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Some Exponentiated Distributions

M. Masoom AL Manisha Pal®? and Jungsoo Woo®

Abstract

In this paper we study a number of new exponentiated distributions. The
survival function, failure rate and moments of the distributions have been
derived using certain special functions. The behavior of the failure rate has
also been studied.
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1. Introduction

In this paper we study the properties of some exponentiated distributions.
The idea of exponentiated distribution was introduced by Gupta et al. (1998),
who discussed a new family of distributions termed as exponentiated exponential
distribution. The family has two parameters (scale and shape) similar to the
Weibull or gamma family. Some properties of the distribution was studied by
Gupta and Kundu (2001a). They observed that many properties of the new
family are similar to those of the Weibull or gamma family. Hence the distribution
can be used as an alternative to a Weibull or gamma, distribution. They (2001b,
2002) also examined the estimation and inference aspects of the distribution. The
distribution has been further studied by Nadarajah and Kotz (2003). A class
of goodness-of-fit tests for the distribution with estimated parameter has been
proposed by Hassan (2005). Pal et al. (2006) studied the exponentiated Weibull
family as an extension of the Weibull and exponentiated exponential families.
The exponentiated Frechet distribution was considered by Kotz and Nadarajah
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(2003). Shirke et al. (2005) provided tolerance intervals for exponentiated scale
family of distributions.

In this paper some further exponentiated distributions have been considered.
The survival function, failure rate and moments of the distributions have been
derived using certain special functions. The behavior of the failure rate has
also been studied. Since survival function and failure rate are associated with a
lifetime distribution and lifetime is non-negative, for exponentiated distribution
defined over the range (—o0, 00) we study the same for the distribution truncated
at zero.

2. Exponentiated Distributions

Let X be a random variable with probability density function (pdf) f(zx)
and the cumulative distribution function (cdf) F(z),z € R!. Consider a random
variable Z with cdf given by

Go(2) = [F(2)]*,2z€ R, a > 0. (2.1)

Then Z is said to have an exponentiated distribution.
The pdf of Z is given by

ga(2) = a [F(2)]*7" f(2). (2-2)

The survival function S,(z) and the failure rate r,(z) of the distribution of
Z are defined by

Sa(z) = 1= Gqa(z),

9a(2)
1~ Gol2)

ra(z) =

For a system with lifetime distribution having the cdf G4(z), So(z) defines the
probability that the system will survive at least z units of time, while r,(2)dz
defines the probability that the system will fail in the interval (z, z + dz), given
that it has survived upto z units of time. The distribution is said to be IFR
(increasing failure rate) if r,(z) is a non-decreasing function of z, and it is said
to be DFR (decreasing failure rate) if 74(2) in non-increasing in z.

Some properties of an exponentiated distribution are observed in the following
lemmas.
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Lemma 2.1 If a be an integer, then

E(Zk) =FE (X(ka;a)) )
where X (4,0 5 the largest order statistic in a random sample of size a drawn
from the distribution of X.

Lemma 2.2 If there are n components in a parallel system and the lifetimes
of the components are independently and identically distributed with common cdf
Ga(.) given by (2.1), then the system lifetime has cdf Gon(.), that is, the system
lifetime is also an exponentiated distribution of the form (2.1), but with exponen-
tiating parameter an.

3. Exponentiated Inverse Weibull Distribution

The inverse Weibull distribution has the cdf

1 v
F(z) =exp (— (%) ),:1: >0, 8,y>0.

The exponentiated inverse Weibull distribution is, therefore, defined by the
pdf

1 v
ga(Z) = %%exp (“a (E) ) 2_7_1,2 > 0, Of,ﬂ,’)’ >0

and its cdf is given by

Gulz) = exp (—a (i)v) 2> 0.

Figure 3.1 shows that the peakedness of the distribution increases as a de-
creases, i.e. the distribution becomes more and more flattened as o increases.
The survival function and the failure rate of the distribution are given by

Su(2) = 1 — exp <—a (%)5 ,
_Fee(=(@))
1— exp (—a (%)7)

Clearly, the failure rate ro(2) is increasing in z for z < 1/82¢ and decreasing
in z for z > 1/82, where

Ta(z
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Figure 3.1: Showing the pdf of exponentiated inverse Weibull distribution with
B =0.5,7=0.5 when a = 1,2,4 and 0.5.

1
1 v+ 1\ |~
a= oo ()]

i.e., z = 1/fz is the change point of the failure rate function
From formula 3.15 in Oberhettinger (1974), the k** moment of the distribution
is given by

E(ZF) = o*p7Fr <1 - g) , provided v > k.

Hence, for v > 2,

al/'Y

B(2) = %5T (1-%),
w2 (-2)

Clearly, both the mean and variance increase as « increases, when v > 2.

4. Exponentiated Logistic Distribution

Noting that the cdf of a logistic distribution is given by

1
= _E,:ceRl,,B>0,
l14+e B

the exponentiated logistic distribution is obtained in the following way.
Its pdf is given by

F(x)
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—a—1
ga(z)=%(1+e_"/ﬁ) e 8 ze RYa,f>0

and its cdf is

Figure 4.1: Showing the pdf of exponentiated logistic distribution with 8 = 0.5,
when o« = 1,2, 4 and 0.5.

Figure 4.1 shows that the distribution shifts to the right as a increases. The
peakedness of the distribution also increases with increase in «.

The moments of the distribution, obtained using the formula 3.381(4) in Grad-
shteyn and Ryzhik (1965) and the binomial expansion, are as follows :

ky ok (—a-1) P 1S _(cam )P
E(Z") = aB"k! [Z_| 1) prw e Zlv (i + a)F

To study the survival function and failure rate, we consider the lower trun-
cated distribution, truncated at z = 0.
The survival function of the truncated distribution is

[1 ~-(1+ e—z/ﬂ)—“]

Sal2) = 1-2-«

and the failure rate is

g (L4 e#/8) ™ ems/8
1— (1+e/9)°

Ta(2) =
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It is easily seen that the failure rate v,(2) is an increasing function of z for
all a, 8 > 0, i.e. the distribution is IFR.

5. Exponentiated Pareto Distribution

The exponentiated Pareto distribution has pdf given by
/6 vy a—1
9a(2) = ayp” [1— (;) ] 277 2>8>0,a,y>0
and its edf is

Ga(z) = [1 - (8/2)"%,z 2 6.

- - - —alpha=0.5

Figure 5.1: Showing the pdf of exponentiated Pareto distribution with g = 1,~v =
2, when a = 1,3 and 5.

Figure 5.1 shows that the distribution becomes more and more flattened as a

increases.
The survival function and the failure rate of the distribution are

7o
- (O
yra—1
g [1- ()]
1-[1-(8/2)" '
So, for a,y > 1,r4(z) is a decreasing function of 2, i.e. for a,v > 1 the
distribution is DFR.

ra(z) =
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We obtain the k** moment of the distribution as
aﬂ’”yZ( )TH_—P%, ify>k,aeN

a—1)Pi  (~1)¢ .
aﬁk’yz( a2 jﬁ—r,yiﬂ)_k, ify>k,a¢N.

It is possible to express the moment generating function (mgf) in terms of
incomplete gamma functions, which in turn may be used to find the different

E(Z%) =

moments. From formula 3.6 in Oberhettinger (1974), the mgf can be written as

a'yz ( ) 1)4(=Bt) "D (—(i + 1), —pt), ift<0,a € N
E(etZ) —

o0
oy @B )i gty (i + 1), -BE), it <0,a¢ N,
=0

where

(o0}

I'a,z) = /e'yya‘ldy, a>0.

T

6. Exponentiated Generalized Uniform Distribution

The cdf of a generalized uniform distribution is of the form

T v+1
F(:c)z(B) ,0<z < B,v> -1,

Hence the pdf and cdf of an exponentiated generalized uniform distribution
will be defined by

a(y+1)-1
ga(z)=3(1ﬂ+—1)<%> ,0<2<B,7>-1,a>0,

Cule) = (5) a(y+1) .



100 M. Masoom Ali, Manisha Pal and Jungsoo Woo
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! . |~~~ -dlpha=2

Figure 6.1: Showing the pdf of exponentiated generalized uniform distribution
with 8 =2, =1, when a = 0.5,1,2 and .5.

Figure 6.1 shows that the distribution shifts to the right as a increases and
the right tail of the distribution becomes steeper with increase in a.
The survival function and failure rate of the distribution are given by

s 2 a(y+1)
a =1-1|= 3
@=1-(3)
a(y+1) (£>a(7+1)—1
ra(z) = b s ,0<z< 0.

1 (%) a(y+1)

Substituting ¢ = z/8, it can be easily seen that the distribution is IFR for
v¥>0and o > 1.

Using formula 3.381(1) in Gradshteyn and Ryzhik (1965), the expression for
the mgf is obtained as

E(e'?) = a(y +1)(=t)"*0*V[L ~ T(a(y + 1), —tB)],t # 0.
The k** moment of the distribution is, therefore, given by
E(Zk) _ a(7 + 1)

Ca(y+1)+k
Thus, the mean and variance come out to be

B~

B(Z) = a(y+1)

- a(’y+1)+1'8
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1 a(y+1)
Var(Z) = oy + 1) | o072 e+ D+ 1}2} g,

7. Exponentiated General Exponential Distribution

z—8
With F(z) =1~¢~ 7 ,2 > 6,8 > 0,0 € R', we define the exponentiated
general exponential distribution as having the density function

z—0\ a—1 z—
ga(z)z—%(l—e— ﬁo) e ﬂg,z>0,a,,8>0,9€R1.

The cdf of the distribution is

Ga(2) = (1 - e"zge)a

045 -

Figure 7.1: Showing the pdf of exponentiated general exponential distribution
with § =2, =1, when a = 0.5,1,2 and .5.

Figure 7.1 shows that the distribution is unimodal with mode more or less at
the sam point, whatever be a.

We study the survival probability and failure rate of the distribution for 8 > 0.

The survival function and failure rate come out as
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Here « is the shape parameter, § the scale parameter and # the location
parameter. For @ = 0, it becomes the exponentiated exponential distribution
studied by Gupta and Kundu (2001). For any 8 and 6 > 0, the failure rate is
an increasing function of z if @ > 1, and decreases as z increases for o < 1. For
a = 1, it is constant.

It is possible to express the mgf of the distribution in terms of the gamma
function. From formula 2.20 in Oberhettinger (1974), the mgf is
wL(L=BO0(@) o 1
Mo+ 1 - pt) Jé]

Defining m(t) = In E(e!?) and evaluating gtm(t)lt=0 and ‘aa—:;‘m(t)‘tz() we
obtain the mean and variance of the distribution as

E(Z) = 0+ B[¥(a+1) — ¥(1)],
Var(Z) = f2¥'(1) — ¥'(a + 1)),

E(et?) = ae

where ¥(.) is the digamma function and ¥’(.) is its first order derivative. ¥(1) =
7, the Euler’s constant, and ¥(1) = £(2), where {(r) = 32277 is Riemann zeta
function.

In particular, for a = 2, using formulas 6.3.5 and 6.4.2 in Abramowitz and
Stegun (1972), we get

E(Z) =0+ %B and Var(Z) = 2,32.

8. Exponentiated Double Exponential Distribution
The cdf of a double exponential random variable X has the form
]_ _|=—6
F(z) = 5[1 + sgn (z—6)(1—e J7"1)],:1: €RL,0ecR,3>0,

where

1if 2>0
g0 (@) =9 _1 i z<o.

Hence an exponentiated double exponential distribution is defined by the
density function

=8 a-1 |, 4
ga(z)=%[1+ sgn (2 —6) (1—6— B )] e—Lﬂ_l,zeRl,BeRl,,B,a>0.
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Therefore, the cdf of the distribution is

Ga(2) = zia [1—1— sgn (z —6) (1—6_12‘%91)] ,z € RL.

Figure 8.1: Showing the pdf of exponentiated double exponential distribution
with § = 0.5, =1, when a = 0.5,1,2 and .5.

Figure 8.1 shows that the distribution shifts to the right with increase in a.
We may obtain the moments of the distribution with the help of formula
3.381(3) in Gradshteyn and Ryzhik (1965) :

a—1
B(Z*) = 27%(—a/B) "¢ #°T(k +1,00/B) + oY (1)’ (a ; 1)
i=0
' e(i+1)0/8 '
_ o—a(_ -k _—%6 e _ykrie-n B
= 27%(~a/B)*e 8T (k +1,06/B) + oBf*D (-1) -
i=0 ’
QG188
21:_-!-1—(./Z+1—)k+f’ lf o ¢ N

In particular, for § =0 and g = 1, and « a natural number, we get

xI'(k+1, (i 4+ 1)8/8)

a—1
o - ifa—1 k!
=0

E[Z-E(Z))3 e
A study of the skewness measure v; = ‘%/WZ(_(Z%‘ shows that the distribution
is skewed to the right and the skewness increases with increase in a.
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Consider § > 0. For the lower truncated distribution, truncated at z = 0, the
survival function is

1-5=[1+4 sgn (z—60)(1 - e_J%ﬂ)]"‘

_af
e B
20

Sa(z) =
1—

. and the failure rate is

_lz=8] I E ol
B 2Tlﬂ[l—i— sgn (z—0)(1—e B )*le” B
- z—8
1— L1+ sgn(z—0)(1— e_JTL)]"‘

Clearly, the failure rate function is increasing for 0 < z < 6, whatever o > 0, and
is decreasing in z for z > 6 if a < 2. Thus, for 0 < a < 2, ro(z) is a concave
function with change point at z = 0.

To(2)

9. Exponentiated Double Weibull Distribution

The cdf of a double Weibull random variable X has the form

F(z) = % [1 + sen (2) {1 — exp (— ('%')7) H € R, B,y >0.

The exponentiated double Weibull random variable Z, therefore, has the pdf

-2 oo oo (- (5}

¥
X exp (— (Lg—') ) |z|7_1, ze€ RYa,B8,v>0.

Cdf of the distribution is given by

Gu(z) = 51; [1 + sgn (z) {1 — exp (— ('——;—‘)7) }]a ,2 € R..

For v = 1, we get the exponentiated double exponential distribution.

Figure 9.1 shows that as o increases, the distribution shifts to the right and
the part of the distribution in the positive range of z becomes steeper.

We obtain the moments of the distribution by utilizing formula 3.478(1) in
Gradshteyn and Ryzhik (1965). The k** moment is given by
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Figure 9.1: Showing the pdf of exponentiated double Weibull distribution with
B=1v=2, when o =0.5,1,2 and 5.

k a2 (a-1 (1) )
ky _ gk INi(—1Yko—eq K/ L & _
E(Z®) =0 I‘(1+7)[( 1)*27% +3 -§=o ( ; ) 2i(z'+1)1+k/'r]’ ifaeN
k o - 0 e (a—1) P (-1)
— gk M\i_1\ko—a  —k/fy | & (a—1) .
B 1‘(1+7)[( 1)* 27 % + 2;:0 a 2i(z‘+1)1+k/7]’ ifa¢ N.

Putting v = 1, we get the k** moment of the exponentiated double exponential
distribution.

The survival function S,(z) and the failure rate r,(2) of the exponentiated
double Weibull distribution truncated at z = 0 come out to be

oo [t @ {1-ew (- () )}

1
1 -5

i S ) e (- ()
- #en (- (3)])

Clearly, ro(2) is a decreasing function of z if &,y < 1.

10. Exponentiated Double Inverse Weibull Distribution

The cdf of a double inverse Weibull distribution is given by
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Fz) = {1+sgn(x)exp< (ﬁx—‘>7>],xeRl,ﬁ,7>0.

We therefore define an exponentiated double inverse Weibull distribution as
having pdf and cdf given by g,(2) and G,(z), respectively, where

dalz) = 22‘;7 [1+ sgn (z) exp (_ ( ﬁ_llé_l )V)]a_elxp (_ ( ﬁ >7>,z -1

Ga(z) = zia [1+ sgn (z) exp (— (L)v)}a,z € R, a,8,v > 0.

Blz|

Figure 10.1: Showing the pdf of exponentiated double inverse Weibull distribution
with 8 =1,y =2, when a = 0.5,1,2 and 5.

We obtain the moments of the distribution by utilizing formula 3.478(1) in
Gradshteyn and Ryzhik (1965). The k** moment is given by

27%af (1 k)Z{1+ 1)k+i}<a;1)(i+1)k_;l,ifaeN
E(Z¥) = =0

2-%aB-FI(1 ’“)Z{1+ 1)e+iye=nPi; )5 e ¢ N
i=0

The survival function S,(z) and the failure rate ro(2) of the distribution
truncated at z = 0 are given by
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1— 2= [1+exp(—(g) "]
1- 5
o (L + exp(—(5) )1 exp(—(57)" | 2|77}
1— g[L +exp(~(g;)M)®

Salz) =

b

ra(z) =

11. Conclusions

The paper discusses some properties of a number of exponentiated distribu-
tions. The distributions are skewed and some of them will be useful in analyzing
many lifetime skewed data. For example, the exponentiated general exponential
distribution will fit lifetime data, where items are known to survive for at least
a minimum age. The exponentiated Inverse Weibull would be a suitable model
for describing degradation phenomenon of mechanical components like dynamic
components of diesel engines. The exponentiated Pareto distribution could be
effectively used for modelling of financial data.

We now illustrate two applications of the exponentiated distributions.

Data Set 1 : (Lawless, 1986, page 228). The data relate to tests on en-

durance of deep groove ball bearings. The data are the number of million revo-

lutions before failure for each of the 23 ball bearings in the life test and they are

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80,

68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04 and 173.40.
Here we fitted the exponentiated general exponential distribution with 8 = 0.
The MLEs of the parameters 8 and a came out as

B = 30.96455, & = 5.2829.

The observations were grouped into 4 intervals in order that the expected fre-
quency of each interval is at least 5, which is essential for good x? approximation.

Intervals | Observed | Expected

0-455 5 5.780
45.5 - 65.5 6 5.885
65.5 - 85.5 6 6.292
85.5 - 6 5.043

23 23
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The value of the frequency Chi-square (x?) for the fit was obtained as x? =
0.3027, which shows the fit to be very good.
Data Set 2 : (NASDAQ data - 1985 to 2005). The data is not reproduced
here because of its volume. We first transformed the data by taking logarithm
of the daily returns and then computing the first differences. An exponentiated
Pareto distribution was fitted to the extremities of the transformed data, where
the model showed extremely good fit. The parameters of the distribution have
been estimated using the maximum likelihood method.

(The dashed curve is the cdf based on exponentiated Pareto fit, while the
solid curve is the empirical cdf.)

3 2
2 L5
g1 LR
84 £ -
5 LR
005 ROT OO G5 WO08 DD 08y G0e OO 0D GO7 ONG 000
Figure 11.1 Figure 11.2
z ,ﬂ‘«’-vj 5 /
§- f& 5 ]
3 NS
g‘ g-“""""mw’{“‘
a% e owm 0w dm i ot o -0
Figure 11.3 Figure 11.4

Figure 11.1 shows an exponentiated Pareto fitted to the excess gains above the
95% quantile ((v, 8, a) = (6.55,0.088,0.989)).

Figure 11.2 shows an exponentiated Pareto fitted to the excess losses below the
5% quantile (v, 8, @) = (7.02,0.120, 1.046).

Figure 11.3 shows an exponentiated Pareto fitted to the excess gains above the
99% quantile ((v, 8, «) = (8.36,0.103,1.10)).
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Figure 11.4 shows an exponentiated Pareto fitted to the excess losses below the
1% quantile ((v, 3, o) = (11.98,0.214,1.098)).

Clearly, the exponentiated Pareto is found to fit the empirical cdf curve very
well over the corresponding ranges.
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