
Javier Jimenez 

Jose L. Navalon 

724 

Some  Experiments in Image  Vectorization 

The  application of vectorization algorithms  to  digital  images derived from natural scenes is discussed. It is  argued  that  the 

fractal nature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof these scenes precludes  some of the savings in storage  expected from vector over raster representation, 

although  considerable savings still  result. Experimental results are given. Algorithms for  contour following, line thinning, and 

polygonal  approximation well adapted  to  complex images are presented. Finally,  the Map Manipulation System, an 

experimental program  package designed to  explore the interaction between vector and raster information,  is  described 

briefly. 

Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
It is often  convenient to  transform  digital images  between 
raster  format, in which the  images  are represented by 
two-dimensional arrays of intensity  values, and some vector 
code,  such as a set of polygonal approximations  to  the 
contours of homogeneous regions. Both representations have 
their  advantages,  and in many  applications  they coexist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ l ] .  
In this  paper we refer  to  the  operation of going from  raster  to 
vector format  as vectorization. This  operation is well under- 
stood in principle, but  its  application to complicated  images 
presents practical problems, some of which are discussed 
here;  also, there is  still  a lot of room  for improvement in the 
efficiency of the  algorithms used in the process, and some 
new algorithms, or variants of old ones, are described.  Finally 
we give a short overview of the  Map  Manipulation  System, a 
program  package which is being developed at  the  IBM 
Scientific Center in Madrid  as  an  experimental vehicle for 
the  study of the  vector-raster  interface  and which has been 
used in  a  variety of studies  during  the  last few years [2]. 

A particularly  interesting  subject is the  amount of space 
needed to  store  an  image. It is widely felt that  the code  for  a 
vector image is much more compact  than  that for a raster 
one, and this has been mentioned  often as  the key advantage 
of the  former over the  latter, especially when data base 
applications  are involved [3]. The basic argument is that, if 
the  linear dimension of a  region is D, measured in pixels, its 
area,  and  therefore  the  number of bits needed to  store  it  as a 

binary  array, is proportional to  Dz, while its  contour contains 
only a number of points  proportional to  its  perimeter, which 
should be of order D. Since  each point needs on the  average 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx log, (D) bits to encode  its  coordinates, the reduction in 
storage achieved by the contour representation should be a t  
least of order  Dllog,  (D), which can  be  substantial for large 
regions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn practice,  contours  are often approximated by 
polygons (linear or otherwise),  and only the vertices of the 
polygons have to be retained;  the final amount of storage 
depends  crucially on the complexity of the  image  and on the 
degree of approximation desired and, depending on these 
factors, it might be desirable  to use different  types of coding. 
We  address  this question in the next two sections  before 
discussing the  details of  how contours  are  actually  obtained. 

Approximation and storage compression 

Consider  a  line in a digital image. If certain smoothness 
conditions are satisfied,  it is possible to show that  its  length  L, 

as  measured by the  total  number of points, is proportional to 
its outer dimension D, defined,  for instance,  as  the  square 
root of the  area of the circumscribed  rectangle. As noted 
above,  such  a  line can be coded in 2L x log, (D) bits by just 
listing the coordinates of all its points. Chain codes [4] are 
somewhat  more compact since only the direction to  the next 
pixel has  to be stored at  each point and,  as  there  are usually 
only eight different  directions, only 3 L  bits are  required. A 
much shorter  representation  can be achieved by approximat- 
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ing the line by some piecewise smooth  function and storing 
only the discontinuity nodes and  the  parameters of the 
interpolating functions. Under  this  scheme  the  number of 
nodes clearly depends on the  degree of approximation 
desired;  this dependence  can be complicated but, if the 
approximation  error is far from any of the scales characteris- 
tic of the original  line,  it follows from simple  dimensional 
arguments  that  the  number of nodes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( d ) ,  associated with 
an  approximation threshold d should  behave as 

N ( d )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- d ~ ~ H  (1 )  

for some  exponent H .  The  argument applies only to problems 
which are  random enough that reasonably  different  scales 
can be considered independent, such as  turbulent motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ]  

or, presumably, physical  landscapes. Under these circum- 
stances  the  ratio between the  number of nodes needed for two 
different approximations  can only depend on the  ratio of the 
accepted errors,  and  the only functions  satisfying that condi- 
tion for all possible pairs of values are powers. Note  that  the 
argument  breaks down as soon as  the  error  approaches a 
preferred  scale of the problem. In  a digital  image two  such 
scales are  the  outer dimension of the object and  the pixel size. 
It is shown below that,  far from  those  limits,  Eq. (1) is 
approximately satisfied in all the cases studied.  The  constant 
of proportionality can be estimated by noting that, for large 
approximation  errors (of order D )  the whole line is well 
represented by a  single segment  and,  therefore, 

N ( d )   ( D / d ) H .  (2) 

In  digital lines the  accuracy desired is often one pixel, which 
is in a  sense the “intrinsic” accuracy of the original image. 
The  storage needed to code  all the nodes is then proportional 
to 

D H  log, ( D L  (3) 

which is to be compared with D 2  for the  raster  representa- 
tion. Whether Eq. (3) represents  a  savings of storage or not 
depends on the value of H .  A case which is especially well 
studied is the  approximation of smooth  lines by polynomial 
splines [ 6 ,  71. The results  depend on the  approximation 
norm used; i n  this  paper we always measure  error by the 
maximum Euclidean  deviation between the original line and 
the  approximation.  This norm appears  to be more appropri- 
ate for natural lines, which are often  discontinuous and 
convoluted, than “smoother”  norms like the  mean  square 
deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI .  Under  thoseconditions,  and for splines of order 
n, it can be shown that [7] 

H = I / ( n  + I ) ,  (4) 

so that linear polygons use a number of vertices which is only 
proportional to  the  square root of their size. 

Unfortunately,  this  estimate is not applicable  to lines 
derived  from natural scenes. Equation (4) requires  that  the 

// * +* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw * * * 

s 
Figure 1 Definition of error  in polygonal approximation algo- 
rithm. 

original line together with its ( n  + 1)th first derivatives be 
continuous and bounded, and  natural lines are often so 
convoluted and full of small detail  that they cannot even be 
considered  differentiable. When such “fractal” lines are 
approximated by polygons with sides of  fixed length,  the 
number of sides needed follows a law of the  type ( I )  with an 
exponent which can  be identified with the  fractal dimension 
of the line [9]. Smooth lines have a fractal dimension of 1, 
while more complicated  objects  have  higher  dimensions. 
When such lines are  approximated by polygons using the 
maximum deviation norm, we can still  expect  a  dependency 
of the  type ( I ) ,  but  the specific value of the exponent given in 
(4) cannot be expected to hold anymore. 

Some  experimental exponents  found in the  approximation 
of natural lines are given in the next  section. They  are found 
to be of the  same  order  as  the measured fractal dimension, 
although not quite  equal  to  it. 

Experimental results 

The different possible implementations of the polygonal 
approximations discussed previously can be classified into 
two  broad  groups,  according to whether the positions of the 
nodes are optimized  globally using some iterative process 
[S, IO] ,  or computed sequentially  along the curve by opti- 
mizing each node as a  function of the known position of the 
last one [ 111. Algorithms of the first kind can generally be 
shown to converge to  an  optimum, at  least if some suitable 
initial  guess is available, while those of the second are 
probably  always suboptimal  due  to  their essentially local 
nature. However,  sequential algorithms  are usually  much 
faster  than  iterative ones and have been found  experimen- 
tally to behave almost  as well [ 1 11. 

The method used for our  experiment is a  sequential one. 
Briefly, a point on the  curve  to be approximated is chosen as 
origin, and a search is made for the  farthest point along the 
curve for which the  approximation  error does not exceed a 
given threshold  (see  Fig. 1).  That point is stored as a  node 725 
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Figure 2 Classification  map extracted from a LANDSAT image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141. Several classes, used in the text, are  shown by themselves.  Image size is 
380 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA450. 

and used as a new origin. We treat the error associated with a point and consider only points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the original curve as 
segment as a nondecreasing function of the position of its end candidates for nodes. The first assumption holds strictly only 
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for sufficiently short  segments  and for  smooth  curves but is 
true on the  average in most situations.  It  represents neverthe- 
less the most important tradeoff of our algorithm in terms of 
optimization performance;  the second  one,  on the  other  hand, 
does not introduce  any  substantial  degradation  and simplifies 
the  computation considerably.  Because of these two  assump- 
tions,  a binary  search  algorithm  can be used in the  optimiza- 
tion, requiring only a logarithmic,  as opposed to  linear, 
number of trials  to find the  farthest allowable point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA121. 

Binary searches  can be initiated in  several  ways, and  the 
results can depend on the  initial guess. To  check  whether  this 
was so in our case, we tested three different starting  methods 
for the  search of each  segment. In the first  one, the  search 
was always started from the  end of the line, and  the 
algorithm was allowed to proceed inwards; in the second, the 
next  contiguous  point  was  chosen, and  the  search worked by 
doubling the  distance until the  approximation threshold  was 
first exceeded; in the  third,  the  number of pixels used for the 
last segment was used as  an  initial guess  for the  length of the 
next  one, and was  doubled or halved depending on whether 
the resulting error was acceptable or not. In  all  these cases, 
the  search ended  with  a  classical complete  binary  search 

[121. 

The results obtained by the  three  methods were  generally 
statistically indistinguishable,  providing some confidence 
that  the  general  search  strategy was not unduly  biased in any 
direction.  This is also  one of the main  reasons to assume  that 
the monotonicity assumption discussed  above  does not intro- 
duce a  serious degradation of the  approximation.  Since  the 
extrapolation  method converges somewhat  faster  than  the 
other two,  it  was the  one used in all  the  results presented in 
this work. 

It  can easily be shown that  sequential  algorithms with 
binary  search need, to  approximate a curve of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N nodes, a number of operations  that is proportional to L, 
while those  using linear  searches need L2N  and global 
methods use L times  the  number of trials needed  for the 
iteration  to  arrive at  the solution in an  N-dimensional space. 
In the usual case in which the simplex  method is used as  the 
iteration method there is no theoretical  estimate for this 
number, but  a practical bound is usually given as  linear in N 
[ 131, making those methods  almost  as good as  linear 
searches. 

We have  tested our algorithm on lines arising  from two 
different natural images. The first one is a thematic  map 
derived from a Landsat scene [ 141. The  map shows different 
land  use  classes which span  a wide range of “smoothness” or 
“fractality” when  inspected  visually, and  the  outlines of 
those  classes are used as  the  test lines (see  Fig. 2). No effort 
was made  to  smooth  the regions or to filter the  “salt  and 

Figure 3 Contour lines in a portion of a digitized  map.  Image  size 
is 400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 400. 

pepper” noise before extracting  the contours. The second 
image is a direct  raster  scan of the contour  lines in a 
pre-existing  printed map published by the  National Geo- 
graphic  Institute of Spain. A  reproduction of the original 
scribe  sheet was used,  instead of the final map,  to avoid 
interference  from  other symbols or types of objects (see 
Fig. 3). 

In Fig. 4 we show results  on the evolution of the  number of 
nodes as a  function of the  approximation  error.  That  number 
is normalized with the  total  number of pixels in the original 
lines, and a large circle (300 pixels in radius) is included for 
comparison. It is clear  that  errors below and above one pixel 
behave  differently, obviously because, under  that limit, the 
approximating polygon has  to follow all the  stray  irregulari- 
ties  introduced in the curve by the  digitization, while above  it 
those irregularities  are bypassed and only the  “natural” 
shape of the line remains. For large  error thresholds the 
circle follows well the  square root law given by Eq. (4) for 
straight line polygons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n = 1) and  actually  approaches 
closely the  theoretical  optimum solution (a  regular polygon) 
given by the  dashed line in the figure. All other lines are, 
however, much steeper.  While they can still be represented 
(for  large thresholds) by functional forms of the  type of Eq. 
( I ) ,  the exponents, H ,  are  greater  than 1/2; Table 1 gives a 
list of those  exponents. 

Following the reasoning that led to Eq. (3), the  number of 
nodes needed  for an  approximation threshold of one pixel 
should approximately  satisfy  the  equation 727 
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0 1  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI0 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(pixels) 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Number of nodes in approximating polygons as a func- 
tion of error  threshold.  Test  contours are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, water; f, rice; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 
unclassified; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, circle; - . . -, optimum circle. 

I 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 Number of nodes in different  contours as a function of 
the degree of fractality (approximation  error = 1 pixel in all cases). 

728 Continuous line is Eq. (5). 

Table 1 Characteristics of the different classes use 
imation  experiments.  Symbols are defined in the text 

d in1 the approx- 

Class N ( I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD H Fd F,  L Area 

Water 590 400 1.01 1.12 1.17 4539 83200 
Rice 2568 400 1.22 1.88 1.63 12280 36800 
Swamp 1712 400 1.29 2.05 1.77 7484 8900 
Unclassified 5709 400 1.68 1.75 1.76 21269 50500 
Contour  line 283 400 1.00 1.20 1.40 1692 - 

Circle 55 636 0.50 1.00 1.00 1886 - 

H = log (N)/log (Dl, ( 5 )  

where D is a  typical outer dimension. Both sides of this 
equation  are  compared in Fig. 5. The  characteristic  dimen- 
sion used for both images is the  square root of image  area 
(400 pixels), while for the circle we use the  diameter.  It is 
clear  that  the relation is approximately satisfied and  can  be 
used to give a  rough a priori estimate of storage,  although it 
is also clear  that  there is substantial  scatter  due  to  the 
particular  shape of the objects which cannot be predicted  in 
this way. 

Of some theoretical  interest is the relation of the exponent 
H in Eq. (1) to  the  fractal dimension. This  latter  quantity  can 
be estimated  from  the behavior of the  number of vertices of 
the  approximating polygons as a function of the average 

length s of their sides.  Directly from  the definition [9], this 
dependence should be of the  form 

N ( s )  - s-q 

where F is  now the  fractal dimension. This power law 
dependence is indeed  found in our experiments (for  approxi- 
mation  errors bigger than  one pixel), and  the corresponding 
dimension is given as Fd in Table 1 .  The  same  quantity  can be 
estimated directly by approximating  the lines by polygons 
with sides of uniform length s; this  measure is given in the 
table  as F,. Even if there seems to be a  rough correlation 
among  the  three  quantities, it is clear  that H and F are 
basically  independent parameters. 

Contour following 

We  turn now to  the problem of  how contours  are  extracted 
from images. We  assume  that  all  images have already been 
put  into  binary form and consist of an object ( 1 )  separated 
from a background zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) ;  the way these  binary  forms are 
obtained is the  subject of segmentation in classical image 
analysis  and is treated in many places [ 151. From  the point of 
view  of vectorization, images  can  be classified into two broad 
groups. Those in the first group  contain mainly  extended 
regions  with well defined interiors  and  can be represented 
usefully by their outlines (Fig. 2). Those in the second  consist 

JAVIER JIMENEZ A N D  JOSE L. NAVALON IBM J. RES. DEVELOP. VOL. 26 NO 6 NOVEMBER 1982 



* * * 8*”4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZV 
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7 6 5  

* * * * *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 Pixel  neighborhood and search  order in the contour- 
following algorithm. 

mostly of elongated features  (Fig. 3). The  outlines of these 
features  are not meaningful  descriptors, and  the regions are 
represented better by their skeletons or  median lines. The 
extraction of these  skeletons is usually referred  to  as  thinning 

Contour following is a  relatively easy  operation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA com- 
monly used method [ 171 explores in rotational  order  the 
eight neighboring pixels of a point already known to be on the 
contour  and looks for a  transition from outside  to inside the 
object (see Fig. 6). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn Fig. 7 we give an  algorithm based on 
this idea. The  image is scanned in row order,  and  the 
contour-following algorithm is assumed  to be entered  each 
time a transition from 0 to I is detected.  From  then on the 
program  tracks  the  outline  and  returns only when a closed 
contour  has been completed.  To simplify the  presentation we 
have ignored  complications arising  from  the object  reaching 
the  edge of the image, and we have assumed that no 
buffering is needed and  that  the whole image  can be stored in 
main  memory. Both of these difficulties can be overcome 
easily [ 2 ] .  

Some  features of the  algorithm  are  interesting.  The  state- 
ment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnormal chooses the  current  exterior normal to  the 
object as  the  starting point for the next search.  This is done 
based on the knowledge of the direction of the  last  segment of 
the  contour  and  ensures  that  the whole contour is followed 
without accidental  shortcuts in cases like the  one in Fig. 8. In 
murk some of the pixels already recognized as forming part 
of the  outline  are  marked.  This is necessary to avoid  re- 
entering  the  same  contour several times in the course of 
scanning  the  image  but has to be done  carefully since  some 
pixels may have to be reused,  not only in the  same contour 
(Fig. 8),  but even in different ones (Fig. 9). The solution is to 
mark with  a  different  code (2) points in the left  leading edge 
of the  object,  thereby making them  unavailable  as 0-1 
transitions in the  scanning while retaining  them  as 0 to non-0 
transitions for the  contour follower. Note  that  the introduc- 
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array image,list,point(2),dir(2); 
input(point); output(list,klis,ext); 

first=:true; ext=:false; fin=:false; 
dir=:7; 
klis=:l; list(l)=:point; 

dir=:l +mod(dir,8); 
i f  image(point+dir) # 0 then  go  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkeep; 

hole: if first  and dir= 2 then  ext = :true; 
mark: if dir = 8 then  image(point) = :2; 

contour:  begin; 

search: do k=: l  to 7; 

end  do; 
return; 

keep: point = :point +dir; first =:false; 
if fin and point=list(2) then return; else fin=:false; 
if point=list(l) then fin=:true; 

normal: dir=:dir +4; 

update: klis=:klis+l; list(klis)=:point; 
go  to search; 
end contour; 

Figure 7 A contour-following  algorithm:  directions of  movement 
are defined in Fig. 6 .  

**** **** 
* 

Figure 8 All pixels marked with A are traversed more than once in 
following the  contour of the  region. 

******** 
**  ** 

** 
** 

**** 
** 

+***** 
* * 

* * * *I 

* * * * 
********** ********* * 

******** **** 
Figure 9 All pixels in this region  belong  to at least  two  different 
contours. 

tion of the new code  requires that  the  image use at least two 
bits per pixel. The  algorithm ends when two consecutive 
points are found to coincide with the first two points of the 
contour. 729 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResult of contour extraction on several of the classes in 
Fig. 2. Map  was generated using the Map Manipulation System. ” 

Water 
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Sand 
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found to be on the edge, but not on the axis, of the  object.  The 
process is repeated until only axial points are left in the 
image.  Since all the pixels in the object  have to be checked, 
the  number of operations  scales  with  its area (in fact, with 
the  area  times  the  average thickness of the  object)  and, since 
the process is iterative  and global,  it is difficult to  adapt it to 
cases in which the whole image  cannot be held in main 
memory.  Moreover,  once the  object  has been thinned,  the 
result  is  still in raster  form  and has to be vectorized. 

f 

Figure 11 Definition of a point in the skeleton and the approxima- 
tion used in the  thinning  algorithm. 

Several  refinements can be introduced in this  basic proce- 
dure. As an  example, it is possible to  mark  each  contour  as  an 
external  outline or as  an  interior “hole” by analyzing  the 
search  around  the first point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(hole statement in Fig. 7), thus 
saving  considerable processing in some  later  operations.  It is 
also possible to  do a  zero error polygonal approximation 
while the  contour is being generated by keeping only those 
points in which the direction changes.  An  example of the use 
of this  algorithm is given in Fig. 10. 

Thinning 

Contour following is a  relatively fast process. Each pixel in 
the  contour needs to be scanned only once, and  the  total 
number of operations is proportional only to  the length of the 
final contour.  Thinning is a harder problem;  classical thin- 
ning algorithms [ 161 work by running a small window (e.g., 

730 3 x 3) over the  image  and  erasing those pixels that  are 
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Recently a new class of thinning  algorithms  has been 
proposed that uses only the  contour of a region to  estimate  its 
skeleton [ 18, 191. In  fact skeletons  were  originally defined in 
terms of the  outline only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 20 ] .  A  commonly  accepted defini- 
tion is the  set of all  those  points  interior to  the object and 
equidistant  to  at least  two  points of the contour  along  interior 
normals. This definition is difficult to implement directly, 
but a good approximation is easily computed,  at least in those 
cases  in which the object is thin  (a few pixels wide).  Those 
are, of course, the  cases in which the skeleton representation 
is most  interesting. These  algorithms present several advan- 
tages with respect to  the old ones. First,  the vectorization is 
done at  the very beginning of the process, and  the  storage 
requirements  are much  reduced during  the whole operation. 
Second, all independent contours  are now represented, and 
processed, as  separate  entities so that, even if buffering is 
needed for the image, the whole list of points for a  single 
contour usually fits in memory and  the  thinning  algorithm 
need not be buffered at  all. Lastly,  the  number of operations 
scales with the  perimeter of the contours. In fact, since we 
will see that  the  algorithm  can run on polygonalized data,  the 
storage  estimates given in the first part of this paper apply to 
the savings in computer  time. 

Consider now the object in Fig. 11.  At point A we draw  the 
interior  normal to  the contour and  extend it  until  it  intersects 
the opposite  side of the  outline at  B. The midpoint, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, of AB 
is taken  as a point in the skeleton. It is clear  that,  according 
to  the definition, the  true skeleton would run through P, 
defined by AP = PD, but, for objects which are  thin with 
roughly  parallel  sides, the  error is small.  In  fact, even in the 
case in which the  angle formed by the  segments on both sides 
of the  contour is 45 degrees, the  error is less than  1/4  the 
thickness of the  object  and is therefore less than  one pixel in 
most practical cases. 

In applying these  ideas  some precautions must be taken  to 
avoid spurious intersections with distant  contours (see GH in 
Fig. 11). These  can be avoided by defining an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori 

maximum local thickness for the object and  discarding those 
intersections that  occur beyond that  distance [ 181. This 
thickness can be estimated by inspection or by comparing, 
for example,  the  area  contained in the contour with its 
perimeter. In fact,  the possibility of defining  a characteristic 
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thickness, far  from being  a weakness of the  algorithm,  can be 
considered  a strong point. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA thin  object is only thin in a 
relative  sense, and some outside  criterion  has to be used to 
decide  whether a local thickening of the object  should be 
interpreted as  a short  branch or just  as a  slightly wider 
section (see Fig. 12). 

The  general  structure of a thinning  algorithm based on 
these  ideas is described now; a  more  detailed  description can 
be found in [2]. Consider a  ribbon-like  object whose contour 
has been digitized and  approximated by a polygon (Fig. 13). 
We  assume  that  the contour contains two parts opposite to 
each  other, which we identify as  outer  and  inner  parts.  These 
parts  can belong to  the  same connected contour or to 
different ones and, in identifying them,  the hole labeling 
facility of the  contour follower can be of great help. The 
algorithm works by casting normals  from the midpoints of 
the  segments in the outside  contour  towards the  inner one 
and  then projecting the vertices of both contours parallel to 
those normals. 

We first choose an  arbitrary  segment in the  outer contour 
(1-2  in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13) and  construct  the inwards-facing  normal at 
its  midpoint. Note  that  the direction of this  normal is known 
from the sense in which the contour was followed. If the 
normal crosses a segment on the inner  contour  within the 
prescribed distance,  this segment (51-52) is chosen as  the 
inside starting point.  Finding  this first segment involves an 
exhaustive search  through all the  candidates in the inside 
contour, but  once it is found  all other  searches  are  sequential 
and involve only a few segments. The  correct identification of 
this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirst segment is also very important for the subsequent 
behavior of the  algorithm; i f  the first pair is not chosen right, 
the pairing of the following segments  can be  led completely 
astray. To avoid this we try to find a segment  that is as "well 
behaved" as possible. Thus, i f  its  mid-normal does not 
intersect  any segment or i f  there is any  doubt  as  to which 
intersection to choose, the  starting  segment chosen i n  the 
outer  contour is skipped and  another one is tested.  Since  the 
subsequent  algorithm runs over all  unused parts of the 
contour, a  segment  skipped in this fashion will eventually be 
found again  and  completed. 

The midpoint  normal is the basic direction in which all 
points are projected while processing an outside  segment. Its 
center point is considered to belong to  the skeleton. Then,  the 
two endpoints of the inside segment (51 and  52)  are 
projected  back into  the outside and, i f  their projections fall 
within the  outside  segment,  their  center points are also added 
to  the skeleton. The next inner segments (50-51, etc.)  are 
then selected in sequential  order,  and  the projection step is 
repeated as long as  the base of all the projections  falls  within 
the  segment (1-2). When one of them does not (point 50 i n  
the figure), the endpoint of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoutside segment being 
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Figure 12 Thin  object  and  skeleton.  Branch A can be suppressed 
by selecting a wider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori thickness for the  object. 

J :  

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 

17 

Figure 13 Definition of the  thinning  algorithm  described in the 
text. 

processed is projected  along  its mid-normal, its center point 
is added  to  the skeleton, the next  outside segment is selected, 
and  the process is repeated with the new normal.  This time, 
however, it is only necessary to  search sequentially in the 
inside  contour starting with the  last  segment used. 

In  this way it  should be possible to produce  a  skeleton in 
which all the inside and  outside  segments  are represented. 73 1 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResult of the  thinning  algorithm on a complex  line. 
Different  branch points are treated in different ways after the 
thinning. 

CENTRO DE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINVESTIGACION UAMiIBM (MADRID) 
CURVAS DE NIVEL DE PlAPA 1:200.000 C A S 0  TEST 

I 1 
a 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 KPI 

Figure 15 Thinned  version of map in Fig. 3. 

When a gap occurs, as with segment (2-3) in Fig. 13, a 
branch is initiated  and  the  current  arc o f  the skeleton is 
considered complete.  The process of initiating a branch is 
equivalent to  the  one of starting a new skeleton, although 
“used” segments  are, of  course, no longer available. The 
construction of an  arc  ends  either when a branch point is 
reached, as above, or in a  tip;  a tip is a point in which the 
inside contour runs into  the  outer one. When  all  the  segments 
in the contour  have been used, the only operation remaining 
is to find common  points to  join  branches  together.  The 
solution given in Fig. 13  (the  center of gravity of all 
endpoints) is probably as good as any  other. 

The result of the  thinning is now a  set of polygons 
connected into a  network like the one in Fig.  14. Some 732 
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branching points (A)  are  intrinsic  to  the problem, and  their 
treatment depends on the specific application, but  others  (B 
or C)  arise from noise in the  image  and should be corrected. 
There  are a variety of ways in which this  can be done. 
Perhaps  the simplest is to consider the network as an 
algebraic  graph  and  to use a path-tracing method to optimize 
the  result.  The little branch in C is easily discarded by noting 
that it is too small and isolated. The loop in B can be fixed by 
taking  the longest available path.  The result of thinning  the 
line image of Fig. 3 is shown in Fig. 15. 

The Map Manipulation System 

An example of an integrated system  using  these algorithms is 
the  Map  Manipulation  System, which is a program  package 
under development at  the  IBM  Madrid Scientific Center 
with the purpose of exploring the  interrelations between 
raster  and vector graphic  information.  Its nucleus is a series 
of vectorization and polygon manipulation  algorithms  that 
allow the  generation of graphic  structures  either  from  images 
or by integration from  outside  sources. The  package is 
interfaced with a  set of interactive  graphic display  routines, 
which work either on a color raster display terminal  (IBM 
7350 or RAMTEK 9351) or on a  black and white 
calligraphic screen (IBM 3277 Graphic  Attachment),  and 
with a  small data base in which vector graphics, some 
alphanumeric information, and  raster images are held in the 
form of standard  CMS files. 

The whole system is driven by a  monitor in which func- 
tions are chosen from a set of hierarchically  organized 
menus;  a batch version of the  graphic programs  also exists. 
The following is a short list of the functions available in the 
system: 

Load and  create  external files containing  graphic,  alpha- 

Display and interactively  edit  images if the  appropriate 
numeric, or raster  image  data. 

terminal is available. 
Manipulate images to  prepare  them for  vectorization. 
Perform  contour following, thinning,  and polygonal 
approximation.  These  are  the operations discussed in this 
paper. 

information. 
Create  and  update  an  internal  graphic  data base using this 

Edit  this internal  data base [21]. Editing functions 
include 

Display and  graphic  interrogation functions. In a raster 
terminal, vector information can be overlaid on images. 
Deletion,  merging, and  renaming of graphic objects. 
Geometric modification of objects. 
Introduction of alphanumeric labels  associated with 
specific points. 

The system  has been developed as  an  experimental tool 
and  has grown mainly as a result of the  requirements of 
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different users. The  primary  interest was in geographic work, 
and most of the work done  has been in  this  area.  Usage to 
date includes the  direct digitization of pre-existing maps,  the 
generation of land  use  maps from  Landsat  and  aircraft 
images, and  the  integration of both  types of information. 
Parts of the system  have been used in other contexts; the 
polygonal approximation  and  contour following have been 
used in quantifying  fracture  patterns in rocks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[22]. A 
somewhat  unexpected  application has been as a graphic  aid 
in the display of purely raster  information;  the  contour 
follower has been adapted  as a contour line generating 
algorithm for general images [23], and  the whole system has 
been used to  generate three-dimensional views of a turbulent 
flow from  a  series of parallel  sections in a high-speed film 

~ 4 1 .  

Conclusions 

We have shown that  binary images can be vectorized 
efficiently and economically. The  resulting  representation 
can generally be stored in much less space  than would be 
required for the  raster image. The exceptions are very 
complex or “busy”  images. Both the  amount of work needed 
to vectorize an  image  and  the  space needed to  store  the result 
scale  roughly  with the length of resulting lines. We show in 
the first part of the  paper  that  this length is only linear in the 
size of the  image for relatively  smooth  cases, but  that for very 
complex  cases  it  grows  almost as  fast  as  the  area.  It  might not 
be worthwhile to code  these images in vector form. On the 
other  hand,  differentiable  contours  can  be coded as polygons 
with  a number of vertices that grows only with the  square 
root of their size. 

At  this point some reference must  be  made  to  alternative 
representation  schemes  for  digital images. In recent years,  a 
lot of attention  has been paid to  the  statistical compression of 
images by a  variety of methods that rely on the  fact  that 
images  are not completely random zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 5 ] .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn fact,  this is the 
same reason that polygonal contour  approximations need less 
storage  space  than  the original  images. The compression 
achieved by these statistical  methods  can be very important 
and, in some cases, on the  same  order  as  the ones  presented 
here. In [26] a comparison is made between some  particular 
polygonal and  statistical  representation schemes. The results 
are  similar  to  the  one expressed  above;  relatively  simple 
images  are handled best by polygonal approximations, while 
complex ones are represented better by other schemes. 
Statistical compression is not limited to two-dimensional 
images; [27] studies  the best statistical  representation of 
chain codes, showing that only two bits per pixel (instead of 
three)  are needed for them. 

In coding  a particular class of images all these  methods 
have to  be considered, but it would be a mistake  to  judge 
them only in terms of the final storage  requirements. In most 

statistical  representations  the  image has to be decoded  before 
it is useful for some  applications. As an  example, in com- 
puting the intersection of two regions in raster  form, or in 
counting  the  number of independent regions of some  kind, 
the  image  has  to be decoded into full two-dimensional 
representation.  This  can be inconvenient when not  enough 
main memory is available  to hold the  entire  image  and  the 
operation does not adapt easily to buffering. On the  other 
hand, most geometrical operations  can be performed directly 
on polygons, and in this sense polygonal approximations have 
the  advantage of being in a  “final”  form. 

Before full advantage of the vector representation  can be 
realized,  a  complete  set of polygon manipulation  algorithms 
has  to be developed. This  subject  constitutes  the  area of 
computational geometry [3] and is, at  present, one of the 
most active areas of research in computer  graphics. An 
interesting consequence of all  this is that  the  traditionally 
separate fields of digital  image processing and  computer 
graphics  are becoming  closer. This is due in part  to  the 
availability of efficient interfacing  algorithms, such as  the 
ones  described  here, but also to  the  appearance on the  market 
of relatively cheap  raster  graphic  terminals  capable of dis- 
playing  both  types of information. As this  trend develops, it is 
to be expected that  the present  distinction  between the two 
fields may come to be considered no more than a  historical 
accident. 
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