. Then for y≥ 0,

eixxuŴ
m,n

p,q

[

z xh
∣

∣

∣

∣

(a1,A1; ζ1; y), (aj,Aj; ζj)2,n, (aj,Aj)n+1,p

(bj,Bj)1,m, (bj,Bj;ηj)m+1,q

]

=
1

2u–1Ŵ( 1
2
)

∞
∑

ϑ=0

re
1
2 (u+r)iπ Jr(x)

× Ŵ
m+1,n+1

p+2,q+1

[

z

(

eiπ/2

2

)h∣
∣

∣

∣

(a1,A1; ζ1; y), (–u – r + 1,h; 1), (aj,Aj; ζj)2,n,

(–u + 1
2
,h), (bj,Bj)1,m,

(aj,Aj)n+1,p, (r – u + 1,h)

(bj,Bj;ηj)m+1,q

]

. (29)

Proof To demonstrate (29), let

g(x) = eixxuŴ
m,n

p,q

[

z xh
∣

∣

∣

∣

(a1,A1; ζ1; y), (aj,Aj; ζj)2,n, (aj,Aj)n+1,p

(bj,Bj)1,m, (bj,Bj;ηj)m+1,q

]
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=

∞
∑

ϑ=0

Cϑ Jμ+2ϑ+1, (30)

where g(x) is ceaseless and bounded in the interval (0,∞) when u ≥ 0. Hence statement

(29) is substantial.

Multiplying both sides of (30) by x–1Jμ+2t+1(x) and integrating with respect to x from 0

to ∞, we have

∫ ∞

0

eixxu–1Jμ+2t+1(x)Ŵ
m,n

p,q

[

z xh
∣

∣

∣

∣

(a1,A1; ζ1; y), (aj,Aj; ζj)2,n, (aj,Aj)n+1,p

(bj,Bj)1,m, (bj,Bj;ηj)m+1,q

]

dx

=

∞
∑

ϑ=0

Cϑ

∫ ∞

0

x–1Jμ+2t+1(x)Jμ+2ϑ+1(x)dx.

Now applying (22) and the orthogonality property of the Bessel functions [17, p. 291, (6)],

we obtain

Ct =
ve

1
2 (u+v)iπ

2u–1Ŵ( 1
2
)

× Ŵ
m+1,n+1

p+2,q+1

[

z

(

eiπ/2

2

)h∣
∣

∣

∣

(a1,A1; ζ1; y), (–u – v + 1,h; 1)(aj,Aj; ζj)2,n,

(–u + 1
2
,h), (bj,Bj)1,m,

(aj,Aj)n+1,p, (v – u + 1,h)

(bj,Bj;ηj)m+1,q

]

, (31)

where v = μ + 2t + 1. From equations (30) and (31) we obtain the desired result (29). �

Theorem3.4 Let h > 0,
 > 0, | arg(z)| < π

2
, r = μ+2ϑ+1,ℜ(u+v+2h bi

Bi
) > 0 (i = 1, . . . ,m),

and ℜ(u) < 1
2
. Then for y≥ 0,

eixxuγm,n
p,q

[

z xh
∣

∣

∣

∣

(a1,A1; ζ1; y), (aj,Aj; ζj)2,n, (aj,Aj)n+1,p

(bj,Bj)1,m, (bj,Bj;ηj)m+1,q

]

=
1

2u–1Ŵ( 1
2
)

∞
∑

ϑ=0

re
1
2 (u+r)iπ Jr(x)

× γ
m+1,n+1
p+2,q+1

[

z

(

eiπ/2

2

)h∣
∣

∣

∣

(a1,A1; ζ1; y), (–u – r + 1,h; 1), (aj,Aj; ζj)2,n,

(–u + 1
2
,h), (bj,Bj)1,m,

(aj,Aj)n+1,p, (r – u + 1,h)

(bj,Bj;ηj)m+1,q

]

. (32)

Remark Setting ζj = 1 (j = 1, . . . ,n) and ηj = 1 (j =m+1, . . . ,q) in Theorems 3.3 and 3.4, we

obtain Theorems 3.1 and 3.2, respectively.

4 Particular cases

The results presented in this paper are of a very general nature, and their particular cases

are scattered throughout the literature. Particular cases of expansion are mentioned only

for the incomplete Ŵm,n
p,q function.
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If we assign specific values to the parameters of the incomplete Ŵm,n
p,q function, then

this function converts into the incomplete Meijer (Ŵ)G-function, incomplete Fox–Wright

p�
(Ŵ)
q -function, and incomplete generalized hypergeometric pŴq function. In this Section,

we establish integral formulas and expansion formulas for these incomplete functions as

particular cases of Theorem 2.1 and Theorem 3.1.

(1) Letting Aj = 1 (j = 1, . . . ,p), Bj = 1 (j = 1, . . . ,q), and h = 1, the function (9) reduces

into the incomplete Meijer (Ŵ)G-function as follows:

Ŵm,n
p,q

[

z x

∣

∣

∣

∣

(a1, 1, y), (aj, 1)2,p

(bj, 1)1,q

]

= (Ŵ)Gm,n
p,q

[

z x

∣

∣

∣

∣

(a1, y), (aj)2,p

(bj)1,q

]

. (33)

Using relation (33) in (18) and (25), respectively, we obtain the following corollaries.

Corollary 1 Letℜ(ϑ) > 0, 2(m+n) > p+q, | arg(z)| < (m+n– p
2
– q

2
)π ,ℜ(u+v+bi) > –1, i =

1, . . . ,m, and ℜ(u) < – 1
2
. Then

∫ ∞

0

eixxuJv(x)
(Ŵ)Gm,n

p,q

[

z x

∣

∣

∣

∣

(a1, y), (aj)2,p

(bj)1,q

]

dx

=
e
1
2 (u+v+1)iπ

2u+1Ŵ( 1
2
)

(Ŵ)

Gm+1,n+1
p+2,q+1

[

z

(

e
iπ
2

2

)
∣

∣

∣

∣

(a1; y), (–u – v), (aj)2,p, (v – u)

(–u – 1
2
), (bj)1,q

]

. (34)

Corollary 2 Let ℜ(ϑ) > 0, 2(m + n) > p + q, | arg(z)| < (m + n – p
2
– q

2
)π , ℜ(u + bi) > 0, i =

1, . . . ,m, ℜ(u) < 1
2
, and r = μ + 2ϑ + 1. Then

eixxu(Ŵ)Gm,n
p,q

[

z x

∣

∣

∣

∣

(a1; y), (aj)2,p

(bj)1,q

]

=
1

2u–1Ŵ( 1
2
)

∞
∑

ϑ=0

re
1
2 (u+r)iπ Jr(x)

× (Ŵ)Gm+1,n+1
p+2,q+1

[

z

(

eiπ/2

2

)
∣

∣

∣

∣

(a1; y), (–u – r + 1), (aj)2,p, (r – u + 1)

(–u + 1
2
), (bi)1,q

]

. (35)

(2) Taking m = 1 and n = p, replacing q with q + 1, and taking appropriate parameters

such as z = –z, aj → (1 – aj) (j = 1, . . . ,p), and bj → (1 – bj) (j = 1, . . . ,q), the

incomplete H-function (9) converts to the incomplete Fox–Wright p�
(Ŵ)
q -function

(see [23]):

Ŵ
1,p
p,q+1

[

–z

∣

∣

∣

∣

(1 – a1,A1, y), (1 – aj,Aj)2,p

(0, 1), (1 – bj,Bj)1,q

]

= p�
(Ŵ)
q

⎡

⎢

⎣

(a1,A1, y), (aj,Aj)2,p;

z

(bj,Bj)1,q;

⎤

⎥

⎦
. (36)

Using relation (36) in (18) and (25), respectively, we get the following corollaries.
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Corollary 3 Letℜ(ϑ) > 0, h > 0, | arg(–z)| < π ,ℜ(u+v+h (1–bi)
Bi

) > –1, andℜ(u) < – 1
2
.Then

∫ ∞

0

eixxuJv(x)p�
(Ŵ)
q

⎡

⎢

⎣

(a1,A1; y), (aj,Aj)2,p;

z xh

(bj,Bj)1,q;

⎤

⎥

⎦
dx

=
e
1
2 (u+v+1)iπ

2u+1Ŵ( 1
2
)
p+2

�
(Ŵ)
q+1

⎡

⎢

⎢

⎣

(a1,A1; y), (–u – v,h), (aj,Aj)2,p, (v – u,h);

z( e
iπ
2

2
)h

(–u – 1
2
,h), (bj,Bj)1,q;

⎤

⎥

⎥

⎦

. (37)

Corollary 4 Let ℜϑ > 0, h > 0, | arg(–z)| < π , ℜ(u + v + 2h (1–bi)
Bi

) > 0, ℜ(u) < 1
2
, and r =

μ + 2ϑ + 1. Then

eixxup�
(Ŵ)
q

⎡

⎢

⎣

(a1,A1; y), (aj,Aj)2,p;

z xh

(bj,Bj)1,q;

⎤

⎥

⎦

=
1

2u–1Ŵ( 1
2
)

∞
∑

ϑ=0

re
1
2 (u+r)iπ Jr(x)

× p+2�
(Ŵ)
q+1

⎡

⎢

⎣

(a1,A1; y), (–u – r + 1,h), (aj,Aj)2,p, (r – u + 1,h);

z( e
iπ/2

2
)h

(–u + 1
2
,h), (bj,Bj)1,q;

⎤

⎥

⎦
. (38)

(3) Further, substituting h = 1, Aj = 1 (j = 1, . . . ,p), and Bj = 1 (j = 1, . . . ,q) into (37) and

(38) and using the relation (see [23])

Ŵ
1,p
p,q+1

[

–z x

∣

∣

∣

∣

(1 – a1, 1, y), (1 – ai, 1)2,p

(0, 1), (1 – bi, 1)1,q

]

= C
p
q pŴq

⎡

⎢

⎣

(a1, y),a2, . . . ,ap;

z x

b1, . . . ,bq;

⎤

⎥

⎦
, (39)

where C
p
q =

∏p
j=1 Ŵ(aj)

∏q
j=1 Ŵ(bj)

, we obtain the subsequent corollaries.

Corollary 5 Let ℜ(ϑ) > 0, | arg(–z)| < π , ℜ(u + v + (1 – bi)) > –1, and ℜ(u) < – 1
2
. Then

∫ ∞

0

eixxuJv(x)pŴq

⎡

⎢

⎣

(a1, y),a2, . . . ,ap;

z x

b1, . . . ,bq;

⎤

⎥

⎦
dx

=
e
1
2 (u+v+1)iπ

2u+1Ŵ( 1
2
)

Ŵ(–u – v)Ŵ(v – u)

Ŵ(–u – 1
2
)

× p+2Ŵq+1

⎡

⎢

⎣

(a1, y), (–u – v),a2, . . . ,ap, (v – u);

z( e
iπ/2

2
)

(–u – 1
2
),b1, . . . ,bq;

⎤

⎥

⎦
. (40)



Meena et al. Advances in Difference Equations        ( 2020)  2020:562 Page 11 of 13

Corollary 6 Letℜ(ϑ) > 0, | arg(–z)| < π ,ℜ(u+v+2(1–bi)) > 0,ℜ(u) < 1
2
, and r = μ+2ϑ+1.

Then

eixxupŴq

⎡

⎢

⎣

(a1, y),a2, . . . ,ap;

z x

b1, . . . ,bq;

⎤

⎥

⎦

=
1

2u–1Ŵ( 1
2
)

∞
∑

ϑ=0

re
1
2 (u+r)iπ

Ŵ(1 – u – r)Ŵ(r – u + 1)

Ŵ(–u + 1
2
)

Jr(x)

× p+2Ŵq+1

⎡

⎢

⎣

(a1, y), (–u – r + 1),a2, . . . ,ap, (r – u + 1);

z( e
iπ/2

2
)

(–u + 1
2
),b1, . . . ,bq;

⎤

⎥

⎦
. (41)

(4) If we put y = 0 in (9), then the incomplete H-function Ŵm,n
p,q (z) converts into the

generally known Fox H-function:

Ŵm,n
p,q

[

z

∣

∣

∣

∣

(a1,A1; 0), (aj,Aj)2,p

(bj,Bj)1,q

]

=Hm,n
p,q

[

z

∣

∣

∣

∣

(aj,Aj)1,p

(bj,Bj)1,q

]

.

Using this relation in (25), we obtain the result previously derived by Bajpai [5, p. 44, (3.1)],

eixxuHm,n
p,q

[

z xh
∣

∣

∣

∣

(aj,Aj)1,p

(bj,Bj)1,q

]

=
1

2u–1Ŵ( 1
2
)

∞
∑

ϑ=0

re
1
2 (u+r)iπ Jr(x)

×Hm+1,n+1
p+2,q+1

[

z

(

eiπ/2

2

)h∣
∣

∣

∣

(–u – r + 1,h), (aj,Aj)1,p, (r – u + 1,h)

(–u + 1
2
,h), (bj,Bj)1,q

]

. (42)

(5) In (25), setting Aj = 1 (j = 1, . . . ,p), Bj = 1 (j = 1, . . . ,q), and y = 0, assuming h to be a

positive integer, using the relation

Ŵm,n
p,q

[

z

∣

∣

∣

∣

(a1, 1; 0), (ai, 1)2,p

(bi, 1)1,q

]

=Gm,n
p,q

[

z

∣

∣

∣

∣

a1, . . . ,ap

b1, . . . ,bq

]

,

and solving with the assistance of [11, p. 4, (11)] and [11, p. 207, (1)], we get the result

obtained by Bajpai [4, p. 287, (3.1)]:

eixxuGm,n
p,q

[

z xh
∣

∣

∣

∣

a1, . . . ,ap

b1, . . . ,bq

]

=
hu–1(2π )

1–h
2

2u–1Ŵ( 1
2
)

∞
∑

ϑ=0

re
1
2 (u+r)iπ Jr(x)

×Gm+h,n+h
p+2h,q+h

[

z

(

heiπ/2

2

)h∣
∣

∣

∣

�(h, 1 – u – r), (aj)1,p,�(h, 1 – u + r)

�(h, 1
2
– u), (bj)1,q

]

, (43)
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where �(h,a) represents the set of parameters ( a
h
), ( a+1

h
), . . . , ( a+h–1

h
), and 2(m + n) > p + q,

| arg(z)| < (m + n – 1
2
p – 1

2
q)π , ℜ(u + hbi) > 0 (i = 1, . . . ,m), ℜ(u) < 1

2
, r = μ + 2ϑ + 1.

We summarize this paper by stating that by using the orthogonality of the Bessel

function, we discussed the integral formulas and expansion formulas of incomplete H-

functions and incomplete H-functions. In Sect. 4, we also obtained some particular cases

of our main results and some known ones. The results introduced in this paper are new

and can be used to subsidiary different new and known outcomes having applications in

science and engineering.
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