
Javier Jimenez

Jose L. Navalon

724

Some Experiments in Image Vectorization

The application of vectorization algorithms to digital images derived from natural scenes is discussed. It is argued that the

fractal nature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof these scenes precludes some of the savings in storage expected from vector over raster representation,

although considerable savings still result. Experimental results are given. Algorithms for contour following, line thinning, and

polygonal approximation well adapted to complex images are presented. Finally, the Map Manipulation System, an

experimental program package designed to explore the interaction between vector and raster information, is described

briefly.

Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
It is often convenient to transform digital images between
raster format, in which the images are represented by
two-dimensional arrays of intensity values, and some vector
code, such as a set of polygonal approximations to the
contours of homogeneous regions. Both representations have
their advantages, and in many applications they coexist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[l] .
In this paper we refer to the operation of going from raster to
vector format as vectorization. This operation is well under-
stood in principle, but its application to complicated images
presents practical problems, some of which are discussed
here; also, there is still a lot of room for improvement in the
efficiency of the algorithms used in the process, and some
new algorithms, or variants of old ones, are described. Finally
we give a short overview of the Map Manipulation System, a
program package which is being developed at the IBM
Scientific Center in Madrid as an experimental vehicle for
the study of the vector-raster interface and which has been
used in a variety of studies during the last few years [2].

A particularly interesting subject is the amount of space
needed to store an image. It is widely felt that the code for a
vector image is much more compact than that for a raster
one, and this has been mentioned often as the key advantage
of the former over the latter, especially when data base
applications are involved [3]. The basic argument is that, if
the linear dimension of a region is D, measured in pixels, its
area, and therefore the number of bits needed to store it as a

binary array, is proportional to Dz, while its contour contains
only a number of points proportional to its perimeter, which
should be of order D. Since each point needs on the average
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx log, (D) bits to encode its coordinates, the reduction in
storage achieved by the contour representation should be a t
least of order Dllog, (D), which can be substantial for large
regions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn practice, contours are often approximated by
polygons (linear or otherwise), and only the vertices of the
polygons have to be retained; the final amount of storage
depends crucially on the complexity of the image and on the
degree of approximation desired and, depending on these
factors, it might be desirable to use different types of coding.
We address this question in the next two sections before
discussing the details of how contours are actually obtained.

Approximation and storage compression

Consider a line in a digital image. If certain smoothness
conditions are satisfied, it is possible to show that its length L,

as measured by the total number of points, is proportional to
its outer dimension D, defined, for instance, as the square
root of the area of the circumscribed rectangle. As noted
above, such a line can be coded in 2L x log, (D) bits by just
listing the coordinates of all its points. Chain codes [4] are
somewhat more compact since only the direction to the next
pixel has to be stored at each point and, as there are usually
only eight different directions, only 3 L bits are required. A
much shorter representation can be achieved by approximat-

0 Copyright 1982 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

JAVIER JIMENEZ AND JOSE L. NAVALON IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

ing the line by some piecewise smooth function and storing
only the discontinuity nodes and the parameters of the
interpolating functions. Under this scheme the number of
nodes clearly depends on the degree of approximation
desired; this dependence can be complicated but, if the
approximation error is far from any of the scales characteris-
tic of the original line, it follows from simple dimensional
arguments that the number of nodes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN (d) , associated with
an approximation threshold d should behave as

N (d) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- d ~ ~ H (1)

for some exponent H . The argument applies only to problems
which are random enough that reasonably different scales
can be considered independent, such as turbulent motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5]

or, presumably, physical landscapes. Under these circum-
stances the ratio between the number of nodes needed for two
different approximations can only depend on the ratio of the
accepted errors, and the only functions satisfying that condi-
tion for all possible pairs of values are powers. Note that the
argument breaks down as soon as the error approaches a
preferred scale of the problem. In a digital image two such
scales are the outer dimension of the object and the pixel size.
It is shown below that, far from those limits, Eq. (1) is
approximately satisfied in all the cases studied. The constant
of proportionality can be estimated by noting that, for large
approximation errors (of order D) the whole line is well
represented by a single segment and, therefore,

N (d) (D / d) H . (2)

In digital lines the accuracy desired is often one pixel, which
is in a sense the “intrinsic” accuracy of the original image.
The storage needed to code all the nodes is then proportional
to

D H log, (D L (3)

which is to be compared with D 2 for the raster representa-
tion. Whether Eq. (3) represents a savings of storage or not
depends on the value of H . A case which is especially well
studied is the approximation of smooth lines by polynomial
splines [6 , 71. The results depend on the approximation
norm used; i n this paper we always measure error by the
maximum Euclidean deviation between the original line and
the approximation. This norm appears to be more appropri-
ate for natural lines, which are often discontinuous and
convoluted, than “smoother” norms like the mean square
deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI . Under thoseconditions, and for splines of order
n, it can be shown that [7]

H = I / (n + I) , (4)

so that linear polygons use a number of vertices which is only
proportional to the square root of their size.

Unfortunately, this estimate is not applicable to lines
derived from natural scenes. Equation (4) requires that the

// * +* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw * * *

s
Figure 1 Definition of error in polygonal approximation algo-
rithm.

original line together with its (n + 1)th first derivatives be
continuous and bounded, and natural lines are often so
convoluted and full of small detail that they cannot even be
considered differentiable. When such “fractal” lines are
approximated by polygons with sides of fixed length, the
number of sides needed follows a law of the type (I) with an
exponent which can be identified with the fractal dimension
of the line [9]. Smooth lines have a fractal dimension of 1,
while more complicated objects have higher dimensions.
When such lines are approximated by polygons using the
maximum deviation norm, we can still expect a dependency
of the type (I) , but the specific value of the exponent given in
(4) cannot be expected to hold anymore.

Some experimental exponents found in the approximation
of natural lines are given in the next section. They are found
to be of the same order as the measured fractal dimension,
although not quite equal to it.

Experimental results

The different possible implementations of the polygonal
approximations discussed previously can be classified into
two broad groups, according to whether the positions of the
nodes are optimized globally using some iterative process
[S, IO] , or computed sequentially along the curve by opti-
mizing each node as a function of the known position of the
last one [111. Algorithms of the first kind can generally be
shown to converge to an optimum, at least if some suitable
initial guess is available, while those of the second are
probably always suboptimal due to their essentially local
nature. However, sequential algorithms are usually much
faster than iterative ones and have been found experimen-
tally to behave almost as well [1 11.

The method used for our experiment is a sequential one.
Briefly, a point on the curve to be approximated is chosen as
origin, and a search is made for the farthest point along the
curve for which the approximation error does not exceed a
given threshold (see Fig. 1). That point is stored as a node 725

IBM J. RES. DEVELOP. VOL 26 NO. 6 NOVEMBER 1982 JAVIER JIMENEZ AND JOSE L. NAVALON

726

Water Rice

Swamp Unclassified

Figure 2 Classification map extracted from a LANDSAT image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[141. Several classes, used in the text, are shown by themselves. Image size is
380 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA450.

and used as a new origin. We treat the error associated with a point and consider only points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the original curve as
segment as a nondecreasing function of the position of its end candidates for nodes. The first assumption holds strictly only

JAVIER JIMENEZ A N D JOSE L. NAVALON IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

for sufficiently short segments and for smooth curves but is
true on the average in most situations. It represents neverthe-
less the most important tradeoff of our algorithm in terms of
optimization performance; the second one, on the other hand,
does not introduce any substantial degradation and simplifies
the computation considerably. Because of these two assump-
tions, a binary search algorithm can be used in the optimiza-
tion, requiring only a logarithmic, as opposed to linear,
number of trials to find the farthest allowable point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA121.

Binary searches can be initiated in several ways, and the
results can depend on the initial guess. To check whether this
was so in our case, we tested three different starting methods
for the search of each segment. In the first one, the search
was always started from the end of the line, and the
algorithm was allowed to proceed inwards; in the second, the
next contiguous point was chosen, and the search worked by
doubling the distance until the approximation threshold was
first exceeded; in the third, the number of pixels used for the
last segment was used as an initial guess for the length of the
next one, and was doubled or halved depending on whether
the resulting error was acceptable or not. In all these cases,
the search ended with a classical complete binary search

[121.

The results obtained by the three methods were generally
statistically indistinguishable, providing some confidence
that the general search strategy was not unduly biased in any
direction. This is also one of the main reasons to assume that
the monotonicity assumption discussed above does not intro-
duce a serious degradation of the approximation. Since the
extrapolation method converges somewhat faster than the
other two, it was the one used in all the results presented in
this work.

It can easily be shown that sequential algorithms with
binary search need, to approximate a curve of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N nodes, a number of operations that is proportional to L,
while those using linear searches need L2N and global
methods use L times the number of trials needed for the
iteration to arrive at the solution in an N-dimensional space.
In the usual case in which the simplex method is used as the
iteration method there is no theoretical estimate for this
number, but a practical bound is usually given as linear in N
[131, making those methods almost as good as linear
searches.

We have tested our algorithm on lines arising from two
different natural images. The first one is a thematic map
derived from a Landsat scene [141. The map shows different
land use classes which span a wide range of “smoothness” or
“fractality” when inspected visually, and the outlines of
those classes are used as the test lines (see Fig. 2). No effort
was made to smooth the regions or to filter the “salt and

Figure 3 Contour lines in a portion of a digitized map. Image size
is 400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 400.

pepper” noise before extracting the contours. The second
image is a direct raster scan of the contour lines in a
pre-existing printed map published by the National Geo-
graphic Institute of Spain. A reproduction of the original
scribe sheet was used, instead of the final map, to avoid
interference from other symbols or types of objects (see
Fig. 3).

In Fig. 4 we show results on the evolution of the number of
nodes as a function of the approximation error. That number
is normalized with the total number of pixels in the original
lines, and a large circle (300 pixels in radius) is included for
comparison. It is clear that errors below and above one pixel
behave differently, obviously because, under that limit, the
approximating polygon has to follow all the stray irregulari-
ties introduced in the curve by the digitization, while above it
those irregularities are bypassed and only the “natural”
shape of the line remains. For large error thresholds the
circle follows well the square root law given by Eq. (4) for
straight line polygons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n = 1) and actually approaches
closely the theoretical optimum solution (a regular polygon)
given by the dashed line in the figure. All other lines are,
however, much steeper. While they can still be represented
(for large thresholds) by functional forms of the type of Eq.
(I) , the exponents, H , are greater than 1/2; Table 1 gives a
list of those exponents.

Following the reasoning that led to Eq. (3), the number of
nodes needed for an approximation threshold of one pixel
should approximately satisfy the equation 727

JAVIER JIMENEZ AND JOSE L. NAVALON IBM J . RES. DEVELOP. VOL. 26 NO. 6 w NOVEMBER 1982

' \\

I I I l l I I I l l
0 1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI0

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(pixels)

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Number of nodes in approximating polygons as a func-
tion of error threshold. Test contours are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, water; f, rice; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,
unclassified; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, circle; - . . -, optimum circle.

I

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 Number of nodes in different contours as a function of
the degree of fractality (approximation error = 1 pixel in all cases).

728 Continuous line is Eq. (5).

Table 1 Characteristics of the different classes use
imation experiments. Symbols are defined in the text

d in1 the approx-

Class N (I) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD H Fd F, L Area

Water 590 400 1.01 1.12 1.17 4539 83200
Rice 2568 400 1.22 1.88 1.63 12280 36800
Swamp 1712 400 1.29 2.05 1.77 7484 8900
Unclassified 5709 400 1.68 1.75 1.76 21269 50500
Contour line 283 400 1.00 1.20 1.40 1692 -

Circle 55 636 0.50 1.00 1.00 1886 -

H = log (N)/log (Dl, (5)

where D is a typical outer dimension. Both sides of this
equation are compared in Fig. 5. The characteristic dimen-
sion used for both images is the square root of image area
(400 pixels), while for the circle we use the diameter. It is
clear that the relation is approximately satisfied and can be
used to give a rough a priori estimate of storage, although it
is also clear that there is substantial scatter due to the
particular shape of the objects which cannot be predicted in
this way.

Of some theoretical interest is the relation of the exponent
H in Eq. (1) to the fractal dimension. This latter quantity can
be estimated from the behavior of the number of vertices of
the approximating polygons as a function of the average

length s of their sides. Directly from the definition [9], this
dependence should be of the form

N (s) - s-q

where F is now the fractal dimension. This power law
dependence is indeed found in our experiments (for approxi-
mation errors bigger than one pixel), and the corresponding
dimension is given as Fd in Table 1 . The same quantity can be
estimated directly by approximating the lines by polygons
with sides of uniform length s; this measure is given in the
table as F,. Even if there seems to be a rough correlation
among the three quantities, it is clear that H and F are
basically independent parameters.

Contour following

We turn now to the problem of how contours are extracted
from images. We assume that all images have already been
put into binary form and consist of an object (1) separated
from a background zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) ; the way these binary forms are
obtained is the subject of segmentation in classical image
analysis and is treated in many places [151. From the point of
view of vectorization, images can be classified into two broad
groups. Those in the first group contain mainly extended
regions with well defined interiors and can be represented
usefully by their outlines (Fig. 2). Those in the second consist

JAVIER JIMENEZ A N D JOSE L. NAVALON IBM J. RES. DEVELOP. VOL. 26 NO 6 NOVEMBER 1982

* * * 8*”4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZV
* * * * * /A

7 6 5

* * * * * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 Pixel neighborhood and search order in the contour-
following algorithm.

mostly of elongated features (Fig. 3). The outlines of these
features are not meaningful descriptors, and the regions are
represented better by their skeletons or median lines. The
extraction of these skeletons is usually referred to as thinning

Contour following is a relatively easy operation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA com-
monly used method [171 explores in rotational order the
eight neighboring pixels of a point already known to be on the
contour and looks for a transition from outside to inside the
object (see Fig. 6). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn Fig. 7 we give an algorithm based on
this idea. The image is scanned in row order, and the
contour-following algorithm is assumed to be entered each
time a transition from 0 to I is detected. From then on the
program tracks the outline and returns only when a closed
contour has been completed. To simplify the presentation we
have ignored complications arising from the object reaching
the edge of the image, and we have assumed that no
buffering is needed and that the whole image can be stored in
main memory. Both of these difficulties can be overcome
easily [2] .

Some features of the algorithm are interesting. The state-
ment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnormal chooses the current exterior normal to the
object as the starting point for the next search. This is done
based on the knowledge of the direction of the last segment of
the contour and ensures that the whole contour is followed
without accidental shortcuts in cases like the one in Fig. 8. In
murk some of the pixels already recognized as forming part
of the outline are marked. This is necessary to avoid re-
entering the same contour several times in the course of
scanning the image but has to be done carefully since some
pixels may have to be reused, not only in the same contour
(Fig. 8), but even in different ones (Fig. 9). The solution is to
mark with a different code (2) points in the left leading edge
of the object, thereby making them unavailable as 0-1
transitions in the scanning while retaining them as 0 to non-0
transitions for the contour follower. Note that the introduc-

IBM J . RES. DEVELOP. VOL 26 NO. 6 NOVEMBER 1982

array image,list,point(2),dir(2);
input(point); output(list,klis,ext);

first=:true; ext=:false; fin=:false;
dir=:7;
klis=:l; list(l)=:point;

dir=:l +mod(dir,8);
i f image(point+dir) # 0 then go to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkeep;

hole: if first and dir= 2 then ext = :true;
mark: if dir = 8 then image(point) = :2;

contour: begin;

search: do k=: l to 7;

end do;
return;

keep: point = :point +dir; first =:false;
if fin and point=list(2) then return; else fin=:false;
if point=list(l) then fin=:true;

normal: dir=:dir +4;

update: klis=:klis+l; list(klis)=:point;
go to search;
end contour;

Figure 7 A contour-following algorithm: directions of movement
are defined in Fig. 6 .

**** ****
*

Figure 8 All pixels marked with A are traversed more than once in
following the contour of the region.

** **

**
**

**

+*****
* *

* * * *I

* * * *
********** ********* *

******** ****
Figure 9 All pixels in this region belong to at least two different
contours.

tion of the new code requires that the image use at least two
bits per pixel. The algorithm ends when two consecutive
points are found to coincide with the first two points of the
contour. 729

JAVIER JIMENEZ A N D JOSE L. NAVALON

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResult of contour extraction on several of the classes in
Fig. 2. Map was generated using the Map Manipulation System. ”

Water

Rice

Sand

Others

found to be on the edge, but not on the axis, of the object. The
process is repeated until only axial points are left in the
image. Since all the pixels in the object have to be checked,
the number of operations scales with its area (in fact, with
the area times the average thickness of the object) and, since
the process is iterative and global, it is difficult to adapt it to
cases in which the whole image cannot be held in main
memory. Moreover, once the object has been thinned, the
result is still in raster form and has to be vectorized.

f

Figure 11 Definition of a point in the skeleton and the approxima-
tion used in the thinning algorithm.

Several refinements can be introduced in this basic proce-
dure. As an example, it is possible to mark each contour as an
external outline or as an interior “hole” by analyzing the
search around the first point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(hole statement in Fig. 7), thus
saving considerable processing in some later operations. It is
also possible to do a zero error polygonal approximation
while the contour is being generated by keeping only those
points in which the direction changes. An example of the use
of this algorithm is given in Fig. 10.

Thinning

Contour following is a relatively fast process. Each pixel in
the contour needs to be scanned only once, and the total
number of operations is proportional only to the length of the
final contour. Thinning is a harder problem; classical thin-
ning algorithms [161 work by running a small window (e.g.,

730 3 x 3) over the image and erasing those pixels that are

JAVIER J IMENEZ A N D JOSE L. NAVALON

Recently a new class of thinning algorithms has been
proposed that uses only the contour of a region to estimate its
skeleton [18, 191. In fact skeletons were originally defined in
terms of the outline only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20] . A commonly accepted defini-
tion is the set of all those points interior to the object and
equidistant to at least two points of the contour along interior
normals. This definition is difficult to implement directly,
but a good approximation is easily computed, at least in those
cases in which the object is thin (a few pixels wide). Those
are, of course, the cases in which the skeleton representation
is most interesting. These algorithms present several advan-
tages with respect to the old ones. First, the vectorization is
done at the very beginning of the process, and the storage
requirements are much reduced during the whole operation.
Second, all independent contours are now represented, and
processed, as separate entities so that, even if buffering is
needed for the image, the whole list of points for a single
contour usually fits in memory and the thinning algorithm
need not be buffered at all. Lastly, the number of operations
scales with the perimeter of the contours. In fact, since we
will see that the algorithm can run on polygonalized data, the
storage estimates given in the first part of this paper apply to
the savings in computer time.

Consider now the object in Fig. 11. At point A we draw the
interior normal to the contour and extend it until it intersects
the opposite side of the outline at B. The midpoint, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, of AB
is taken as a point in the skeleton. It is clear that, according
to the definition, the true skeleton would run through P,
defined by AP = PD, but, for objects which are thin with
roughly parallel sides, the error is small. In fact, even in the
case in which the angle formed by the segments on both sides
of the contour is 45 degrees, the error is less than 1/4 the
thickness of the object and is therefore less than one pixel in
most practical cases.

In applying these ideas some precautions must be taken to
avoid spurious intersections with distant contours (see GH in
Fig. 11). These can be avoided by defining an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori

maximum local thickness for the object and discarding those
intersections that occur beyond that distance [181. This
thickness can be estimated by inspection or by comparing,
for example, the area contained in the contour with its
perimeter. In fact, the possibility of defining a characteristic

IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

thickness, far from being a weakness of the algorithm, can be
considered a strong point. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA thin object is only thin in a
relative sense, and some outside criterion has to be used to
decide whether a local thickening of the object should be
interpreted as a short branch or just as a slightly wider
section (see Fig. 12).

The general structure of a thinning algorithm based on
these ideas is described now; a more detailed description can
be found in [2]. Consider a ribbon-like object whose contour
has been digitized and approximated by a polygon (Fig. 13).
We assume that the contour contains two parts opposite to
each other, which we identify as outer and inner parts. These
parts can belong to the same connected contour or to
different ones and, in identifying them, the hole labeling
facility of the contour follower can be of great help. The
algorithm works by casting normals from the midpoints of
the segments in the outside contour towards the inner one
and then projecting the vertices of both contours parallel to
those normals.

We first choose an arbitrary segment in the outer contour
(1-2 in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13) and construct the inwards-facing normal at
its midpoint. Note that the direction of this normal is known
from the sense in which the contour was followed. If the
normal crosses a segment on the inner contour within the
prescribed distance, this segment (51-52) is chosen as the
inside starting point. Finding this first segment involves an
exhaustive search through all the candidates in the inside
contour, but once it is found all other searches are sequential
and involve only a few segments. The correct identification of
this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirst segment is also very important for the subsequent
behavior of the algorithm; i f the first pair is not chosen right,
the pairing of the following segments can be led completely
astray. To avoid this we try to find a segment that is as "well
behaved" as possible. Thus, i f its mid-normal does not
intersect any segment or i f there is any doubt as to which
intersection to choose, the starting segment chosen i n the
outer contour is skipped and another one is tested. Since the
subsequent algorithm runs over all unused parts of the
contour, a segment skipped in this fashion will eventually be
found again and completed.

The midpoint normal is the basic direction in which all
points are projected while processing an outside segment. Its
center point is considered to belong to the skeleton. Then, the
two endpoints of the inside segment (51 and 52) are
projected back into the outside and, i f their projections fall
within the outside segment, their center points are also added
to the skeleton. The next inner segments (50-51, etc.) are
then selected in sequential order, and the projection step is
repeated as long as the base of all the projections falls within
the segment (1-2). When one of them does not (point 50 i n
the figure), the endpoint of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoutside segment being

IBM J. RES. DEVELOP. VOL 26 NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 NOVEMBER 1982

4

Figure 12 Thin object and skeleton. Branch A can be suppressed
by selecting a wider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori thickness for the object.

J :

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50

17

Figure 13 Definition of the thinning algorithm described in the
text.

processed is projected along its mid-normal, its center point
is added to the skeleton, the next outside segment is selected,
and the process is repeated with the new normal. This time,
however, it is only necessary to search sequentially in the
inside contour starting with the last segment used.

In this way it should be possible to produce a skeleton in
which all the inside and outside segments are represented. 73 1

JAVIER JIMENEZ AND JOSE L. NAVALON

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResult of the thinning algorithm on a complex line.
Different branch points are treated in different ways after the
thinning.

CENTRO DE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINVESTIGACION UAMiIBM (MADRID)
CURVAS DE NIVEL DE PlAPA 1:200.000 C A S 0 TEST

I 1
a 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 KPI

Figure 15 Thinned version of map in Fig. 3.

When a gap occurs, as with segment (2-3) in Fig. 13, a
branch is initiated and the current arc o f the skeleton is
considered complete. The process of initiating a branch is
equivalent to the one of starting a new skeleton, although
“used” segments are, of course, no longer available. The
construction of an arc ends either when a branch point is
reached, as above, or in a tip; a tip is a point in which the
inside contour runs into the outer one. When all the segments
in the contour have been used, the only operation remaining
is to find common points to join branches together. The
solution given in Fig. 13 (the center of gravity of all
endpoints) is probably as good as any other.

The result of the thinning is now a set of polygons
connected into a network like the one in Fig. 14. Some 732

IAVIER JIMENEZ AND JOSE L NAVALON

branching points (A) are intrinsic to the problem, and their
treatment depends on the specific application, but others (B
or C) arise from noise in the image and should be corrected.
There are a variety of ways in which this can be done.
Perhaps the simplest is to consider the network as an
algebraic graph and to use a path-tracing method to optimize
the result. The little branch in C is easily discarded by noting
that it is too small and isolated. The loop in B can be fixed by
taking the longest available path. The result of thinning the
line image of Fig. 3 is shown in Fig. 15.

The Map Manipulation System

An example of an integrated system using these algorithms is
the Map Manipulation System, which is a program package
under development at the IBM Madrid Scientific Center
with the purpose of exploring the interrelations between
raster and vector graphic information. Its nucleus is a series
of vectorization and polygon manipulation algorithms that
allow the generation of graphic structures either from images
or by integration from outside sources. The package is
interfaced with a set of interactive graphic display routines,
which work either on a color raster display terminal (IBM
7350 or RAMTEK 9351) or on a black and white
calligraphic screen (IBM 3277 Graphic Attachment), and
with a small data base in which vector graphics, some
alphanumeric information, and raster images are held in the
form of standard CMS files.

The whole system is driven by a monitor in which func-
tions are chosen from a set of hierarchically organized
menus; a batch version of the graphic programs also exists.
The following is a short list of the functions available in the
system:

Load and create external files containing graphic, alpha-

Display and interactively edit images if the appropriate
numeric, or raster image data.

terminal is available.
Manipulate images to prepare them for vectorization.
Perform contour following, thinning, and polygonal
approximation. These are the operations discussed in this
paper.

information.
Create and update an internal graphic data base using this

Edit this internal data base [21]. Editing functions
include

Display and graphic interrogation functions. In a raster
terminal, vector information can be overlaid on images.
Deletion, merging, and renaming of graphic objects.
Geometric modification of objects.
Introduction of alphanumeric labels associated with
specific points.

The system has been developed as an experimental tool
and has grown mainly as a result of the requirements of

IBM I. RES. DEVELOP. VOL. 26 . NO. 6 NOVEMBER 1982

different users. The primary interest was in geographic work,
and most of the work done has been in this area. Usage to
date includes the direct digitization of pre-existing maps, the
generation of land use maps from Landsat and aircraft
images, and the integration of both types of information.
Parts of the system have been used in other contexts; the
polygonal approximation and contour following have been
used in quantifying fracture patterns in rocks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[22]. A
somewhat unexpected application has been as a graphic aid
in the display of purely raster information; the contour
follower has been adapted as a contour line generating
algorithm for general images [23], and the whole system has
been used to generate three-dimensional views of a turbulent
flow from a series of parallel sections in a high-speed film

~ 4 1 .

Conclusions

We have shown that binary images can be vectorized
efficiently and economically. The resulting representation
can generally be stored in much less space than would be
required for the raster image. The exceptions are very
complex or “busy” images. Both the amount of work needed
to vectorize an image and the space needed to store the result
scale roughly with the length of resulting lines. We show in
the first part of the paper that this length is only linear in the
size of the image for relatively smooth cases, but that for very
complex cases it grows almost as fast as the area. It might not
be worthwhile to code these images in vector form. On the
other hand, differentiable contours can be coded as polygons
with a number of vertices that grows only with the square
root of their size.

At this point some reference must be made to alternative
representation schemes for digital images. In recent years, a
lot of attention has been paid to the statistical compression of
images by a variety of methods that rely on the fact that
images are not completely random zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2 5] . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn fact, this is the
same reason that polygonal contour approximations need less
storage space than the original images. The compression
achieved by these statistical methods can be very important
and, in some cases, on the same order as the ones presented
here. In [26] a comparison is made between some particular
polygonal and statistical representation schemes. The results
are similar to the one expressed above; relatively simple
images are handled best by polygonal approximations, while
complex ones are represented better by other schemes.
Statistical compression is not limited to two-dimensional
images; [27] studies the best statistical representation of
chain codes, showing that only two bits per pixel (instead of
three) are needed for them.

In coding a particular class of images all these methods
have to be considered, but it would be a mistake to judge
them only in terms of the final storage requirements. In most

statistical representations the image has to be decoded before
it is useful for some applications. As an example, in com-
puting the intersection of two regions in raster form, or in
counting the number of independent regions of some kind,
the image has to be decoded into full two-dimensional
representation. This can be inconvenient when not enough
main memory is available to hold the entire image and the
operation does not adapt easily to buffering. On the other
hand, most geometrical operations can be performed directly
on polygons, and in this sense polygonal approximations have
the advantage of being in a “final” form.

Before full advantage of the vector representation can be
realized, a complete set of polygon manipulation algorithms
has to be developed. This subject constitutes the area of
computational geometry [3] and is, at present, one of the
most active areas of research in computer graphics. An
interesting consequence of all this is that the traditionally
separate fields of digital image processing and computer
graphics are becoming closer. This is due in part to the
availability of efficient interfacing algorithms, such as the
ones described here, but also to the appearance on the market
of relatively cheap raster graphic terminals capable of dis-
playing both types of information. As this trend develops, it is
to be expected that the present distinction between the two
fields may come to be considered no more than a historical
accident.

Acknowledgment

Javier Jimenez wishes to acknowledge the hospitality
extended to him by the Department of Applied Mathematics
of the California Institute of Technology during much of the
preparation of this paper.

References
1 . M. Chock, A. F. Cardenas, and A. Klinger, “Manipulating

Data Structures in Pictorial Information Systems,” Computer

2. J. L. Navalon and J . Jimenez, “The Map Manipulation Sys-
tem,” Report No. SCR-03.82. IBM Scientific Center, Madrid,
Spain, 1982.

3. G. Nagy and S. Wagle, “Geographical Data Processing,”
ComputingSurv. 11, No. 2, 139-181 (1979).

4. H. Freeman, “Computer Processing of Line Drawing Images,”
ComputingSurv. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, No. 1,57-97 (1974).

5 . L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon
Press, Inc., Elmsford, NY, 1959, pp. 120-123.

6. J. R. Rice, The Approximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Functions, Vol. II, Addison-
Wesley Publishing Co., Reading, MA, 1969.

7. D. E. McClure, “Nonlinear Segmented Approximation and
Analysis of Line Patterns,” Quarterly App. Math. 33, 1-37
(1975).

8. T. Pavlidis, “Waveform Segmentation Through Functional
Approximation,” IEEE Trans. Computers C-22, 689-697
(1973).

9. B. Mandelbrot, Fractals: Form, Chance and Dimension, W. H.
Freeman and Co., San Francisco, 1977.

10. C. deBoor and J. R. Rice, “Least Squares Cubic Spline Approx-
imation, 11: Variable Knots,” Tech. Report 21, Computer
Science Dept., Purdue University, Lafayette, IN, 1968.

14,43-50 (1981).

733

JAVIER JIMENEZ AND JOSE L. NAVALON IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Rice, “General Purpose Curve Fitting,” Approximation
Theory, A. Talbot, Ed., Academic Press, Inc., New York, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1970,
pp. 191-204.

12. D. E. Knuth, The Art of Computer Programming, Vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3,
Addison-Wesley Publishing Co., Reading, MA, 1973, Ch. 6.

13. R. G. Bland, “The Allocation of Resources by Linear Program-
ming,” Scientific American 244, No. 6, 126-144 (1981).

14. F. Orti, “A Center-Covariance Adaptive Clustering Algo-
rithm,” Report No. SCR-02.78, IBM Scientific Center,
Madrid, Spain, 1978.

15. W. K. Pratt, Digital Image Processing, John Wiley & Sons,
Inc., New York, 1978.

16. T. Pavlidis, Structural Pattern Recognition, Springer-Verlag,
Berlin, 1977.

17. S. A. Dudani, “Region Extraction Using Boundary Following,”
Pattern Recognition and Artificial Intelligence, C. H. Chen,
Ed., Academic Press, Inc., New York, 1976, pp. 216-232.

18. B. B. Chauduri, “A Simple Method of Thinning,” J . Instn.
Electron. & Telecom. Engrs. 24,264-265 (1978).

19. B. Shapiro, J. Pisa, and J. Sklansky, “Skeleton Generation from
x, y Boundary Sequences,” Computer Graph. & Image Process.

20. H. Blum, “Biological Shape and Visual Science, I,” J. Theor.
Biol. 38,205-287 (1973).

21. J. Jimenez and J . L. Navalon, “The Structure of Queries on
Geometric Data,” Data Base Techniques for Pictorial Applica-
tions, A. Blaser, Ed., Springer-Verlag, Berlin, 1979.

22. Luis Montoto, “Digital Multi-Image Analysis: Application to
the Quantification of Rock Microfractography,” IBM J . Res.
Develop. 26,735-745 (1982, this issue).

23. N. Garcia, A. Santisteban, and J. L. Carrascosa, “Digital
Processing of Biological Images,” Proc. IEEE Vigo Workshop
in Signal Processing, Vigo, Spain, July 198 1.

24. J. Jimenez, “Fluid Mechanics, a Test Case for Computer
Imagery,” Proc. Int. Symp. on the Future of Computing,
Caracas, Venezuela, June 1982.

25. Special issue on digital encoding of graphics, Proc. IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA68,
755-929 (1980).

26. T. Pavlidis, “Optimal Compaction of Pictures and Maps,”
Computer Graph. & Image Process. 3,215-224 (1974).

27. T. H. Morrin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, “Chain-Link Compression of Arbitrary Black-
White Images,” Computer Graph. & Imuge Process. 5, 172-
189 (1976).

15,136-153 (1981).

Received March 3, 1982; revised June 14, 1982

Javier Jimenez IBM Spain, Paseo de la Castellanu, 4,

Madrid I , Spain. Dr. Jimenez is a research scientist at the Madrid
Scientific Center, where he joined IBM in 1975. His research
activities include geographic data processing, computer graphics,
digital image processing (in particular, its application to treatment
of experimental data in fluid mechanics), and theoretical and
experimental study of turbulent flow. Dr. Jimenez has just com-
pleted a year at the California Institute of Technology working on
large-scale computing problems in fluid mechanics. He received his
aeronautical engineer degree in 1969 from the Universidad Poli-
tknica Madrid, his M S . in aeronautics in 1970, and his Ph.D. in
applied mathematics in 1973 from the California Institute of
Technology. From 1973 to 1974 he was a research fellow at the
California Institute of Technology working on numerical analysis in
fluid mechanics. At present he is a part-time lecturer on fluid
mechanics and applied mathematics at the School of Aeronautical
Engineering at the Universidad Politknica Madrid. Dr. Jimenez is a
member of the American Mathematical Society.

Jose L. Navalon IBM Spain, Paseo de la Castellana. 4,
Madrid I , Spain. Mr. Navalon is a research scientist at the Madrid
Scientific Center, working in the areas of image processing, pattern
recognition, statistics, geographic data processing, vectorial infor-
mation treatment, automatic vectorization, and computer graphics.
He received his degree in civil engineering in 1973 from the
Universidad Politknica Valencia, Spain. From 1973 to 1975 he had
an Autonomous University of Madrid and IBM Fellowship to work
in pattern recognition and statistics. He joined IBM permanently in
1975.

734

JAVIER JIMENEZ AND JOSE L. NAVALON IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

