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SOME EXPONENTIAL MOMENTS OF SUMS OF
INDEPENDENT RANDOM VARIABLES1

BY
J. KUELBS2

Abstract. If {Xn} is a sequence of vector valued random variables, {a„} a
sequence of positive constants, and M = supn>l||(.Y, +. • • • + X„)/an\\, we
examine when E($(M)) < oo under various conditions on i>, [Xn], and
(a„). These integrability results easily apply to empirical distribution
functions.

1. Introduction. Let B denote a real vector space, $ a sigma-algebra of
subsets of B, and || • || a seminorm on B. We say the triple (B, %,\\- ||) is a
//«ear measurable space if (i) addition and scalar multiplication are %
measurable operations on B, (ii) for all t > 0 we have {x E B: \\x\\ < t) ÍB
measurable, and (iii) there exists a subset F of the © measurable linear
functional on B such that

||*||= sup |/(x)|       (xEB). (1.1)
fBF

Examples of linear measurable spaces are readily available in probability
theory and, of course, include the situation where B is a real separable
Banach space, © denotes the Borel subsets of B, and || • || is the norm on B.
Another important example consists of B = D [0, T] where D [0, T] denotes
the real-valued functions on [0, T] which are right continuous on [0, T] and
have left-hand limits on (0, T], In this case $ consists of the minimal
sigma-algebra making the maps x -» x(t), 0 < t < T, measurable and the
seminorm is the sup-norm, ||jc|| = supo<,<r|x(0|. The analogous D-spaces of
functions of several variables are also linear measurable spaces (see §4 and
[17] for further details and references).

Now assume (B, ©, || • ||) is a linear measurable space, {A^} a sequence of
(B, $) valued random variables, (an) a sequence of positive constants, and
define
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146 J. KUELBS

Mr = sup
n>r

X, + + x„
(r > 1). (1.2)

In this paper we examine when

E($(MX))< oo (1.3)

provided $ is a finite, nonnegative, nondecreasing function on [0, oo) and
{X„) and {a„) satisfy various conditions.

In case $ is a function which does not grow too rapidly the application
of Theorem 3.3 of [6] and the technique of Corollary 3.4 of [7] immediately
yield results. To be precise, assume {X„) is a sequence of independent
random variables and $(4«) < c$(w) for some c > 0 and all m G [0, oo). If
P(Mr < oo) = 1 for any r (and hence all r), then the results in [6] and [7]
indicated above imply that (1.3) holds if and only if

d> sup < oo. (1.4)

For example, if the sequence {X„) is i.i.d. and E\\XX\\P < oo (0 < p < oo),
then P (M x < oo)= land

E(M{)< oo (1.5)
for p' < p provided an = max{«, ni//p). That is, to verify (1.5) one simply
checks (1.4) with $(«) = up' and this is trivial. Hence in this case Af, has
moments of orderp' for allp' < p whenever is ||A,||' < oo.

Another example that we will be particularly interested in will be the
situation when {Xn) is an i.i.d. sequence with is||.X,||/' < oo (p > 2) and
a„ = V2nLLn (n > 1). Here Lx denotes log x for x > e and 1 otherwise,
and LLx denotes the composite function L(Lx). Then, if P(MX < oo) = 1,
we have

E(M()<oo (1.6)

forp' < p. To verify (1.6) one simply checks (1.4) with $(«) = up'.
If <P(u) = exp(w) we can apply Theorem 3.8 of [6] along with the technique

in Corollary 3.4 of [7]. In this case the assumption on the individual
summands is that

£E Uxp\a — log,+5 — jl{W|>(Va) j < 00 (1.7)

for some a > 0, a > 0, and 8 > 0. Then P(MX < oo) = 1 implies there exists
aß >0 such that

E(exp(ßMx))<oo. (1.8)
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MOMENTS OF SUMS OF RANDOM VARIABLES 147

However, in case $(«) = exp{Au2) the results mentioned above or those in
[9, pp. 3-14] do not apply, and it is this situation that we examine here. An
example of this type was established in [13] where it was proved that if {tj:
j > 1} is an i.i.d. sequence such that P(tj = ± 1) = \, then for all ß > 0 we
have

expl ßsup
e,+ + e„

V2nLLn
< oo. (1.9)

We will obtain (1.9) as an easy corollary of the main result of §3, and
applications to the empirical distribution function will be given in §4.
Another aspect of the paper involves moments of the type £(exp()S||5||2))
where S = 2Zj>xXj is a convergent series, and the (Xj) satisfy certain
conditions. Theorem 3.2 and its corollaries contain these results.

2. Some introductory lemmas., Here we will establish some estimates to be
used in proving the results of §3.

Lemma 2.1. Let (B, ©, || • ||) be a linear measurable space and assume
Xx, X2,... are independent (B, % ) valued random variables such that for
some ß > 0,

supi?(exp(/?||*,.||2)) < oo. (2.1)

If S„ = ~2Tj^xbjXj where [bj] is a sequence of nonnegative constants, then there
exists A, 0 < A < oo, such that for all n > 1 and all h we have

E(exp(h\\S„\\)) < exp! hE\\S„\\ +h2A2 2 */ (2.2)

Proof. To prove (2.2) set Yk = S„ - bkXk, Ekr, = E(r¡\Xx,..., Xk_x),
En+i~l = 1, Ext] = Er). Then

*=i
where rj, = Ek+x\\Sn\\ - Ek\\S„\\ (k - 1.»). Hence

E(exp(h\\S„\\)) = E\exp\hE\\S„\\ + h ¿ r¡k

(2.3)

= E

k = l

n-l

k-l
exp  A£||S„|| + A2%k(exp{H})

Furthermore, by the triangle inequality and the independence of Xx,
we have

(2.4)
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148 J. KUELBS

% < Ek+x\\Yk\\ + Ek+x\\bkXk\\-Ek\\Yk\\ + Ek\\bkXk\\

= bk\\Xk\\ + bkE\\Xk\\       (k = l,...,n), (2.5)
and similarly,

% > - bk\\Xk\\ - bkE\\Xk\\       (k=l.«), (2.6)
since Ek+X\\ Yk\\ = Ek\\ Yk\\ (because Yk is independent of A',). Hence

M< MIM + EWM)       (k = h--.,n), (2.7)
so

|ifc| < 2^max(||^||, R )      (k = \,...,n), (2.8)
where R = supjE\\Xj\\ < oo by (2.1). Using (2.4) and iterating we have the
lemma proved if we show

**(«P(Aifc)) < exp{62A2A2}       (k > 1). (2.9)
Now Ek(r¡k) = 0 and using (2.8) we obtain

£*(exp(%)) = l + 2Är£*(*)0
r-1

1 + 2
n-l

h2"Ek(r,2k") + h^xEk{^x)

(2n)\ (2« + 1)!

<1+ 2
n-l

(2hbk)2nE{Z2»)_     r2\h\bk)2n+xE{Z^x)

(2n)\ (2n + 1)1 (2.10)

where Zk = max(||^||, R).
Since (2.1) holds there exists a ß > 0 such that

L =supE(exp(ßZk2)) < oo, (2.11)

(2.12)
and hence we have for all t > 0 that

P(Zk > t)< Lexp{-ßt2}.

Now if W is a mean zero Gausian random variable with variance a2, then an
elementary estimate implies

j-(i»»i > o -VF i X°°exp( i# )A

«/FMü?)   <'>0>-    ai3)
Taking I/o2 < ß we have, by combining (2.12) and (2.13), a finite number

t0 > 0 such that
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MOMENTS OF SUMS OF RANDOM VARIABLES 149

P(A > ') <VF a I°°exp( 1^ ) *      (' > to)'
Hence by standard computations (see, for example, Lemma 4.2 of Some new
results on central limit theorems for C(S) valued random variables by M. B.
Marcus, Lecture Notes in Math., Vol. 526, Springer-Verlag, New York) we
have

E(Z2")=fJ>P(Z2">t)dt
< tl" + 2[(2n - l)(2n - 3) ... 5 • 3 • l]o2fl. (2.14)

and

E(Zkf+i
< tln+x +V2/rr(2n + X)o2n+x[(2n - 2)(2« - 4) ... 4 • 2 • l].   (2.15)

Thus for 2\h\bk < 1 we have

(2hbkfE(Z2")      (2\h\bkf+~E(Z2»+x)
(2m)! + (2n + 1)!

< l^T I'«" + t2°"+l + 2k2" * l) • • ■ 5 ' 3 ' l^2"

+ V2/w[(2n-2)...4>2> l]o2n+I]

(2hbk)2n r   ...2«+l        r .  , All
< W- r('o)    + 2[{2n ~1} ' • •5 *3 *1]    I

where t0 = max(r0, 2) and cT = max(a, 2)

(2hbk)      r ,_   _        __2n
<l4r[(2""1)--*5*3,1H5 +/o]   . (2.16)

Inserting (2.16) into (2.10) we have for 2\h\bk < 1 that

3    [(2n~ 1)-5-3-1]  r ,_        -,Nl2n
Ek(exp(hVk)) < 1 + £-^yj-L [2hbk(52 + t2)]

= exp{2A2¿2(rJ2 + í2)2}. (2.17)

If 2\h\bk > 1 then by (2.7) and the definition of Zk we have
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150 J. KUELBS

**(exp(Aifc)) < E(e2Wb'z>) = 1+2 (2\h\bk)nE(Zn
n-l «!

oo   i2hb¿\2J
<i + 2i^r{2^(zr,) + ̂ (z^)}

< 1 + 2 ^p f2^'"' + 2/V2Ä [(2/ - 1)(2/ - 4) ... 4 . 2p"»

+ ̂  + 2[(2/-l)...5.3p}

,   (2hbk)2j .. _ , _, .
< ! + ?. i2^r I'°7(7'+1} + °'+ 1}t(2y "]) • • •5 '^5 ]j-\

<i + 2

where t0 = max(/o, 2) and a = max(o, 2)

(2%f[(2y-l)...5-3][(2i)2 + (2r;)2
V

(2/)!
since x2J >j+\forx>2

= exp{(A2/2)4¿2[(25)2 + (2fo)2]2}. (2.18)

Combining (2.17) and (2.18) we have for all h that
Ek(exp(hVk)) < exp{h2b2A2} (2.19)

where A = 4[(25)2 + (2r0)2]. Returning to (2.9) we see the lemma is proved.

Lemma 2.2. Let (B, %, || • ||) be a linear measurable space, and assume
XX,X2,... are independent symmetric (B, % ) valued random variables such
that

(a)   L = sup,is HA^II2 < 00, and
(h)   For some sequence of positive constants {bj) we have
{?-%\bjXj/o„: n > 1} bounded in probability where o2 = b\
+ ••■ +bl. (2.20)

Then, we have

snpE  2 bjXj/a,
n y..

< 00. (2.21)

Proof. Set S„ = 2Z]^xbjXj for n > 1. Then from [7] or [5, Lemma 5.4] we
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MOMENTS OF SUMS OF RANDOM VARIABLES 151

have that
11 JHP(||S„||> t)dt <fQXP(N„ > t)dt + 4fJ'[P(\\Sn\\> t)fdt   (2.22)

where N„ = sup,<;<n6,.||^.||. Pick A > 0 so that supn>1P(||Sn|| > Aon) <
1/24. Then

\\   P(\\S4>t)dt<5Aon+f  P(Nn>t)dt + \\  P(\\Sn\\>t)dt
->  JAa- •> An "  *An^JAa„

and hence

i/°°P(||5n||> t)dt < 6Ao„ +rP(Nn > t)dt.
° •'0 •'Aa.

Now

P(Nn>t)<Íp(\\bJXj\\>t)<Íb2E\\XJÍ1/ r2<
La2

j-\ 7=1

and hence
Lo„

f   P(Nn>t)dt<Lc2(   t-2dt = -£
An J An ¿l

(2.24)
JAa„ JAon

Combining (2.23) and (2.24) we have (2.21) so the lemma is proved.

3. Some exponential moments. We will prove several theorems regarding
exponential moments of random variables of the form given in (1.2) as well as
indicate some results for random series.

Theorem 3.1. Let (B, $, || • ||) be a linear measurable space and assume
Xx, X2,... are independent (B, ® ) valued random variable such that

(a) E(f(Xj)) = Ofor all f E F,j > 1,
(b) sup^Píexpí/íllA^II2)) < oo for some ß > 0, and
(c) for some sequence of positive constants (bf) we have

(i)   a2 = b\ + • • • + b2 -» oo as n -» oo,
(ii)   b2/o2 -> 0 as n -> oo, and
(iii)   {2j.xbjXj/on: n > 1} is bounded in probability. (3.1)

If S„ = 1nj_xbjXj and a„ =^2o2LLo2 , then there exists ß0>0 such that
ß < ßo implies

expl ß sup   — < 00. (3.2)

Furthermore, if (3. l)(b) holds for all ß > 0, then (3.2) holds for all ß > 0.
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152 J. KUELBS

Remark. If (3.2) holds for all ß > 0, then it is obvious that (3.1)(b) holds
for all ß > 0. The interesting thing is that the converse is also true under the
reasonable assumption that {S„/a„} is bounded in probability. This, for
example, is always the case if B is a type 2 Banach space (see Corollary 3.1).

Proof. First assume the {Xj) are symmetric, and define for r = 1,2,...,

M,=SMp\\Sjan\\. (3.3)n>r

First we will show that for every ß > 0 there exists an r(ß) such that
r > r(ß) implies

E(exp(ßM2)) < oo. (3.4)

Once (3.4) is established, then (3.1)(b) easily implies that there exists a ß0 > 0
such that ß < ß0 implies

exp /3sup < 00. (3.5)

In fact, if (3.1)(b) holds for all ß > 0, then (3.4) yields (3.5) for all ß > 0 and
the theorem is proved if the {Xj) are symmetric. We will remove the
symmetry assumption at the end of the proof and hence our aim now is to
verify (3.4).

Set nk = min{j: of > 2k) (k > 2) with «, = 1. Further, put k(r) = max{j:
rtj < r) for r > 1. Then by using Levy's maximal inequality we have

p(Mr>x)<   2   p(   —    l|S"11
k>k(r) + l

max
nk-i<n<nk a„ >x\

<     2     2P(\\Snk\\>Xant_i)
k>k'r)+\

= 2   2    p\k> *(/■)+1

<2    2    H
k>k(r) + \     '

INI
^>|V2ZI2^) (3.6)

provided r is sufficiently large so that k > k(r) + 1 implies o^Jo^ > 1/4.
Such an r exists since (3.1)(c)(i), (ii) implies that a^Ja^ -+\/2ask-*co.

Now by Lemma 2.1 we have A, 0 < A < oo, such that for all n > 1 and h,

E(exp(h\\Sn\\)) < exp  hE\\Sn\\ + h2A2 2 b2
I 7-1

(3.7)

Hence
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MOMENTS OF SUMS OF RANDOM VARIABLES 153

P(\\Sn\\/2on >t)< exp{-ht)E(exp(h\\Sn\\/2on))

<exp{-^¿W^j^}

= exp{ -h(t - E\\Sn\\/2an) + h2A2/4).        (3.8)
Minimizing (3.8) as a function of h we have

PfllS^o-,, > t) < exp{ -(/ - is||S„||/2o-n)7A2}. (3.9)
By Lemma 2.2 we have sup„E\\S„\\/on < C < oo, so for / > C we have

from (3.9) that

P(\\Sn\\/2on >t)< exp{-/2/4A2}. (3.10)
Substituting   (3.10)   into   (3.6)   we   have   for   all   X   such   that

infA>A(f)+,(X/8)V2LL2*-1 > Cthat

P(Mr>X)<2     2     expi-^2*"'). (3.11)
k>k(r)+l l -"ÖA        )

Fix ß > 0 and choose a so that (log a)/ß > max(64 C2, 512 A2, 2), and
r(ß) such that r > r(ß) and k > k(r) + 1 implies

(a) a„t Ja„t > 1/4 (and hence (3.6) and (3.11) hold), and
(b) LL2*-'/256 A2 - ß > ß. (3.12)

Then by (3.11) we have

E(exp(ßM2)) =f(°P(exp(ßM2) > t) dt

<•♦("'(*>(¥)>

= a + f °°_P(Mr > s)2ßs expí ßy2) ¿fc
Jy'ioia)/ß

<a + 2     2      f!_exp\-s2(LLlk~l -ß\\2ßsds
k>k(r)+lJy/(loga)/ß [ \   256 A2 /J

< a + 2     2     ^{"-^logaJ/Afc
*>*(r)+l

where Ak = ß-x[LL2k~x/256A2 - ß] > 1
^ 1 , l°ga

< a + 2     2-7 where y =
k>Hr)+i [(*-l)L2]Y /5256A2

< oo   since (log a)/ß256 A2 > 2. (3.13)
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154 J. KUELBS

Thus the theorem holds if (Xj) is symmetric. To handle the situation when
[Xj) is not symmetric we introduce a sequence {Zf. j > 1} which has the
same distribution as (Xj) and independent of (Xj). Letting Ex (E^ denote
expectations with respect to (Xj) ({Zj}), then by the previous case we have
for the relevant ß > 0 that

oo > EXE2 exp\ /îsup 2 bj(Xj - Zj)/an

> E, exp ßE2snp
„21

2bj(Xj-Zj)/id

by Jensen's inequality

> E, exp ßsup sup
"    /6f

±bJ[f(Xj)-E2f(ZJ)]/a,
7 = 1

by (1.1) and Jensen's inequality applied to E2

> £, exp ißsup   ^bjXj/a„

Thus the theorem is proved.
since E2f(Zj) = 0 for all/ G F.      (3.14)

Corollary 3.1. Let (B, ©, || • ||) be a linear measurable space and assume
Xx, X2,... are i.i.d. (B, %) valued random variables such that

(a) Ef(XJ = OforallfEF,
(b) JET(exp(/3||A'1j|2)) < oo for some ß > 0, and
(c) {S„/Vn : n > 1} is bounded in probability where S„ =
2'j.tXj. (3.15)

Ifa„= V2nLLn , then there exists ß0 > 0 such that ß < ßQ implies

exp« psup   —
n    ||  an

< 00. (3.16)

Furthermore, if (3.15)(b) holds for all ß > 0, then (3.16) also holds for all
ß>0.

Proof. Immediate from Theorem 3.1.
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Corollary 3.2. Let B denote a real separable Banach space of type 2. Let
Xx, X2,... be i.i.d. B-valued random variables such that

(a) EXX = 0,   and
(b) £(exp(ß \\XX||2)) < oo for some ß > 0. (3.17)

Then the conclusions of Corollary 3.1 hold.

Proof. EXx = 0 easily implies (3.15)(a), and since B is of type 2 we have a
constant A > 0 such that for all n,

I     n \l/2

E\\Sn\\ < (E\\Snff\ |^ 2 ¿¡¡XA*J    = Ax^2(E\\Xx\ff\ (3.18)
Thus supnE\\Sn\\/Vn < oo and hence (3.15)(c) holds, so the corollary is
proved.

For the next corollary recall the linear measurable space (D[0, T], $,
||-||) defined in §1.

Corollary 3.3. // Xx, X2,...   are i.i.d. (D[0, T], %) valued random
variables such that

(a) EXx(t) = Ofor all t G [0, T],
(b) £(exp()S||^1||2)) < oo for some ß > 0, and
(c) {Xj(t): 0 < t < T) is a martingale on [0, T] for j > 1,    (3.19)

then there exists a ß0> 0 such that ß < ß0 implies

exp ß sup
sn I'21

< oo (3.20)

where S„ » Xx + • • • + X„anda„= V2nLLn .

Remark. Of course, if (3.19)(b) holds for all ß > 0 then (3.20) holds for all
ß >0.

Proof. This follows from Corollary 3.1 provided we show that (3.19)(c)
implies (3.15)(c). Since the norm || • || is the supremum norm and S„(t)/Vn
is a martingale in /, 0 < t < T, we have by the maximal inequality that

P(\\Sn/Vn- \\>X)< X-XE(\S„(T)/Vh-1) < (E\Sn(T)f)l/2/Xnx/2

= x-1(yz|^,(r)|2),/2= o(i/X). (3.21)

Hence (3.15)(c) holds and the corollary is proved.

Lemma 3.1. Let (B, "35, || • ||) be a linear measurable space, and assume
Xx, X2,...  are independent symmetric (B, $ ) valued random variables such
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156 I. KUELBS

that
(a)L = supjE\\Xj\\2<o0,
(b) for some sequence of positive constants {bf) we have SJiify2 < oo and

{2!j^xbjXj\ n > 1} is stochastically bounded.
Then

sup is 2 bjXj
7-1

< OO.

Proof. Let S„ = S"..,^. and N„ = supI<y<„||6,JÇ|| for n > 1. Since {S„:
n > 1} is stochastically bounded there exists A > 0 such that
SUPLÁIS,!! > A) < ¿. Hence by the reasoning used to establish Lemma 2.2
we have

£115,11 < 36.4 + 6 [C°P(Ntt > t) dt."'A

Now

P(N„>t)<2P{\\bJXji\>t)
7-1

<±b2E\\Xjf/t2<Lfbj/t2.
7-1 7-1

Letting C = LlfLib? we have sup„£||S„|| < 36/1 + 6C/,4 and the lemma is
proved.

Theorem 3.2. Let (B, %, \\ • ||) be a linear measurable space and assume
XX,X2,... are independent (B, "35 ) valued random variables such that

(a) Ef(Xj) = Ofor all f E F andj > 1,
(b) sup/>,£'(exp(/3||;»r}||2)) < oo for some ß > 0, and
(c) the sequence of partial sums {S„ = 2". \bjXj, n > I) is
stochastically bounded. (3.22)

If1j>xbJ < oo, then there exists ß0>0 such that ß < ßQ implies

E[[exp(ßsup\\Snf)}<co. (3.23)

Furthermore, if (3.22)(b) holds for all ß>0, then (3.23) also holds for all
ß>0.

Proof. First assume XX,X2,... are symmetric. Then Levy's maximal
inequality and (3.22)(c) easily imply that P(supn||Sn|| < oo) = 1.

In view of (3.22)(b) the theorem is proved if for all ß > 0 there exists an
r(ß) such that r > r(ß) implies
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E(exp(0sup US, - $||2)) < oo. (3.24)

Now
P(sup||5n - Sr\\> X) = liniP(  «up   IS. - $||> x),

v«>r '       N-*<x>     V<n</V '

and hence by Levy's inequality

p(sup||S„ - Sr\> X) < 2 Jim P(\\SN - S,\\>X). (3.25)
Now Lemma 2.1 implies

P(\\SN - Sr\\>X) < exp{-hX)E(exp(h\\SN - Sr\\))
N

2<exp\-h(X-E\\SN-Sr\\) + h2A2   2   *j
j-r+l

< exp -(X - £|5- - $||)2/ Í4A2 J^ôfj

<expj-A2/(16A2   2   &/

by minimizing the function of h

for A/2 > E\\SN-Sr\\.     (3.26)

By Lemma 3.1 we have sup^HSJ! < oo; so combining (3.25) and (3.26)
we have for A/2 > supAr>r£'||5Ar - $|| that

P( sup ||S„ - $|| > A) < 2exp -A2/ ( 16A2   f   tf) •      (3-27)

Hence given ß > 0 we have

£(exp{ /5supJ|$ - $||2)) =jT°0i>(exp(^sup||5'/I - $||2) > /) dt

<«+/;p(supFfl-$ii>(^) )*

<a+J0O2exp -logr/(l6A2/?   §   #)U

provided i(loga)/ß > 2sup„>f£||S'/I - Sr\\

a+2X (?)        *
< oo   if 16A2/3   2   */ < 1- (3-28)

j=r+l
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Since 2J>xb2 < oo there exists r(ß) such that r > r(ß) implies
16A2/?2j* ,.+ ,£/ < 1 so the theorem is proved in case XX,X2,..., are
symmetric.

If the sequence {Xj) is not symmetric, then we proceed as in the proof of
Theorem 3.2 and the theorem is proved.

The next result is related to [6, Theorem 6.1], [14], and [15].

Corollary 3.4. Let (B, %,\\- \\) be a linear measurable space, {xj-.j > 1}
elements in B, and {Yj:j> 1} independent real-valued random variables such
that

(3.29)
(a) EYj = 0 (j > 1) and
(b) supJ>xE(exp(ßY?)) < oo for some ß > 0.

IfS = ^j>iYjXj converges with probability one and 1,j>x\\Xj\\2 < oo, then there
exists ß0 > 0 such that ß < ß0 implies

E(exp{ß\\S\\2})<<x>.

In fact, we have

exp] /3sup 2 YjXj
7-1

< 00

(3.30)

(3.31)

provided ß > 0 is sufficiently small. If (3.29)(b) holds for all ß > 0, then so
does (3.31).

Proof. Let b¡ = I*, I and define X} = YjXj/\xj\\ for y > 1. Then Theorem
3.2 applies immediately so the result is proved.

For the next result we need the idea of a cotype 2-Banach space. We say a
Banach space B with norm || • || is of cotype 2 if for all sequences of mean
zero independent 73-valued random variables XX,X2,..., we have a univer-
sal constant A such that for all n,

E\\Xx + ---+Xnf>A^E\\XJ\\2 (3.32)

Corollary 3.5. Let (B, \\ • ||) be a cotype 2-Banach space and {Yf) a
sequence of i.i.d. real-valued random variables such that (3.29) holds. If
S = "2j>xYjXj converges with probability one in B, then the conclusions of
Corollary 3.4 hold.

Proof. If Yj, = 0 there is nothing to prove so assume the contrary. Next
observe that by Theorem 6.2 of [8] we have is||S||2 < oo. Since {Yf) is an
independent sequence with mean zero and B is of cotype 2 we have for each n
that
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£||5||2> El 2 YjXj> AEY2 2 INI2-
7 = 1

Hence 2y>i||^||2 < oo, and the result follows immediately from Corollary
3.4.

The next result now follows immediately from Corollary 3.5.

Corollary 3.6. Let (B, \\ • ||) be a cotype 2-Banach space and {Yf) a
sequence of i.i.d. real-valued random variables which are uniformly bounded. If
S = ~2j>xYjXj converges with probability one, then

exp /Jsup   2 YjXj
n      j=X

< oo   for all ß >0. (3.33)

Remark. Since the real numbers are cotype 2 the above results easily prove
the following. If S is a square integrable real-valued random variable with
L2-expansion 27>,í}¿i, where {Yj} is an i.i.d. sequence satisfying (3.29), then
there exists a ß0 > 0 such that for ß < ß^,

E(exp(ßS2)) < oo. (3.34)

Of course, if (3.29)(b) holds for all ß > 0 then (3.24) also holds for all ß > 0.
This generalizes the result [18, p. 215] regarding Fourier expansions with
respect to Rademacher functions.

4. An application to empirical distribution functions. The previous results
easily apply to the multidemsional empirical distribution function, and it is
this that we turn to now.

Let X = (Ux,..., Ud) be a random variable with values in Rd. The
distribution function F of X is defined as usual by

F(xx, ...,xd) = P(Ux<xx,...,Ud< xd)       (xx, ...,xd)E Rd.
If XX,X2,... are independent random variables with distribution F the

empirical distribution function is given by

£„(*) = 2 li-ocM)/«      (x ERd,n> 1) (4.1)
7 = 1

where (- oo, x] = {(«„ ..., ud): Uj < xJt 1 < j < d) and x = (xx,..., xd).
If x = (xx, ...,xd) andy = (y„ ..., y„) we write x < y if x} < y} (1 < j <
d).

Of course, [&„(x): x G Rd, n > 1} is a sequence of stochastic processes
indexed by Rd and for each x E Rd,

E(Sn(x)) = F(x). (4.2)
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By the law of large numbers we thus have

lim \$n(x) - F(x)\ =0       (xE Rd), (4.3)

and if F is continuous it is easy to see that we actually have

lim  sup  \&n(x) - F(x)\ = 0.

If d = 1, the distribution of D„ = supx\Sn(x) - F(x)\ is the same for all
continuous F, and Kolmogorov [12] first computed the limiting distribution
of n1/2D„ as n -» oo. Furthermore, Chung [2] gave a bound on the error term
which showed that the law of the iterated logarithm

p( Tim VnJÏLLn Dn = I/2) = 1 (4.4)
holds.

If d > 1, the limiting distribution of nx^2Dn was proved to exist by Kiefer
and Wolfowitz [10], and its form depends on F unlike the case d = I.
However, (4.4) holds for all d > 1 provided F is continuous, as proved by
Kiefer [11]. In addition, functional laws of the iterated logarithm are also
known in this setting [4], [17].

What we do here is examine the integrability of the random variable

M = sup Vñ/2LL~ñ D„. (4.5)
n

Before stating the integrability results for M we need to define the linear
measurable space (D(Rd), %,\\- ||). That is, we call a function x: R'-^R1 a
step function if x is a finite linear combination of functions of the form

'-»I*,* ...x*(0
where Ej is a left closed, right open subinterval of R1, and \E is the indicator
function of the set E. Then D (Rd) is defined to be the uniform closure, in the
space of all uniformly bounded functions from R* to R1, of the linear
subspace of step functions. A characterization of D(Rd) in terms of
continuity properties can also be made. If t G Rd and if, for 1 < j < d, R¡ is
one of the relations < and >, let QR^...tRä(t) denote the quadrant
{(sx, ...,sd)E Rd: SjRjtj, 1 < j < d). Then it is known that x G D (Rd) iff
for each t E Rd, we have xQ = hms^t^&Qx(s) existing for each of the 2d
quadrants Q = QR¡      R(t), and x(t) = xQ. for Q* = Q>.>. Hence we
say the functions of D (W) are continuous from above (or the right), and have
limits from below (or the left). The sigma-algebra % is the minimal o-algebra
making the maps x -> x(t), t E Rd, all measurable, and the norm || • || is the
usual sup-norm given by

IW|=sup|x(/)|.
reR''
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That (D(Rd), %, || • ||) is actually a measurable linear space follows easily
from the fact that an element x E D (Rd) is uniquely determined by its values
on any fixed countable dense subset of Rd, and then emphasizing the ideas of
[3].

Theorem 4.1. Let XX,X2,..., be independent Rd valued random variables
with common distribution function F. Then for all ß > 0 we liave

E(exp{ßM2))<oo (4.6)

where M is defined as in (4.5).

Proof. Setting Yj(t, u>) = l(_oo,,j(A}(<o)) - P(0 for j > 1 and t E Rd we
have (Yj) a sequence of i.i.d. (D(Rd), %, || • ||) valued random variables
which are uniformly bounded by one. Furthermore, we have

2 Yj/V2nTLn~  ,M =

and hence (4.6) follows immediately from Theorem 3.1 if we have

\?lYj/Vn':n>l\ (4.7)

bounded   in   probability   in   (D(Rd), ©, || • ||).   That   the   sequence
{1jmXYj/Vn : n > 1} is bounded in probability follows immediately from
[11, Theorem l(m)] so the proof is complete.

Remark. Since P(M < oo) = 1, we easily see that

sup \&n(x) - F(x)\ = O(VLLn/n ), (4.8)
jceR''

and this gives a rate of convergence for the empirical distribution S„ to F.
One can prove more than (4.8) (provided F is continuous), and this is done in
[11, Theorem 2]. Furthermore, the integrability result in (4.6) could also be
obtained directly from [11, Theorem l(m)], but this would require a good bit
of additional work. A result related to (4.8) when d = 1 and Xx, X2,..., are
independent, but possibly nonidentically distributed random variables,
appears in [16].
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